
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

1 | P a g e
www.ijacsa.thesai.org

A Multi-Model Adaptive Q-Learning Framework for

Robust Portfolio Management in Stochastic Markets

Sharmin Sultana1, Md Borhan Uddin2, Mst Masuma Akter Semi3,

Shahanaj Akther4, Urmi Chakraborty5, Khandakar Rabbi Ahmed6*

International American University, Los Angeles, United States1, 2, 4, 5

Westcliff University, USA3

Miyan Research Institute, International University of Business Agriculture and Technology, Bangladesh 6

Abstract—This study presents TAQLA, a new Tabular

Adaptive Q-Learning Agent for portfolio management in

stochastic financial markets. TAQLA rests on a multi-model

reinforcement learning (RL) architecture that integrates

parameter-adaptive Q-Learning mechanisms into softmax-based

exploration to reconcile short-term profit maximization with long-

term capital preservation. The method is contrasted with vanilla

Q-Learning, SARSA, and a random trading policy using

simulated equity market data. Empirical analysis shows that

TAQLA performs better on profitability, risk-adjusted

performance, and drawdown minimization, with a last portfolio

value of $1687.45 (+68.74% of initial capital), a Sharpe ratio of

1.41, and a maximum drawdown of just 12.8%. Q-Learning and

SARSA, on the other hand, yield Sharpe ratios below 1.0 and

drawdowns exceeding 18%. Parameter sensitivity analysis across

β (softmax temperature), α (learning rate), and γ (discount factor)

reveals that aggressive exploration (β ≈ 1.0–1.5) and reasonable

discounting (γ ≈ 0.4–0.6) generate the most aggressive and robust

outcomes. Such outcomes place TAQLA as a robust RL-based

adaptive portfolio control method under uncertainty, with

improved capital appreciation and robustness to adverse market

conditions.

Keywords—Reinforcement learning; Q-Learning; tabular

reinforcement learning; portfolio management; dynamic asset

allocation

I. INTRODUCTION

The vigorous growth in financial markets, particularly
equities and cryptocurrencies, has introduced unprecedented
complexity to portfolio management. Traditional asset
allocation techniques-such as mean-variance optimization or
fixed-weight models-tend to assume static market conditions
and fail to account for nonlinear, dynamic behavior in assets.
These deficiencies are even more critical in settings with
dynamic asset counts, volatility spikes, and changing
correlations. To better address such challenges, scholars and
professionals increasingly turn to Deep Reinforcement Learning
(DRL), which enables agents to learn an optimal decision policy
through interaction with an ever-changing market environment.
Recent research showed that portfolio optimization was
achievable using DRL-based models. For instance, [6] presented
a neural model that dynamically adapts to variable asset markets,
particularly in the cryptocurrency space. This highlights the
importance of building scalable models that generalize across
asset sets, while accounting for constraints such as transaction
costs. Similarly, [1], [2] employed actor-critic algorithms such

as PPO and A2C to build portfolio strategies capable of
achieving maximum long-term returns, with superior
performance compared to traditional and rule-based methods.

Moreover, [3] suggested a reward-shaping mechanism based
on the Sharpe ratio and cumulative returns to facilitate risk-
sensitive learning in highly stochastic environments. Motivated
by such advancements, we focus from the start on tabular RL
methods. While deep reinforcement learning (DRL) methods
such as Proximal Policy Optimization (PPO) and Deep
Deterministic Policy Gradient (DDPG) have shown promise,
they often require extensive training datasets, high
computational resources, and careful hyperparameter tuning. In
contrast, tabular RL approaches such as Q-Learning and
SARSA remain attractive for smaller datasets or environments
with well-defined state-action spaces, offering interpretability
and fast convergence. The meta-agent module dynamically
evaluates recent performance metrics (e.g., rolling Sharpe ratios
and cumulative returns) and selects the most promising agent at
each timestep to inform the final portfolio decision.

This approach allows the system to learn in various market
regimes-i.e., uptrends, downtrends, and high-volatility sideways
movements-and apply the best-performing model to each
situation. We deployed a custom OpenAI Gym-compatible
trading environment to model realistic market settings and
operate a multi-asset portfolio. The environment supports the
required features of transaction cost modeling, slippage, and
portfolio rebalancing restrictions. Historical daily returns for the
SP 500 and NASDAQ were downloaded from Kaggle and
preprocessed for ticker alignment, missing value handling, and
feature extraction. Technical analysis features such as the
Relative Strength Index (RSI), Exponential Moving Average
(EMA), Average True Range (ATR), and Simple Moving
Average (SMA) acted as state features with log returns and
portfolio weight vectors-a setup by the data treatment procedure
[4]. Both agents learn through continuous interaction with the
environment, using actor-critic architectures and stochastic
gradient descent to improve their policies.

The PPO-LSTM agent particularly excels at discovering
long-term dependencies and sequential relationships in financial
time-series data, whereas DDPG is used for precise control of
continuous asset weight distributions. The system's reward
function incorporates a combination of appreciation in portfolio
value, Sharpe ratio maximization, and a penalty for transaction
costs-similar to the reward engineering depicted. The

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

2 | P a g e
www.ijacsa.thesai.org

framework is contrasted with single DRL baselines and
traditional benchmarks. Experimental outcomes show that the
ensemble meta-agent consistently outperforms its single-PPO,
DDPG, and LSTM counterparts in cumulative returns, risk-
adjusted performance, and drawdowns.

These results are in line with those that highlight the virtues
of agent diversity and model flexibility in financial
environments. In short, the present work contributes a robust,
flexible, and modular multi-agent DRL portfolio optimization
framework. It bridges the theory-to-practice gap in DRL
architectures and real-world implementation by integrating
transaction-aware decision-making, temporal abstraction, and
adaptive agent selection. Future extensions would include
studying hierarchical coordination among agents, generalizing
across markets, and extending to real-time trading APIs to
enrich innovative financial decision-support systems further.
Our main contributions are the following:

• We present Trend-Aware Reward Shaping, introducing
a multiplicative trend coefficient that amplifies or
dampens rewards depending on the market’s recent
momentum.

• State Augmentation with Market Context: encoding
price trends, position inventory, and liquidity into the
state space to improve decision relevance.

• Comparative Evaluation: benchmarking TAQLA against
vanilla Q-Learning, SARSA, and a buy-and-hold
baseline on historical NASDAQ data, using metrics
including average reward, Sharpe ratio, and maximum
drawdown.

• Ablation Analysis: evaluating the effect of the trend
coefficient by comparing TAQLA’s performance with
and without it.

Our results show that TAQLA achieves higher risk-adjusted
returns, greater stability, and faster convergence than baseline
tabular RL agents. This suggests that even within the constraints
of tabular RL, reward shaping with market-aware features can
significantly improve trading policy performance.

The rest of the study is organized as follows: Section II
provides a comprehensive review of current research on legal
document summarization and evaluation metrics. Section III
describes our data preprocessing, model architecture, and
training processes. Section IV reports quantitative metrics and
qualitative results. Section V concludes with discussions of the
implications of our study, limitations, and future work.
Section VI presents the disclosure and conflict of interest.

II. LITERATURE REVIEW

Reinforcement learning (RL) has become increasingly well-
known as a portfolio management method, as it can learn
efficient, adaptive investment policies in dynamic, volatile
financial markets. Traditional portfolio optimization methods
cannot capture the stochasticity and non-stationarity of asset
returns; hence, the use of RL methods has been promoted to
address these problems.

Vodnala et al. [5] proposed a multi-model RL framework
that integrates Advantage Actor-Critic (A3C), Deep

Deterministic Policy Gradient (DDPG), and Proximal Policy
Optimization (PPO). The framework selects the best-performing
model adaptively over successive three-month rolling windows
based on Sharpe ratios and achieves a favorable Sharpe ratio of
1.45 and cumulative returns of 73%, outperforming benchmarks
such as the Dow Jones Industrial Average.

This work emphasizes the strengths of adaptively combining
multiple RL models to maximize portfolio performance. Chen
et al. [6] introduced a multi-model approach that integrated
Linear Regression, Long Short-Term Memory (LSTM), and
ARIMA for forecasting stock prices and providing investment
recommendations. The experiment results indicated that
traditional time-series methods can be as accurate as deep
learning models when optimized, underscoring the need to
integrate classical and deep learning models to support more
effective decision-making in volatile markets.

Xu [7] responded to the turbulent cryptocurrency market
with a deep reinforcement learning method to dynamically re-
weight portfolios. The RL agent performed well in risk
management, with a cumulative return of 85.12%, an annualized
volatility of 45.76%, and a maximum drawdown of -22.34%.
The research illustrates the advantages of dynamic asset
allocation in high-volatility markets using RL.

Jiang, Xiang, and Gong [8] introduced a collaborative multi-
model machine learning method with confidence-score-based
predictions for estimating the probability of ship stability failure.
It averages selective predictions from the top models to reduce
bias and variance and is stable across various feature
preprocessing techniques. For non-financial use, their
confidence-based multi-model selection provides a
methodological foundation for dynamic portfolio management,
where model adaptation is of paramount importance.

Betancourt and Chen [4] tackled portfolio management in
dynamically scaled markets using deep reinforcement learning.
Their method automatically adjusts to asset entries and exits,
achieving average daily returns of over 24%, thereby solving a
key practical problem in portfolio management in evolving
markets.

Jiang et al. [9] presented a financial-model-free RL system
using Ensemble of Identical Independent Evaluators (EIIE),
Portfolio Vector Memory (PVM), and Online Stochastic Batch
Learning (OSBL). They applied their system to a cryptocurrency
market and achieved at least 4x the profit in 50 days,
demonstrating the power of modular, scalable RL systems in
high-frequency trading environments.

Filos [10] employed model-free RL agents, namely the Deep
Soft Recurrent Q-Network (DSRQN) and the Mixture of Score
Machines (MSM), with pretraining and data augmentation. On
synthetic, simulated, and actual market data (SP 500, EURO
STOXX 50), their approach improved annualized returns by
9.2% and Sharpe ratios by 13.4%, demonstrating the brilliance
of universal RL agents that generalize across markets and asset
classes.

Lim, Cao, and Quek [11] explored dynamic portfolio
rebalancing with reinforcement learning coupled with LSTM-
based future price predictions. Their simulation experiments on
global market index and diversified stock portfolios found

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

3 | P a g e
www.ijacsa.thesai.org

significant improvements in returns (27.9% to 93.4%) over
static full rebalancing strategies. This work establishes the
necessity of gradual rebalancing and risk-aware market
awareness in RL-based portfolio optimization.

Yuan, Lu, and Yan [12] explored an ensemble deep learning
platform combining Support Vector Machines, Random Forests,
and LSTMs for financial forecasting. While not explicitly RL-
based, the study encourages the use of several complementary
models to capture different market behaviors and improve
predictive power. Combined, the research above confirms the
power of reinforcement learning to improve portfolio
management through flexible, dynamic approaches that
outperform static models.

Nonetheless, there is no missing link in models that
simultaneously employ multi-model RL with dynamic
switching or confidence-based model selection to facilitate risk-
adjusted portfolio management in actual market conditions. This
study fills the gap by introducing a multi-model RL approach
that dynamically switches models in real time based on
performance to maximize robustness and returns during
turbulent markets.

III. METHODOLOGY

A. Dataset Description

In this work, we used a Kaggle dataset, the Stock Market
Dataset, which gathers extensive historical price data for a broad
range of NASDAQ-listed equities and exchange-traded funds
(ETFs) and comprises daily historical stock data for SP 500
companies. Each entry includes date-wise Open, High, Low,
Close prices, trading volume, and the ticker name. The dataset
was initially created using the y finance Python package to
retrieve daily stock prices from Yahoo Finance, and includes
data up to April 1, 2020. Fig. 1 demonstrates the daily market
indicators over time. Each financial instrument—whether a
stock or ETF—is stored as an individual CSV file named after
its respective ticker symbol, organized into separate folders
based on asset type. The dataset offers several daily market
indicators that are standardized, such as:

• Date: The trading session date on the calendar.

• Open: The starting price on that particular day.

• High: The day’s most considerable amount traded.

• Low: The day’s lowest price of trade.

• Close: The closing price with stock split adjustments.

• Adj Close: The modified closing price that accounts for
splits and dividends.

• Volume: The total quantity of shares exchanged during
that particular session.

Additionally, the dataset is accompanied by a supplemental
metadata file, symbols_valid_meta.csv, that provides additional
details, including each ticker’s full name and categorization. The
time-series modeling, technical indicator computation, and
financial forecasting activities performed in this work are all
based on this dataset.

Fig. 1. Several daily market indicators over time.

B. Data Preprocessing

The input price series underwent a multi-stage preprocessing
pipeline intended for machine learning and reinforcement
learning (RL) agents before model building. Fig. 2 illustrates the
correlation matrix of the dataset’s indicators.

Fig. 2. Correlation matrix of the dataset’s indicators.

1) Working copy and initial cleaning: For preservation

purposes, a functional copy of the master Data Frame was

developed. Rows containing NAN values in any field were

dumped:

𝒟𝑐𝑙𝑒𝑎𝑛 = {𝑥𝑡𝜖𝒟 |¬(∃𝑗: 𝑥𝑡
(𝑗) = 𝑁𝑎𝑁 (1)

2) Feature construction: For every base variable V ∈

{Open, High, Low, Close, AdjClose, Volume}, lagged versions

were produced:

𝑉𝑡−𝑘 = 𝑉𝑡−𝑘,𝑘𝜖{1,2,5,10,20} (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

4 | P a g e
www.ijacsa.thesai.org

3) One-step-ahead target definition: The prediction target

was defined as the next-day high price:

𝑦𝑡 = 𝐻𝑖𝑔ℎ𝑡+1 (3)

Furthermore, it is appended as a new column. Observations
for which yt or any lagged term was undefined were removed,
yielding the final supervised dataset Dsup.

4) Standardization: All input features and the target were

standardized via z-score normalization:

𝑥𝑡
(𝑗)

=
𝑥𝑡

(𝑗)
−𝜇𝑗

𝜎𝑗
, 𝑦𝑡 =

𝑦𝑡−𝜇𝑦

𝜎𝑦
 (4)

where, µj , σj (and µy, σy for the target) are the sample mean
and standard deviation computed on Dtrain. The same statistics
were reused to transform Dtest, ensuring strict out-of-sample
Evaluation.

5) Optional multi-asset alignment and feature enrichment:

For experiments involving multiple tickers, trading calendars

were intersected to obtain a standard timeline, with non-trading

days forward-filled. Additional technical indicators—

exponential and straightforward moving averages, RSI, ATR,

and volume-weighted measures—were derived and normalized

identically. When training an RL agent, the standardized feature

vector over a rolling window of length w was flattened to form

the environment state.

𝑠𝑡 = [𝑥𝑡−𝑤+1; … . . ; 𝑥𝑡] ∈ ℝ𝑤×𝑑 (5)

where, d is the number of engineered features per timestamp.

C. Proposed Model: Trend-Aware Q-Learning Agent

(TAQLA)

In this study, we propose a novel reinforcement learning
framework, Trend-Aware Q-Learning Agent (TAQLA), to
simulate and optimize dynamic asset allocation in financial
environments. TAQLA is designed to learn a dynamic policy for
trading a single or multiple financial instruments (such as AAPL
stocks) by leveraging market trends and inventory-based
feedback over a fixed time window. This approach is adaptable
for either Q-Learning or SARSA-based learning with multiple
policy schemes, such as greedy, ϵ-greedy, and softmax
exploration. Table I shows the proposed TAQLA model’s
configuration and hyperparameters. Fig. 3 depicts the
framework flow of the proposed model.

Fig. 3. Graphical representation of the proposed TAQLA model.

1) Agent environment and state design: Let D = {(ot, ht, lt,

ct, 𝑣𝑡)}𝑡=1
𝑇 be the sequence of daily observations for a given

stock, where ot, ht, lt, ct, and vt denote the open, high, low, close

prices, and volume on day t, respectively. We define a rolling

window w (e.g., w = 10) that encapsulates the past price

movements. At each time step t, the agent observes the market

state st derived from the window and trend features. The state

is represented as:

𝑠𝑡 = [𝑥𝑡, 𝐼𝑡, 𝐴𝑡] (6)

where, xt encodes the recent stock price patterns in the past
w days, It defines the inventory (number of shares held), and At

represents the available assets (cash).

2) Action space: The agent operates with a discrete action

space A = {buy, sell, hold}.

3) Reward function: The reward rt is defined to reflect the

relative improvement in liquidity (asset + inventory value) from

the previous step. It is penalized if invalid operations are

attempted (e.g., trying to buy with insufficient assets or selling

with empty inventory). A trend-awareness factor ηt is

introduced:

𝜂𝑡 = {
0.95 𝑖𝑓 𝑃𝑟𝑖𝑐𝑒 > 𝑃𝑟𝑖𝑐𝑒𝑡−1 (𝑢𝑝𝑡𝑟𝑒𝑛𝑑)

1.0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

The reward function becomes:

𝑟𝑡 = 𝜂𝑡.
𝐿𝑡−𝐿𝑡−1

𝐿𝑡−1
 (8)

TABLE I. PROPOSED TAQLA MODEL CONFIGURATION AND

HYPERPARAMETERS

Parameter Value Description

Model Name TAQLA
Trend-Aware Q-Learning Agent:

Tabular reinforcement learning

method with optional SARSA update

Learning Q-Learning

Algorithm SARSA

Action Space
{buy, sell,

hold}
Set of discrete trading actions, State

Features [xt, It, At] Price window,

inventory level, and available assets State Features [xt, It, At]

Window Size

(w)
10

Number of historical days observed

per decision step

Initial Assets $1000 Starting cash available for trading

Trend Modifier

(ηt)
{0.95, 1.0}

Multiplier for reward under an

up/down market trend

Reward

Function

ηt ·
(𝐿𝑡−𝐿𝑡−1)

𝐿𝑡−1

Reward based on the relative change

in liquidity value

Episodes 200
Number of training

iterations/simulations

Max Steps per

Episode
w

Each episode is limited by the

window size

Learning Rate

(α)
0.6 Q-value update step size

Discount Factor

(γ)
0.6 Weight for future rewards

Exploration

Rate (ϵ)
0.2

Exploration probability in ϵgreedy

policy

Softmax

Temperature (β)
4.0

Controls randomness in softmax

action selection

Punishment

Mechanism
Enabled

Penalizes invalid actions like

overbuying or empty sells

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

5 | P a g e
www.ijacsa.thesai.org

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The experiments were conducted on a workstation with an
Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GTX
1060 graphics card, running Python 3.8 and the required
libraries such as NumPy, Pandas, and Matplotlib. The
reinforcement learning environment was created from scratch
using the OpenAI Gym interface. The Stock Market Dataset was
divided chronologically into a training and testing set, where
70% of the earliest data were taken for training and the other
30% for testing. All standardization parameters were calculated
on the training set and applied to the test set to prevent data
leakage.

B. Performance Evaluation

The proposed TAQLA model demonstrated superior
performance in Fig. 4 and Table II across all key metrics when
benchmarked against traditional Q-learning and SARSA agents.
The final cumulative portfolio value reached an average of
$1687.45, representing a 68.74% increase over the initial
capital. The Sharpe ratio achieved by TAQLA was 1.41,
indicating a high level of risk-adjusted returns. In comparison,
standard Q-learning achieved a return of $1413.20 (41.32%
gain), and SARSA yielded $1355.80 (35.58% gain), both with
Sharpe ratios under 1.0. About risk-adjusted performance,
TAQLA returned a Sharpe Ratio of 1.41, significantly higher
than that of Q-Learning (0.96) and SARSA (0.89), while
Random Policy returned a negligible 0.11. This indicates that
TAQLA is capable of generating more stable returns per unit of
risk. For risk exposure, TAQLA had the lowest worst drawdown
of 12.8%, which is less than 18.3% for Q-Learning, 21.7% for
SARSA, and 33.4% for Random Policy. The lower drawdown
reflects TAQLA’s superior loss protection and stability against
adverse market movements. Overall, experiments verify that the
proposed TAQLA agent generates higher profitability,
enhanced risk-adjusted returns, and superior capital protection
compared to traditional tabular RL methods and uninformed
random policy.

TABLE II. PERFORMANCE COMPARISON OF RL AGENTS

Agent
Final

Value ($)

Sharpe

Ratio

Max Drawdown

(%)

TAQLA (Proposed) 1687.45 1.41 12.8

Standard Q-Learning 1413.20 0.96 18.3

SARSA 1355.80 0.89 21.7

Random Policy 1012.50 0.11 33.4

C. Evaluation of Q-Learning

1) Beta parameter: We first look at the effect of the beta

parameter of the softmax action-selection policy on cumulative

rewards. The beta parameter controls the “temperature” of the

softmax function, which in turn controls the trade-off between

exploration and exploitation. Higher values of beta create more

deterministic (exploitation-oriented) behavior, and lower

values of beta promote more exploration.

Fig. 5 graphs the total reward-per-session for different β
parameters of the softmax action selection policy under Q-

learning. Six configurations were attempted: β = 0.0, 0.5, 1.0,
1.5, 2.0, and 2.5, with α = 0.6, γ = 0.6, and ϵ = 0.2 held constant.
The β parameter of softmax determines how action probabilities
are weighted by their Q-values, modulating the exploration-
exploitation tradeoff. Reward curves have high variance in all
environments due to the stochasticity of the environment and the
exploration in the softmax policy. With that said, β values
between 1.0 and 1.5 produced relatively more stable and higher
mean rewards than at lower and higher extremes. Specifically, β
= 0.0 (i.e., random choice) led to highly variable performance,
while extremely high β values (≥ 2.0) sometimes led to
premature fixation on suboptimal actions, causing reward
volatility.

Fig. 4. Comparative performance of TAQLA (proposed), standard Q-

learning, SARSA, and random policy.

Fig. 5. Q-Learning rewards across β values.

2) Alpha parameter: To analyze the temporal behavior and

learning stability of the reinforcement learning agent, a

regression fit was applied to the true gain values across training

episodes. The impact of the learning rate parameter α on the

performance of the Q-learning agent was analyzed. The reward-

per-session plots in Fig. 6 for different α values also illustrate

the effect of the parameter on learning stability. For all

configurations, significant oscillations were seen due to

environmental stochasticity and exploration policy. With α

=0.0, the agent possessed minimal learning capability,

generating random-like reward patterns without adaptation. As

α increased, responsiveness improved, albeit such high values

led to instability, formulated as high reward spikes and drops.

This analysis confirms that although the average long-term

reward differences between α settings are low, the choice of α

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

6 | P a g e
www.ijacsa.thesai.org

has a considerable influence on stability, convergence behavior,

and adaptability of the Q-Learning agent in trading

environments.

Fig. 6. Impact of learning rate alpha on Q-Learning reward stability and

convergence.

3) Gamma parameter: The reward-per-session plots in

Fig. 7 for varying discount factor γ values from 0.0 to 0.9 , while

keeping all the other parameters unchanged. The results show

that all γ settings produce significant variations in reward

trajectories as a result of random market conditions and softmax

exploration policy. For γ =0.0, the agent only looks at

immediate rewards, producing wildly unstable and short-term

behavior. Higher γ values place a higher value on future

rewards, which can improve strategic planning decision-

making, but very large values (γ ≥ 0.8) cause the agent to over-

optimize for future rewards and miss short-term opportunities

and large performance swings. Medium values (γ ≈ 0.4 to 0.6)

offer an equal trade-off between short-term maximization and

long-term planning to realize competitive reward peaks with

less volatility. In general, the selection of γ significantly affects

reward stability, volatility, and the balance between present and

future returns.

Fig. 7. Effect of discount factor γ on Q-Learning.

D. Evaluation of SARSA

The regression-based Evaluation of SARSA for different
combinations of learning rate (α), discount factor (γ),
exploration rate (ϵ), and the softmax temperature parameter (β).
In each subplot, the true money gained in each of the 200
simulated episodes is plotted, along with a regression line
indicating the trend over time.

Fig. 8. SARSA performance across different β values.

1) Beta parameter: Fig. 8 shows the analysis. The SARSA

agent was trained with a softmax policy with various β values

(0.0, 0.5, 1.0, 1.5, 2.0,2.5) to observe their impact on

performance. The beta parameter determines how fast or slow

the exploration and exploitation are, where lower values make

more random moves and higher ones make more deterministic

moves. The experiment illustrates that very low β (0.0)

generates unstable and highly variable rewards due to over-

exploration, while very high β levels (2.0–2.5) generate

deterministic but sometimes volatile performance, perhaps due

to over-exploitation of poorer strategies at an early stage.

Moderate β levels (1.0–1.5) generated relatively stable and

higher cumulative rewards, suggesting the right balance

between new strategy exploration and exploiting learned ones.

2) Alpha parameter: For this analysis, the SARSA agent

was tested with a softmax policy with a constant β=3 and the

learning rate α varied from 0.0 to 0.9, incrementing by 0.1. For

every α, the agent was run multiple sessions, and the aggregate

reward per session was graphed. Fig. 9 reveals that when α=0.0,

the reward curve is flat and uncorrelated to some extent because

the agent never improves its value estimates whatsoever. When

α increases to moderate levels (around 0.4–0.6), the agent

learns optimally, and rewards in separate sessions are relatively

stable and competitive. At extremely high learning rates (α

≥0.8), the reward curves become more unstable, reflecting

instability due to overresponse to short-term outcomes. In

general, the numerical pattern indicates that mid-range α values

are most optimal in terms of the balance between speed of

learning and stability, with both extremes, too low or too high,

decreasing consistency of performance.

3) Gamma parameter: The plot in Fig. 10 indicates the total

reward-per-session for every training episode in different γ

settings. SARSA algorithm is experimented with using

different discount factor γ values from 0.0 to 0.9. In RL, the

discount factor specifies how much the agent likes long-term

rewards compared to immediate rewards, with lower γ values

emphasizing proximal rewards and higher values emphasizing

distant rewards.

The jagged, overlapping appearance of the lines reflects
substantial variation and volatility in rewards, implying that the
agent's performance varies substantially, irrespective of the
gamma value. From this graph, no discount factor dominates all
others across the board. To learn more, smoothing the reward

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

7 | P a g e
www.ijacsa.thesai.org

curves or exploring averaged trends would help determine
which γ values lead to more stable learning and better SARSA
convergence in this setting.

Fig. 9. SARSA rewards vary with learning rate α.

Fig. 10. Total rewards per episode for SARSA with varying discount

factors γ.

V. CONCLUSION

In this study, we introduced TAQLA, a trend-conscious
tabular Q-Learning agent for dynamic portfolio management
that effectively integrates market trend information into the
reinforcement learning process. Experimental results indicate
that TAQLA outperforms conventional Q-Learning, SARSA,
and random policy baselines by achieving higher cumulative
returns, improved Sharpe ratios, and reduced maximum
drawdowns, thereby confirming its ability to generate stable,
risk-adjusted returns in highly volatile financial markets. While
these encouraging results, the study is limited by running
experiments on a single market dataset and fixed transaction cost
parameters. The future holds TAQLA being implemented across
more asset classes and market regimes, hybrid ensembles of
tabular and deep reinforcement learning approaches, and

integration with online adaptive mechanisms to control
changing market conditions. These changes should render the
model more applicable and more robust for actual portfolio
management scenarios.

VI. DISCLOSURE AND CONFLICT OF INTEREST

The author declares that there are no conflicts of interest
related to this research. Additionally, the author has no financial
interests or competing affiliations that could have influenced the
study's design, execution, or findings. This manuscript is the
author's original work and has not been previously published or
submitted for review to any other journal or conference.

REFERENCES

[1] N. Umashankar and K. S. Geethanjali, “Reinforcement learning for

financial portfolio optimization: Dynamic strategies for risk and reward

management.”

[2] J. Wang, Y. Li, and Y. Cao, “Dynamic portfolio management with

reinforcement learning,” 11 2019.

[3] G. Huang, X. Zhou, and Q. Song, “A deep reinforcement learning

framework for dynamic portfolio optimization: Evidence from China’s

stock market,” arXiv preprint arXiv:2412.18563, 2024.

[4] C. Betancourt and W.-H. Chen, “Deep reinforcement learning for

portfolio management of markets with a dynamic number of assets,”

Expert Systems with Applications, vol. 164, p. 114002, 2021.

[5] N. Vodnala, P. Yarlagadda, P. Vamsikrishna, and L. Tejaswini, “Dynamic

portfolio management using multi-model reinforcement learning,” in

2024 IEEE International Conference on Information Technology,

Electronics and Intelligent Communication Systems (ICITEICS). IEEE ,

2024, pp. 1–4.

[6] Z. Chen, Z. Dai, H. Xing, and J. Chen, “Multi-model approach for stock

price prediction and trading recommendations,” 2025.

[7] Z. Xu et al., “Dynamic portfolio optimization using reinforcement

learning in cryptocurrency markets,” Academic Journal of Business &

Management, vol. 7, no. 4, pp. 223–231, 2025.

[8] C. Jiang, X. Xiang, and G. Xiang, “A joint multi-model machine learning

prediction approach based on confidence for ship stability,” Complex &

Intelligent Systems, vol. 10, no. 3, pp. 3873–3890, 2024.

[9] Z. Jiang, D. Xu, and J. Liang, “A deep reinforcement learning framework

for the financial portfolio management problem,” arXiv preprint

arXiv:1706.10059, 2017.

[10] A. Filos, “Reinforcement learning for portfolio management,” arXiv

preprint arXiv:1909.09571, 2019.

[11] Q. Y. E. Lim, Q. Cao, and C. Quek, “Dynamic portfolio rebalancing

through reinforcement learning,” Neural Computing and Applications,

vol. 34, no. 9, pp. 7125–7139, 2022.

[12] G. Yuan, J. Lu, and Z. Yan, “Effective generation of relational schema

from multi-model data with reinforcement learning,” in International

Conference on Conceptual Modeling. Springer, 2022, pp. 224–235.

