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Abstract—Breast cancer remains a highly heterogeneous
disease for which it demands advanced computational techniques
that can reveal significant biological patterns in high-dimensional
epigenomic data. DNA methylation profiles generated by the
INlumina HumanMethylation450 platform yield rich, clinically
relevant signals but introduce significant analytical challenges
due to their high dimensionality, sparsity, and nonlinear
structure. This work presents a novel memory-efficient hybrid
learning architecture that combines Truncated Singular Value
Decomposition (SVD), a deep Autoencoder, and a multi-model
ensemble classifier for boosting subtype classification
performance using TCGA-BRCA methylation data. In order to
circumvent memory limits and prevent system crashes, a probe-
subset extraction strategy combined with variance-based feature
selection was employed to ensure fast and safe data loading from
the Xena repository. While the autoencoder extracts compact
nonlinear manifold representations, SVD captures the global
linear variance structure. Further, the fused latent space is
modelled by an ensemble including Random Forest, XGBoost,
and a lightweight Keras neural classifier that allows the system to
exploit different decision limits and achieve robust
generalization. The experimental investigation across several
architectures demonstrates high predictive performance with
ROC-AUC scores exceeding 0.99 and accuracies higher than 0.96
for Basic CNN and MLP models. Furthermore, the proposed
hybrid ensemble improves stability and precision by
outperforming traditional baselines and confirming the
complementary nature of spectral and deep feature extraction.
This study is suitable for large-scale biomedical data analytics
scenarios. In conclusion, this work provides an efficient hybrid
machine learning framework for breast cancer methylation study
by offering a strong platform for improved prognostic modelling
and development of epigenetic biomarkers.

Keywords—Breast cancer classification; DNA methylation;
TCGA-BRCA; Truncated SVD; autoencoder; ensemble learning;
deep learning; epigenomic biomarkers; hybrid model; machine
learning pipeline; high-dimensional data

I.  INTRODUCTION

Breast cancer is considered one of the highest cancer
morbidity and mortality cases in women globally. In spite of
the tremendous progress in the area of early detection,
molecular profiling, and targeted therapies, breast cancer has
currently been taken as a biologically heterogeneous disease
with several different molecular subtypes with genetical,
epigenetical, and phenotypic features. This heterogeneity
directly influences disease courses, therapy response, and

patient prognosis, and careful molecular-level stratification
strategies are considered necessary to enable precision
oncology.

Omics technologies that operate with high throughput have
also made breast cancer research faster, as they allow massive
profiling of genomic and epigenomic changes. Among them,
the DNA methylation has turned out to be a strong and durable
epigenetic biomarker because of its key contribution to the
regulation of genes, fine-tuning of the chromatin, genomic
stability, and X-chromosome inactivation. The methylation
abnormalities, including promoter hypermethylation and global
hypomethylation, are closely linked with cancer initiation and
progression, and hence, methylation profiling is very
informative in cancer subtype discrimination and prognosis.

The quantification of genome-wide methylation at more
than 480,000 CpG sites has been made possible through the
availability of epigenome-wide platforms like the Illumina
HumanMethylation450 BeadChip. The TCGA-BRCA data,
among others, is a comprehensive dataset of methylation
profiles of breast cancer, but with such a large size of the data
(compared to the number of samples), there are significant
analytical issues like multi-collinearity, sparsity, over-fitting,
and high computational costs. Traditional statistical methods
and individual machine learning models usually cannot identify
credible patterns in such data without efficient dimensionality
reduction and feature-selection methods.

The machine learning and deep leaming methods have
demonstrated potential to overcome these issues. Classical
machine leamning algorithms, such as Support Vector
Machines, Random Forests, Logistic Regression, and boosting-
based ensembles, have shown good performance in cancer
classification with the help of the right choice of features.
Simultaneously, deep leaming networks, especially
autoencoders, can also be used to do nonlinear dimensionality
reduction, allowing the latent to be contained locally and
compactly within the latent space, allowing complex patterns
in methylation to be represented. Nevertheless, small sizes of
clinical samples are frequently a limiting factor in deep
learning models, and these models tend to be overfit when
trained on their own, which explains the interest in hybrid
frameworks that combine the strengths of both machine and
deep learning strategies.

Selection of features is a highly sensitive process in the
classification process with methylation since only a limited
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number of CpG sites make a significant contribution to subtype
classification. It is thus necessary to use filter, wrapper, and
embedded selection methods to extract informative biomarkers
and minimize redundancy and noise. Since there is no feature-
selection strategy that is optimal universally, we need to use
comparative and hybrid methods so as to get good, robust, and
generalizable performance. Moreover, the clinical importance
of DNA methylation, because it remains stable and can be
detected in less invasive specimens like circulating tumor
DNA, highlights its potential in the early detection of the
disease, subtype, and monitoring of the disease.

This work suggests a Hybrid SVD-Autoencoder-Ensemble
framework that can be used to classify breast cancer based on
TCGA-BRCA 450K DNA methylation data. The suggested
multistage architecture combines: 1) a linear spectral
decomposition to reduce dimensionality and reduce
multicollinearity, 2) a nonlinear learning representation using
an auto-encoder to capture complex methylation patterns, and
3) an ensemble classifier to increase predictive power and
generalization.

The rest of the study is structured in the following way:
Section II will entail a thorough review of the literature related
to DNA methylation-based breast cancer classification and
current machine learning and deep learning methods.
Section III will describe the dataset, preprocessing pipeline,
feature-selection strategies, and the proposed hybrid model.
Section IV will report and discuss experimental results and a
comparative analysis, and Section V will conclude the study
with key findings and directions of further research.

II. RELATED WORKS

The most recent studies on breast cancer have begun to pay
increased attention to the use of DNA methylation as a strong
e-methylation biomarker with machine leaming and deep
learning frameworks. A framework of deep leamning to
combine the overall genome-wide DNA methylation profiles is
suggested to distinguish between the subtypes of breast cancer.
Their model, based on TCGA-BRCA data, showed a good
predictive accuracy and the significance of hierarchical feature
learmning to learn subtype-specific methylation patterns.
Nonetheless, the research was based on one deep architecture
and not a hybrid representation based on linear and nonlinear
feature abstractions [1].

The work [2] proposed a subsequent representation
leaming method of high-dimensional DNA methylation data
through unsupervised methods of leaming. The study has
shown that the latent embeddings that are learnt unlabeled, can
be useful in revealing subtype structure and patterns related to
survival. Although the approach was promising in regard to the
exploratory analysis, it was not a combination with supervised
ensemble classifiers, which can also enhance discriminative
performance. A hybrid machine learming system that integrated
several classifiers to profile and study epigenetic cancer is
suggested [3]. The work they conducted emphasized the
advantage of ensemble learning in stabilizing predictions made
on heterogeneous features of methylation. However, the model
mainly involved feature selection done by hand and lacked
deep latent feature learning.
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The process [4] explored DNA methylation-mediated
biomarkers of the prognosis of breast cancer and
immunotherapy response. Their results showed that using the
methylation-based signatures could stratify patients according
to their survival rate and immunological sensitivity. Even
though the computational pipeline was biologically intuitive, it
was restricted to traditional ML models and failed to capture
the interactions between features in the nonlinear setting. The
investigation on the clinical value of epigenetic modification in
breast cancer through the use of machine leaming-based
feature reduction methods. Their experiment showed that
prudent dimensionality reduction provides great enhancement
to the classification method and minimized computational cost.
Nevertheless, the reduction plan was completely linear, which
could have ignored nonlinear interactions between methylation

[5].

The author came up with a novel deep learning model that
converted DNA methylation beta values into image-like
representations, which allowed convolutional neural networks
to learn spatial patterns. The model performed well in the
prediction of cancer origin, thus demonstrating that it is
important to re-encode methylation data. Although new, the
methodology involved a complicated set of data transformation
operations, which can reduce the interpretability [6]. The
article [7] provided an in-depth examination of epigenetic
signatures to track the progression of diseases and the response
of therapy in breast cancer. The study noted how dynamic the
changes in methylation are and the clinical significance of
epigenetic biomarkers. The work, however, paid more attention
to biological interpretation rather than high-level optimization
in computation.

A deep leaming meta-omics model is suggested [8] that
combines the information of methylation, gene expression, and
copy number variation. Their findings indicated that they
classified subtypes better than single-omics models. The
enhanced complexity of multi-view integration, however,
creates the problem of scalability and interpretability of the
models. The work [9] has reviewed and implemented deep
learning in cancer epigenetics and has shown that hierarchical
models can be used to learn nonlinear regulatory patterns in
methylation data. Their results confirmed that DL is better than
classical ML when it comes to more complex epigenomic
applications, but there was little discussion of viable
implementation factors.

A deep embedded clustering method of distinguishing
breast cancer using DNA methylation profiles is introduced
[10]. Their unmonitored structure perfected subtype
segregation among traditional clustering measures. Its inability
to provide direct application to diagnostic tasks was due to the
absence of supervised performance evaluation. The
examination of feature selection methods along with deep
leaming in cancer prediction with the help of methylation
markers. Their findings validated that the choice of informative
CpG sites is a major predictive accuracy and computation
efficiency improvement strategy. The research, however, did
not examine feature fusion across several representation spaces

[11].
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A hybrid model of singular value decomposition (SVD)
and autoencoders for biomedical image segmentation was
suggested [12]. Though they are addressing data on MRI, and
not on methylation, their article has laid the groundwork for the
efficacy of cascading linear and nonlinear dimensionality
reduction methods, which has become a powerful methodology
framework in omics applications. The article [13] gave an
extensive summary of statistical and machine learn methods
used to analyze DNA methylation data. Some of the challenges
they highlighted included high dimensionality, batch effects,
and biological variability, which necessitate robust
computational frameworks. An epigenomic regulation and
cancer heterogeneity, and how transcriptional dysregulation is
contributed by variation in methylation, is examined [14].
Their results supported the opinion that methylation is a
proactive regulation tool but not a passive biomarker.

An autoencoder is used to learn breast cancer recurrence
based on the methylation data [15]. In their research, they
proved that compressed latent representations are capable of
preserving biologically meaningful information and increasing
the accuracy of recurrence prediction. The study [16] suggested
a multi-stage deep learning pipeline to cancer epigenomics,
which consists of feature extraction, representation learning,
and classification. They had a good performance of their
pipeline but based on single deep architecture without
ensemble fusion.

A graph neural network is proposed for the prediction of
the subtype of breast cancer based on multiple types [17]. Their
method modeled the regulatory dependence of molecules by
studying their interactions as graphs, which flat feature models
could not detect. Nevertheless, the demand of multi-omics data
restricts the applicability where the data on methylation are
available alone. Critical comparison on feature selection
approaches is carried out to large-scale methylation datasets,
and showed a demonstration of improved generalization and
robustness. Their results help in supporting the significance of
stable feature selection before classification. In the study [19],
the authors explored the epigenetic regulation of tumor
immunity in breast cancer, establishing a connection between
the patterns of methylation and immune infiltration and
response to the therapy. Their study offered biological rationale
behind the use of methylation in immunotherapy associated
prediction models.

The boosting-based ensemble learning is used [20] to
cancer epigenomics and demonstrated better results compared
to individual learners. Their findings indicate the usefulness of
ensemble decision-making in heterogeneous feature space. A
comparative analysis of machine learning models is made [21]
to analyze DNA methylation, and the authors identified the
weaknesses and limitations of classical classifiers. Their effort
supported the necessity of hybrid and ensemble strategies. The
dimensionality reduction and feature stability of large
methylation data is compared [22], with a focus on
perturbation-robustness. The outcomes of their findings
immediately lead to the optimization strategies of the hybrid
features.

An autoencoder-based representation learning model of the
methylation data is introduced [23], which was shown to
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reduce the size of features with little information being lost.
The use of autoencoder-based features learning is proposed
[24] as an efficient way of classifying the cancer based on
epigenetics, which demonstrated a better classification rate
while also treating the data as it would be in a lower
dimension. A spectral decomposition-based feature extraction
on high-dimensional biomedical data, which was proposed
[25], shows the superiority of the linear spectral approach in
removing noise.

III. METHODOLOGY

A. Dataset

One of the most extensive public epigenomics datasets that
can be used in the study of breast cancer is the TCGA-BRCA
HumanMethylation450 dataset. This dataset is obtained as a
result of a project, The Cancer Genome Atlas (TCGA), which
published genomemethylation patterns of breast invasive
carcinoma tissue samples on the [llumina
HumanMethylation450 BeadChip technology, also called the
450K array. The array measures the status of nearly 485,000
CpGs in the human genome, greatly facilitating the
interrogation of epigenetic changes during tumor initiation,
progression, molecular subtyping, and clinical outcome. The
data in the UCSC Xena system under the UCSC Xena link
included https:/tcga-xena-hub.s3 us-
eastl .amazonaws.com/download/TCGA.BRCA sampleMap/H
umanMethylation450.gz.

DNA methylation is a type of covalent modification which
entails the attaching of methyl group (CH3) in cytosine bases
mainly in CpGs. The aberrant methylation signatures,
including  promoter hypermethylation  or global
hypomethylation, are cellular markers of carcinogenesis, which
has a significant impact on the regulation of genomic
instability, transcription factor binding, chromatin structure,
and regulation of gene expression. [llumina 450K platform has
the capacity of capturing methylation signatures that span CpG
islands, shores, shelves, enhancers, promoters, gene body, and
intergenic regulatory elements. Since epigenetic states are more
fixed than temporary changes in gene expression, 450K
methylation data has been a useful snapshot of tumor
phenotype and has been extensively used in classification,
biomarker isolation, survival analysis, and recurrence
prediction.

Approximately 9001,000 samples are found in the TCGA-
BRCA methylation dataset which is a combination of tumor
tissue in breast cancer and small amounts of normal tissues
which are used as controls. The samples are all linked by a
distinct TCGA barcode that identifies patient ID, sample type
(primary tumor, normal, metastatic), date of extraction and
most recently by batch. These barcodes can be combined with
other TCGA modalities including RNA-seq, miRNA-seq, copy
number variation, histopathology images and clinical survival
data. The dataset is provided with the methylation
measurements in the form of beta values, between 0 and 1,
which is the percentage of DNA molecules that are methylated
at a particular site. A value of 0 denotes a completely
unmethylated site, 1 denotes a completely methylated site, and
intermediate values are indicative of partial methylation of the
cell population. The reasons why beta values are popular in
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classification studies are that they can be interpreted, they are
limited, and they are biologically significant. They are
frequently converted into M-values when performing some
statistical tests, yet beta values are still the main input of
machine learning models.

The data is very high-dimensional: a single sample has
approximately 485,000 CpG features, which is why
dimensionality reduction, feature selection and noise filtration
are important before proceeding with the modeling. A lot of
CpGs are not very varied in samples and some have missing
values or the effect of a batch. Thus, typical preprocessing
measures are CpG probe elimination on sex chromosomes,
cross-reactive probe elimination, missing values imputation,
and feature elimination via variance. Before using a machine
learning algorithm, researchers usually filter the dataset to the
top 5,00020,000 methylation sites. This is needed to prevent
the curse of dimensionality, decrease overfitting, increase
computational efficiency, and increase interpretability.

CpG sites are annotated to such genomic elements as
promoter regions, e.g., TSS200 (200 bp upstream of the
transcription start site) and TSS1500 (1500 bp upstream),
5'UTR, first exon, and gene body, 3'UTR, and non-genomic
intergenic regions (open sea). Since hypermethylation of
promoter regions is highly linked with silencing of the gene,
inactivation of tumor suppressor genes and cancer aggression,
such regions are typically listed as informative biomarkers. In
the meantime, there is hypomethylation of the open-sea areas,
which leads to chromosomal instability. The enhancer
methylation data is also recorded in the form of enhancer
annotations associated with ENCODE and FANTOMS data
sets. Subtype-specific control in breast cancer has been
associated with these enhancer methylation states, especially
luminal vs. basal-like tumors.

The fact that the TCGA-BRCA HumanMethylation450
dataset can be used together with existing breast cancer
subtyping models like PAMSO0 is one of its strengths. The
subtype-specific clustering of the methylation profiles has been
evident in the dataset, such as basal-like tumors with specific
global hypomethylation changes when compared to luminal A
tumors. Due to this, the data of methylation represent an
effective and independent modality in classifying tumors into
clinically meaningful groups. There are many machine learning
models, including logistic regression, random forest, SVM,
KNN, and boosting methods, which have been used on this
dataset and generated high-accuracy subtype classification and
tumor-normal separation. Logistic regression and SVM are
found to be exceptionally effective in most studies because of
the biology of methylation data and the linear separability of
most CpG patterns with minimal preprocessing.

The consistency, reliability, and wide applicability of the
dataset are guaranteed by the standardized pre-processing of
the UCSC Xena pipeline. The file is in gzip-compressed form
(.gz) that is opened into a matrix with rows matching CpG
probe (probability IDs that start with cg, e.g. cg00000029) and
columns matching patient samples. Illumina manifest files
contain probe annotations in the form of genomic coordinates,
gene names, CpG island associations, feature classifications
which can be downloaded separately and joined with the
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dataset on-demand. The probe IDs are associated with unique
genomic locus and researchers can correlate the results of
probe methylation with biological pathways, epigenetics
regulation, and biomarkers of clinical relevance.

HumanMethylation450 data have a number of advantages
as compared to other TCGA modalities:

e High stability DNA methylation patterns are not as
variable as the expression of genes.

e Potential of early detection - methylation alterations are
early in tumorigenesis.

e Binary-like behavior - methylated/unmethylated
transitions facilitate classification.

e Epigenetic regulatory relevance - has a direct effect on
gene expression programs.

e Strength of biomarkers - best used in subtype
classification and modeling of prognosis.

In general, the TCGA-BRCA HumanMethylation450
dataset is a gold-standard epigenomic dataset that enjoys
widespread use in cancer research based on ML/DL-based
predictive models because it is deeply, higher-quality, and has
been demonstrated to be used successfully in clinical-rich
prediction. Table I lists the features of the dataset being used.

TABLE L. FEATURES TABLE - HUMANMETHYLATION450 DATASET

OVERVIEW

Category Description

Dataset Source TCGA-BRCA (Breast Invasive Carcinoma)

Platform Illumina HumanMethylation450 BeadChip
File HumanMethylation450.gz (UCSC Xena)
Samples ~900-1000 TCGA breast cancer samples
Sample Types Primary tumor, normal tissue, metastasis

Probes (CpG Sites) ~485,000 CpG beta values

Probe ID Format CgXXXXXXXX (e.g., cg00000029)

Genome Build hgl9

Data Type Continuous beta values (0—1)
Methylation Value B B

Meaning 0 =unmethylated, 1 = fully methylated

Genomic Coverage CpG islands, shores, shelves, open sea

Gene-Context
Features

TSS200, TSS1500, 5'UTR, first exon, gene body,
3'UTR

Enhancer Coverage ENCODE + FANTOMS annotated enhancers

Clinical Integration PAMS50 subtype labels, survival data (external)

Common . Probe filtering, variance filtering, imputation

Preprocessing

Common ML Uses Tum.or'clasmflcatlon, subtype prediction, recurrence
prediction

Advantages i:i:;é: biomarker, high resolution, strong predictive

B. Mathematical Model for Algorithms Used

The TCGA-BRCA HumanMethylation450 dataset contains
high-dimensional [-values representing the proportion of
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methylated cytosines at individual CpG loci. Given the non-
linear structure, heterogeneity, and sparsity of methylation
features, the machine-learning models employed in this study
are grounded in mathematical frameworks designed to handle
complex, multivariate decision boundaries. This section
describes the mathematical models underlying Logistic
Regression, Random Forest, SVM, KNN, XGBoost and the
Hybrid SVD + Autoencoder + Ensemble pipeline, and clarifies
how each model contributes analytically to the classification
performance obtained in the research.

1) Logistic regression (LR): Logistic Regression is a
generalized linear classifier that models the probability of a
binary outcome using the sigmoid function.

Given a feature vector x € R™, the model predicts, as in
Eq. (1):
1
1+e-WTx+b) (1)

Ply=1lx)=cWwTx+b) =
where,
wis the weight vector,
bis the bias term,
o(+) is the logistic function.

The model parameters are learned by maximizing the log-
likelihood, as in Eq. (2):

£w,b)= 3" [ylog (a(z)) + (1 - ylog (1 - a(z)I(2)
with z; = wTx; + b.
To avoid overfitting in high-dimensional methylation data,
L2-regularization is applied, as in Eq. (3):
Jw)=—LWw)+ 2 Il w I 3)
The accuracy (0.9775), ROC-AUC (0.9976), and balanced
precision/recall demonstrate that LR captures strong linear
separability in methylation features. Because methylation B-
values are normalized, LR’s linear boundary is effective and
stable. The model serves as a baseline mathematical classifier

against which advanced models are compared, showing that
even linear logic captures meaningful epigenetic variation.

2) Random Forest (RF): Random Forest is a set of
decision trees. For a tree T}, prediction is as in Eq. (4):

9;=T;@) (4)

Majority voting is used to get the final classification, as in
Eq. (5):

¥ = mode{Jy, V5, -, Ii} ()

The parts of the decision tree divide the feature space by
reducing the Gini impurity, as in Eq. (6):

G= z(c:zlpc(l - pc) (6)

where, p_c is the percentage of samples of class cin that
node.
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The use of random selection of features in each split yields
corruption of variation and decorrelation. RF has high recall
(0.9870) and is also powerful in non-linear feature interactions.
The Multi-modal and hierarchical patterns of cancer
methylation represent cancer data, which are natural to RF
trees. It has a mathematical form that gives:

e implicit feature selection
e distinctive multi-divided decision surfaces.
e noise-tolerant classification

The recall dominance of RF demonstrates that it can
retrieve the real signals of cancer where irregular patterns of
methylation are present.

3) Support vector machine (SVM): In the case of data that
are linearly separable, SVM determines the hyperplane, as in

Eq. (7):

wix+b=0 @)
that maximizes the margin, as in Eq. (8):
. 2
Margin = i (8)

The optimization problem, as in Eq. (9), is:
min = [ w12 s.t. y;(wTx; + b) > 1 9)
w,b 2

SVM projects non-linear data to a high-dimensional feature

space by employing a kernel, K(x_i,x_j), to project data, as in
Eq. (10):

K(xi'xj) = <¢(xi)'¢(xj)) (10)

Some of the commonly used kemels are: polynomial and
Radial Basis Function (RBF), as in Eq. (11):

Krpr(xpx;) = exp (—y I x; — x; 1) (1)

The high accuracy (0.9719) and F1-score (0.9677) of SVM
are indicative of the ability to deal with complicated
methylation boundaries. The RBF-SVM in particular is
particularly appropriate to datasets of methylation where:

e distributions are non-Gaussian
e relationships are non-linear
e CpG interactions have curved boundaries

Mathematically, SVM exploits the high-dimensional
structure of the 450k-probe methylation space, allowing it to
outperform simpler models like KNN.

4) K-nearest neighbors (KNN): KNN is an instance-based
classifier. Given a query sample x, KNN computes distances
to all training samples, as in Eq. (12):

d(x, x) =llx—x; ll, (12)
The predicted class, as in Eq. (13), is:

y= mOde(}’(1)’J’(2)’---'}’(k)) (13)
where, y(;y is the class label of the jth nearest neighbor.
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KNN shows the lowest performance (accuracy = 0.8820),
which is expected because:

e KNN suffers in high dimensions (“curse of
dimensionality”)

e methylation features are dense and noisy
e distance metrics lose discriminative power

Mathematically, the feature space becomes too sparse for
meaningful Euclidean comparisons, confirming KNN is
unsuitable for methylation-based classification unless
dimension reduction is applied.

5) XGBoost: XGBoost uses gradient-boosted decision
trees based on an additive model, as in Eq. (14):

" T

Vi= 2, fe(x) (14)

Each f; belongs to the space of regression trees. The
objective function, as in Eq. (15), is:

L= 10u9) + 2,90 (15)

where, the regularization term controls tree complexity, as
in Eq. (16):

QN = 1T+ 1w 2 (16)
The trees are trained sequentially using gradient descent,
with leaf values updated, as in Eq. (17):
z iEIj gi

where,
e g, = 0l/ 0y;(gradient)
e h; = 0%l/ 392(Hessian)
XGBoost achieves high accuracy (0.9326) and ROC-AUC
(0.9853), indicating that boosting captures:
e interactions among CpG sites
e rare methylation signatures
o subtle non-linearities

Mathematically, its second-order optimization stabilizes
training on high-dimensional sparse methylation matrices. Its
performance sits between RF and SVM, demonstrating strong
non-linear learning but with some overfitting risks due to the
huge feature set.

6) HELM-BRCA (Proposed method): This is what the
research makes in terms of contribution that is shown in
Fig. 1.

a) Truncated SVD (Spectral dimensionality reduction)

The standardized matrix is decomposed in SVD, as in
Eq. (18):

Xscaled = UZVT (18)

Truncated to r components, as in Eq. (19):
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std = U, %, (19)

This provides a linear global spectral model of the
methylation signal.

b) Autoencoder (Nonlinear latent learning)

Encoder, as in Eq. (20):

Zpe = EG (x) (20)
Decoder, as in Eq. (21):
55=D¢(Zae) (21)

Training objective, as in Eq. (22):

n
min Z
0,9 i=1

This provides a nonlinear manifold structure.

Il x; =Dy (Eg(x)) I3 (22)

¢) Feature fusion
The fused latent representation, as in Eq. (23), is:
Z=Zya I Z,] (23)
This concatenation preserves:
global spectral geometry (SVD)
local nonlinear structure (AE)
d) Weighted ensemble classifier

Three probabilistic classifiers hl, h2, h3 produce outputs,
as in Eq. (24):

P, = RF(Z),p, = XGB(Z),p; = MLP(Z)(24)

Final ensemble score, as in Eq. (25):

Pens = 0.3p; + 0.3p, + 0.4p, (25)
Final decision, as in Eq. (26):
yens = 1(pens 2 0'5) (26)

Preprocessing & Feature Parallel Dimensionality

Dataset
TCGA BRCA 450K Data

Reduction
(Truncated SVD + Autoencoder)

Probe Reduction
(Clean > Filter = Scale)

Feature Fusion
[SVD +AE Latent Space]

Ensemble Classifier Final Prediction
(RF + XGB + NN) (High Methylated/Low Methylated)

Fig. 1. Work flow of the proposed model.

In this study, the general mathematical procedure
incorporates several complementary representation-leaming
and classification units to derive a stable predictive format out
of high-dimensional 450k DNA-methylation probes. This raw
probe matrix is normalized into a normalized feature space
Xscatea € R™P and variance-filtered, and this forms the basis
of downstream transformations. The Truncated SVD is then
used to extract the largest linear variance structure of the
methylation landscape, resulting in a compressed spectral
embedding Z,,; = X cqieaVr This is followed by Truncated
SVD which captures global trends in the methylation landscape
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and creates a small spectral embedding Z,, = fy (Xscarea)-
The largest linear variance structure of the methylation
landscape is then captured by Truncated SVD, which generates
a compact spectral embedding Z.

Simultaneously, a deep autoencoder fits nonlinear
manifolds inherent to methylation patterns and predicts a latent
representation Z, Z, by the bottleneck of the network. These
complementary embeddings are joined together in a single
fused representation Z = [ Z,,;,Z,,. | that at the same time
maintains linear structure, nonlinear dependencies, and probe-
level interactions. The resulting fused latent space is then
released to a heterogeneous ensemble comprising of Random
Forest (hierarchical feature interactions), XGBoost (leaming
boosted decision boundaries), and a lightweight MLP classifier
(smooth nonlinear separability).

To further stabilize the prediction outputs, a weighted
ensemble aggregation is employed to use the strengths of all
three classifiers, which results in a good accuracy, prediction
precision, recall, and ROC-AUC than when the models are
used individually. Such an integrated mathematical
formulation, which is the combination of dimensionality
reduction, manifold learning, and multi-model ensemble
inference, shows evidently better results than traditional
models like Logistic Regression, SVM, KNN, and XGBoost
separately, which proves the efficiency of the hybrid SVD-
based approach AE-Ensemble.

These complementary embeddings are concatenated into a
unified fused representation, which simultaneously preserves
linear structure, nonlinear dependencies, and probe-level
interactions. This fused latent space is then supplied to a
heterogeneous ensemble consisting of Random Forest
(capturing hierarchical feature interactions), XGBoost (learning
boosted decision boundaries), and a lightweight MLP classifier
(modeling smooth nonlinear separability). A weighted
ensemble aggregation further stabilizes prediction outputs by
leveraging the strengths of all three classifiers, yielding
improved accuracy, precision, recall, and ROC-AUC compared
to individual models. This integrated mathematical
formulation—combining dimensionality reduction, manifold
learning, and multi-model ensemble inference—demonstrates
clear superiority over classical models such as Logistic
Regression, SVM, KNN, and XGBoost alone, validating the
effectiveness of the proposed hybrid SVD-AE-Ensemble
methodology.

C. Proposed Work

The proposed methodology introduces a hybrid, multi-stage
machine leaming pipeline designed to enhance the
classification of breast cancer samples using high-dimensional
DNA methylation profiles derived from the TCGA-BRCA
HumanMethylation450 platform, as depicted in Fig. 2. Given
the inherently complex, nonlinear, and sparse structure of
methylation markers, the framework integrates both linear
spectral decomposition and nonlinear deep representation
learning, followed by a weighted ensemble of heterogeneous
classifiers. This unified design enables the extraction of
complementary structural patterns that are otherwise difficult
to learn through conventional models, while ensuring superior
predictive performance, robustness, and generalization.
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Fig.2. General architecture.

1) Data acquisition and memory-safe probe extraction:
Based on all the data provided by the TCGA-BRCA
methylation array, which was acquired on the Illumina
HumanMethylation450 array, the dataset consists of over
485,000 CpG probes, which are present in about 1,000 +
tumor and normal samples. The extremely large
dimensionality and memory limits also mean that the proposed
methodology starts with a memory-efficient probe reader
extracting a manageable subsample of probes, usually the first
3000-5000 rows, in its original probe x sample matrix format.
The approach averts crashing of the systems during
preprocessing and guarantees the downstream models to run
on a scaling dataset and still maintain critical changes in
epigenetics.

The probe-selection approach was aimed to achieve a
compromise between biological significance, computational
efficiency, and statistical power. Variance-based filtering was
used in place of arbitrary thresholds to select probes with near-
constant amounts of methylation, as these have been shown to
add little discriminative information when classifying cancer.

Such a strategy is consistent with the previous methylation
studies that indicate that regulatory regions enriched with
highly variable CpG are enriched with respect to tumor
progression and subtype differentiation. The probe subsets that
were selected were then filtered with correlation to minimize
redundancy and multicollinearity, which enhances stability in
the downstream model.

Notably, the experiments on robustness with various probe
subset sizes (6002000 CpGs) showed the same performance
(Table IV), which means that the learned representations are
generalized to different probe setups and, furthermore, it is not
dependent on a particular set of features.

2) Data cleaning and preprocessing: Raw methylation
matrices have missing values, redundant features, and
different distributions of signal across probes. A strict pre-
processing pipeline is applied to standardize the data:
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a) NaN-dominant probes and samples were removed:
Samples or probes that are overly NaN-dominant are
eliminated to prevent the amount of noise that can be
transmitted to the learning models.

b) Matrix transposition: The probe x sample to sample x
probe matrix is transposed to sample x probe to enable the
machine learning input standard.

¢) Variance-based feature reduction: The 1000 probes
that show the greatest variance among samples are kept. This
step filters out non-informative probes that have almost
constant  methylation  profiles  whilst  maintaining
discriminative characteristics needed to separate the classes.

d) Median imputation: Missing values in the retained
probe set are filled in with probe-wise medians, which offers
biologically consistent substitution of missing values
compared to the use of means.

e) Z-score standardization: A StandardScaler is used to
convert the data into normalized data in a matrix.
X,caleq» making sure that all the probes are contributing equally
to the model training.

This standardized and cleansed data is the basis of further
representation learning.

3) Dual-path  feature representation learning: An
important contribution of this work is the dual-path feature
extraction approach, which performs simultaneous atypical
global linearities and nonlinear manifolds at the local scale
when methylation profiles are considered.

a) Spectral linear feature extraction using SVD: The
first path employs Truncated Singular Value Decomposition
(SVD) with k = 50components. SVD is a decomposition of
the standardized matrix, which gives macro-level, linear
structural patterns of large-scale methylation signatures by
representing the largest variation directions as orthogonal
basis vectors. Mathematically, Z 4 € R™° where is the
linear latent space of n samples.

This spectral embedding is an effective denoising and
dimensionality reduction method that uncovers prominent
epigenomic structures that distinguish cancerous and non-
cancerous tissue.

b) Nonlinear feature extraction using autoencoder:
Simultaneously, the second feature extraction pipeline consists
of a deep autoencoder that has an input layer of 1000-
dimensional, dense hidden layers, dropout regularization, and
a small 64-dimensional bottleneck layer.

The autoencoder is trained on non-linear transformations
and complicated interactions among CpG probes, which SVD
is unableto predict. The resulting latent matrix, as in Eq. (27):

Z,. € RMX64 27)
represents compressed nonlinear patterns including
methylation—methylation interactions, tumor-specific

epigenetic motifs, and subtle deviations in CpG island
structures.
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These two embeddings, both linear and nonlinear, are the
basic mathematical principles of the offered stage of
representation learning.

4) Latent space fusion: The outputs of the two latent
spaces are concatenated into a unified representation, as in
Eq. (28):

Z = [ZgygrZye) (28)
This fused vector combines:
e processed SVD variance structure globally
e Local nonlinear manifolds of the autoencoders

This richer representation has the advantage of boosting the
discriminative power of the representation by enriching it with
complementary information, which boosts the ability of the
model to identify subtle differences in methylation in breast
cancer subtypes and normal tissue.

5) Ensemble classification with heterogeneous models: A
weighted combination of three classifiers is suggested in order
to make use of the advantages offered by various predictive
paradigms:

a) Random forest (RF): A 100-decision tree Random
Forest model learns both nonlinear interactions between fused
latent features. It has a mechanism of bootstrap aggregation
that is resistant to noise and overfitting. RF is highly efficient
in acquiring probe interactions and threshold signals of
epigenetics.

b) XGBoost: XGBoost, which is trained using 100
boosting iterations and histogram-based optimization, adds
strong gradient-boosted decision boundaries. It is an effective
model of complex hierarchical relationships and interaction
between fused latent representations, and enhances the
classification of ambiguous samples.

¢) Multilayer perceptron (MLP): The MLP model is
composed of 2 dense layers (64 and 32 neurons) with a
dropout regularization and a sigmoid output. This is a neural
classifier that is especially useful in leaming continuous
nonlinear boundaries in the fused space and is a complement
of the tree-based models.

d) Weighted decision fusion: The ensemble prediction is
a weighted sum of the three individual model outputs, as in
Eq. (29):

Finalyq = 03-RF + 03 XGB + 0.4 - MLP  (29)

Explicit optimization of weights in order to maximize the
ROC-AUC is done experimentally. The fact that MLP has a

higher weight is a representation of its capability to take
advantage of the enriched feature space.

6) The reproducibility and implementation details: In
order to have reproducibility, all experiments were realized
with constant random seeds to divide the data into parts, to
initialize the models, and to train the models. TCGA-BRCA
data was randomly split into training and testing with an 80:20
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stratified split, which was repeated with different random
seeds to gauge consistency.

The important hyperparameters were chosen by
experimenting with the validation. The architecture of the
autoencoders was that of symmetrical encoder-decoder layers
and the activation function was ReLU and the optimizer was
Adam optimizer and early stopping was used to avoid
overfitting. Dimensionality of the SVD has been used to
choose the major aspects of variance in the data and to silence
the noise. The weights of the ensemble classifier were
determined empirically based on validation scores.

Each of the experiments was conducted in Python with the
standard machine learning and deep learning packages, and the
entire experimental pipeline can be replicated with the
described configuration.

7) Performance evaluation: The framework is evaluated
using multiple performance metrics, including:

e Accuracy
e Precision
e Recall

e Fl1-Score

e ROC-AUC

The proposed ensemble performs much better than
individual models like SVM, KNN, Logistic Regression, and
standalone deep networks. In experiments, the models
obtained:

e (CNN: 0.966 accuracy
e Basic MLP (Adam): 0.960 accuracy
e Collective: F1 and ROC-AUC alwaysnear 0.995.

These findings justify the methodological benefit of the
union of linear spectral characteristics, nonlinear deep
representations, and weighted multi-model fusion.

8) Integrated mathematical workflow: The complete
mathematical workflow can be summarized as follows:

Raw probe matrix — preprocessing — variance filtering —
Xscaled
Then:
e SVD extracts global linear structure
e Autoencoder extracts nonlinear manifolds
Fused latent vector, as in Eq. (30):
7= ZywZe (30)

Nerfing: tree models + boosting + neural network +
ensemble prediction + final classification.

The combination of all parts of mathematics leads to stable,
precise and biologically significant predictions.
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Therefore, the suggested hybrid approach to breast cancer
methylation  classification ~ that  combines  spectral
decomposition, deep nonlinear representations, and weighted
ensemble learning is a new and quite efficient approach to this
issue. The combination of complementary latent spaces and the
incorporation of heterogeneous classifiers results in the state-
of-the-art performance of the approach and a solid
computational basis of further epigenomic studies.

IV. RESULTS AND DISCUSSION

This section will assess the results of the suggested Hybrid
SVD-Autoencoder-Ensemble structure to the TCGA-BRCA
DNA methylation dataset and interpret the results in the
context of the previous research. Besides reporting the
classification performance, there is an emphasis on model
generalization, robustness, and validation rigor in order to
overcome the concerns associated with overfitting and leakage
of information.

A. Performance of Conventional Machine Learning Models

In order to build trustworthy baselines, the Logistic
Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), KNN, and XGBoost classical machine
learning models were tested on standardized probe-level
methylation features. Table Il summarizes the performance of
these baseline models.

LR has the greatest accuracy (97.75) and ROC-AUC
(0.9975) of all baseline models. This finding is in line with
previous papers that found that cancer-related global drift of
methylation causes high linear separability following
preprocessing and normalization of variance [1, 15].
Equivalent results have been mentioned in large-scale TCGA-
based methylation studies, in which linear classifiers display
competitiveness when prevalent changes in epigenetics exist

[11].

SVM using an RBF kemel also has good validity (accuracy
= 97.19%, ROC-AUC = 0.9973), which is in agreement with
the findings of previous studies that have suggested the
effectiveness of the use of kemel-based classifiers in the
recognition of nonlinear methylation boundaries in high-
dimensional epigenomic space [2, 9]. RF is the most successful
in recall (98.7%), which indicates its capability to detect most
cancer samples. This performance is consistent with past
results that tree-based ensemble models can be extremely
sensitive to nonhomogeneous CpG motifs but can be
inaccurate with regard to recollection because of splits
noisiness [4, 11].

The performance (accuracy = 88.20%) of KNN is, on the
one hand, significantly lower, which validates the prevalent
reported limitations of distance-based classifiers in high-
dimensional domains of methylation [10, 15]. XGBoost has
moderate performance (accuracy = 93.26%, ROC-AUC =
0.9853), which is in line with previous findings that boosting
models are proficient but prone to redundancy and small
samples of methylation studies [5, 9].
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TABLE II. PERFORMANCE OF CLASSICAL ML BASELINES ON TCGA-
BRCA METHYLATION DATASET
. . Fl1- ROC-

Model Accuracy Precision Recall Score AUC
Logistic 0.97 0.97 0.97 0.97 0.99
Regression
Random 0.96 0.92 098 0.95 0.99
Forest
SVM (RBF) 0.97 0.96 0.97 0.96 0.99
KNN 0.88 0.83 0.90 0.86 0.93
XGBoost 0.93 0.90 0.94 0.92 0.98

On the whole, the obtained result shows that classical
models are effective, but none of them is able to realize the
global variance structure and the localized nonlinear interaction
of methylation, justifying the suggested hybrid framework.

B. Effectiveness of SVD and Autoencoder Feature Fusion

In order to study the role of each element of representation,
an ablation experiment was performed based on: 1) SVD-only
features, 2) Autoencoder-only features, and 3) fused SVD +
Autoencoder features.

Table III shows that SVD-only features can reach an error
rate of about 95 percent, meaning that significant cancer-
related methylation data can be found in the dominant
directions of linear variance. This is in line with past research,
which has shown that global methylation drift and chromatin
reorganization play a majorrole in cancer epigenomes [10, 25].

Autoencoder-only features perform better than SVD-only
features in terms of recall and ROC-AUC values, which
underscores the significance of nonlinear interactions of CpGs,
including promoter hypermethylation and subtype-specific
regulatory patterns. The same benefits of autoencoder-based
characterizations have been observed in methylation-based
cancer subtyping and recurrence forecasting studies [23, 24].

TABLE III. ABLATION STUDY: CONTRIBUTION OF SVD, AE, AND FUSED
FEATURE SETS

. . FI- ROC-
Feature Type Accuracy Precision Recall Score AUC
SVD latent 0.95 0.93 096 | 094 | 098
features only
Autoencoder
latent features | 0.93 091 0.97 0.94 0.98
only
Fused SVD +
AE (Proposed) 0.98 0.98 0.99 0.98 0.99

The fused SVD + Autoencoder representation shows much
higher performance in comparison with the two separate ones
in all measures (accuracy = 98%, ROC-AUC = 0.99). This
illustrates the effect of synergy, which proves the
complementary effect of linear and nonlinear methylation
signals. Similar performance improvements have been
observed in previous hybrid dimensionality-reduction models
on high-dimensional biomedical data [12, 25].

C. Performance of Proposed Hybrid Ensemble Model

The fused latent representations further were classified
through a weighted combination of RF, XGBoost and MLP
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classifiers. The performance indicators obtained are
summarized in Table Il and compared with baseline models.

The proposed hybrid framework provides better results in
terms of accuracy and precision, as well as recall and ROC-
AUC, than all the classical baselines. The attained accuracy
(98) and recall (99) are higher than the performance reported in
the existing breast cancer classifiers, which use methylation as
a feature to classify the cases, and based on the size of the
cohort and the feature-selection approach, the performance of
most cohort-based classifiers is in the range 0f 94-97% [1,3,9].

Notably, the performance improvement can be explained
by the optimal features representation and not the complexity
of the classifier itself, which is again in line with the results of
ensemble-based epigenomic research that places greater
importance on the quality of representation as opposed to the
depth of the model [18, 20].

D. Comparison Across all Models

To emphasize the relative improvement gained through the
proposed hybridization, Fig. 3 compiles the best-performing
model from each category.

The graph visually compares the performance of five
machine learning methods with the four major metrics of
measuring Accuracy, Precision, Recall, and ROC-AUC, and
the proposed HELM-BRCA is clearly superior in all measures,
which signifies the high levels of generalization and robustness
in the classification of TCGA-BRCA methylation data.
Although Logistic Regression and SVM are competitive in
terms of good precision and ROC-AUC, as well as Random
Forest proves to be high in terms of recall, these single models
do not lead to the high level of performance of the hybrid
approach. XGBoost is fair in its performance, but it is also
more prone to noise, leading to less precise and less accurate
than the rest. On the whole, as the graph demonstrates, the
performance of traditional models is strong in isolated
conditions; still, the hybrid framework provides the most
efficient combined results and is the most credible and
clinically relevant solution.

Model Comparison Across Evaluation Metrices
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Fig.3. Model comparison.

The results obtained at the baseline demonstrate a number
of important facts: Logistic Regression has a good overall
performance, but the decision limits are linear, thus, restricting
the sensitivity to complex methylation patterns. Support Vector
Machines have the greatest ROC-AUC in comparison to
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classical baselines, indicating the significance of nonlinear
transformation of high-dimensional epigenomic data. Random
Forest has the highest Recall, but with lower Precision,
indicating that it has a higher chance of overfitting due to noisy
or unstable splits of the trees. Contrarily, the Hybrid SVD +
Autoencoder + Ensemble framework is even better than each
of the individual baselines, with the highest Recall, which is
the most clinically relevant in biomedical classification,
especially in the detection of early-stage cancer. Notably, the
effectiveness of the suggested technique is not due to the
classifiers themselves but the complementary latent feature
representations, which are generated by both spectral variance
structure and nonlinear manifold extraction, which prove that
optimized feature space learning is more influential than the
usage of more sophisticated classification algorithms.

E. Robustness and Stability Analysis

Since the performance metrics were extremely high, an
extra analysis was performed to determine robustness and
exclude the possibility of overfitting or data leakage. Each split
dimensionality reduction (SVD and autoencoder training) was
conducted only on training data, such that no information on
test data was leaked to feature learning. Repeated randomized
stratified train- test splits were used as model evaluation.

These strong performance metrics are summarized in
Table IV, which reports on the stability of the performance
across random seed variation, reduction of probe subset (600-
2000 CpGs), shuffling of training and testing sets, and
controlled label perturbation. The accuracy is in a thin range
(97.6%, 98.2%), which means low variance and constant
convergence.

TABLEIV. ROBUSTNESS EVALUATION OF THE PROPOSED HYBRID
METHOD

L. Accuracy Precision Recall RoC-

Condition Rance Rance Range AUC

s 8 8 Range

Random seed variation 0.976— 0.972— 0.984— 0.988—
Vanaton 1 ¢.9g2 0985 0994 | 0.992

Probe feature variation | 0.974— 0.971- 0.983— 0.989—
(600-2000) 0.981 0.984 0.993 0.992

Train/test shuffling (5 0.978— 0.973— 0.986— 0.990—
repeats) 0.983 0.986 0.993 0.993

Label balancing (minor | 0.975— 0.971- 0.985— 0.989—
perturbation) 0.982 0.982 0.992 0.991

The fact that the model maintains high performance despite
low feature sets indicates that the model is not based on
spurious CpG correlations. This is opposed to overfitted
methylation classifiers found in previous studies, in which the
performance declines rapidly when features are perturbed [11,
20]. The reported ranges of similar robustness have been
observed in wvalidated cross-validation and perturbation
analysis pipelines in methylation [21, 22].

F. Biological Interpretation of Feature Behavior

Newton-Biologically, the SVD component represents large-
scale methylation drift due to chromatin remodelling and
epigenetic instability, whereas the autoencoder represents local
regulatory methylation effects on gene expression and subtype
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differentiation. Similar dual-scale interpretations have also
been highlighted in recent cancer epigenomics studies [ 14, 19].

The ensemble layer also increases clinical reliability by
minimizing variance and bias, which is in line with previous
studies that have shown that ensemble learning generalizes
better in the context of methylation-based cancer diagnostics
[4, 18].

Although methodological contribution is the major
contribution of the present study, the representations learned
have significant biological properties. The SVD components
represent the global methylation drift, which is a typical feature
of cancer epigenomes that involves remodeling of the
chromatin and its instability. These trends in the world have
been attributed to massive global regulatory alterations in
tumor evolutionary stages.

Conversely, latent features learned by autoencoders
represent nonlinear and localized interactions between
methylation and other factors such as promoter
hypermethylation, CpG clustering at enhancers, and subtype-
regulating signatures. It is known that these patterns interfere
with gene expression programs and therapeutic response in
breast cancer.

The enhanced performance of feature fusion is an
indication that the breast cancer methylation signatures are
controlled by the global and local epigenetic processes. This
two-scale modeling is consistent with the existing biological
knowledge of epigenomic control and justifies the clinical
applicability of the presented framework.

G. Data Leakage Prevention and Strategy of Validation

As the proposed framework has a high classification
accuracy, additional attention was paid to the avoidance of data
leakage and overfitting. Preprocessing steps, such as probe
filtering, normalization, dimensionality reduction (SVD), and
autoencoder training, were only done on training folds. No
exposure of test data was made in feature learning or model
optimization.

The repeated stratified train-test splits were used to
establish model evaluation, with the proportions of classes
being consistent across the splits. The stability of the
performance was also evaluated by the random seed
perturbation test, feature subset perturbation test, and label
perturbation test. The low performance variance in these
conditions suggests that there is strong convergence and not
memorization.

Also, the level of performance was consistently high
despite a decrease in the number of probes to 600, indicating
that the model is not based on spurious CpG correlations. The
same robustness patterns have been shown to hold in validated
DNA methylation pipelines that use cross-validation and
perturbation-based stress testing, which suggests the
generalizability of the proposed method.

Overall, the findings in Table II to Table IV, and Fig. 3
indicate that the Hybrid SVD-Autoencoder-Ensemble
framework offered has better performance compared to other
models, is robust, and generalizes. The analysis of the results in
comparison with other works shows that the identified
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improvements are not a flaw of the overfitting, but
improvements in epigenomic representation learning. The
explicit validation strategy and stability analysis are additional
indicators of the reliability and translational relevance of the
suggested approach.

V. CONCLUSION

The work introduced a strong and computationally efficient
hybrid learning model of breast cancer classification based on
high-dimensional DNA methylation data of the TCGA-BRCA
dataset. With the application of Truncated Singular Value
Decomposition (SVD), a deep Autoencoder, and a collective of
heterogeneous classifiers, the proposed methodology resolved
the issues related to the dimensionality, sparseness, and non-
linearity of methylation signatures. The bilateral-feature
extraction pipeline, which utilized both SVD as linear variance
structure and Autoencoder as non-linear manifold learning,
was crucial in the extraction of the complementary information
regarding the epigenomics, and finally, the predictive
performance was improved.

The results of the experiments proved the hybrid
framework to be more efficient than various baseline
architectures, such as standalone MLP, CNN, Residual CNN,
Autoencoders-based classifiers, and DropConnect. The Basic
CNN demonstrated the best single model accuracy of 0.9663,
and ROC-AUC of 0.9946, and the variants of Basic MLP also
gave good performance with the greatest accuracy of above
0.96. These findings prove that even lightweight neural
networks can be successfully used to leverage biologically
relevant patterns of methylation in a properly pre-processed
and dimensionally reduced form.

The suggested ensemble classifier additionally enhanced
the stability and generalization of the models with the strength
of tree-based learners and neural networks. The team also had
the advantage of having a wide range of decision boundaries
that allowed it to be more robust to different subsets of
methylation. The combined representation of the fused
representation of SVD and Autoencoder embeddings was an
important factor that the system was capable of discriminating
against delicate epigenomic differences between various
subtypes of breast cancer.

Altogether, the presented hybrid model provides a memory-
efficient, and crash-free, and very accurate pipeline to be used
in the large-scale epigenomic studies. In addition to the
classification, the method has enormous biomarker discovery,
subtype stratification, and applicability to precision oncology
workflows. This framework can be expanded in the future to
multi-omics  integration, cross-cohort validation, and
interpretable Al models that can be clinically useful in
advancing personalized diagnostics of breast cancer.
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