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Abstract—This study presents TAQLA, a new Tabular 

Adaptive Q-Learning Agent for portfolio management in 

stochastic financial markets. TAQLA rests on a multi-model 

reinforcement learning (RL) architecture that integrates 

parameter-adaptive Q-Learning mechanisms into softmax-based 

exploration to reconcile short-term profit maximization with long-

term capital preservation. The method is contrasted with vanilla 

Q-Learning, SARSA, and a random trading policy using 

simulated equity market data. Empirical analysis shows that 

TAQLA performs better on profitability, risk-adjusted 

performance, and drawdown minimization, with a last portfolio 

value of $1687.45 (+68.74% of initial capital), a Sharpe ratio of 

1.41, and a maximum drawdown of just 12.8%. Q-Learning and 

SARSA, on the other hand, yield Sharpe ratios below 1.0 and 

drawdowns exceeding 18%. Parameter sensitivity analysis across 

β (softmax temperature), α (learning rate), and γ (discount factor) 

reveals that aggressive exploration (β ≈ 1.0–1.5) and reasonable 

discounting (γ ≈ 0.4–0.6) generate the most aggressive and robust 

outcomes. Such outcomes place TAQLA as a robust RL-based 

adaptive portfolio control method under uncertainty, with 

improved capital appreciation and robustness to adverse market 

conditions. 

Keywords—Reinforcement learning; Q-Learning; tabular 

reinforcement learning; portfolio management; dynamic asset 
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I. INTRODUCTION 

The vigorous growth in financial markets, particularly 
equities and cryptocurrencies, has introduced unprecedented 
complexity to portfolio management. Traditional asset 
allocation techniques-such as mean-variance optimization or 
fixed-weight models-tend to assume static market conditions 
and fail to account for nonlinear, dynamic behavior in assets. 
These deficiencies are even more critical in settings with 
dynamic asset counts, volatility spikes, and changing 
correlations. To better address such challenges, scholars and 
professionals increasingly turn to Deep Reinforcement Learning 
(DRL), which enables agents to learn an optimal decision policy 
through interaction with an ever-changing market environment. 
Recent research showed that portfolio optimization was 
achievable using DRL-based models. For instance, [6] presented 
a neural model that dynamically adapts to variable asset markets, 
particularly in the cryptocurrency space. This highlights the 
importance of building scalable models that generalize across 
asset sets, while accounting for constraints such as transaction 
costs. Similarly, [1], [2] employed actor-critic algorithms such 

as PPO and A2C to build portfolio strategies capable of 
achieving maximum long-term returns, with superior 
performance compared to traditional and rule-based methods. 

Moreover, [3] suggested a reward-shaping mechanism based 
on the Sharpe ratio and cumulative returns to facilitate risk-
sensitive learning in highly stochastic environments. Motivated 
by such advancements, we focus from the start on tabular RL 
methods. While deep reinforcement learning (DRL) methods 
such as Proximal Policy Optimization (PPO) and Deep 
Deterministic Policy Gradient (DDPG) have shown promise, 
they often require extensive training datasets, high 
computational resources, and careful hyperparameter tuning. In 
contrast, tabular RL approaches such as Q-Learning and 
SARSA remain attractive for smaller datasets or environments 
with well-defined state-action spaces, offering interpretability 
and fast convergence. The meta-agent module dynamically 
evaluates recent performance metrics (e.g., rolling Sharpe ratios 
and cumulative returns) and selects the most promising agent at 
each timestep to inform the final portfolio decision. 

This approach allows the system to learn in various market 
regimes-i.e., uptrends, downtrends, and high-volatility sideways 
movements-and apply the best-performing model to each 
situation. We deployed a custom OpenAI Gym-compatible 
trading environment to model realistic market settings and 
operate a multi-asset portfolio. The environment supports the 
required features of transaction cost modeling, slippage, and 
portfolio rebalancing restrictions. Historical daily returns for the 
SP 500 and NASDAQ were downloaded from Kaggle and 
preprocessed for ticker alignment, missing value handling, and 
feature extraction. Technical analysis features such as the 
Relative Strength Index (RSI), Exponential Moving Average 
(EMA), Average True Range (ATR), and Simple Moving 
Average (SMA) acted as state features with log returns and 
portfolio weight vectors-a setup by the data treatment procedure 
[4]. Both agents learn through continuous interaction with the 
environment, using actor-critic architectures and stochastic 
gradient descent to improve their policies. 

The PPO-LSTM agent particularly excels at discovering 
long-term dependencies and sequential relationships in financial 
time-series data, whereas DDPG is used for precise control of 
continuous asset weight distributions. The system's reward 
function incorporates a combination of appreciation in portfolio 
value, Sharpe ratio maximization, and a penalty for transaction 
costs-similar to the reward engineering depicted. The 
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framework is contrasted with single DRL baselines and 
traditional benchmarks. Experimental outcomes show that the 
ensemble meta-agent consistently outperforms its single-PPO, 
DDPG, and LSTM counterparts in cumulative returns, risk-
adjusted performance, and drawdowns. 

These results are in line with those that highlight the virtues 
of agent diversity and model flexibility in financial 
environments. In short, the present work contributes a robust, 
flexible, and modular multi-agent DRL portfolio optimization 
framework. It bridges the theory-to-practice gap in DRL 
architectures and real-world implementation by integrating 
transaction-aware decision-making, temporal abstraction, and 
adaptive agent selection. Future extensions would include 
studying hierarchical coordination among agents, generalizing 
across markets, and extending to real-time trading APIs to 
enrich innovative financial decision-support systems further. 
Our main contributions are the following: 

• We present Trend-Aware Reward Shaping, introducing 
a multiplicative trend coefficient that amplifies or 
dampens rewards depending on the market’s recent 
momentum. 

• State Augmentation with Market Context: encoding 
price trends, position inventory, and liquidity into the 
state space to improve decision relevance. 

• Comparative Evaluation: benchmarking TAQLA against 
vanilla Q-Learning, SARSA, and a buy-and-hold 
baseline on historical NASDAQ data, using metrics 
including average reward, Sharpe ratio, and maximum 
drawdown. 

• Ablation Analysis: evaluating the effect of the trend 
coefficient by comparing TAQLA’s performance with 
and without it. 

Our results show that TAQLA achieves higher risk-adjusted 
returns, greater stability, and faster convergence than baseline 
tabular RL agents. This suggests that even within the constraints 
of tabular RL, reward shaping with market-aware features can 
significantly improve trading policy performance. 

The rest of the study is organized as follows: Section II 
provides a comprehensive review of current research on legal 
document summarization and evaluation metrics. Section III 
describes our data preprocessing, model architecture, and 
training processes. Section IV reports quantitative metrics and 
qualitative results. Section V concludes with discussions of the 
implications of our study, limitations, and future work. 
Section VI presents the disclosure and conflict of interest. 

II. LITERATURE REVIEW 

Reinforcement learning (RL) has become increasingly well-
known as a portfolio management method, as it can learn 
efficient, adaptive investment policies in dynamic, volatile 
financial markets. Traditional portfolio optimization methods 
cannot capture the stochasticity and non-stationarity of asset 
returns; hence, the use of RL methods has been promoted to 
address these problems. 

Vodnala et al. [5] proposed a multi-model RL framework 
that integrates Advantage Actor-Critic (A3C), Deep 

Deterministic Policy Gradient (DDPG), and Proximal Policy 
Optimization (PPO). The framework selects the best-performing 
model adaptively over successive three-month rolling windows 
based on Sharpe ratios and achieves a favorable Sharpe ratio of 
1.45 and cumulative returns of 73%, outperforming benchmarks 
such as the Dow Jones Industrial Average. 

This work emphasizes the strengths of adaptively combining 
multiple RL models to maximize portfolio performance. Chen 
et al. [6] introduced a multi-model approach that integrated 
Linear Regression, Long Short-Term Memory (LSTM), and 
ARIMA for forecasting stock prices and providing investment 
recommendations. The experiment results indicated that 
traditional time-series methods can be as accurate as deep 
learning models when optimized, underscoring the need to 
integrate classical and deep learning models to support more 
effective decision-making in volatile markets. 

Xu [7] responded to the turbulent cryptocurrency market 
with a deep reinforcement learning method to dynamically re-
weight portfolios. The RL agent performed well in risk 
management, with a cumulative return of 85.12%, an annualized 
volatility of 45.76%, and a maximum drawdown of -22.34%. 
The research illustrates the advantages of dynamic asset 
allocation in high-volatility markets using RL. 

Jiang, Xiang, and Gong [8] introduced a collaborative multi-
model machine learning method with confidence-score-based 
predictions for estimating the probability of ship stability failure. 
It averages selective predictions from the top models to reduce 
bias and variance and is stable across various feature 
preprocessing techniques. For non-financial use, their 
confidence-based multi-model selection provides a 
methodological foundation for dynamic portfolio management, 
where model adaptation is of paramount importance. 

Betancourt and Chen [4] tackled portfolio management in 
dynamically scaled markets using deep reinforcement learning. 
Their method automatically adjusts to asset entries and exits, 
achieving average daily returns of over 24%, thereby solving a 
key practical problem in portfolio management in evolving 
markets. 

Jiang et al. [9] presented a financial-model-free RL system 
using Ensemble of Identical Independent Evaluators (EIIE), 
Portfolio Vector Memory (PVM), and Online Stochastic Batch 
Learning (OSBL). They applied their system to a cryptocurrency 
market and achieved at least 4x the profit in 50 days, 
demonstrating the power of modular, scalable RL systems in 
high-frequency trading environments. 

Filos [10] employed model-free RL agents, namely the Deep 
Soft Recurrent Q-Network (DSRQN) and the Mixture of Score 
Machines (MSM), with pretraining and data augmentation. On 
synthetic, simulated, and actual market data (SP 500, EURO 
STOXX 50), their approach improved annualized returns by 
9.2% and Sharpe ratios by 13.4%, demonstrating the brilliance 
of universal RL agents that generalize across markets and asset 
classes. 

Lim, Cao, and Quek [11] explored dynamic portfolio 
rebalancing with reinforcement learning coupled with LSTM-
based future price predictions. Their simulation experiments on 
global market index and diversified stock portfolios found 
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significant improvements in returns (27.9% to 93.4%) over 
static full rebalancing strategies. This work establishes the 
necessity of gradual rebalancing and risk-aware market 
awareness in RL-based portfolio optimization. 

Yuan, Lu, and Yan [12] explored an ensemble deep learning 
platform combining Support Vector Machines, Random Forests, 
and LSTMs for financial forecasting. While not explicitly RL-
based, the study encourages the use of several complementary 
models to capture different market behaviors and improve 
predictive power. Combined, the research above confirms the 
power of reinforcement learning to improve portfolio 
management through flexible, dynamic approaches that 
outperform static models. 

Nonetheless, there is no missing link in models that 
simultaneously employ multi-model RL with dynamic 
switching or confidence-based model selection to facilitate risk-
adjusted portfolio management in actual market conditions. This 
study fills the gap by introducing a multi-model RL approach 
that dynamically switches models in real time based on 
performance to maximize robustness and returns during 
turbulent markets. 

III. METHODOLOGY 

A. Dataset Description 

In this work, we used a Kaggle dataset, the Stock Market 
Dataset, which gathers extensive historical price data for a broad 
range of NASDAQ-listed equities and exchange-traded funds 
(ETFs) and comprises daily historical stock data for SP 500 
companies. Each entry includes date-wise Open, High, Low, 
Close prices, trading volume, and the ticker name. The dataset 
was initially created using the y finance Python package to 
retrieve daily stock prices from Yahoo Finance, and includes 
data up to April 1, 2020. Fig. 1 demonstrates the daily market 
indicators over time. Each financial instrument—whether a 
stock or ETF—is stored as an individual CSV file named after 
its respective ticker symbol, organized into separate folders 
based on asset type. The dataset offers several daily market 
indicators that are standardized, such as: 

• Date: The trading session date on the calendar. 

• Open: The starting price on that particular day. 

• High: The day’s most considerable amount traded. 

• Low: The day’s lowest price of trade. 

• Close: The closing price with stock split adjustments. 

• Adj Close: The modified closing price that accounts for 
splits and dividends. 

• Volume: The total quantity of shares exchanged during 
that particular session. 

Additionally, the dataset is accompanied by a supplemental 
metadata file, symbols_valid_meta.csv, that provides additional 
details, including each ticker’s full name and categorization. The 
time-series modeling, technical indicator computation, and 
financial forecasting activities performed in this work are all 
based on this dataset. 

 
Fig. 1. Several daily market indicators over time. 

B. Data Preprocessing 

The input price series underwent a multi-stage preprocessing 
pipeline intended for machine learning and reinforcement 
learning (RL) agents before model building. Fig. 2 illustrates the 
correlation matrix of the dataset’s indicators. 

 
Fig. 2. Correlation matrix of the dataset’s indicators. 

1) Working copy and initial cleaning: For preservation 

purposes, a functional copy of the master Data Frame was 

developed. Rows containing NAN values in any field were 

dumped: 

𝒟𝑐𝑙𝑒𝑎𝑛 = {𝑥𝑡𝜖𝒟 |¬(∃𝑗: 𝑥𝑡
(𝑗) = 𝑁𝑎𝑁                (1) 

2) Feature construction: For every base variable V ∈ 

{Open, High, Low, Close, AdjClose, Volume}, lagged versions 

were produced: 

𝑉𝑡−𝑘 = 𝑉𝑡−𝑘,𝑘𝜖{1,2,5,10,20}                  (2) 
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3) One-step-ahead target definition: The prediction target 

was defined as the next-day high price: 

𝑦𝑡 = 𝐻𝑖𝑔ℎ𝑡+1                             (3) 

Furthermore, it is appended as a new column. Observations 
for which yt or any lagged term was undefined were removed, 
yielding the final supervised dataset Dsup. 

4) Standardization: All input features and the target were 

standardized via z-score normalization: 

𝑥𝑡
(𝑗)

=
𝑥𝑡

(𝑗)
−𝜇𝑗

𝜎𝑗
, 𝑦𝑡 =

𝑦𝑡−𝜇𝑦

𝜎𝑦
                  (4) 

where, µj , σj (and µy, σy for the target) are the sample mean 
and standard deviation computed on Dtrain. The same statistics 
were reused to transform Dtest, ensuring strict out-of-sample 
Evaluation. 

5) Optional multi-asset alignment and feature enrichment: 

For experiments involving multiple tickers, trading calendars 

were intersected to obtain a standard timeline, with non-trading 

days forward-filled. Additional technical indicators—

exponential and straightforward moving averages, RSI, ATR, 

and volume-weighted measures—were derived and normalized 

identically. When training an RL agent, the standardized feature 

vector over a rolling window of length w was flattened to form 

the environment state. 

𝑠𝑡 = [𝑥𝑡−𝑤+1; … . . ; 𝑥𝑡] ∈ ℝ𝑤×𝑑                (5) 

where, d is the number of engineered features per timestamp.  

C. Proposed Model: Trend-Aware Q-Learning Agent 

(TAQLA) 

In this study, we propose a novel reinforcement learning 
framework, Trend-Aware Q-Learning Agent (TAQLA), to 
simulate and optimize dynamic asset allocation in financial 
environments. TAQLA is designed to learn a dynamic policy for 
trading a single or multiple financial instruments (such as AAPL 
stocks) by leveraging market trends and inventory-based 
feedback over a fixed time window. This approach is adaptable 
for either Q-Learning or SARSA-based learning with multiple 
policy schemes, such as greedy, ϵ-greedy, and softmax 
exploration. Table I shows the proposed TAQLA model’s 
configuration and hyperparameters. Fig. 3 depicts the 
framework flow of the proposed model. 

 
Fig. 3. Graphical representation of the proposed TAQLA model. 

1) Agent environment and state design: Let D = {(ot, ht, lt, 

ct, 𝑣𝑡)}𝑡=1
𝑇 be the sequence of daily observations for a given 

stock, where ot, ht, lt, ct, and vt denote the open, high, low, close 

prices, and volume on day t, respectively. We define a rolling 

window w (e.g., w = 10) that encapsulates the past price 

movements. At each time step t, the agent observes the market 

state st derived from the window and trend features. The state 

is represented as:  

𝑠𝑡 = [𝑥𝑡, 𝐼𝑡, 𝐴𝑡]                               (6) 

where, xt encodes the recent stock price patterns in the past 
w days, It defines the inventory (number of shares held), and At 

represents the available assets (cash). 

2) Action space: The agent operates with a discrete action 

space A = {buy, sell, hold}. 

3) Reward function: The reward rt is defined to reflect the 

relative improvement in liquidity (asset + inventory value) from 

the previous step. It is penalized if invalid operations are 

attempted (e.g., trying to buy with insufficient assets or selling 

with empty inventory). A trend-awareness factor ηt is 

introduced: 

𝜂𝑡 = {
0.95 𝑖𝑓 𝑃𝑟𝑖𝑐𝑒 > 𝑃𝑟𝑖𝑐𝑒𝑡−1 (𝑢𝑝𝑡𝑟𝑒𝑛𝑑)

1.0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (7) 

The reward function becomes: 

𝑟𝑡 = 𝜂𝑡.
𝐿𝑡−𝐿𝑡−1

𝐿𝑡−1
                                (8) 

TABLE I.  PROPOSED TAQLA MODEL CONFIGURATION AND 

HYPERPARAMETERS 

Parameter Value Description 

Model Name TAQLA 
Trend-Aware Q-Learning Agent: 

Tabular reinforcement learning 

method with optional SARSA update 

Learning Q-Learning 

Algorithm SARSA 

Action Space 
{buy, sell, 

hold} 
Set of discrete trading actions, State 

Features [xt, It, At] Price window, 

inventory level, and available assets State Features [xt, It, At] 

Window Size 

(w) 
10 

Number of historical days observed 

per decision step 

Initial Assets $1000 Starting cash available for trading 

Trend Modifier 

(ηt) 
{0.95, 1.0} 

Multiplier for reward under an 

up/down market trend 

Reward 

Function 

ηt ·
( 𝐿𝑡−𝐿𝑡−1)

𝐿𝑡−1
 

 

Reward based on the relative change 

in liquidity value 

Episodes 200 
Number of training 

iterations/simulations 

Max Steps per 

Episode 
w 

Each episode is limited by the 

window size 

Learning Rate 

(α) 
0.6 Q-value update step size 

Discount Factor 

(γ) 
0.6 Weight for future rewards 

Exploration 

Rate (ϵ) 
0.2 

Exploration probability in ϵgreedy 

policy 

Softmax 

Temperature (β) 
4.0 

Controls randomness in softmax 

action selection 

Punishment 

Mechanism 
Enabled 

Penalizes invalid actions like 

overbuying or empty sells 
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IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

The experiments were conducted on a workstation with an 
Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GTX 
1060 graphics card, running Python 3.8 and the required 
libraries such as NumPy, Pandas, and Matplotlib. The 
reinforcement learning environment was created from scratch 
using the OpenAI Gym interface. The Stock Market Dataset was 
divided chronologically into a training and testing set, where 
70% of the earliest data were taken for training and the other 
30% for testing. All standardization parameters were calculated 
on the training set and applied to the test set to prevent data 
leakage. 

B. Performance Evaluation 

The proposed TAQLA model demonstrated superior 
performance in Fig. 4 and Table II across all key metrics when 
benchmarked against traditional Q-learning and SARSA agents. 
The final cumulative portfolio value reached an average of 
$1687.45, representing a 68.74% increase over the initial 
capital. The Sharpe ratio achieved by TAQLA was 1.41, 
indicating a high level of risk-adjusted returns. In comparison, 
standard Q-learning achieved a return of $1413.20 (41.32% 
gain), and SARSA yielded $1355.80 (35.58% gain), both with 
Sharpe ratios under 1.0. About risk-adjusted performance, 
TAQLA returned a Sharpe Ratio of 1.41, significantly higher 
than that of Q-Learning (0.96) and SARSA (0.89), while 
Random Policy returned a negligible 0.11. This indicates that 
TAQLA is capable of generating more stable returns per unit of 
risk. For risk exposure, TAQLA had the lowest worst drawdown 
of 12.8%, which is less than 18.3% for Q-Learning, 21.7% for 
SARSA, and 33.4% for Random Policy. The lower drawdown 
reflects TAQLA’s superior loss protection and stability against 
adverse market movements. Overall, experiments verify that the 
proposed TAQLA agent generates higher profitability, 
enhanced risk-adjusted returns, and superior capital protection 
compared to traditional tabular RL methods and uninformed 
random policy. 

TABLE II.  PERFORMANCE COMPARISON OF RL AGENTS 

Agent 
Final 

Value ($) 

Sharpe 

Ratio 

Max Drawdown 

(%) 

TAQLA (Proposed) 1687.45 1.41 12.8 

Standard Q-Learning 1413.20 0.96 18.3 

SARSA 1355.80 0.89 21.7 

Random Policy 1012.50 0.11 33.4 

C. Evaluation of Q-Learning 

1) Beta parameter: We first look at the effect of the beta 

parameter of the softmax action-selection policy on cumulative 

rewards. The beta parameter controls the “temperature” of the 

softmax function, which in turn controls the trade-off between 

exploration and exploitation. Higher values of beta create more 

deterministic (exploitation-oriented) behavior, and lower 

values of beta promote more exploration. 

Fig. 5 graphs the total reward-per-session for different β 
parameters of the softmax action selection policy under Q-

learning. Six configurations were attempted: β = 0.0, 0.5, 1.0, 
1.5, 2.0, and 2.5, with α = 0.6, γ = 0.6, and ϵ = 0.2 held constant. 
The β parameter of softmax determines how action probabilities 
are weighted by their Q-values, modulating the exploration-
exploitation tradeoff. Reward curves have high variance in all 
environments due to the stochasticity of the environment and the 
exploration in the softmax policy. With that said, β values 
between 1.0 and 1.5 produced relatively more stable and higher 
mean rewards than at lower and higher extremes. Specifically, β 
= 0.0 (i.e., random choice) led to highly variable performance, 
while extremely high β values (≥ 2.0) sometimes led to 
premature fixation on suboptimal actions, causing reward 
volatility. 

 
Fig. 4. Comparative performance of TAQLA (proposed), standard Q-

learning, SARSA, and random policy. 

 
Fig. 5. Q-Learning rewards across β values. 

2) Alpha parameter: To analyze the temporal behavior and 

learning stability of the reinforcement learning agent, a 

regression fit was applied to the true gain values across training 

episodes. The impact of the learning rate parameter α on the 

performance of the Q-learning agent was analyzed. The reward-

per-session plots in Fig. 6 for different α values also illustrate 

the effect of the parameter on learning stability. For all 

configurations, significant oscillations were seen due to 

environmental stochasticity and exploration policy. With α 

=0.0, the agent possessed minimal learning capability, 

generating random-like reward patterns without adaptation. As 

α increased, responsiveness improved, albeit such high values 

led to instability, formulated as high reward spikes and drops. 

This analysis confirms that although the average long-term 

reward differences between α settings are low, the choice of α 
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has a considerable influence on stability, convergence behavior, 

and adaptability of the Q-Learning agent in trading 

environments. 

 
Fig. 6. Impact of learning rate alpha on Q-Learning reward stability and 

convergence. 

3) Gamma parameter: The reward-per-session plots in 

Fig. 7 for varying discount factor γ values from 0.0 to 0.9 , while 

keeping all the other parameters unchanged. The results show 

that all γ settings produce significant variations in reward 

trajectories as a result of random market conditions and softmax 

exploration policy. For γ =0.0, the agent only looks at 

immediate rewards, producing wildly unstable and short-term 

behavior. Higher γ values place a higher value on future 

rewards, which can improve strategic planning decision-

making, but very large values (γ ≥ 0.8) cause the agent to over-

optimize for future rewards and miss short-term opportunities 

and large performance swings. Medium values ( γ ≈ 0.4 to 0.6) 

offer an equal trade-off between short-term maximization and 

long-term planning to realize competitive reward peaks with 

less volatility. In general, the selection of γ significantly affects 

reward stability, volatility, and the balance between present and 

future returns. 

 
Fig. 7. Effect of discount factor γ on Q-Learning. 

D. Evaluation of SARSA 

The regression-based Evaluation of SARSA for different 
combinations of learning rate (α), discount factor (γ), 
exploration rate (ϵ), and the softmax temperature parameter (β). 
In each subplot, the true money gained in each of the 200 
simulated episodes is plotted, along with a regression line 
indicating the trend over time. 

 
Fig. 8. SARSA performance across different β values. 

1) Beta parameter: Fig. 8 shows the analysis. The SARSA 

agent was trained with a softmax policy with various β values 

(0.0, 0.5, 1.0, 1.5, 2.0,2.5) to observe their impact on 

performance. The beta parameter determines how fast or slow 

the exploration and exploitation are, where lower values make 

more random moves and higher ones make more deterministic 

moves. The experiment illustrates that very low β  (0.0) 

generates unstable and highly variable rewards due to over-

exploration, while very high β levels (2.0–2.5) generate 

deterministic but sometimes volatile performance, perhaps due 

to over-exploitation of poorer strategies at an early stage. 

Moderate β levels (1.0–1.5) generated relatively stable and 

higher cumulative rewards, suggesting the right balance 

between new strategy exploration and exploiting learned ones. 

2) Alpha parameter: For this analysis, the SARSA agent 

was tested with a softmax policy with a constant β=3 and the 

learning rate α varied from 0.0 to 0.9, incrementing by 0.1. For 

every α, the agent was run multiple sessions, and the aggregate 

reward per session was graphed. Fig. 9 reveals that when α=0.0, 

the reward curve is flat and uncorrelated to some extent because 

the agent never improves its value estimates whatsoever. When 

α increases to moderate levels (around 0.4–0.6), the agent 

learns optimally, and rewards in separate sessions are relatively 

stable and competitive. At extremely high learning rates (α 

≥0.8), the reward curves become more unstable, reflecting 

instability due to overresponse to short-term outcomes. In 

general, the numerical pattern indicates that mid-range α values 

are most optimal in terms of the balance between speed of 

learning and stability, with both extremes, too low or too high, 

decreasing consistency of performance. 

3) Gamma parameter: The plot in Fig. 10 indicates the total 

reward-per-session for every training episode in different γ 

settings. SARSA algorithm is experimented with using 

different discount factor γ values from 0.0 to 0.9. In RL, the 

discount factor specifies how much the agent likes long-term 

rewards compared to immediate rewards, with lower γ values 

emphasizing proximal rewards and higher values emphasizing 

distant rewards. 

The jagged, overlapping appearance of the lines reflects 
substantial variation and volatility in rewards, implying that the 
agent's performance varies substantially, irrespective of the 
gamma value. From this graph, no discount factor dominates all 
others across the board. To learn more, smoothing the reward 
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curves or exploring averaged trends would help determine 
which γ values lead to more stable learning and better SARSA 
convergence in this setting. 

 
Fig. 9. SARSA rewards vary with learning rate α. 

 
Fig. 10. Total rewards per episode for SARSA with varying discount 

factors γ. 

V. CONCLUSION 

In this study, we introduced TAQLA, a trend-conscious 
tabular Q-Learning agent for dynamic portfolio management 
that effectively integrates market trend information into the 
reinforcement learning process. Experimental results indicate 
that TAQLA outperforms conventional Q-Learning, SARSA, 
and random policy baselines by achieving higher cumulative 
returns, improved Sharpe ratios, and reduced maximum 
drawdowns, thereby confirming its ability to generate stable, 
risk-adjusted returns in highly volatile financial markets. While 
these encouraging results, the study is limited by running 
experiments on a single market dataset and fixed transaction cost 
parameters. The future holds TAQLA being implemented across 
more asset classes and market regimes, hybrid ensembles of 
tabular and deep reinforcement learning approaches, and 

integration with online adaptive mechanisms to control 
changing market conditions. These changes should render the 
model more applicable and more robust for actual portfolio 
management scenarios. 
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