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Abstract—Breast cancer remains a highly heterogeneous 

disease for which it demands advanced computational techniques 

that can reveal significant biological patterns in high-dimensional 

epigenomic data. DNA methylation profiles generated by the 

Illumina HumanMethylation450 platform yield rich, clinically 

relevant signals but introduce significant analytical challenges 

due to their high dimensionality, sparsity, and nonlinear 

structure. This work presents a novel memory-efficient hybrid 

learning architecture that combines Truncated Singular Value 

Decomposition (SVD), a deep Autoencoder, and a multi-model 

ensemble classifier for boosting subtype classification 

performance using TCGA-BRCA methylation data. In order to 

circumvent memory limits and prevent system crashes, a probe-

subset extraction strategy combined with variance-based feature 

selection was employed to ensure fast and safe data loading from 

the Xena repository. While the autoencoder extracts compact 

nonlinear manifold representations, SVD captures the global 

linear variance structure. Further, the fused latent space is 

modelled by an ensemble including Random Forest, XGBoost, 

and a lightweight Keras neural classifier that allows the system to 

exploit different decision limits and achieve robust 

generalization. The experimental investigation across several 

architectures demonstrates high predictive performance with 

ROC-AUC scores exceeding 0.99 and accuracies higher than 0.96 

for Basic CNN and MLP models. Furthermore, the proposed 

hybrid ensemble improves stability and precision by 

outperforming traditional baselines and confirming the 

complementary nature of spectral and deep feature extraction. 

This study is suitable for large-scale biomedical data analytics 

scenarios. In conclusion, this work provides an efficient hybrid 

machine learning framework for breast cancer methylation study 

by offering a strong platform for improved prognostic modelling 

and development of epigenetic biomarkers. 
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I. INTRODUCTION 

Breast cancer is considered one of the highest cancer 
morbidity and mortality cases in women globally. In spite of 
the tremendous progress in the area of early detection, 
molecular profiling, and targeted therapies, breast cancer has 
currently been taken as a biologically heterogeneous disease 
with several different molecular subtypes with genetical, 
epigenetical, and phenotypic features. This heterogeneity 
directly influences disease courses, therapy response, and 

patient prognosis, and careful molecular-level stratification 
strategies are considered necessary to enable precision 
oncology. 

Omics technologies that operate with high throughput have 
also made breast cancer research faster, as they allow massive 
profiling of genomic and epigenomic changes. Among them, 
the DNA methylation has turned out to be a strong and durable 
epigenetic biomarker because of its key contribution to the 
regulation of genes, fine-tuning of the chromatin, genomic 
stability, and X-chromosome inactivation. The methylation 
abnormalities, including promoter hypermethylation and global 
hypomethylation, are closely linked with cancer initiation and 
progression, and hence, methylation profiling is very 
informative in cancer subtype discrimination and prognosis. 

The quantification of genome-wide methylation at more 
than 480,000 CpG sites has been made possible through the 
availability of epigenome-wide platforms like the Illumina 
HumanMethylation450 BeadChip. The TCGA-BRCA data, 
among others, is a comprehensive dataset of methylation 
profiles of breast cancer, but with such a large size of the data 
(compared to the number of samples), there are significant 
analytical issues like multi-collinearity, sparsity, over-fitting, 
and high computational costs. Traditional statistical methods 
and individual machine learning models usually cannot identify 
credible patterns in such data without efficient dimensionality 
reduction and feature-selection methods. 

The machine learning and deep learning methods have 
demonstrated potential to overcome these issues. Classical 
machine learning algorithms, such as Support Vector 
Machines, Random Forests, Logistic Regression, and boosting-
based ensembles, have shown good performance in cancer 
classification with the help of the right choice of features. 
Simultaneously, deep learning networks, especially 
autoencoders, can also be used to do nonlinear dimensionality 
reduction, allowing the latent to be contained locally and 
compactly within the latent space, allowing complex patterns 
in methylation to be represented. Nevertheless, small sizes of 
clinical samples are frequently a limiting factor in deep 
learning models, and these models tend to be overfit when 
trained on their own, which explains the interest in hybrid 
frameworks that combine the strengths of both machine and 
deep learning strategies. 

Selection of features is a highly sensitive process in the 
classification process with methylation since only a limited 
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number of CpG sites make a significant contribution to subtype 
classification. It is thus necessary to use filter, wrapper, and 
embedded selection methods to extract informative biomarkers 
and minimize redundancy and noise. Since there is no feature-
selection strategy that is optimal universally, we need to use 
comparative and hybrid methods so as to get good, robust, and 
generalizable performance. Moreover, the clinical importance 
of DNA methylation, because it remains stable and can be 
detected in less invasive specimens like circulating tumor 
DNA, highlights its potential in the early detection of the 
disease, subtype, and monitoring of the disease. 

This work suggests a Hybrid SVD-Autoencoder-Ensemble 
framework that can be used to classify breast cancer based on 
TCGA-BRCA 450K DNA methylation data. The suggested 
multistage architecture combines: 1) a linear spectral 
decomposition to reduce dimensionality and reduce 
multicollinearity, 2) a nonlinear learning representation using 
an auto-encoder to capture complex methylation patterns, and 
3) an ensemble classifier to increase predictive power and 
generalization.  

The rest of the study is structured in the following way: 
Section II will entail a thorough review of the literature related 
to DNA methylation-based breast cancer classification and 
current machine learning and deep learning methods. 
Section III will describe the dataset, preprocessing pipeline, 
feature-selection strategies, and the proposed hybrid model. 
Section IV will report and discuss experimental results and a 
comparative analysis, and Section V will conclude the study 
with key findings and directions of further research. 

II. RELATED WORKS 

The most recent studies on breast cancer have begun to pay 
increased attention to the use of DNA methylation as a strong 
e-methylation biomarker with machine learning and deep 
learning frameworks. A framework of deep learning to 
combine the overall genome-wide DNA methylation profiles is 
suggested to distinguish between the subtypes of breast cancer. 
Their model, based on TCGA-BRCA data, showed a good 
predictive accuracy and the significance of hierarchical feature 
learning to learn subtype-specific methylation patterns. 
Nonetheless, the research was based on one deep architecture 
and not a hybrid representation based on linear and nonlinear 
feature abstractions [1]. 

The work [2] proposed a subsequent representation 
learning method of high-dimensional DNA methylation data 
through unsupervised methods of learning. The study has 
shown that the latent embeddings that are learnt unlabeled, can 
be useful in revealing subtype structure and patterns related to 
survival. Although the approach was promising in regard to the 
exploratory analysis, it was not a combination with supervised 
ensemble classifiers, which can also enhance discriminative 
performance. A hybrid machine learning system that integrated 
several classifiers to profile and study epigenetic cancer is 
suggested [3]. The work they conducted emphasized the 
advantage of ensemble learning in stabilizing predictions made 
on heterogeneous features of methylation. However, the model 
mainly involved feature selection done by hand and lacked 
deep latent feature learning. 

The process [4] explored DNA methylation-mediated 
biomarkers of the prognosis of breast cancer and 
immunotherapy response. Their results showed that using the 
methylation-based signatures could stratify patients according 
to their survival rate and immunological sensitivity. Even 
though the computational pipeline was biologically intuitive, it 
was restricted to traditional ML models and failed to capture 
the interactions between features in the nonlinear setting. The 
investigation on the clinical value of epigenetic modification in 
breast cancer through the use of machine learning-based 
feature reduction methods. Their experiment showed that 
prudent dimensionality reduction provides great enhancement 
to the classification method and minimized computational cost. 
Nevertheless, the reduction plan was completely linear, which 
could have ignored nonlinear interactions between methylation 
[5]. 

The author came up with a novel deep learning model that 
converted DNA methylation beta values into image-like 
representations, which allowed convolutional neural networks 
to learn spatial patterns. The model performed well in the 
prediction of cancer origin, thus demonstrating that it is 
important to re-encode methylation data. Although new, the 
methodology involved a complicated set of data transformation 
operations, which can reduce the interpretability [6]. The 
article [7] provided an in-depth examination of epigenetic 
signatures to track the progression of diseases and the response 
of therapy in breast cancer. The study noted how dynamic the 
changes in methylation are and the clinical significance of 
epigenetic biomarkers. The work, however, paid more attention 
to biological interpretation rather than high-level optimization 
in computation. 

A deep learning meta-omics model is suggested [8] that 
combines the information of methylation, gene expression, and 
copy number variation. Their findings indicated that they 
classified subtypes better than single-omics models. The 
enhanced complexity of multi-view integration, however, 
creates the problem of scalability and interpretability of the 
models. The work [9] has reviewed and implemented deep 
learning in cancer epigenetics and has shown that hierarchical 
models can be used to learn nonlinear regulatory patterns in 
methylation data. Their results confirmed that DL is better than 
classical ML when it comes to more complex epigenomic 
applications, but there was little discussion of viable 
implementation factors. 

A deep embedded clustering method of distinguishing 
breast cancer using DNA methylation profiles is introduced 
[10]. Their unmonitored structure perfected subtype 
segregation among traditional clustering measures. Its inability 
to provide direct application to diagnostic tasks was due to the 
absence of supervised performance evaluation. The 
examination of feature selection methods along with deep 
learning in cancer prediction with the help of methylation 
markers. Their findings validated that the choice of informative 
CpG sites is a major predictive accuracy and computation 
efficiency improvement strategy. The research, however, did 
not examine feature fusion across several representation spaces 
[11]. 
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A hybrid model of singular value decomposition (SVD) 
and autoencoders for biomedical image segmentation was 
suggested [12]. Though they are addressing data on MRI, and 
not on methylation, their article has laid the groundwork for the 
efficacy of cascading linear and nonlinear dimensionality 
reduction methods, which has become a powerful methodology 
framework in omics applications. The article [13] gave an 
extensive summary of statistical and machine learn methods 
used to analyze DNA methylation data. Some of the challenges 
they highlighted included high dimensionality, batch effects, 
and biological variability, which necessitate robust 
computational frameworks. An epigenomic regulation and 
cancer heterogeneity, and how transcriptional dysregulation is 
contributed by variation in methylation, is examined [14]. 
Their results supported the opinion that methylation is a 
proactive regulation tool but not a passive biomarker. 

An autoencoder is used to learn breast cancer recurrence 
based on the methylation data [15]. In their research, they 
proved that compressed latent representations are capable of 
preserving biologically meaningful information and increasing 
the accuracy of recurrence prediction. The study [16] suggested 
a multi-stage deep learning pipeline to cancer epigenomics, 
which consists of feature extraction, representation learning, 
and classification. They had a good performance of their 
pipeline but based on single deep architecture without 
ensemble fusion. 

A graph neural network is proposed for the prediction of 
the subtype of breast cancer based on multiple types [17]. Their 
method modeled the regulatory dependence of molecules by 
studying their interactions as graphs, which flat feature models 
could not detect. Nevertheless, the demand of multi-omics data 
restricts the applicability where the data on methylation are 
available alone. Critical comparison on feature selection 
approaches is carried out to large-scale methylation datasets, 
and showed a demonstration of improved generalization and 
robustness. Their results help in supporting the significance of 
stable feature selection before classification. In the study [19], 
the authors explored the epigenetic regulation of tumor 
immunity in breast cancer, establishing a connection between 
the patterns of methylation and immune infiltration and 
response to the therapy. Their study offered biological rationale 
behind the use of methylation in immunotherapy associated 
prediction models. 

The boosting-based ensemble learning is used [20] to 
cancer epigenomics and demonstrated better results compared 
to individual learners. Their findings indicate the usefulness of 
ensemble decision-making in heterogeneous feature space. A 
comparative analysis of machine learning models is made [21] 
to analyze DNA methylation, and the authors identified the 
weaknesses and limitations of classical classifiers. Their effort 
supported the necessity of hybrid and ensemble strategies. The 
dimensionality reduction and feature stability of large 
methylation data is compared [22], with a focus on 
perturbation-robustness. The outcomes of their findings 
immediately lead to the optimization strategies of the hybrid 
features. 

An autoencoder-based representation learning model of the 
methylation data is introduced [23], which was shown to 

reduce the size of features with little information being lost. 
The use of autoencoder-based features learning is proposed 
[24] as an efficient way of classifying the cancer based on 
epigenetics, which demonstrated a better classification rate 
while also treating the data as it would be in a lower 
dimension. A spectral decomposition-based feature extraction 
on high-dimensional biomedical data, which was proposed 
[25], shows the superiority of the linear spectral approach in 
removing noise. 

III. METHODOLOGY 

A. Dataset 

One of the most extensive public epigenomics datasets that 
can be used in the study of breast cancer is the TCGA-BRCA 
HumanMethylation450 dataset. This dataset is obtained as a 
result of a project, The Cancer Genome Atlas (TCGA), which 
published genomemethylation patterns of breast invasive 
carcinoma tissue samples on the Illumina 
HumanMethylation450 BeadChip technology, also called the 
450K array. The array measures the status of nearly 485,000 
CpGs in the human genome, greatly facilitating the 
interrogation of epigenetic changes during tumor initiation, 
progression, molecular subtyping, and clinical outcome. The 
data in the UCSC Xena system under the UCSC Xena link 
included https://tcga-xena-hub.s3.us-
east1.amazonaws.com/download/TCGA.BRCA.sampleMap/H
umanMethylation450.gz. 

DNA methylation is a type of covalent modification which 
entails the attaching of methyl group (CH3) in cytosine bases 
mainly in CpGs. The aberrant methylation signatures, 
including promoter hypermethylation or global 
hypomethylation, are cellular markers of carcinogenesis, which 
has a significant impact on the regulation of genomic 
instability, transcription factor binding, chromatin structure, 
and regulation of gene expression. Illumina 450K platform has 
the capacity of capturing methylation signatures that span CpG 
islands, shores, shelves, enhancers, promoters, gene body, and 
intergenic regulatory elements. Since epigenetic states are more 
fixed than temporary changes in gene expression, 450K 
methylation data has been a useful snapshot of tumor 
phenotype and has been extensively used in classification, 
biomarker isolation, survival analysis, and recurrence 
prediction. 

Approximately 9001,000 samples are found in the TCGA-
BRCA methylation dataset which is a combination of tumor 
tissue in breast cancer and small amounts of normal tissues 
which are used as controls. The samples are all linked by a 
distinct TCGA barcode that identifies patient ID, sample type 
(primary tumor, normal, metastatic), date of extraction and 
most recently by batch. These barcodes can be combined with 
other TCGA modalities including RNA-seq, miRNA-seq, copy 
number variation, histopathology images and clinical survival 
data. The dataset is provided with the methylation 
measurements in the form of beta values, between 0 and 1, 
which is the percentage of DNA molecules that are methylated 
at a particular site. A value of 0 denotes a completely 
unmethylated site, 1 denotes a completely methylated site, and 
intermediate values are indicative of partial methylation of the 
cell population. The reasons why beta values are popular in 
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classification studies are that they can be interpreted, they are 
limited, and they are biologically significant. They are 
frequently converted into M-values when performing some 
statistical tests, yet beta values are still the main input of 
machine learning models. 

The data is very high-dimensional: a single sample has 
approximately 485,000 CpG features, which is why 
dimensionality reduction, feature selection and noise filtration 
are important before proceeding with the modeling. A lot of 
CpGs are not very varied in samples and some have missing 
values or the effect of a batch. Thus, typical preprocessing 
measures are CpG probe elimination on sex chromosomes, 
cross-reactive probe elimination, missing values imputation, 
and feature elimination via variance. Before using a machine 
learning algorithm, researchers usually filter the dataset to the 
top 5,00020,000 methylation sites. This is needed to prevent 
the curse of dimensionality, decrease overfitting, increase 
computational efficiency, and increase interpretability. 

CpG sites are annotated to such genomic elements as 
promoter regions, e.g., TSS200 (200 bp upstream of the 
transcription start site) and TSS1500 (1500 bp upstream), 
5′UTR, first exon, and gene body, 3′UTR, and non-genomic 
intergenic regions (open sea). Since hypermethylation of 
promoter regions is highly linked with silencing of the gene, 
inactivation of tumor suppressor genes and cancer aggression, 
such regions are typically listed as informative biomarkers. In 
the meantime, there is hypomethylation of the open-sea areas, 
which leads to chromosomal instability. The enhancer 
methylation data is also recorded in the form of enhancer 
annotations associated with ENCODE and FANTOM5 data 
sets. Subtype-specific control in breast cancer has been 
associated with these enhancer methylation states, especially 
luminal vs. basal-like tumors. 

The fact that the TCGA-BRCA HumanMethylation450 
dataset can be used together with existing breast cancer 
subtyping models like PAM50 is one of its strengths. The 
subtype-specific clustering of the methylation profiles has been 
evident in the dataset, such as basal-like tumors with specific 
global hypomethylation changes when compared to luminal A 
tumors. Due to this, the data of methylation represent an 
effective and independent modality in classifying tumors into 
clinically meaningful groups. There are many machine learning 
models, including logistic regression, random forest, SVM, 
KNN, and boosting methods, which have been used on this 
dataset and generated high-accuracy subtype classification and 
tumor-normal separation. Logistic regression and SVM are 
found to be exceptionally effective in most studies because of 
the biology of methylation data and the linear separability of 
most CpG patterns with minimal preprocessing. 

The consistency, reliability, and wide applicability of the 
dataset are guaranteed by the standardized pre-processing of 
the UCSC Xena pipeline. The file is in gzip-compressed form 
(.gz) that is opened into a matrix with rows matching CpG 
probe (probability IDs that start with cg, e.g. cg00000029) and 
columns matching patient samples. Illumina manifest files 
contain probe annotations in the form of genomic coordinates, 
gene names, CpG island associations, feature classifications 
which can be downloaded separately and joined with the 

dataset on-demand. The probe IDs are associated with unique 
genomic locus and researchers can correlate the results of 
probe methylation with biological pathways, epigenetics 
regulation, and biomarkers of clinical relevance. 

HumanMethylation450 data have a number of advantages 
as compared to other TCGA modalities: 

• High stability DNA methylation patterns are not as 
variable as the expression of genes. 

• Potential of early detection - methylation alterations are 
early in tumorigenesis. 

• Binary-like behavior - methylated/unmethylated 
transitions facilitate classification. 

• Epigenetic regulatory relevance - has a direct effect on 
gene expression programs. 

• Strength of biomarkers - best used in subtype 
classification and modeling of prognosis. 

In general, the TCGA-BRCA HumanMethylation450 
dataset is a gold-standard epigenomic dataset that enjoys 
widespread use in cancer research based on ML/DL-based 
predictive models because it is deeply, higher-quality, and has 
been demonstrated to be used successfully in clinical-rich 
prediction. Table I lists the features of the dataset being used. 

TABLE I.  FEATURES TABLE - HUMANMETHYLATION450 DATASET 

OVERVIEW 

Category Description 

Dataset Source TCGA-BRCA (Breast Invasive Carcinoma) 

Platform Illumina HumanMethylation450 BeadChip 

File HumanMethylation450.gz (UCSC Xena) 

Samples ~900–1000 TCGA breast cancer samples 

Sample Types Primary tumor, normal tissue, metastasis 

Probes (CpG Sites) ~485,000 CpG beta values 

Probe ID Format cgXXXXXXXX (e.g., cg00000029) 

Genome Build hg19 

Data Type Continuous beta values (0–1) 

Methylation Value 

Meaning 
0 = unmethylated, 1 = fully methylated 

Genomic Coverage CpG islands, shores, shelves, open sea  

Gene-Context 

Features 

TSS200, TSS1500, 5′UTR, first exon, gene body, 

3′UTR 

Enhancer Coverage ENCODE + FANTOM5 annotated enhancers 

Clinical Integration PAM50 subtype labels, survival data (external) 

Common 

Preprocessing 
Probe filtering, variance filtering, imputation 

Common ML Uses 
Tumor classification, subtype prediction, recurrence 

prediction 

Advantages 
Stable biomarker, high resolution, strong predictive 

power 

B. Mathematical Model for Algorithms Used 

The TCGA-BRCA HumanMethylation450 dataset contains 
high-dimensional β-values representing the proportion of 
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methylated cytosines at individual CpG loci. Given the non-
linear structure, heterogeneity, and sparsity of methylation 
features, the machine-learning models employed in this study 
are grounded in mathematical frameworks designed to handle 
complex, multivariate decision boundaries. This section 
describes the mathematical models underlying Logistic 
Regression, Random Forest, SVM, KNN, XGBoost and the 
Hybrid SVD + Autoencoder + Ensemble pipeline, and clarifies 
how each model contributes analytically to the classification 
performance obtained in the research. 

1) Logistic regression (LR): Logistic Regression is a 

generalized linear classifier that models the probability of a 

binary outcome using the sigmoid function. 

Given a feature vector 𝑥 ∈  𝑅𝑛, the model predicts, as in 
Eq. (1): 

𝑃(𝑦 = 1 ∣ 𝑥) = 𝜎(𝑤𝑇𝑥 + 𝑏) =
1

1+𝑒−(𝑤𝑇𝑥+𝑏)
      (1) 

where, 

wis the weight vector, 

bis the bias term, 

𝜎(⋅) is the logistic function. 

The model parameters are learned by maximizing the log-
likelihood, as in Eq. (2): 

ℒ(𝑤, 𝑏) = ∑ [𝑦𝑖log (𝜎(𝑧𝑖)) + (1 − 𝑦𝑖)log (1 − 𝜎(𝑧𝑖))]
𝑚

𝑖=1
(2) 

with 𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏. 

To avoid overfitting in high-dimensional methylation data, 
L2-regularization is applied, as in Eq. (3): 

𝐽(𝑤) = −ℒ(𝑤) + 𝜆 ∥ 𝑤 ∥2
2   (3) 

The accuracy (0.9775), ROC-AUC (0.9976), and balanced 
precision/recall demonstrate that LR captures strong linear 
separability in methylation features. Because methylation β-
values are normalized, LR’s linear boundary is effective and 
stable. The model serves as a baseline mathematical classifier 
against which advanced models are compared, showing that 
even linear logic captures meaningful epigenetic variation. 

2) Random Forest (RF): Random Forest is a set of 

decision trees. For a tree 𝑇𝑗, prediction is as in Eq. (4): 

 𝑦𝑗 = 𝑇𝑗(𝑥)    (4) 

Majority voting is used to get the final classification, as in 
Eq. (5): 

 𝑦 = mode{𝑦1, 𝑦2 ,… , 𝑦𝑘}  (5) 

The parts of the decision tree divide the feature space by 
reducing the Gini impurity, as in Eq. (6): 

 𝐺 = ∑ 𝑝𝑐(1 − 𝑝𝑐 )
𝐶

𝑐=1
  (6) 

where, p_c is the percentage of samples of class cin that 
node. 

The use of random selection of features in each split yields 
corruption of variation and decorrelation. RF has high recall 
(0.9870) and is also powerful in non-linear feature interactions. 
The Multi-modal and hierarchical patterns of cancer 
methylation represent cancer data, which are natural to RF 
trees. It has a mathematical form that gives: 

• implicit feature selection 

• distinctive multi-divided decision surfaces. 

• noise-tolerant classification 

The recall dominance of RF demonstrates that it can 
retrieve the real signals of cancer where irregular patterns of 
methylation are present. 

3) Support vector machine (SVM): In the case of data that 

are linearly separable, SVM determines the hyperplane, as in 

Eq. (7): 

 𝑤𝑇𝑥 + 𝑏 = 0    (7) 

that maximizes the margin, as in Eq. (8): 

 Margin =
2

∥𝑤∥
   (8) 

The optimization problem, as in Eq. (9), is: 

min 
𝑤,𝑏

1

2
∥ 𝑤 ∥2 s.t. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 (9) 

SVM projects non-linear data to a high-dimensional feature 
space by employing a kernel, K(x_i,x_j), to project data, as in 
Eq. (10): 

𝐾(𝑥𝑖, 𝑥𝑗) = ⟨𝜙(𝑥𝑖),𝜙(𝑥𝑗)⟩  (10) 

Some of the commonly used kernels are: polynomial and 
Radial Basis Function (RBF), as in Eq. (11): 

𝐾RBF(𝑥𝑖,𝑥𝑗) = exp (−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) (11) 

The high accuracy (0.9719) and F1-score (0.9677) of SVM 
are indicative of the ability to deal with complicated 
methylation boundaries. The RBF-SVM in particular is 
particularly appropriate to datasets of methylation where:  

• distributions are non-Gaussian 

• relationships are non-linear 

• CpG interactions have curved boundaries 

Mathematically, SVM exploits the high-dimensional 
structure of the 450k-probe methylation space, allowing it to 
outperform simpler models like KNN. 

4) K-nearest neighbors (KNN): KNN is an instance-based 

classifier. Given a query sample x, KNN computes distances 

to all training samples, as in Eq. (12): 

𝑑(𝑥, 𝑥𝑖) =∥ 𝑥 − 𝑥𝑖 ∥2     (12) 

The predicted class, as in Eq. (13), is: 

 𝑦 = mode(𝑦(1),𝑦(2),… , 𝑦(𝑘))     (13) 

where,  𝑦(𝑗)  is the class label of the 𝑗𝑡ℎ nearest neighbor. 
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KNN shows the lowest performance (accuracy = 0.8820), 
which is expected because: 

• KNN suffers in high dimensions (“curse of 
dimensionality”) 

• methylation features are dense and noisy 

• distance metrics lose discriminative power 

Mathematically, the feature space becomes too sparse for 
meaningful Euclidean comparisons, confirming KNN is 
unsuitable for methylation-based classification unless 
dimension reduction is applied. 

5) XGBoost: XGBoost uses gradient-boosted decision 

trees based on an additive model, as in Eq. (14): 

𝑦𝑖 = ∑ 𝑓𝑡 (𝑥𝑖)
𝑇

𝑡=1
   (14) 

Each 𝑓𝑡  belongs to the space of regression trees. The 
objective function, as in Eq. (15), is: 

ℒ = ∑ 𝑙(𝑦𝑖, 𝑦𝑖)𝑖
+ ∑ Ω(𝑓𝑡) 

𝑡
  (15) 

where, the regularization term controls tree complexity, as 
in Eq. (16): 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥2  (16) 

The trees are trained sequentially using gradient descent, 
with leaf values updated, as in Eq. (17): 

𝑤𝑗 = −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

   (17) 

where, 

• 𝑔𝑖 = ∂𝑙/ ∂𝑦𝑖(gradient) 

• ℎ𝑖 = ∂2𝑙/ ∂𝑦𝑖
2(Hessian) 

XGBoost achieves high accuracy (0.9326) and ROC-AUC 
(0.9853), indicating that boosting captures: 

• interactions among CpG sites 

• rare methylation signatures 

• subtle non-linearities 

Mathematically, its second-order optimization stabilizes 
training on high-dimensional sparse methylation matrices. Its 
performance sits between RF and SVM, demonstrating strong 
non-linear learning but with some overfitting risks due to the 
huge feature set. 

6) HELM-BRCA (Proposed method): This is what the 

research makes in terms of contribution that is shown in 

Fig. 1. 

a) Truncated SVD (Spectral dimensionality reduction) 

The standardized matrix is decomposed in SVD, as in 
Eq. (18): 

𝑋scaled = 𝑈Σ𝑉⊤   (18) 

Truncated to r components, as in Eq. (19): 

 𝑍svd = 𝑈𝑟Σ𝑟   (19) 

This provides a linear global spectral model of the 
methylation signal. 

b) Autoencoder (Nonlinear latent learning) 

Encoder, as in Eq. (20): 

𝑧ae = 𝐸𝜃(𝑥)                (20) 

Decoder, as in Eq. (21): 

𝑥 = 𝐷𝜙(𝑧ae)   (21) 

Training objective, as in Eq. (22): 

min 
𝜃,𝜙

∑ ∥ 𝑥𝑖 − 𝐷𝜙(𝐸𝜃(𝑥𝑖)) ∥2
2

𝑛

𝑖=1
  (22) 

This provides a nonlinear manifold structure. 

c) Feature fusion 

The fused latent representation, as in Eq. (23), is: 

𝑍 = [𝑍svd   ∥   𝑍ae]   (23) 

This concatenation preserves: 

global spectral geometry (SVD) 

local nonlinear structure (AE) 

d) Weighted ensemble classifier 

Three probabilistic classifiers h1, h2, h3 produce outputs, 
as in Eq. (24): 

𝑝1 = RF(𝑍), 𝑝2 = XGB(𝑍), 𝑝3 = MLP(𝑍)(24) 

Final ensemble score, as in Eq. (25): 

𝑝ens = 0.3𝑝1 + 0.3𝑝2 + 0.4𝑝3  (25) 

Final decision, as in Eq. (26): 

𝑦ens = 𝟏(𝑝ens ≥ 0.5)  (26) 

 

Fig. 1. Work flow of the proposed model. 

In this study, the general mathematical procedure 
incorporates several complementary representation-learning 
and classification units to derive a stable predictive format out 
of high-dimensional 450k DNA-methylation probes. This raw 
probe matrix is normalized into a normalized feature space 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 ∈  𝑅𝑛∗𝑝 and variance-filtered, and this forms the basis 
of downstream transformations. The Truncated SVD is then 
used to extract the largest linear variance structure of the 
methylation landscape, resulting in a compressed spectral 
embedding 𝑍𝑠𝑣𝑑 =  𝑋𝑠𝑐𝑎𝑙𝑒𝑑𝑉𝑘. This is followed by Truncated 
SVD which captures global trends in the methylation landscape 
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and creates a small spectral embedding 𝑍𝑎𝑒 =  𝑓𝜃(𝑋𝑠𝑐𝑎𝑙𝑒𝑑). 
The largest linear variance structure of the methylation 
landscape is then captured by Truncated SVD, which generates 
a compact spectral embedding Z. 

Simultaneously, a deep autoencoder fits nonlinear 
manifolds inherent to methylation patterns and predicts a latent 
representation Z, 𝑍𝑎𝑒 by the bottleneck of the network. These 
complementary embeddings are joined together in a single 
fused representation 𝑍 = [ 𝑍𝑠𝑣𝑑 ,𝑍𝑎𝑒] that at the same time 
maintains linear structure, nonlinear dependencies, and probe-
level interactions. The resulting fused latent space is then 
released to a heterogeneous ensemble comprising of Random 
Forest (hierarchical feature interactions), XGBoost (learning 
boosted decision boundaries), and a lightweight MLP classifier 
(smooth nonlinear separability). 

To further stabilize the prediction outputs, a weighted 
ensemble aggregation is employed to use the strengths of all 
three classifiers, which results in a good accuracy, prediction 
precision, recall, and ROC-AUC than when the models are 
used individually. Such an integrated mathematical 
formulation, which is the combination of dimensionality 
reduction, manifold learning, and multi-model ensemble 
inference, shows evidently better results than traditional 
models like Logistic Regression, SVM, KNN, and XGBoost 
separately, which proves the efficiency of the hybrid SVD-
based approach AE-Ensemble. 

These complementary embeddings are concatenated into a 
unified fused representation, which simultaneously preserves 
linear structure, nonlinear dependencies, and probe-level 
interactions. This fused latent space is then supplied to a 
heterogeneous ensemble consisting of Random Forest 
(capturing hierarchical feature interactions), XGBoost (learning 
boosted decision boundaries), and a lightweight MLP classifier 
(modeling smooth nonlinear separability). A weighted 
ensemble aggregation further stabilizes prediction outputs by 
leveraging the strengths of all three classifiers, yielding 
improved accuracy, precision, recall, and ROC-AUC compared 
to individual models. This integrated mathematical 
formulation—combining dimensionality reduction, manifold 
learning, and multi-model ensemble inference—demonstrates 
clear superiority over classical models such as Logistic 
Regression, SVM, KNN, and XGBoost alone, validating the 
effectiveness of the proposed hybrid SVD–AE–Ensemble 
methodology. 

C. Proposed Work 

The proposed methodology introduces a hybrid, multi-stage 
machine learning pipeline designed to enhance the 
classification of breast cancer samples using high-dimensional 
DNA methylation profiles derived from the TCGA-BRCA 
HumanMethylation450 platform, as depicted in Fig. 2. Given 
the inherently complex, nonlinear, and sparse structure of 
methylation markers, the framework integrates both linear 
spectral decomposition and nonlinear deep representation 
learning, followed by a weighted ensemble of heterogeneous 
classifiers. This unified design enables the extraction of 
complementary structural patterns that are otherwise difficult 
to learn through conventional models, while ensuring superior 
predictive performance, robustness, and generalization. 

 

Fig. 2. General architecture. 

1) Data acquisition and memory-safe probe extraction: 

Based on all the data provided by the TCGA-BRCA 

methylation array, which was acquired on the Illumina 

HumanMethylation450 array, the dataset consists of over 

485,000 CpG probes, which are present in about 1,000 + 

tumor and normal samples. The extremely large 

dimensionality and memory limits also mean that the proposed 

methodology starts with a memory-efficient probe reader 

extracting a manageable subsample of probes, usually the first 

3000-5000 rows, in its original probe × sample matrix format. 

The approach averts crashing of the systems during 

preprocessing and guarantees the downstream models to run 

on a scaling dataset and still maintain critical changes in 

epigenetics. 

The probe-selection approach was aimed to achieve a 
compromise between biological significance, computational 
efficiency, and statistical power. Variance-based filtering was 
used in place of arbitrary thresholds to select probes with near-
constant amounts of methylation, as these have been shown to 
add little discriminative information when classifying cancer. 

Such a strategy is consistent with the previous methylation 
studies that indicate that regulatory regions enriched with 
highly variable CpG are enriched with respect to tumor 
progression and subtype differentiation. The probe subsets that 
were selected were then filtered with correlation to minimize 
redundancy and multicollinearity, which enhances stability in 
the downstream model. 

Notably, the experiments on robustness with various probe 
subset sizes (6002000 CpGs) showed the same performance 
(Table IV), which means that the learned representations are 
generalized to different probe setups and, furthermore, it is not 
dependent on a particular set of features. 

2) Data cleaning and preprocessing: Raw methylation 

matrices have missing values, redundant features, and 

different distributions of signal across probes. A strict pre-

processing pipeline is applied to standardize the data: 
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a) NaN-dominant probes and samples were removed: 

Samples or probes that are overly NaN-dominant are 
eliminated to prevent the amount of noise that can be 

transmitted to the learning models. 

b) Matrix transposition: The probe x sample to sample x 
probe matrix is transposed to sample x probe to enable the 

machine learning input standard. 

c) Variance-based feature reduction: The 1000 probes 
that show the greatest variance among samples are kept. This 
step filters out non-informative probes that have almost 
constant methylation profiles whilst maintaining 

discriminative characteristics needed to separate the classes. 

d) Median imputation: Missing values in the retained 
probe set are filled in with probe-wise medians, which offers 
biologically consistent substitution of missing values 

compared to the use of means. 

e) Z-score standardization: A StandardScaler is used to 
convert the data into normalized data in a matrix. 

𝑋scaled, making sure that all the probes are contributing equally 

to the model training. 

This standardized and cleansed data is the basis of further 
representation learning. 

3) Dual-path feature representation learning: An 

important contribution of this work is the dual-path feature 

extraction approach, which performs simultaneous atypical 

global linearities and nonlinear manifolds at the local scale 

when methylation profiles are considered. 

a) Spectral linear feature extraction using SVD: The 

first path employs Truncated Singular Value Decomposition 
(SVD) with 𝑘 = 50components. SVD is a decomposition of 
the standardized matrix, which gives macro-level, linear 

structural patterns of large-scale methylation signatures by 
representing the largest variation directions as orthogonal 

basis vectors. Mathematically, 𝑍svd ∈ ℝ𝑛×50  where is the 

linear latent space of n samples. 

This spectral embedding is an effective denoising and 
dimensionality reduction method that uncovers prominent 
epigenomic structures that distinguish cancerous and non-
cancerous tissue. 

b) Nonlinear feature extraction using autoencoder: 
Simultaneously, the second feature extraction pipeline consists 
of a deep autoencoder that has an input layer of 1000-
dimensional, dense hidden layers, dropout regularization, and 

a small 64-dimensional bottleneck layer. 

The autoencoder is trained on non-linear transformations 
and complicated interactions among CpG probes, which SVD 
is unable to predict.  The resulting latent matrix, as in Eq. (27): 

 𝑍ae ∈ ℝ𝑛×64   (27) 

represents compressed nonlinear patterns including 
methylation–methylation interactions, tumor-specific 
epigenetic motifs, and subtle deviations in CpG island 
structures. 

These two embeddings, both linear and nonlinear, are the 
basic mathematical principles of the offered stage of 
representation learning. 

4) Latent space fusion: The outputs of the two latent 

spaces are concatenated into a unified representation, as in 

Eq. (28): 

 𝑍 = [𝑍svd,𝑍ae]    (28) 

This fused vector combines: 

• processed SVD variance structure globally 

• Local nonlinear manifolds of the autoencoders 

This richer representation has the advantage of boosting the 
discriminative power of the representation by enriching it with 
complementary information, which boosts the ability of the 
model to identify subtle differences in methylation in breast 
cancer subtypes and normal tissue. 

5) Ensemble classification with heterogeneous models: A 

weighted combination of three classifiers is suggested in order 

to make use of the advantages offered by various predictive 

paradigms: 

a) Random forest (RF): A 100-decision tree Random 
Forest model learns both nonlinear interactions between fused 

latent features. It has a mechanism of bootstrap aggregation 
that is resistant to noise and overfitting. RF is highly efficient 
in acquiring probe interactions and threshold signals of 

epigenetics. 

b) XGBoost: XGBoost, which is trained using 100 
boosting iterations and histogram-based optimization, adds 
strong gradient-boosted decision boundaries. It is an effective 
model of complex hierarchical relationships and interaction 
between fused latent representations, and enhances the 

classification of ambiguous samples. 

c) Multilayer perceptron (MLP): The MLP model is 
composed of 2 dense layers (64 and 32 neurons) with a 
dropout regularization and a sigmoid output. This is a neural 
classifier that is especially useful in learning continuous 

nonlinear boundaries in the fused space and is a complement 

of the tree-based models. 

d) Weighted decision fusion: The ensemble prediction is 
a weighted sum of the three individual model outputs, as in 

Eq. (29): 

Finalpred = 0.3 ⋅ 𝑅𝐹 + 0.3 ⋅ 𝑋𝐺𝐵 + 0.4 ⋅ 𝑀𝐿𝑃     (29) 

Explicit optimization of weights in order to maximize the 
ROC-AUC is done experimentally. The fact that MLP has a 
higher weight is a representation of its capability to take 
advantage of the enriched feature space. 

6) The reproducibility and implementation details: In 

order to have reproducibility, all experiments were realized 

with constant random seeds to divide the data into parts, to 

initialize the models, and to train the models. TCGA-BRCA 

data was randomly split into training and testing with an 80:20 
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stratified split, which was repeated with different random 

seeds to gauge consistency. 

The important hyperparameters were chosen by 
experimenting with the validation. The architecture of the 
autoencoders was that of symmetrical encoder-decoder layers 
and the activation function was ReLU and the optimizer was 
Adam optimizer and early stopping was used to avoid 
overfitting. Dimensionality of the SVD has been used to 
choose the major aspects of variance in the data and to silence 
the noise. The weights of the ensemble classifier were 
determined empirically based on validation scores. 

Each of the experiments was conducted in Python with the 
standard machine learning and deep learning packages, and the 
entire experimental pipeline can be replicated with the 
described configuration. 

7) Performance evaluation: The framework is evaluated 

using multiple performance metrics, including: 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

• ROC-AUC 

The proposed ensemble performs much better than 
individual models like SVM, KNN, Logistic Regression, and 
standalone deep networks. In experiments, the models 
obtained: 

• CNN: 0.966 accuracy 

• Basic MLP (Adam): 0.960 accuracy 

• Collective: F1 and ROC-AUC always near 0.995. 

These findings justify the methodological benefit of the 
union of linear spectral characteristics, nonlinear deep 
representations, and weighted multi-model fusion. 

8) Integrated mathematical workflow: The complete 

mathematical workflow can be summarized as follows: 

Raw probe matrix → preprocessing → variance filtering → 

𝑋scaled 

Then: 

• SVD extracts global linear structure 

• Autoencoder extracts nonlinear manifolds 

Fused latent vector, as in Eq. (30): 

𝑍 = [𝑍svd,𝑍ae]     (30) 

Nerfing: tree models + boosting + neural network + 
ensemble prediction + final classification. 

The combination of all parts of mathematics leads to stable, 
precise and biologically significant predictions. 

Therefore, the suggested hybrid approach to breast cancer 
methylation classification that combines spectral 
decomposition, deep nonlinear representations, and weighted 
ensemble learning is a new and quite efficient approach to this 
issue. The combination of complementary latent spaces and the 
incorporation of heterogeneous classifiers results in the state-
of-the-art performance of the approach and a solid 
computational basis of further epigenomic studies. 

IV. RESULTS AND DISCUSSION 

This section will assess the results of the suggested Hybrid 
SVD-Autoencoder-Ensemble structure to the TCGA-BRCA 
DNA methylation dataset and interpret the results in the 
context of the previous research. Besides reporting the 
classification performance, there is an emphasis on model 
generalization, robustness, and validation rigor in order to 
overcome the concerns associated with overfitting and leakage 
of information. 

A. Performance of Conventional Machine Learning Models 

In order to build trustworthy baselines, the Logistic 
Regression (LR), Random Forest (RF), Support Vector 
Machine (SVM), KNN, and XGBoost classical machine 
learning models were tested on standardized probe-level 
methylation features. Table II summarizes the performance of 
these baseline models. 

LR has the greatest accuracy (97.75) and ROC-AUC 
(0.9975) of all baseline models. This finding is in line with 
previous papers that found that cancer-related global drift of 
methylation causes high linear separability following 
preprocessing and normalization of variance [1, 15]. 
Equivalent results have been mentioned in large-scale TCGA-
based methylation studies, in which linear classifiers display 
competitiveness when prevalent changes in epigenetics exist 
[11]. 

SVM using an RBF kernel also has good validity (accuracy 
= 97.19%, ROC-AUC = 0.9973), which is in agreement with 
the findings of previous studies that have suggested the 
effectiveness of the use of kernel-based classifiers in the 
recognition of nonlinear methylation boundaries in high-
dimensional epigenomic space [2, 9]. RF is the most successful 
in recall (98.7%), which indicates its capability to detect most 
cancer samples. This performance is consistent with past 
results that tree-based ensemble models can be extremely 
sensitive to nonhomogeneous CpG motifs but can be 
inaccurate with regard to recollection because of splits 
noisiness [4, 11]. 

The performance (accuracy = 88.20%) of KNN is, on the 
one hand, significantly lower, which validates the prevalent 
reported limitations of distance-based classifiers in high-
dimensional domains of methylation [10, 15]. XGBoost has 
moderate performance (accuracy = 93.26%, ROC-AUC = 
0.9853), which is in line with previous findings that boosting 
models are proficient but prone to redundancy and small 
samples of methylation studies [5, 9]. 
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TABLE II.  PERFORMANCE OF CLASSICAL ML BASELINES ON TCGA-
BRCA METHYLATION DATASET 

Model Accuracy Precision Recall 
F1-

Score 

ROC-

AUC 

Logistic 

Regression 
0.97 0.97 0.97 0.97 0.99 

Random 

Forest 
0.96 0.92 0.98 0.95 0.99 

SVM (RBF) 0.97 0.96 0.97 0.96 0.99 

KNN 0.88 0.83 0.90 0.86 0.93 

XGBoost 0.93 0.90 0.94 0.92 0.98 

On the whole, the obtained result shows that classical 
models are effective, but none of them is able to realize the 
global variance structure and the localized nonlinear interaction 
of methylation, justifying the suggested hybrid framework. 

B. Effectiveness of SVD and Autoencoder Feature Fusion 

In order to study the role of each element of representation, 
an ablation experiment was performed based on: 1) SVD-only 
features, 2) Autoencoder-only features, and 3) fused SVD + 
Autoencoder features. 

Table III shows that SVD-only features can reach an error 
rate of about 95 percent, meaning that significant cancer-
related methylation data can be found in the dominant 
directions of linear variance. This is in line with past research, 
which has shown that global methylation drift and chromatin 
reorganization play a major role in cancer epigenomes [10, 25]. 

Autoencoder-only features perform better than SVD-only 
features in terms of recall and ROC-AUC values, which 
underscores the significance of nonlinear interactions of CpGs, 
including promoter hypermethylation and subtype-specific 
regulatory patterns. The same benefits of autoencoder-based 
characterizations have been observed in methylation-based 
cancer subtyping and recurrence forecasting studies [23, 24]. 

TABLE III.  ABLATION STUDY: CONTRIBUTION OF SVD, AE, AND FUSED 

FEATURE SETS 

Feature Type Accuracy Precision Recall 
F1-

Score 

ROC-

AUC 

SVD latent 

features only 
0.95 0.93 0.96 0.94 0.98 

Autoencoder 

latent features 

only 

0.93 0.91 0.97 0.94 0.98 

Fused SVD + 

AE (Proposed) 
0.98 0.98 0.99 0.98 0.99 

The fused SVD + Autoencoder representation shows much 
higher performance in comparison with the two separate ones 
in all measures (accuracy = 98%, ROC-AUC = 0.99). This 
illustrates the effect of synergy, which proves the 
complementary effect of linear and nonlinear methylation 
signals. Similar performance improvements have been 
observed in previous hybrid dimensionality-reduction models 
on high-dimensional biomedical data [12, 25]. 

C. Performance of Proposed Hybrid Ensemble Model 

The fused latent representations further were classified 
through a weighted combination of RF, XGBoost and MLP 

classifiers. The performance indicators obtained are 
summarized in Table III and compared with baseline models. 

The proposed hybrid framework provides better results in 
terms of accuracy and precision, as well as recall and ROC-
AUC, than all the classical baselines. The attained accuracy 
(98) and recall (99) are higher than the performance reported in 
the existing breast cancer classifiers, which use methylation as 
a feature to classify the cases, and based on the size of the 
cohort and the feature-selection approach, the performance of 
most cohort-based classifiers is in the range of 94-97% [1,3,9]. 

 Notably, the performance improvement can be explained 
by the optimal features representation and not the complexity 
of the classifier itself, which is again in line with the results of 
ensemble-based epigenomic research that places greater 
importance on the quality of representation as opposed to the 
depth of the model [18, 20]. 

D. Comparison Across all Models 

To emphasize the relative improvement gained through the 
proposed hybridization, Fig. 3 compiles the best-performing 
model from each category. 

The graph visually compares the performance of five 
machine learning methods with the four major metrics of 
measuring Accuracy, Precision, Recall, and ROC-AUC, and 
the proposed HELM-BRCA is clearly superior in all measures, 
which signifies the high levels of generalization and robustness 
in the classification of TCGA-BRCA methylation data. 
Although Logistic Regression and SVM are competitive in 
terms of good precision and ROC-AUC, as well as Random 
Forest proves to be high in terms of recall, these single models 
do not lead to the high level of performance of the hybrid 
approach. XGBoost is fair in its performance, but it is also 
more prone to noise, leading to less precise and less accurate 
than the rest. On the whole, as the graph demonstrates, the 
performance of traditional models is strong in isolated 
conditions; still, the hybrid framework provides the most 
efficient combined results and is the most credible and 
clinically relevant solution. 

 

Fig. 3. Model comparison. 

The results obtained at the baseline demonstrate a number 
of important facts: Logistic Regression has a good overall 
performance, but the decision limits are linear, thus, restricting 
the sensitivity to complex methylation patterns. Support Vector 
Machines have the greatest ROC-AUC in comparison to 
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classical baselines, indicating the significance of nonlinear 
transformation of high-dimensional epigenomic data. Random 
Forest has the highest Recall, but with lower Precision, 
indicating that it has a higher chance of overfitting due to noisy 
or unstable splits of the trees. Contrarily, the Hybrid SVD + 
Autoencoder + Ensemble framework is even better than each 
of the individual baselines, with the highest Recall, which is 
the most clinically relevant in biomedical classification, 
especially in the detection of early-stage cancer. Notably, the 
effectiveness of the suggested technique is not due to the 
classifiers themselves but the complementary latent feature 
representations, which are generated by both spectral variance 
structure and nonlinear manifold extraction, which prove that 
optimized feature space learning is more influential than the 
usage of more sophisticated classification algorithms. 

E. Robustness and Stability Analysis 

Since the performance metrics were extremely high, an 
extra analysis was performed to determine robustness and 
exclude the possibility of overfitting or data leakage. Each split 
dimensionality reduction (SVD and autoencoder training) was 
conducted only on training data, such that no information on 
test data was leaked to feature learning. Repeated randomized 
stratified train- test splits were used as model evaluation. 

These strong performance metrics are summarized in 
Table IV, which reports on the stability of the performance 
across random seed variation, reduction of probe subset (600-
2000 CpGs), shuffling of training and testing sets, and 
controlled label perturbation. The accuracy is in a thin range 
(97.6%, 98.2%), which means low variance and constant 
convergence. 

TABLE IV.  ROBUSTNESS EVALUATION OF THE PROPOSED HYBRID 

METHOD 

Condition 
Accuracy 

Range 

Precision 

Range 

Recall 

Range 

ROC-

AUC 

Range 

Random seed variation 
0.976–

0.982 

0.972–

0.985 

0.984–

0.994 

0.988–

0.992 

Probe feature variation 

(600–2000) 

0.974–

0.981 

0.971–

0.984 

0.983–

0.993 

0.989–

0.992 

Train/test shuffling (5 

repeats) 

0.978–

0.983 

0.973–

0.986 

0.986–

0.993 

0.990–

0.993 

Label balancing (minor 

perturbation) 

0.975–

0.982 

0.971–

0.982 

0.985–

0.992 

0.989–

0.991 

The fact that the model maintains high performance despite 
low feature sets indicates that the model is not based on 
spurious CpG correlations. This is opposed to overfitted 
methylation classifiers found in previous studies, in which the 
performance declines rapidly when features are perturbed [11, 
20]. The reported ranges of similar robustness have been 
observed in validated cross-validation and perturbation 
analysis pipelines in methylation [21, 22]. 

F. Biological Interpretation of Feature Behavior 

Newton-Biologically, the SVD component represents large-
scale methylation drift due to chromatin remodelling and 
epigenetic instability, whereas the autoencoder represents local 
regulatory methylation effects on gene expression and subtype 

differentiation. Similar dual-scale interpretations have also 
been highlighted in recent cancer epigenomics studies [14, 19]. 

The ensemble layer also increases clinical reliability by 
minimizing variance and bias, which is in line with previous 
studies that have shown that ensemble learning generalizes 
better in the context of methylation-based cancer diagnostics 
[4, 18]. 

Although methodological contribution is the major 
contribution of the present study, the representations learned 
have significant biological properties. The SVD components 
represent the global methylation drift, which is a typical feature 
of cancer epigenomes that involves remodeling of the 
chromatin and its instability. These trends in the world have 
been attributed to massive global regulatory alterations in 
tumor evolutionary stages. 

 Conversely, latent features learned by autoencoders 
represent nonlinear and localized interactions between 
methylation and other factors such as promoter 
hypermethylation, CpG clustering at enhancers, and subtype-
regulating signatures. It is known that these patterns interfere 
with gene expression programs and therapeutic response in 
breast cancer. 

The enhanced performance of feature fusion is an 
indication that the breast cancer methylation signatures are 
controlled by the global and local epigenetic processes. This 
two-scale modeling is consistent with the existing biological 
knowledge of epigenomic control and justifies the clinical 
applicability of the presented framework. 

G. Data Leakage Prevention and Strategy of Validation 

As the proposed framework has a high classification 
accuracy, additional attention was paid to the avoidance of data 
leakage and overfitting. Preprocessing steps, such as probe 
filtering, normalization, dimensionality reduction (SVD), and 
autoencoder training, were only done on training folds. No 
exposure of test data was made in feature learning or model 
optimization. 

The repeated stratified train-test splits were used to 
establish model evaluation, with the proportions of classes 
being consistent across the splits. The stability of the 
performance was also evaluated by the random seed 
perturbation test, feature subset perturbation test, and label 
perturbation test. The low performance variance in these 
conditions suggests that there is strong convergence and not 
memorization. 

Also, the level of performance was consistently high 
despite a decrease in the number of probes to 600, indicating 
that the model is not based on spurious CpG correlations. The 
same robustness patterns have been shown to hold in validated 
DNA methylation pipelines that use cross-validation and 
perturbation-based stress testing, which suggests the 
generalizability of the proposed method. 

Overall, the findings in Table II to Table IV, and Fig. 3 
indicate that the Hybrid SVD-Autoencoder-Ensemble 
framework offered has better performance compared to other 
models, is robust, and generalizes. The analysis of the results in 
comparison with other works shows that the identified 
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improvements are not a flaw of the overfitting, but 
improvements in epigenomic representation learning. The 
explicit validation strategy and stability analysis are additional 
indicators of the reliability and translational relevance of the 
suggested approach. 

V. CONCLUSION 

The work introduced a strong and computationally efficient 
hybrid learning model of breast cancer classification based on 
high-dimensional DNA methylation data of the TCGA-BRCA 
dataset. With the application of Truncated Singular Value 
Decomposition (SVD), a deep Autoencoder, and a collective of 
heterogeneous classifiers, the proposed methodology resolved 
the issues related to the dimensionality, sparseness, and non-
linearity of methylation signatures. The bilateral-feature 
extraction pipeline, which utilized both SVD as linear variance 
structure and Autoencoder as non-linear manifold learning, 
was crucial in the extraction of the complementary information 
regarding the epigenomics, and finally, the predictive 
performance was improved. 

The results of the experiments proved the hybrid 
framework to be more efficient than various baseline 
architectures, such as standalone MLP, CNN, Residual CNN, 
Autoencoders-based classifiers, and DropConnect. The Basic 
CNN demonstrated the best single model accuracy of 0.9663, 
and ROC-AUC of 0.9946, and the variants of Basic MLP also 
gave good performance with the greatest accuracy of above 
0.96. These findings prove that even lightweight neural 
networks can be successfully used to leverage biologically 
relevant patterns of methylation in a properly pre-processed 
and dimensionally reduced form. 

The suggested ensemble classifier additionally enhanced 
the stability and generalization of the models with the strength 
of tree-based learners and neural networks. The team also had 
the advantage of having a wide range of decision boundaries 
that allowed it to be more robust to different subsets of 
methylation. The combined representation of the fused 
representation of SVD and Autoencoder embeddings was an 
important factor that the system was capable of discriminating 
against delicate epigenomic differences between various 
subtypes of breast cancer. 

Altogether, the presented hybrid model provides a memory-
efficient, and crash-free, and very accurate pipeline to be used 
in the large-scale epigenomic studies. In addition to the 
classification, the method has enormous biomarker discovery, 
subtype stratification, and applicability to precision oncology 
workflows. This framework can be expanded in the future to 
multi-omics integration, cross-cohort validation, and 
interpretable AI models that can be clinically useful in 
advancing personalized diagnostics of breast cancer. 
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