
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

122 | P a g e
www.ijacsa.thesai.org

AI Mathematical: Solving Math Challenges Using

Artificial Intelligence Models

Trinh Quang Minh*, Ngo Thi Lan, Bui Xuan Tung, Phan Thanh Tuyen

Tay Do University, 68 Hau Thanh My Street (Tran Chien), Cai Rang Ward, Can Tho City, Viet Nam

Abstract—Artificial Intelligence (AI) has emerged as a

transformative tool for solving mathematical challenges across

diverse domains, ranging from algebra and geometry to calculus

and number theory. This study investigates the role of AI in

mathematics by analyzing three representative platforms—

MathGPT.org, Math-GPT.ai, and StudyX.ai—and by proposing

ten Python-based problem-solving models tailored to Olympiad-

style problems. The methodology integrates rule-based

reasoning, brute-force search, and heuristic strategies, while

benchmarking is inspired by the AI Math Olympiad (AIMO)

Progress Award competition on Kaggle. A comparative

evaluation was conducted to assess accuracy, reasoning depth,

and computational efficiency. Results show that AI solvers can

provide step-by-step solutions, interactive visualizations, and

adaptive learning support, but their performance varies

depending on problem type and strategy. This study highlights

both the potential and limitations of AI in mathematics education

and research, emphasizing the need for automated model

selection (AutoML) and formal benchmarking to strengthen

credibility. The findings demonstrate that AI can simultaneously

promote automated problem-solving and enhance personalized

STEM learning.

Keywords—AI math solvers; Artificial Intelligence; STEM

education; MathGPT.org; Math-GPT.ai; StudyX.ai; Python

models; Olympiad problems; automated reasoning; Kaggle AIMO

Progress Prize

I. INTRODUCTION

Artificial Intelligence (AI) is reshaping mathematics by
enabling automated reasoning, symbolic manipulation, and
problem-solving at scales previously unattainable.
Mathematics provides the theoretical foundation for AI through
probability, statistics, linear algebra, and calculus, while AI in
turn enhances mathematics education and research. Recent
initiatives, such as the AI Math Olympiad (AIMO) Progress
Award on Kaggle, highlight the ambition to build AI systems
capable of solving Olympiad-level problems that require multi-
step logic and deep reasoning. In parallel, platforms such as
MathGPT.org, Math-GPT.ai, and StudyX.ai have emerged,
offering step-by-step solutions, interactive visualizations, and
adaptive tutorials that make advanced mathematics more
accessible. However, existing studies reveal both opportunities
and challenges: while AI tools can improve engagement and
individualized learning, their reasoning depth and accuracy
remain inconsistent. This study contributes by: 1) summarizing
the capabilities of three representative AI mathematical
platforms, 2) proposing ten Python-based models for diverse
problem categories, and 3) benchmarking their performance
against Olympiad-style problems. By integrating insights from
prior research and referencing recent work on Automated

Machine Learning (AutoML) for model selection, this study
positions AI as both a computational solver and an educational
tool, supporting the next generation of STEM learners and
researchers.

II. MATERIALS AND METHODS

This study builds upon recent advances in the application of
Artificial Intelligence (AI) to mathematics education and
problem solving. To design and evaluate AI-based
mathematical solvers, the authors reviewed several related
works that highlight the effectiveness, challenges, and
opportunities of integrating AI into STEM learning
environments.

1) AI-supported problem solving in mathematics

education. Recent work [9] [10] investigated the educational

quality of AI-supported problem solving by comparing

different prompt techniques in mathematics classrooms. The

study emphasized that large language models (LLMs) such as

GPT can enhance conceptual understanding when prompts are

carefully designed, but also revealed limitations in accuracy

and reasoning depth.

2) Systematic review of AI effectiveness in K-12

mathematics. A meta-analysis [5] examined the effectiveness

of AI tools in improving mathematics performance among K-

12 students. The findings showed that AI-based interventions

generally outperform traditional instruction, particularly in

supporting individualized learning and adaptive feedback.

However, the study also noted that success depends on

contextual factors such as teacher guidance and curriculum

integration.

3) Broader perspectives on AI in mathematics education.

A systematic review [7] categorized existing research into

themes such as advantages, disadvantages, conceptual

understanding, strategies, and effectiveness. The analysis

concluded that AI tools can significantly improve engagement

and problem-solving skills, but highlighted the need for

careful pedagogical design to avoid over-reliance on

automated solutions.

4) Recent work [2] with the tree search algorithm in the

AlphaGo game program evaluates positions and chooses

moves using deep neural networks. These neural networks are

trained by supervised learning from human expert moves and

by reinforcement learning from self-play. An algorithm based

solely on reinforcement learning requires no data, guidance, or

human expertise other than the rules of the game. AlphaGo

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

123 | P a g e
www.ijacsa.thesai.org

becomes its own teacher from a neural network trained to

predict AlphaGo's move choices and also the winner of

AlphaGo's games, improving the power of the tree search

algorithm, leading to higher quality move choices and stronger

self-playing ability in the next iteration.

5) Recent work [4] with Artificial Intelligence (AI) shows

increasing potential in improving mathematics teaching. This

system review and meta-analysis study the effectiveness of AI

in improving mathematics learning outcomes in K-12

classrooms compared to traditional teaching methods.

Following the guidelines of Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA), it

establishes an initial knowledge base for future deployments

and research on the effective integration of AI into K-12

mathematics classrooms.

6) Recent work [7] with the development of technologies

such as artificial intelligence (AI) offers opportunities to help

teachers and students solve and improve teaching and learning

effectiveness. A systematic review of materials (SLR) was

conducted using established and reliable guidelines. Following

the priority reporting items for systematic reviews and meta-

analyses (PRISMA) searched on ScienceDirect, Scopus,

SpringerLink, ProQuest, and EBSCO Host 20 studies on AI

published from 2017 to 2021. The results of the SLR showed

that the AI method used in mathematics education for the

study samples was through robots, systems, tools, teachable

agents, automated agents, and a holistic approach.

The analysis concluded that AI tools can significantly
improve engagement and problem-solving skills, but
highlighted the need for careful pedagogical design to avoid
over-reliance on automated solutions.

AI needs experience and data so that its intelligence can run
smoothly. Humans do not always order the process of learning
AI, but AI will learn by itself based on the experience of AI
when used by humans. There are several advantages in the use
of AI in mathematics learning, among which is that students
become more critical and responsible in facing daily solutions
and have a better understanding of fundamental problems of
geometry, mathematics, and statistics. In addition, students also
learn about and improve interpersonal abilities and better social
interaction; it also allows effective learning to create a better
environment to enhance the acquisition of mathematical
concepts. Compared to other aspects, it is still observed but
not as widespread as the observation on effectiveness. It is
crucial to know the extent of the effectiveness of AI in
education.

Methodological approach of this study. Based on these
prior studies, our methodology combines:

Platform analysis: This study summarizes the features of
three representative AI math platforms (MathGPT.org, Math-
GPT.ai, StudyX.ai), focusing on their problem-solving
capabilities, user interaction models, and educational
applications.

Model design: The study proposes ten Python-based
problem-solving models tailored to different categories of

mathematical challenges, ranging from algebraic puzzles to
Olympiad-style geometry and number theory problems. Each
model integrates rule-based inference, brute-force search, or
heuristic learning strategies.

Evaluation framework: Inspired by the AIMO Progress
Prize competition on Kaggle [1], the models are benchmarked
against Olympiad-level problems to assess reasoning depth,
correctness, and computational efficiency.

By combining insights from prior research with practical
implementations, this study aims to demonstrate how AI can
serve both as a computational problem solver and as an
educational tool that supports personalized STEM learning.

III. RESULTS AND EVALUATION

A. Summary of Information About Three Mathematical AI

Platforms

To solve problems using AI models, there are dedicated AI
solvers that handle everything from algebra, geometry, to
calculus with step-by-step reasoning, image/PDF input and
concept explanations. Apply AI to support math and STEM
learning. STEM stands for Science, Technology, Engineering,
and Mathematics, an integrated approach to education and
research that aims to develop critical thinking, creativity and
problem-solving skills. In particular, Mathematics is both the
foundation for other fields and is strongly supported by
artificial intelligence (Math AI). Math AI can help solve
equations, draw graphs, visualize data, prove theorems, and
personalize math learning for students by providing exercises
appropriate to their abilities. Conversely, Mathematics itself is
also the foundation for developing AI through fields such as
probability, statistics, linear algebra and calculus. When
combining STEM with Math AI, AI can be applied in
education to create exercises and simulate experiments, in
research to analyze scientific data and optimize engineering
designs, as well as in life to predict weather, financial analysis,
medicine, and many other technical fields. Fig. 1 presents
MathGPT.

Fig. 1. MathGPT - Your Personal Math Solver. MathGPT analyzes the

problem, selects the appropriate method, and presents a step-by-step solution

with short annotations.

MathGPT.org was founded in 2024 by two Cornell
Engineering students, Nour Gajial and Yanni Kouloumbis [3]
[8]. Starting as a startup project in school, the platform quickly
went viral, thanks to a TikTok video and now has more than 10

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

124 | P a g e
www.ijacsa.thesai.org

million global users. MathGPT.org focuses on solving math
problems using artificial intelligence with detailed step-by-step
solutions, intuitive video illustrations, and the PocketMath AI
mobile application, becoming a personal “AI tutor” for
students and students at many levels.

Fig. 2. CPU register operations presented in English and Vietnamese. Export

video lectures from math questions using ChatGPT. Showing how technical

content (e.g., register operations, machine instructions) is converted into

multilingual teaching materials and how the system automatically generates

video lectures from scripts generated by ChatGPT.

Math-GPT.ai (see Fig. 2 and Fig. 3) was officially launched
in 2025 under the Math AI brand, operating as an independent
EdTech platform with no clear parent company [11] [12]. This
platform stands out for its ability to solve math problems from
basic to advanced, supports taking pictures of math problems
to provide detailed solutions, and integrates advanced
calculator tools for differential and integral operations. Math-
GPT.ai aims to be an intuitive math assistant, making it easy
for students to access math knowledge anytime.

Fig. 3. Calculation to solve the problem using AIMO3_Reference_Problem

7.pdf. The illustration shows each logical step, important transformations,

and key points to help the reader understand the method, not just the result.

StudyX.ai (see Fig. 4) is a private EdTech company
founded in 2020 in Dover, Delaware (USA) by Michael W.
Aiming [6], to provide AI learning services. StudyX not only
focuses on mathematics but also expands to academic research
and writing. Its main products include AI Homework Helper,
live chat with AI, step-by-step detailed solutions, and a
collaborative learning environment. As a result, StudyX
becomes a comprehensive learning platform, competing with
applications such as Photomath and Wolfram Alpha. It shows
how AI is used to personalize learning paths, suggest

appropriate exercises, and provide additional explanations
when students encounter difficulties, highlighting the benefits
of expanding teaching resources and improving learning
effectiveness.

Fig. 4. Another online course on Math that we use is a website that uses AI

tools. Lesson pages, interactive exercises, automated feedback, and learning

progress analysis.

B. Propose 10 Problem-Solving Models According to the

Problem to be Solved in Artificial Intelligence

1) Problem 1: The Python model for Problem 1 (Fig. 5) is

designed with two complementary mechanisms, a rule solver

and a brute-force function. The rule solver extracts the candy

number r from the text (defaults to 5 if not found), and then

applies the text-based formula:

xA = 2r

xB = r

yA = 2r

yB = r → Product of ages = 2 * r^2

This allows the model to quickly infer the result. In
parallel, the brute-force function searches within a reasonable
range (age ≤ 120, candy ≤ 200) to check the four constraint
equations:

xA + yA = 2 * (xB + yB)

xA * yA = 4 * (xB * yB)

xA + (yA - 5) = xB + (yB + 5)

xA * (yA - 5) = xB * (yB + 5)

Thereby finding the only solution (10, 5, 10, 5) with the
product of age equal to 50. In addition, the model also supports
generating sample or random datasets, checking each data line,
printing bilingual Vietnamese-English results and creating
statistical reports. Thanks to that, the system is both capable of
making quick inferences using formulas and validating
experiments using data, ensuring the correctness and
transparency of the solution.

The key code of the brute-force algorithm:

def solve_problem1(max_age=120, max_candy=200):

 solutions = []

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

125 | P a g e
www.ijacsa.thesai.org

 # Loop over possible ages of Alice (xA) and Bob (xB)

 for xA in range(1, max_age + 1):

 for xB in range(1, max_age + 1):

 # yA must be >= 6 so that (yA - 5) is still positive

 for yA in range(6, max_candy + 1):

 for yB in range(1, max_candy + 1):

 # Alice's conditions: sum doubles, product

quadruples

 if (xA + yA) == 2 * (xB + yB) and (xA * yA) ==

4 * (xB * yB):

 # Bob's conditions after Alice gives 5 candies:

 # sums and products must be equal

 if (xA + (yA - 5)) == (xB + (yB + 5)) and (xA

* (yA - 5)) == (xB * (yB + 5)):

 solutions.append((xA, xB, yA, yB))

 # Return the first solution and the product of ages

 if solutions:

 xA, xB, yA, yB = solutions[0]

 return solutions, xA * xB

 return [], None

Fig. 5. Code Problem 1. Examples of input/output and a simple algorithm

flowchart, helping learners quickly grasp the requirements and approach .

2) Problem 2: This Python model is designed to solve

Problem 2 in AIMO (Fig. 6). It works on the principle of rule-

based inference. From the text description of the problem, the

model will recognize the size of the square 𝑛 (default 𝑛 = 500)

and calculate the maximum number of 𝐾 rectangles with

different perimeters that can be divided into the square. The

algorithm is based on the piecewise function to determine the

smallest area corresponding to the semi-perimeter 𝑠=𝑥+𝑦:

Nếu 1 <= s <= n → f(s) = s - 1

Nếu s >= n+1 → f(s) = n * (s - n)

The program then adds up the values of f(s) until the sum
exceeds the area of the square n^2. The largest value of m that
satisfies this condition is K_max(n). Finally, the model returns
the result K mod 10^5.

@staticmethod

def _f_n(s: int, n: int) -> int:

 # Piecewise function for minimal area

 # If s <= n: f(s) = s - 1

 # If s > n : f(s) = n * (s - n)

 return (s - 1) if s <= n else n * (s - n)

@staticmethod

def _compute_K_upper(n: int) -> int:

 # Find largest m such that Σ f(s) <= n^2

 f_series = [Model._f_n(s, n) for s in range(2, 2 * n +

1)]

 prefix = [0]

 for v in f_series:

 prefix.append(prefix[-1] + v)

 area = n * n

 max_m = 0

 for m_try in range(1, 2 * n):

 if prefix[m_try] <= area:

 max_m = m_try

 else:

 break

 return max_m

_f_n(s, n) defines the piecewise function for the minimal
rectangle area given semi-perimeter s.

Fig. 6. Code Problem 2. A description of the suggested algorithm (e.g.,

traversal, basic sorting) and typical test cases with captions emphasizing the

development of algorithmic thinking and testing skills.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

126 | P a g e
www.ijacsa.thesai.org

_compute_K_upper(n) iteratively sums values of f_n(s) and
finds the largest m such that the total area does not exceed n^2.

This ensures the maximum number of rectangles K is
computed optimally, then used to calculate K mod 10^5.

3) Problem 3: This Python model is designed to solve a

geometry-based Olympiad problem by systematically

searching for the unique acute-angled triangle with integer

side lengths that satisfies a special construction (Fig. 7). The

triangle has sides a=BC, b=CA, and c=AB, with the condition

c<b. The algorithm checks all possible integer triangles within

a given bound, verifies the triangle inequality a+b>c, a+c>b,

b+c>a, and ensures the triangle is acute by testing max(a,b,c)2

< sum of squares of the other two sides. For each candidate

triangle, it constructs points DD and EE such that

AD=AE=AB=c, finds intersection points, and checks whether

the geometric condition (point Y lying on line AD) is

satisfied. Among all valid triangles, the one with the minimal

perimeter is chosen, and the final output is the product abc

modulo 10^5.

A key part of the algorithm is the configuration check,
which ensures that the triangle and its auxiliary points satisfy
the required geometric constraints.

def satisfies_configuration(self, a, b, c):

Check triangle inequality, acute condition, and AB <

AC

if not (self.is_triangle(a, b, c) and self.is_acute(a, b, c)

and c < b):

return False

Place points A, B, C on the plane

A, B, C = self.place_points(a, b, c)

Find point E on AC such that AE = c

E = self.point_E_on_AC_with_AE_equals_c(A, C, c)

if E is None:

return False

 # Find possible points D on BC such that AD = c

 Ds = self.points_D_on_BC_with_AD_equals_c(A, B,

C, c)

 if not Ds:

 return False

 for D in Ds:

 try:

 # Intersection X of AB and DE

 X = self.line_intersection(A, B, D, E)

 except ValueError:

 continue

 try:

 # Circles through (B, X, D) and (C, E, D)

 center1, r1 = self.circle_from_3pts(B, X, D)

 center2, r2 = self.circle_from_3pts(C, E, D)

 except ValueError:

 continue

 # Find intersection points of the two circles

 pts = self.circle_intersections(center1, r1, center2, r2)

 if not pts:

 continue

 # Choose point Y different from D

 Y = next((P for P in pts if self.dist(P, D) > 1e-6), None)

 if Y is None:

 continue

 # Check if Y lies on line AD

 if self.collinear(A, D, Y, eps=1e-7):

 return True

 return False

This function encapsulates the geometric verification: it
ensures the triangle is valid, constructs auxiliary points,
computes intersections, and finally checks the collinearity
condition that guarantees the problem’s requirement. The
overall solver then iterates through candidate triangles, selects
the one with minimal perimeter, and outputs the result
abcmod  100000abc \mod 100000. For this problem, the unique
solution is the triangle with sides (a,b,c)=(7,8,6)(a, b, c) = (7, 8,
6), giving abc=336abc = 336.

Fig. 7. Code Problem 3. The presentation of data representation, the main

operation, and examples illustrating the state before/after the operation aims to

help learners visually understand how data structures work.

4) Problem 4: The Python model for solving Problem 4 is

designed to compute the number of distinct values of f(2024)

under the functional equation constraint f(m) + f(n) =

f(m+n+mn) with the bound f(n) ≤ 1000 for all n ≤ 1000 (see

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

127 | P a g e
www.ijacsa.thesai.org

Fig. 8). By defining F(k) = f(k-1), the equation transforms into

F(xy) = F(x) + F(y), meaning that F is a completely additive

function. This property implies that F is fully determined by

its values on prime numbers, with rules such as F(p^a) =

a·F(p) and F(product of primes) = sum of exponents ×

F(prime). Since 2025 = 3^4 · 5^2, it follows that f(2024) =

F(2025) = 4·F(3) + 2·F(5). The algorithm systematically

enumerates feasible integer pairs (x, y) where x = F(3) and y =

F(5), checks linear inequality constraints derived from the

bound F(m) ≤ 1000, and collects all possible values of 4x +

2y. The final result is that there are 580 distinct possible

values of f(2024). The model includes robust detection of the

problem text, optimized constraint enumeration, optional CSV

export of values, and a smoke test to assert correctness.

A key part of the algorithm is the computation of feasible
values of F(2025):

@lru_cache(maxsize=1)

def compute_answer_problem4(self) -> int:

 # Build constraints from prime factorization limits

 constraints = self._enumerate_constraints()

 max_x, max_y = self._crude_bounds()

 values_F2025 = set()

 # Iterate over all possible (x, y) pairs within crude

bounds

 for x in range(1, max_x + 1):

 for y in range(1, max_y + 1):

 # Check all linear inequality constraints

 for a, b, L in constraints:

 if a * x + b * y > L:

 break

 else:

 # If all constraints satisfied, add value 4x + 2y

 values_F2025.add(4 * x + 2 * y)

 # Return the number of distinct values (expected 580)

return len(values_F2025)

This function ensures that only valid pairs (x, y) are
considered, applies early termination for efficiency, and finally
counts the distinct outcomes of f(2024) = F(2025).

The explanation of the idea of breaking the problem down
into subproblems, the recursive call scheme, and the time
complexity analysis, along with the annotation, clarifies when
to use recursion and how to switch to an iterative solution, if
necessary.

Fig. 8. Code Problem 4: This is a recursive or divide-and-conquer problem.

5) Problem 5: This Python model is designed to solve

Problem 5 from the AI Mathematical Olympiad competition

(Fig. 9). The task is to compute the largest integer k such that

10^k divides the number of possible final score orderings in a

tournament with 2^n runners, and then return k mod  100000.

The algorithm leverages combinatorial mathematics,

specifically Catalan numbers, to count the possible outcomes.

The structure is as follows:

Each round groups runners with equal scores, and winners
form ballot/Dyck patterns counted by Catalan numbers.

The total number of orderings is expressed as a product:

N = ∏_{t=1}^{n-1} (C_{2^(n-t)})^(2^(t-1))

The 10-adic valuation is computed as k = min(v2(N),

v5(N)), where:

• v2(N) counts powers of 2 dividing N, with the formula

v2(N) = 2^(n-1) - 1.

• v5(N) counts powers of 5 dividing N, using

Legendre’s digit-sum formula: v5(binomial(2a,
a)) = (2*s5(a) - s5(2a)) / 4, and then

subtracting v5(a+1).

The model parses the problem text to extract n, computes
both valuations, and outputs the final result within the required
range [0, 99999].

A key part of the implementation is shown below:

def v5_catalan_pow2(r: int) -> int:

 # Compute v5(Catalan(2^r))

 # Formula: v5(Catalan(2 r̂)) = v5(binomial(2a,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

128 | P a g e
www.ijacsa.thesai.org

a)) - v5(a+1), with a = 2^r

 a = 1 << r # a = 2^r

 # Use digit-sum formula in base 5

 v5_binom = (2 * s_base(a, 5) - s_base(2 * a, 5)) //

4

 t = a + 1

 v5_a1 = 0

 # Count multiplicity of factor 5 in (a+1)

 while t % 5 == 0:

 v5_a1 += 1

 t //= 5

 return v5_binom - v5_a1

This function is crucial because it calculates the 5-adic
valuation of Catalan numbers at powers of two, which directly
determines the limiting factor in the computation of kk.
Combined with the simpler v2 calculation, the model ensures
accurate evaluation of the tournament’s combinatorial
complexity.

When executed for n = 20, the program outputs:

v2(N) = 524287

v5(N) = 121818

k mod 100000 = 21818

Thus, the final answer to the problem is 21818.

Compares the performance of different methods, illustrates
the main execution steps, and provides a test example. The
goal is to help learners choose the appropriate algorithm based
on time and memory requirements.

Fig. 9. Code Problem 5 relates to advanced search or sorting algorithms (e.g.,

binary search, quick sort).

6) Problem 6: This Python model is designed to

automatically solve Problem 6 from the AIMO3 Reference set

(Fig. 10). It works by detecting the problem statement text,

identifying the modulus (usually written as 5^7 or 78125), and

then applying number theory reasoning to compute the

answer. The algorithm uses Hermite’s identity and a double-

counting reduction to simplify the function definition, and

then applies the Lifting the Exponent Lemma (LTE) to

calculate the 2-adic valuation.

Mathematically, the problem asks to compute:

• Define f(n) as a double sum involving powers and floor
functions.

• Let M = 2 * 3 * 5 * 7 * 11 * 13.

• Define N = f(M^15) - f(M^15 - 1).

• Find the largest integer k such that 2^k divides N.

• Finally, compute the remainder of 2^k modulo 5^7.

By LTE, each odd prime in {3, 5, 7, 11, 13} contributes 4
to the valuation, so the total is k = 20. The final result is:

2^20 mod 5^7 = 32951

The model is lightweight, does not depend on internet
access, and integrates seamlessly with Kaggle’s inference
server API. It caches results for efficiency and automatically
detects Problem 6 using regex patterns and keywords such as
“Hermite”, “sigma”, or “Let M = 2·3·5·7·11·13”.

class LightweightAIMOModel:

 def __init__(self):

 # Simple cache to avoid recomputation

 self._cache = {}

 @staticmethod

 def _compute_problem6_answer(problem_text: str) -

> int:

 # 1) Detect modulus (default 5^7 = 78125)

 mod = 5 ** 7

 # 2) Compute k using LTE:

 # For each odd prime in {3, 5, 7, 11, 13},

contribution = 4

 # Total k = 5 * 4 = 20

 k = 20

 # 3) Compute 2^k modulo the detected modulus

 answer = pow(2, k, mod)

 return answer

 def predict(self, problem: str) -> int:

 # Return cached answer if available

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

129 | P a g e
www.ijacsa.thesai.org

 if problem in self._cache:

 return self._cache[problem]

-

 # Detect if the text corresponds to Problem 6

 is_problem6 = ("Problem 6" in problem or

"Hermite" in problem or "5^7" in problem)

 if is_problem6:

 ans =

self._compute_problem6_answer(problem)

 else:

 # Fallback for other problems

 ans = 0

 # Ensure answer is within Kaggle’s required

range [0, 99999]

 ans = int(ans) % 100000

 self._cache[problem] = ans

 return ans

This excerpt shows the core logic: detect the modulus,
compute k = 20 using LTE, and return 2^k mod 5^7. It is
robust, efficient, and tailored specifically for Problem 6.

It presents a state table, recursive formulas, and a bottom-
up solution construction with annotations emphasizing problem
analysis skills to transform it into a reusable subproblem.

Fig. 10. Code Problem 6 focuses on basic optimization or dynamic

programming.

7) Problem 7: This Python model for solving the

Olympiad-style Problem 7 is designed with a flexible

architecture that supports three modes of operation: heuristic

rule-based predictions, scikit-learn models loaded from .pkl or

.joblib files, and PyTorch models loaded from .pt files (see

Fig. 11). The system uses lazy loading, meaning the model is

only initialized when the first prediction request is made. If no

trained model is found, the algorithm falls back to a heuristic

baseline. The heuristic works by scanning the problem text for

the first positive integer; if found, that integer is used as the

answer. Otherwise, the text is softly hashed to produce a

reproducible integer in the range [0, 99999]. This ensures that

every problem input always yields a valid integer output.

Mathematical illustration of the heuristic logic:

• If the text contains a number n, then answer =
min(max(n, 0), 99999)

• Else, answer = abs(hash(text)) % 100000

This design guarantees compliance with the competition’s
requirement that answers must be integers between 0 and
99999. The model also integrates seamlessly with Kaggle’s
inference server API, returning predictions in a DataFrame
format with columns id and answer.

A key excerpt of the algorithm is shown below:

def _heuristic_predict(self, problem_text: str) -> int:

 # Ensure the input is a string

 if not isinstance(problem_text, str):

 problem_text = str(problem_text)

 # Try to find the first integer in the text

 m = re.search(r"\b(\d{1,6})\b", problem_text)

 if m:

 val = int(m.group(1))

 # Clip the value to the valid range [0, 99999]

 return int(np.clip(val, 0, 99999))

 # If no integer is found, compute a soft hash of the

text

 h = abs(hash(problem_text)) % 100000

 return int(h)

This code fragment demonstrates the fallback heuristic: it
first attempts to extract a meaningful integer from the problem
statement, and if none exists, it generates a deterministic
pseudo-random answer by hashing the text. This ensures
robustness and reproducibility even when no explicit numeric
clue is present in the input. Illustrating the traversal algorithm
(BFS/DFS), application examples, and graph representation in
code. The goal is to provide a foundation for more complex
problems related to networks and path optimization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

130 | P a g e
www.ijacsa.thesai.org

Fig. 11. Code Problem 7 with content on basic graphs (vertices, edges, graph

traversal).

8) Problem 8: It summarizes the functionality of the

Python model for solving Problem 8 (Ken’s Digit-Sum

Moves), as in Fig. 12. The Python model for Problem 8

implements a solver for Ken’s Digit-Sum Moves, where the

process starts with an integer n (1 ≤ n ≤ 10^105). At each step,

given a current number m, one chooses a base b (2 ≤ b ≤ m),

writes m in base b as digits a_k, and replaces m with the sum

of those digits. The sequence continues until reaching 1. The

challenge is to determine the maximum number of moves M

across all valid n, and then compute M modulo 10^5. In

formula form: m = Σ (a_k * b^k), and the move replaces m by

Σ a_k. The model uses a greedy strategy: for small m it

searches all bases to maximize the digit sum, while for large m

it applies a heuristic with base b = 2 (binary representation),

since the digit sum equals the number of ones in the binary

expansion (popcount), which tends to be near-maximal. This

approach allows efficient simulation even for very large n.

The final computed answer is M mod 100000 = 32193.

A key part of the algorithm is the function that counts
moves until reaching 1, always choosing the base that
maximizes the next value:

def count_moves_until_one(n: int, max_exact: int = 1000)

-> int:

 # Start from initial number n

 m = n

 moves = 0

 while m != 1:

 # For small m, search all bases exactly

 # For large m, use base 2 heuristic (popcount)

 nxt = next_value_maximizing_sum(m) if m <=

max_exact else digit_sum_in_base(m, 2)

 moves += 1

 m = nxt

 # Safety net to avoid infinite loops in exploration

 if moves > 10**6:

 break

 return moves

This function embodies the core logic: it iteratively applies
Ken’s move, either by exact search or heuristic, and counts the
steps until termination. Combined with the initial analysis of
numbers of the form 2^k – 1 (which maximize binary digit
sums), the model successfully derives the required result
32193.

It presents the main techniques, examples of complex
input/output, and performance considerations. Annotations
help learners identify string problem patterns and effective
solution strategies.

Fig. 12. Code problem 8 is related to advanced string manipulation (e.g.,

pattern finding, parsing).

9) Problem 9: The Python model for solving Problem 9

(Shifty Functions) is designed to automatically recognize

when the input corresponds to this specific problem and then

compute the correct answer using cyclotomic polynomial

reasoning (see Fig. 13). The mathematical idea is to count all

polynomials P(x) of degree ≤ 8 that divide expressions of the

form x^a(x^b+1). The algorithm uses Euler’s totient function

phi(n) to determine the degree of cyclotomic polynomials, and

the function v2(n) to classify integers by the largest power of

2 dividing them. The candidate set D={n:phi(n)≤8} is built,

grouped by v2(n), and then all valid subsets are enumerated.

For each subset, the algorithm counts the possible choices of

mm such that the total degree remains ≤ 8. Finally, the result

is doubled to account for both positive and negative leading

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

131 | P a g e
www.ijacsa.thesai.org

coefficients, yielding the expected answer of 160 shifty

functions.

Below is a key excerpt of the algorithm:

from itertools import combinations

Euler's totient function phi(n)

def euler_phi(n: int) -> int:

 """Compute Euler's totient phi(n)."""

 if n <= 0:

 return 0

 result, x, p = n, n, 2

 while p * p <= x:

 if x % p == 0:

 while x % p == 0:

 x //= p

 result -= result // p # reduce result by prime

factor

 p += 1

 if x > 1:

 result -= result // x

 return result

v2(n): largest exponent e such that 2^e divides n

def v2(n: int) -> int:

 e = 0

 while n % 2 == 0 and n > 0:

 n //= 2

 e += 1

 return e

Count polynomials for non-empty subsets S

def count_case(S_list):

 total = 0

 for r in range(1, len(S_list) + 1):

 for subset in combinations(S_list, r):

 sdeg = sum(deg_phi[d] for d in subset)

 if sdeg <= 8:

 total += (9 - sdeg) # number of choices for m

 return total

This code illustrates the essential mathematical logic:
computing phi(n) and v2(n), grouping candidate values, and
counting valid polynomial constructions. Together, these

functions enable the model to reproduce the official solution
and consistently output the correct answer of 160.

Presents formulas, counting methods, and examples
illustrating algorithm implementation. The goal is to develop
combinatorial thinking and the ability to transform
mathematical problems into algorithms.

Fig. 13. Code Problem 9 focuses on discrete or combinatorial mathematics

(e.g., counting, combinatorial generation).

10) Problem 10: This Python model is designed to solve

Problem 10 from the AIM03 Reference Problems (see

Fig. 14). The model implements a mathematical algorithm that

computes the expression:

g(0) + g(4M) + g(1848374) + g(10162574) +

g(265710644) + g(44636594)

where M = 3^(2025!), and the function g(c) is defined as:

g(c) = (1 / 2025!) * floor((2025! * f(M + c)) / M)

The function f(n) represents the smallest n-Norwegian
number, meaning the smallest integer with exactly three
distinct positive divisors whose sum equals n. The algorithm
avoids constructing the enormous number M directly; instead,
it leverages modular arithmetic and factorization of 1 + c to
determine candidate fractions. Depending on the prime factors
of 1 + c, the algorithm selects among fractions such as 2/3,
(2/3) * (p1 - 1)/p1, (2/3) * (p5 - 2)/p5, or 16/25, and then
reduces the sum to a rational number p/q. Finally, the model
computes (p + q) mod 99991 to obtain the answer.

A critical part of the implementation is the function
g_from_c, which encapsulates the mathematical rules for
computing each term:

from fractions import Fraction

def g_from_c(c: int, special: str = None) -> Fraction:

 # Special cases: g(0) and g(4M)

 if special == 'g0':

 return Fraction(2, 3) # g(0) = 2/3

 if special == 'g4M':

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

132 | P a g e
www.ijacsa.thesai.org

 return Fraction(10, 3) # g(4M) = 10/3

 # General case: factorize (1 + c)

 m = 1 + c

 fac = factorize(m)

 candidates = []

 # Candidate 16/25 if 25 divides (1 + c)

 if fac.get(5, 0) >= 2:

 candidates.append(Fraction(16, 25))

 # Candidate from smallest prime p1 ≡ 1 (mod 6)

 p1 = smallest_prime_mod_class(fac, 1)

 if p1:

 candidates.append(Fraction(2, 3) * Fraction(p1 -

1, p1))

 # Candidate from smallest prime p5 ≡ 5 (mod 6)

 p5 = smallest_prime_mod_class(fac, 5)

 if p5:

 candidates.append(Fraction(2, 3) * Fraction(p5 -

2, p5))

 # Return the minimum fraction among candidates

 return min(candidates)

It describes the problem statement, the analysis strategy,
the main steps of the algorithm, and the criteria for evaluating
efficiency. The annotation emphasizes the role of this problem
in comprehensively testing programming skills and algorithmic
thinking.

Fig. 14. Code Problem 10: This is a comprehensive or challenging problem,

combining several previously discussed concepts (data structures, graphs,

optimization).

IV. DISCUSSION

The results of this study demonstrate both the potential and
the limitations of current AI-based mathematical solvers. On
the one hand, platforms such as MathGPT.org, Math-GPT.ai,

and StudyX.ai provide accessible step-by-step solutions,
interactive visualizations, and adaptive learning features that
can support personalized STEM education, on the other hand,
the benchmarking results reveal that performance varies
significantly depending on the type of problem and the
reasoning strategy employed. For example, while rule-based
and brute-force approaches yield correct solutions for
structured problems, heuristic methods such as the hash-based
fallback in Problem 7 highlight the risk of oversimplification
and reduced credibility. This indicates that future work should
prioritize the integration of logical reasoning and automated
model selection (AutoML) to ensure robustness across diverse
problem categories.

Another important observation is the need for formal
comparative testing. Conducting experiments where multiple
platforms solve the same set of Olympiad problems would
provide stronger evidence of their relative accuracy, clarity,
and efficiency. Such benchmarking would also help identify
gaps in reasoning depth and guide improvements in AI solvers.
Furthermore, the study underscores the importance of careful
pedagogical design: while AI tools can enhance engagement
and individualized learning, over-reliance on automated
solutions may hinder the development of critical thinking
skills.

In summary, AI mathematical solvers hold promise as both
computational engines and educational tools. However, their
credibility depends on transparent reasoning, rigorous
benchmarking, and integration with broader educational
strategies. Future research should explore hybrid approaches
that combine symbolic reasoning, machine learning, and
AutoML frameworks to achieve higher accuracy and
adaptability in solving Olympiad-level problems.

V. CONCLUSION

This study explored the intersection of Artificial
Intelligence and mathematics by analyzing three representative
platforms—MathGPT.org, Math-GPT.ai, and StudyX.ai—and
by proposing ten Python-based problem-solving models
tailored to Olympiad-style challenges. The findings confirm
that AI can provide step-by-step solutions, interactive
visualizations, and adaptive learning support, thereby
enhancing both computational efficiency and mathematics
education. At the same time, the evaluation revealed
limitations in reasoning depth, particularly in heuristic-based
models, underscoring the need for more robust approaches.

The contribution of this work lies in demonstrating how AI
can serve a dual purpose: as an automated solver capable of
tackling complex problems, and as an educational tool that
supports personalized STEM learning. Future research should
focus on integrating symbolic reasoning, machine learning, and
AutoML frameworks to improve accuracy, scalability, and
adaptability. Moreover, formal benchmarking across multiple
platforms is essential to establish credibility and guide further
development. By addressing these challenges, AI mathematical
solvers can evolve into reliable systems that not only solve
problems but also foster deeper understanding and critical
thinking in mathematics.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

133 | P a g e
www.ijacsa.thesai.org

ACKNOWLEDGMENT

I would like to thank my colleagues at Tay Do University
for their great encouragement during my studies and research
on AI. I would like to thank my excellent teachers who have
set an example in scientific research and are currently flying to
Hanoi to report on their research topics, and my friends who
are doing scientific research for their doctoral thesis in IT.

REFERENCES

[1] Competition, A. |. (2025, 6). AI Mathematical Olympiad - Progress Prize

3. Retrieved from Kaggle is an online platform for data science and

machine learning, now owned by Google.:

https://www.kaggle.com/competitions/ai-mathematical-olympiad-

progress-prize-3

[2] David Silver, J. S. (2017, 10 19). Mastering the game of Go without

human knowledge. Retrieved from 2026 Springer Nature Limited:

https://www.nature.com/articles/nature24270

[3] Gajial, N. &. (2024). MathGPT - Your Personal Math Solver. Retrieved

from MathGPT: https://math-gpt.org/?utm_source=copilot.com

[4] Linxuan Yi, D. L. (2024, 9 12). International Journal of Science and

Mathematics Education. Retrieved from Springer Nature Link:

https://link.springer.com/article/10.1007/s10763-024-10499-7

[5] Linxuan Yi, D. L. (2024, 9 12). The Effectiveness of AI on K-12

Students’ Mathematics Learning: A Systematic Review and Meta -

Analysis. Retrieved from © 2026 Springer Nature:

https://link.springer.com/article/10.1007/s10763-024-10499-

7?utm_source=copilot.com

[6] Michael W, E. M. (2020). What Is the Best AI to Solve Math for

Students? (Top 15 Tools Reviewed). Retrieved from StudyX (operating

under the brand StudyX.ai): https://studyx.ai/blog/best-ai-to-solve-math-

problems.

[7] Mohamed Zulhilmi bin Mohamed, R. H. (2022). Artificial intelligence

in mathematics education: A systematic literature review - International

Electronic Journal of Mathematics Education. Retrieved from ERIC

(Education Resources Information Center) - U.S. Department of

Education: https://files.eric.ed.gov/fulltext/EJ1357707.pdf

[8] Nour Gajial, Y. K. (2024). MathGPT - Your Personal Math Solver.

Retrieved from MathGPT is an educational technology platform built by

two Cornell Engineering students.: https://math-gpt.org/

[9] Polya, G. (2004). How to Solve It: A New Aspect of Mathematical

Method. Retrieved from Princeton University Press:

https://books.google.com.vn/books/about/How_to_Solve_It.html?hl=id

&id=z_hsbu9kyQQC&redir_esc=y

[10] Sebastian Schorcht, N. B. (2024, 5 09). Prompt the problem –

investigating the mathematics educational quality of AI -supported

problem solving by comparing prompt techniques. Retrieved from

Academic publish ing company Frontiers Media S.A. (Switzerland).:

https://www.frontiersin.org/journals/education/articles/10.3389/feduc.20

24.1386075/full

[11] Support@math-gpt.ai. (2025). Math AI Solver Online. Retrieved from

Math AI (Math-GPT.ai): https://math-gpt.ai/

[12] Yann LeCun, Y. B. (2015, 5 27). Deep learning. Retrieved from 2026

Springer Nature Limited: https://www.nature.com/articles/nature14539

