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Abstract—Artificial Intelligence (AI) has emerged as a 

transformative tool for solving mathematical challenges across 

diverse domains, ranging from algebra and geometry to calculus 

and number theory. This study investigates the role of AI in 

mathematics by analyzing three representative platforms—

MathGPT.org, Math-GPT.ai, and StudyX.ai—and by proposing 

ten Python-based problem-solving models tailored to Olympiad-

style problems. The methodology integrates rule-based 

reasoning, brute-force search, and heuristic strategies, while 

benchmarking is inspired by the AI Math Olympiad (AIMO) 

Progress Award competition on Kaggle. A comparative 

evaluation was conducted to assess accuracy, reasoning depth, 

and computational efficiency. Results show that AI solvers can 

provide step-by-step solutions, interactive visualizations, and 

adaptive learning support, but their performance varies 

depending on problem type and strategy. This study highlights 

both the potential and limitations of AI in mathematics education 

and research, emphasizing the need for automated model 

selection (AutoML) and formal benchmarking to strengthen 

credibility. The findings demonstrate that AI can simultaneously 

promote automated problem-solving and enhance personalized 

STEM learning. 
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I. INTRODUCTION 

Artificial Intelligence (AI) is reshaping mathematics by 
enabling automated reasoning, symbolic manipulation, and 
problem-solving at scales previously unattainable. 
Mathematics provides the theoretical foundation for AI through 
probability, statistics, linear algebra, and calculus, while AI in 
turn enhances mathematics education and research. Recent 
initiatives, such as the AI Math Olympiad (AIMO) Progress 
Award on Kaggle, highlight the ambition to build AI systems 
capable of solving Olympiad-level problems that require multi-
step logic and deep reasoning. In parallel, platforms such as 
MathGPT.org, Math-GPT.ai, and StudyX.ai have emerged, 
offering step-by-step solutions, interactive visualizations, and 
adaptive tutorials that make advanced mathematics more 
accessible. However, existing studies reveal both opportunities 
and challenges: while AI tools can improve engagement and 
individualized learning, their reasoning depth and accuracy 
remain inconsistent. This study contributes by: 1) summarizing 
the capabilities of three representative AI mathematical 
platforms, 2) proposing ten Python-based models for diverse 
problem categories, and 3) benchmarking their performance 
against Olympiad-style problems. By integrating insights from 
prior research and referencing recent work on Automated 

Machine Learning (AutoML) for model selection, this study 
positions AI as both a computational solver and an educational 
tool, supporting the next generation of STEM learners and 
researchers. 

II. MATERIALS AND METHODS 

This study builds upon recent advances in the application of 
Artificial Intelligence (AI) to mathematics education and 
problem solving. To design and evaluate AI-based 
mathematical solvers, the authors reviewed several related 
works that highlight the effectiveness, challenges, and 
opportunities of integrating AI into STEM learning 
environments. 

1) AI-supported problem solving in mathematics 

education. Recent work [9] [10] investigated the educational 

quality of AI-supported problem solving by comparing 

different prompt techniques in mathematics classrooms. The 

study emphasized that large language models (LLMs) such as 

GPT can enhance conceptual understanding when prompts are 

carefully designed, but also revealed limitations in accuracy 

and reasoning depth. 

2) Systematic review of AI effectiveness in K-12 

mathematics. A meta-analysis [5] examined the effectiveness 

of AI tools in improving mathematics performance among K-

12 students. The findings showed that AI-based interventions 

generally outperform traditional instruction, particularly in 

supporting individualized learning and adaptive feedback. 

However, the study also noted that success depends on 

contextual factors such as teacher guidance and curriculum 

integration. 

3) Broader perspectives on AI in mathematics education. 

A systematic review [7] categorized existing research into 

themes such as advantages, disadvantages, conceptual 

understanding, strategies, and effectiveness. The analysis 

concluded that AI tools can significantly improve engagement 

and problem-solving skills, but highlighted the need for 

careful pedagogical design to avoid over-reliance on 

automated solutions. 

4) Recent work [2] with the tree search algorithm in the 

AlphaGo game program evaluates positions and chooses 

moves using deep neural networks. These neural networks are 

trained by supervised learning from human expert moves and 

by reinforcement learning from self-play. An algorithm based 

solely on reinforcement learning requires no data, guidance, or 

human expertise other than the rules of the game. AlphaGo 
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becomes its own teacher from a neural network trained to 

predict AlphaGo's move choices and also the winner of 

AlphaGo's games, improving the power of the tree search 

algorithm, leading to higher quality move choices and stronger 

self-playing ability in the next iteration. 

5) Recent work [4] with Artificial Intelligence (AI) shows 

increasing potential in improving mathematics teaching. This 

system review and meta-analysis study the effectiveness of AI 

in improving mathematics learning outcomes in K-12 

classrooms compared to traditional teaching methods. 

Following the guidelines of Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA), it 

establishes an initial knowledge base for future deployments 

and research on the effective integration of AI into K-12 

mathematics classrooms. 

6) Recent work [7] with the development of technologies 

such as artificial intelligence (AI) offers opportunities to help 

teachers and students solve and improve teaching and learning 

effectiveness. A systematic review of materials (SLR) was 

conducted using established and reliable guidelines. Following 

the priority reporting items for systematic reviews and meta-

analyses (PRISMA) searched on ScienceDirect, Scopus, 

SpringerLink, ProQuest, and EBSCO Host 20 studies on AI 

published from 2017 to 2021. The results of the SLR showed 

that the AI method used in mathematics education for the 

study samples was through robots, systems, tools, teachable 

agents, automated agents, and a holistic approach. 

The analysis concluded that AI tools can significantly 
improve engagement and problem-solving skills, but 
highlighted the need for careful pedagogical design to avoid 
over-reliance on automated solutions. 

AI needs experience and data so that its intelligence can run 
smoothly. Humans do not always order the process of learning 
AI, but AI will learn by itself based on the experience of AI 
when used by humans. There are several advantages in the use 
of AI in mathematics learning, among which is that students 
become more critical and responsible in facing daily solutions 
and have a better understanding of fundamental problems of 
geometry, mathematics, and statistics. In addition, students also 
learn about and improve interpersonal abilities and better social 
interaction; it also allows effective learning to create a better 
environment to enhance the acquisition of mathematical 
concepts.  Compared to other aspects, it is still observed but 
not as widespread as the observation on effectiveness. It is 
crucial to know the extent of the effectiveness of AI in 
education. 

Methodological approach of this study. Based on these 
prior studies, our methodology combines: 

Platform analysis: This study summarizes the features of 
three representative AI math platforms (MathGPT.org, Math-
GPT.ai, StudyX.ai), focusing on their problem-solving 
capabilities, user interaction models, and educational 
applications. 

Model design: The study proposes ten Python-based 
problem-solving models tailored to different categories of 

mathematical challenges, ranging from algebraic puzzles to 
Olympiad-style geometry and number theory problems. Each 
model integrates rule-based inference, brute-force search, or 
heuristic learning strategies. 

Evaluation framework: Inspired by the AIMO Progress 
Prize competition on Kaggle [1], the models are benchmarked 
against Olympiad-level problems to assess reasoning depth, 
correctness, and computational efficiency. 

By combining insights from prior research with practical 
implementations, this study aims to demonstrate how AI can 
serve both as a computational problem solver and as an 
educational tool that supports personalized STEM learning. 

III. RESULTS AND EVALUATION 

A. Summary of Information About Three Mathematical AI 

Platforms 

To solve problems using AI models, there are dedicated AI 
solvers that handle everything from algebra, geometry, to 
calculus with step-by-step reasoning, image/PDF input and 
concept explanations. Apply AI to support math and STEM 
learning. STEM stands for Science, Technology, Engineering, 
and Mathematics, an integrated approach to education and 
research that aims to develop critical thinking, creativity and 
problem-solving skills. In particular, Mathematics is both the 
foundation for other fields and is strongly supported by 
artificial intelligence (Math AI). Math AI can help solve 
equations, draw graphs, visualize data, prove theorems, and 
personalize math learning for students by providing exercises 
appropriate to their abilities. Conversely, Mathematics itself is 
also the foundation for developing AI through fields such as 
probability, statistics, linear algebra and calculus. When 
combining STEM with Math AI, AI can be applied in 
education to create exercises and simulate experiments, in 
research to analyze scientific data and optimize engineering 
designs, as well as in life to predict weather, financial analysis, 
medicine, and many other technical fields. Fig. 1 presents 
MathGPT. 

 
Fig. 1. MathGPT - Your Personal Math Solver. MathGPT analyzes the 

problem, selects the appropriate method, and presents a step-by-step solution 

with short annotations. 

MathGPT.org was founded in 2024 by two Cornell 
Engineering students, Nour Gajial and Yanni Kouloumbis [3] 
[8]. Starting as a startup project in school, the platform quickly 
went viral, thanks to a TikTok video and now has more than 10 
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million global users. MathGPT.org focuses on solving math 
problems using artificial intelligence with detailed step-by-step 
solutions, intuitive video illustrations, and the PocketMath AI 
mobile application, becoming a personal “AI tutor” for 
students and students at many levels.  

 
Fig. 2. CPU register operations presented in English and Vietnamese. Export 

video lectures from math questions using ChatGPT. Showing how technical 

content (e.g., register operations, machine instructions) is converted into 

multilingual teaching materials and how the system automatically generates 

video lectures from scripts generated by ChatGPT. 

Math-GPT.ai (see Fig. 2 and Fig. 3) was officially launched 
in 2025 under the Math AI brand, operating as an independent 
EdTech platform with no clear parent company [11] [12]. This 
platform stands out for its ability to solve math problems from 
basic to advanced, supports taking pictures of math problems 
to provide detailed solutions, and integrates advanced 
calculator tools for differential and integral operations. Math-
GPT.ai aims to be an intuitive math assistant, making it easy 
for students to access math knowledge anytime. 

 
Fig. 3. Calculation to solve the problem using AIMO3_Reference_Problem 

7.pdf.  The illustration shows each logical step, important transformations, 

and key points to help the reader understand the method, not just the result. 

StudyX.ai (see Fig. 4) is a private EdTech company 
founded in 2020 in Dover, Delaware (USA) by Michael W. 
Aiming [6], to provide AI learning services. StudyX not only 
focuses on mathematics but also expands to academic research 
and writing. Its main products include AI Homework Helper, 
live chat with AI, step-by-step detailed solutions, and a 
collaborative learning environment. As a result, StudyX 
becomes a comprehensive learning platform, competing with 
applications such as Photomath and Wolfram Alpha. It shows 
how AI is used to personalize learning paths, suggest 

appropriate exercises, and provide additional explanations 
when students encounter difficulties, highlighting the benefits 
of expanding teaching resources and improving learning 
effectiveness. 

 
Fig. 4. Another online course on Math that we use is a website that uses AI 

tools.  Lesson pages, interactive exercises, automated feedback, and learning 

progress analysis. 

B. Propose 10 Problem-Solving Models According to the 

Problem to be Solved in Artificial Intelligence 

1) Problem 1: The Python model for Problem 1 (Fig. 5) is 

designed with two complementary mechanisms, a rule solver 

and a brute-force function. The rule solver extracts the candy 

number r from the text (defaults to 5 if not found), and then 

applies the text-based formula: 

xA = 2r 

xB = r 

yA = 2r 

yB = r → Product of ages = 2 * r^2 

This allows the model to quickly infer the result. In 
parallel, the brute-force function searches within a reasonable 
range (age ≤ 120, candy ≤ 200) to check the four constraint 
equations: 

xA + yA = 2 * (xB + yB) 

xA * yA = 4 * (xB * yB) 

xA + (yA - 5) = xB + (yB + 5) 

xA * (yA - 5) = xB * (yB + 5) 

Thereby finding the only solution (10, 5, 10, 5) with the 
product of age equal to 50. In addition, the model also supports 
generating sample or random datasets, checking each data line, 
printing bilingual Vietnamese-English results and creating 
statistical reports. Thanks to that, the system is both capable of 
making quick inferences using formulas and validating 
experiments using data, ensuring the correctness and 
transparency of the solution. 

The key code of the brute-force algorithm: 

def solve_problem1(max_age=120, max_candy=200): 

    solutions = [] 
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    # Loop over possible ages of Alice (xA) and Bob (xB) 

    for xA in range(1, max_age + 1): 

        for xB in range(1, max_age + 1): 

            # yA must be >= 6 so that (yA - 5) is still positive 

            for yA in range(6, max_candy + 1): 

                for yB in range(1, max_candy + 1): 

                    # Alice's conditions: sum doubles, product 

quadruples 

                    if (xA + yA) == 2 * (xB + yB) and (xA * yA) == 

4 * (xB * yB): 

                        # Bob's conditions after Alice gives 5 candies: 

                        # sums and products must be equal 

                        if (xA + (yA - 5)) == (xB + (yB + 5)) and (xA 

* (yA - 5)) == (xB * (yB + 5)): 

                            solutions.append((xA, xB, yA, yB)) 

    # Return the first solution and the product of ages 

    if solutions: 

        xA, xB, yA, yB = solutions[0] 

        return solutions, xA * xB 

    return [], None 

 

Fig. 5. Code Problem 1. Examples of input/output and a simple algorithm 

flowchart, helping learners quickly grasp the requirements and approach . 

2) Problem 2: This Python model is designed to solve 

Problem 2 in AIMO (Fig. 6). It works on the principle of rule-

based inference. From the text description of the problem, the 

model will recognize the size of the square 𝑛 (default 𝑛 = 500) 

and calculate the maximum number of 𝐾 rectangles with 

different perimeters that can be divided into the square. The 

algorithm is based on the piecewise function to determine the 

smallest area corresponding to the semi-perimeter 𝑠=𝑥+𝑦: 

Nếu 1 <= s <= n → f(s) = s - 1 

Nếu s >= n+1 → f(s) = n * (s - n) 

The program then adds up the values of f(s) until the sum 
exceeds the area of the square n^2. The largest value of m that 
satisfies this condition is K_max(n). Finally, the model returns 
the result K mod 10^5. 

@staticmethod 

def _f_n(s: int, n: int) -> int: 

    # Piecewise function for minimal area 

    # If s <= n: f(s) = s - 1 

    # If s > n : f(s) = n * (s - n) 

    return (s - 1) if s <= n else n * (s - n) 

@staticmethod 

def _compute_K_upper(n: int) -> int: 

    # Find largest m such that Σ f(s) <= n^2  

    f_series = [Model._f_n(s, n) for s in range(2, 2 * n + 

1)] 

    prefix = [0] 

    for v in f_series: 

        prefix.append(prefix[-1] + v) 

    area = n * n 

    max_m = 0 

    for m_try in range(1, 2 * n): 

        if prefix[m_try] <= area: 

            max_m = m_try 

        else: 

            break 

    return max_m 

_f_n(s, n) defines the piecewise function for the minimal 
rectangle area given semi-perimeter s. 

 

Fig. 6. Code Problem 2. A description of the suggested algorithm (e.g., 

traversal, basic sorting) and typical test cases with captions emphasizing the 

development of algorithmic thinking and testing skills. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

126 | P a g e  
www.ijacsa.thesai.org 

_compute_K_upper(n) iteratively sums values of f_n(s) and 
finds the largest m such that the total area does not exceed n^2. 

This ensures the maximum number of rectangles K is 
computed optimally, then used to calculate K mod 10^5. 

3) Problem 3: This Python model is designed to solve a 

geometry-based Olympiad problem by systematically 

searching for the unique acute-angled triangle with integer 

side lengths that satisfies a special construction (Fig. 7). The 

triangle has sides a=BC, b=CA, and c=AB, with the condition 

c<b. The algorithm checks all possible integer triangles within 

a given bound, verifies the triangle inequality a+b>c, a+c>b, 

b+c>a, and ensures the triangle is acute by testing max(a,b,c)2 

< sum of squares of the other two sides. For each candidate 

triangle, it constructs points DD and EE such that 

AD=AE=AB=c, finds intersection points, and checks whether 

the geometric condition (point Y lying on line AD) is 

satisfied. Among all valid triangles, the one with the minimal 

perimeter is chosen, and the final output is the product abc 

modulo 10^5. 

A key part of the algorithm is the configuration check, 
which ensures that the triangle and its auxiliary points satisfy 
the required geometric constraints. 

def satisfies_configuration(self, a, b, c): 

# Check triangle inequality, acute condition, and AB < 

AC 

if not (self.is_triangle(a, b, c) and self.is_acute(a, b, c) 

and c < b): 

return False 

# Place points A, B, C on the plane 

A, B, C = self.place_points(a, b, c) 

# Find point E on AC such that AE = c 

E = self.point_E_on_AC_with_AE_equals_c(A, C, c) 

if E is None: 

return False 

    # Find possible points D on BC such that AD = c 

    Ds = self.points_D_on_BC_with_AD_equals_c(A, B, 

C, c) 

    if not Ds: 

        return False 

    for D in Ds: 

        try: 

            # Intersection X of AB and DE 

            X = self.line_intersection(A, B, D, E) 

        except ValueError: 

            continue 

        try: 

            # Circles through (B, X, D) and (C, E, D) 

            center1, r1 = self.circle_from_3pts(B, X, D) 

            center2, r2 = self.circle_from_3pts(C, E, D) 

        except ValueError: 

            continue 

        # Find intersection points of the two circles 

        pts = self.circle_intersections(center1, r1, center2, r2) 

        if not pts: 

            continue 

        # Choose point Y different from D 

        Y = next((P for P in pts if self.dist(P, D) > 1e-6), None) 

        if Y is None: 

            continue 

        # Check if Y lies on line AD 

        if self.collinear(A, D, Y, eps=1e-7): 

            return True 

    return False 

This function encapsulates the geometric verification: it 
ensures the triangle is valid, constructs auxiliary points, 
computes intersections, and finally checks the collinearity 
condition that guarantees the problem’s requirement. The 
overall solver then iterates through candidate triangles, selects 
the one with minimal perimeter, and outputs the result 
abcmod  100000abc \mod 100000. For this problem, the unique 
solution is the triangle with sides (a,b,c)=(7,8,6)(a, b, c) = (7, 8, 
6), giving abc=336abc = 336. 

 
Fig. 7. Code Problem 3. The presentation of data representation, the main 

operation, and examples illustrating the state before/after the operation aims to 

help learners visually understand how data structures work. 

4) Problem 4: The Python model for solving Problem 4 is 

designed to compute the number of distinct values of f(2024) 

under the functional equation constraint f(m) + f(n) = 

f(m+n+mn) with the bound f(n) ≤ 1000 for all n ≤ 1000 (see 
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Fig. 8). By defining F(k) = f(k-1), the equation transforms into 

F(xy) = F(x) + F(y), meaning that F is a completely additive 

function. This property implies that F is fully determined by 

its values on prime numbers, with rules such as F(p^a) = 

a·F(p) and F(product of primes) = sum of exponents × 

F(prime). Since 2025 = 3^4 · 5^2, it follows that f(2024) = 

F(2025) = 4·F(3) + 2·F(5). The algorithm systematically 

enumerates feasible integer pairs (x, y) where x = F(3) and y = 

F(5), checks linear inequality constraints derived from the 

bound F(m) ≤ 1000, and collects all possible values of 4x + 

2y. The final result is that there are 580 distinct possible 

values of f(2024). The model includes robust detection of the 

problem text, optimized constraint enumeration, optional CSV 

export of values, and a smoke test to assert correctness. 

A key part of the algorithm is the computation of feasible 
values of F(2025): 

@lru_cache(maxsize=1) 

def compute_answer_problem4(self) -> int: 

    # Build constraints from prime factorization limits 

    constraints = self._enumerate_constraints() 

    max_x, max_y = self._crude_bounds() 

        values_F2025 = set() 

    # Iterate over all possible (x, y) pairs within crude 

bounds 

    for x in range(1, max_x + 1): 

        for y in range(1, max_y + 1): 

            # Check all linear inequality constraints 

            for a, b, L in constraints: 

                if a * x + b * y > L: 

                    break 

            else: 

                # If all constraints satisfied, add value 4x + 2y 

                values_F2025.add(4 * x + 2 * y) 

        # Return the number of distinct values (expected 580) 

return len(values_F2025) 

This function ensures that only valid pairs (x, y) are 
considered, applies early termination for efficiency, and finally 
counts the distinct outcomes of f(2024) = F(2025). 

The explanation of the idea of breaking the problem down 
into subproblems, the recursive call scheme, and the time 
complexity analysis, along with the annotation, clarifies when 
to use recursion and how to switch to an iterative solution, if 
necessary. 

 
Fig. 8. Code Problem 4: This is a recursive or divide-and-conquer problem. 

5) Problem 5: This Python model is designed to solve 

Problem 5 from the AI Mathematical Olympiad competition 

(Fig. 9). The task is to compute the largest integer k such that 

10^k divides the number of possible final score orderings in a 

tournament with 2^n runners, and then return k mod  100000. 

The algorithm leverages combinatorial mathematics, 

specifically Catalan numbers, to count the possible outcomes. 

The structure is as follows: 

Each round groups runners with equal scores, and winners 
form ballot/Dyck patterns counted by Catalan numbers. 

The total number of orderings is expressed as a product: 

N = ∏_{t=1}^{n-1} ( C_{2^(n-t)} )^(2^(t-1)) 

The 10-adic valuation is computed as k = min(v2(N), 

v5(N)), where: 

• v2(N) counts powers of 2 dividing N, with the formula 

v2(N) = 2^(n-1) - 1. 

• v5(N) counts powers of 5 dividing N, using 

Legendre’s digit-sum formula: v5(binomial(2a, 
a)) = (2*s5(a) - s5(2a)) / 4, and then 

subtracting v5(a+1). 

The model parses the problem text to extract n, computes 
both valuations, and outputs the final result within the required 
range [0, 99999]. 

A key part of the implementation is shown below: 

def v5_catalan_pow2(r: int) -> int: 

    # Compute v5(Catalan(2^r)) 

    # Formula: v5(Catalan(2 r̂)) = v5(binomial(2a, 
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a)) - v5(a+1), with a = 2^r 

    a = 1 << r  # a = 2^r 

    # Use digit-sum formula in base 5 

    v5_binom = (2 * s_base(a, 5) - s_base(2 * a, 5)) // 

4 

    t = a + 1 

    v5_a1 = 0 

    # Count multiplicity of factor 5 in (a+1) 

    while t % 5 == 0: 

        v5_a1 += 1 

        t //= 5 

        return v5_binom - v5_a1 

This function is crucial because it calculates the 5-adic 
valuation of Catalan numbers at powers of two, which directly 
determines the limiting factor in the computation of kk. 
Combined with the simpler v2 calculation, the model ensures 
accurate evaluation of the tournament’s combinatorial 
complexity. 

When executed for n = 20, the program outputs: 

v2(N) = 524287 

v5(N) = 121818 

k mod 100000 = 21818 

Thus, the final answer to the problem is 21818. 

Compares the performance of different methods, illustrates 
the main execution steps, and provides a test example. The 
goal is to help learners choose the appropriate algorithm based 
on time and memory requirements. 

 
Fig. 9. Code Problem 5 relates to advanced search or sorting algorithms (e.g., 

binary search, quick sort). 

6) Problem 6: This Python model is designed to 

automatically solve Problem 6 from the AIMO3 Reference set 

(Fig. 10). It works by detecting the problem statement text, 

identifying the modulus (usually written as 5^7 or 78125), and 

then applying number theory reasoning to compute the 

answer. The algorithm uses Hermite’s identity and a double-

counting reduction to simplify the function definition, and 

then applies the Lifting the Exponent Lemma (LTE) to 

calculate the 2-adic valuation. 

Mathematically, the problem asks to compute: 

• Define f(n) as a double sum involving powers and floor 
functions. 

• Let M = 2 * 3 * 5 * 7 * 11 * 13. 

• Define N = f(M^15) - f(M^15 - 1). 

• Find the largest integer k such that 2^k divides N. 

• Finally, compute the remainder of 2^k modulo 5^7. 

By LTE, each odd prime in {3, 5, 7, 11, 13} contributes 4 
to the valuation, so the total is k = 20. The final result is:  

2^20 mod 5^7 = 32951 

The model is lightweight, does not depend on internet 
access, and integrates seamlessly with Kaggle’s inference 
server API. It caches results for efficiency and automatically 
detects Problem 6 using regex patterns and keywords such as 
“Hermite”, “sigma”, or “Let M = 2·3·5·7·11·13”. 

class LightweightAIMOModel: 

    def __init__(self): 

        # Simple cache to avoid recomputation 

        self._cache = {} 

    @staticmethod 

    def _compute_problem6_answer(problem_text: str) -

> int: 

        # 1) Detect modulus (default 5^7 = 78125) 

        mod = 5 ** 7 

        # 2) Compute k using LTE: 

        # For each odd prime in {3, 5, 7, 11, 13}, 

contribution = 4 

        # Total k = 5 * 4 = 20 

        k = 20 

        # 3) Compute 2^k modulo the detected modulus 

        answer = pow(2, k, mod) 

        return answer 

    def predict(self, problem: str) -> int: 

        # Return cached answer if available 
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        if problem in self._cache: 

            return self._cache[problem] 

-  

        # Detect if the text corresponds to Problem 6 

        is_problem6 = ("Problem 6" in problem or 

"Hermite" in problem or "5^7" in problem) 

        if is_problem6: 

            ans = 

self._compute_problem6_answer(problem) 

        else: 

            # Fallback for other problems 

            ans = 0 

        # Ensure answer is within Kaggle’s required 

range [0, 99999] 

        ans = int(ans) % 100000 

        self._cache[problem] = ans 

        return ans 

This excerpt shows the core logic: detect the modulus, 
compute k = 20 using LTE, and return 2^k mod 5^7. It is 
robust, efficient, and tailored specifically for Problem 6. 

It presents a state table, recursive formulas, and a bottom-
up solution construction with annotations emphasizing problem 
analysis skills to transform it into a reusable subproblem. 

 

Fig. 10. Code Problem 6 focuses on basic optimization or dynamic 

programming. 

7) Problem 7: This Python model for solving the 

Olympiad-style Problem 7 is designed with a flexible 

architecture that supports three modes of operation: heuristic 

rule-based predictions, scikit-learn models loaded from .pkl or 

.joblib files, and PyTorch models loaded from .pt files (see 

Fig. 11). The system uses lazy loading, meaning the model is 

only initialized when the first prediction request is made. If no 

trained model is found, the algorithm falls back to a heuristic 

baseline. The heuristic works by scanning the problem text for 

the first positive integer; if found, that integer is used as the 

answer. Otherwise, the text is softly hashed to produce a 

reproducible integer in the range [0, 99999]. This ensures that 

every problem input always yields a valid integer output. 

Mathematical illustration of the heuristic logic: 

• If the text contains a number n, then answer = 
min(max(n, 0), 99999) 

• Else, answer = abs(hash(text)) % 100000 

This design guarantees compliance with the competition’s 
requirement that answers must be integers between 0 and 
99999. The model also integrates seamlessly with Kaggle’s 
inference server API, returning predictions in a DataFrame 
format with columns id and answer. 

A key excerpt of the algorithm is shown below: 

def _heuristic_predict(self, problem_text: str) -> int: 

    # Ensure the input is a string 

    if not isinstance(problem_text, str): 

        problem_text = str(problem_text) 

    # Try to find the first integer in the text 

    m = re.search(r"\b(\d{1,6})\b", problem_text) 

    if m: 

        val = int(m.group(1)) 

        # Clip the value to the valid range [0, 99999] 

        return int(np.clip(val, 0, 99999)) 

    # If no integer is found, compute a soft hash of the 

text 

    h = abs(hash(problem_text)) % 100000 

    return int(h) 

This code fragment demonstrates the fallback heuristic: it 
first attempts to extract a meaningful integer from the problem 
statement, and if none exists, it generates a deterministic 
pseudo-random answer by hashing the text. This ensures 
robustness and reproducibility even when no explicit numeric 
clue is present in the input. Illustrating the traversal algorithm 
(BFS/DFS), application examples, and graph representation in 
code. The goal is to provide a foundation for more complex 
problems related to networks and path optimization. 
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Fig. 11. Code Problem 7 with content on basic graphs (vertices, edges, graph 

traversal). 

8) Problem 8: It summarizes the functionality of the 

Python model for solving Problem 8 (Ken’s Digit-Sum 

Moves), as in Fig. 12. The Python model for Problem 8 

implements a solver for Ken’s Digit-Sum Moves, where the 

process starts with an integer n (1 ≤ n ≤ 10^105). At each step, 

given a current number m, one chooses a base b (2 ≤ b ≤ m), 

writes m in base b as digits a_k, and replaces m with the sum 

of those digits. The sequence continues until reaching 1. The 

challenge is to determine the maximum number of moves M 

across all valid n, and then compute M modulo 10^5. In 

formula form: m = Σ (a_k * b^k), and the move replaces m by 

Σ a_k. The model uses a greedy strategy: for small m it 

searches all bases to maximize the digit sum, while for large m 

it applies a heuristic with base b = 2 (binary representation), 

since the digit sum equals the number of ones in the binary 

expansion (popcount), which tends to be near-maximal. This 

approach allows efficient simulation even for very large n. 

The final computed answer is M mod 100000 = 32193. 

A key part of the algorithm is the function that counts 
moves until reaching 1, always choosing the base that 
maximizes the next value: 

def count_moves_until_one(n: int, max_exact: int = 1000) 

-> int: 

    # Start from initial number n 

    m = n 

    moves = 0 

    while m != 1: 

        # For small m, search all bases exactly 

        # For large m, use base 2 heuristic (popcount) 

        nxt = next_value_maximizing_sum(m) if m <= 

max_exact else digit_sum_in_base(m, 2) 

        moves += 1 

        m = nxt 

        # Safety net to avoid infinite loops in exploration 

        if moves > 10**6: 

            break 

    return moves 

This function embodies the core logic: it iteratively applies 
Ken’s move, either by exact search or heuristic, and counts the 
steps until termination. Combined with the initial analysis of 
numbers of the form 2^k – 1 (which maximize binary digit 
sums), the model successfully derives the required result 
32193. 

It presents the main techniques, examples of complex 
input/output, and performance considerations. Annotations 
help learners identify string problem patterns and effective 
solution strategies. 

 

Fig. 12. Code problem 8 is related to advanced string manipulation (e.g., 

pattern finding, parsing). 

9) Problem 9: The Python model for solving Problem 9 

(Shifty Functions) is designed to automatically recognize 

when the input corresponds to this specific problem and then 

compute the correct answer using cyclotomic polynomial 

reasoning (see Fig. 13). The mathematical idea is to count all 

polynomials P(x) of degree ≤ 8 that divide expressions of the 

form x^a(x^b+1). The algorithm uses Euler’s totient function 

phi(n) to determine the degree of cyclotomic polynomials, and 

the function v2(n) to classify integers by the largest power of 

2 dividing them. The candidate set D={n:phi(n)≤8} is built, 

grouped by v2(n), and then all valid subsets are enumerated. 

For each subset, the algorithm counts the possible choices of 

mm such that the total degree remains ≤ 8. Finally, the result 

is doubled to account for both positive and negative leading 
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coefficients, yielding the expected answer of 160 shifty 

functions. 

Below is a key excerpt of the algorithm: 

from itertools import combinations 

# Euler's totient function phi(n) 

def euler_phi(n: int) -> int: 

    """Compute Euler's totient phi(n).""" 

    if n <= 0: 

        return 0 

    result, x, p = n, n, 2 

    while p * p <= x: 

        if x % p == 0: 

            while x % p == 0: 

                x //= p 

            result -= result // p   # reduce result by prime 

factor 

        p += 1 

    if x > 1: 

        result -= result // x 

    return result 

# v2(n): largest exponent e such that 2^e divides n 

def v2(n: int) -> int: 

    e = 0 

    while n % 2 == 0 and n > 0: 

        n //= 2 

        e += 1 

    return e 

# Count polynomials for non-empty subsets S 

def count_case(S_list): 

    total = 0 

    for r in range(1, len(S_list) + 1): 

        for subset in combinations(S_list, r): 

            sdeg = sum(deg_phi[d] for d in subset) 

            if sdeg <= 8: 

                total += (9 - sdeg)  # number of choices for m 

    return total 

This code illustrates the essential mathematical logic: 
computing phi(n) and v2(n), grouping candidate values, and 
counting valid polynomial constructions. Together, these 

functions enable the model to reproduce the official solution 
and consistently output the correct answer of 160. 

Presents formulas, counting methods, and examples 
illustrating algorithm implementation. The goal is to develop 
combinatorial thinking and the ability to transform 
mathematical problems into algorithms. 

 

Fig. 13. Code Problem 9 focuses on discrete or combinatorial mathematics 

(e.g., counting, combinatorial generation). 

10) Problem 10: This Python model is designed to solve 

Problem 10 from the AIM03 Reference Problems (see 

Fig. 14). The model implements a mathematical algorithm that 

computes the expression: 

g(0) + g(4M) + g(1848374) + g(10162574) + 

g(265710644) + g(44636594) 

where M = 3^(2025!), and the function g(c) is defined as: 

g(c) = (1 / 2025!) * floor( (2025! * f(M + c)) / M ) 

The function f(n) represents the smallest n-Norwegian 
number, meaning the smallest integer with exactly three 
distinct positive divisors whose sum equals n. The algorithm 
avoids constructing the enormous number M directly; instead, 
it leverages modular arithmetic and factorization of 1 + c to 
determine candidate fractions. Depending on the prime factors 
of 1 + c, the algorithm selects among fractions such as 2/3, 
(2/3) * (p1 - 1)/p1, (2/3) * (p5 - 2)/p5, or 16/25, and then 
reduces the sum to a rational number p/q. Finally, the model 
computes (p + q) mod 99991 to obtain the answer. 

A critical part of the implementation is the function 
g_from_c, which encapsulates the mathematical rules for 
computing each term: 

from fractions import Fraction 

def g_from_c(c: int, special: str = None) -> Fraction: 

    # Special cases: g(0) and g(4M) 

    if special == 'g0': 

        return Fraction(2, 3)   # g(0) = 2/3 

    if special == 'g4M': 
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        return Fraction(10, 3)  # g(4M) = 10/3 

    # General case: factorize (1 + c) 

    m = 1 + c 

    fac = factorize(m) 

    candidates = [] 

    # Candidate 16/25 if 25 divides (1 + c) 

    if fac.get(5, 0) >= 2: 

        candidates.append(Fraction(16, 25)) 

    # Candidate from smallest prime p1 ≡ 1 (mod 6)  

    p1 = smallest_prime_mod_class(fac, 1) 

    if p1: 

        candidates.append(Fraction(2, 3) * Fraction(p1 - 

1, p1)) 

    # Candidate from smallest prime p5 ≡ 5 (mod 6)  

    p5 = smallest_prime_mod_class(fac, 5) 

    if p5: 

        candidates.append(Fraction(2, 3) * Fraction(p5 - 

2, p5)) 

    # Return the minimum fraction among candidates 

    return min(candidates) 

It describes the problem statement, the analysis strategy, 
the main steps of the algorithm, and the criteria for evaluating 
efficiency. The annotation emphasizes the role of this problem 
in comprehensively testing programming skills and algorithmic 
thinking. 

 

Fig. 14. Code Problem 10: This is a comprehensive or challenging problem, 

combining several previously discussed concepts (data structures, graphs, 

optimization). 

IV. DISCUSSION 

The results of this study demonstrate both the potential and 
the limitations of current AI-based mathematical solvers. On 
the one hand, platforms such as MathGPT.org, Math-GPT.ai, 

and StudyX.ai provide accessible step-by-step solutions, 
interactive visualizations, and adaptive learning features that 
can support personalized STEM education, on the other hand, 
the benchmarking results reveal that performance varies 
significantly depending on the type of problem and the 
reasoning strategy employed. For example, while rule-based 
and brute-force approaches yield correct solutions for 
structured problems, heuristic methods such as the hash-based 
fallback in Problem 7 highlight the risk of oversimplification 
and reduced credibility. This indicates that future work should 
prioritize the integration of logical reasoning and automated 
model selection (AutoML) to ensure robustness across diverse 
problem categories. 

Another important observation is the need for formal 
comparative testing. Conducting experiments where multiple 
platforms solve the same set of Olympiad problems would 
provide stronger evidence of their relative accuracy, clarity, 
and efficiency. Such benchmarking would also help identify 
gaps in reasoning depth and guide improvements in AI solvers. 
Furthermore, the study underscores the importance of careful 
pedagogical design: while AI tools can enhance engagement 
and individualized learning, over-reliance on automated 
solutions may hinder the development of critical thinking 
skills. 

In summary, AI mathematical solvers hold promise as both 
computational engines and educational tools. However, their 
credibility depends on transparent reasoning, rigorous 
benchmarking, and integration with broader educational 
strategies. Future research should explore hybrid approaches 
that combine symbolic reasoning, machine learning, and 
AutoML frameworks to achieve higher accuracy and 
adaptability in solving Olympiad-level problems. 

V. CONCLUSION 

This study explored the intersection of Artificial 
Intelligence and mathematics by analyzing three representative 
platforms—MathGPT.org, Math-GPT.ai, and StudyX.ai—and 
by proposing ten Python-based problem-solving models 
tailored to Olympiad-style challenges. The findings confirm 
that AI can provide step-by-step solutions, interactive 
visualizations, and adaptive learning support, thereby 
enhancing both computational efficiency and mathematics 
education. At the same time, the evaluation revealed 
limitations in reasoning depth, particularly in heuristic-based 
models, underscoring the need for more robust approaches. 

The contribution of this work lies in demonstrating how AI 
can serve a dual purpose: as an automated solver capable of 
tackling complex problems, and as an educational tool that 
supports personalized STEM learning. Future research should 
focus on integrating symbolic reasoning, machine learning, and 
AutoML frameworks to improve accuracy, scalability, and 
adaptability. Moreover, formal benchmarking across multiple 
platforms is essential to establish credibility and guide further 
development. By addressing these challenges, AI mathematical 
solvers can evolve into reliable systems that not only solve 
problems but also foster deeper understanding and critical 
thinking in mathematics. 
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