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Abstract—Speech is now routine evidence in criminal
investigations, but forensic audio rarely matches the clean
assumptions of standard speaker recognition. Clips are short,
noisy, codec-compressed, and channel-mismatched, and they are
increasingly exposed to replay and synthetic speech
manipulation. Therefore, the cast criminal voice identification is
forensic audio data mining, aiming to extract a stable identity
structure from heterogeneous and potentially adversarial
evidence, while respecting operational and privacy constraints.
In this study, a novel ForenVoice-Secure system is proposed, a
unified pipeline that combines robust representation learning,
spoof-aware decisioning, and privacy-preserving training. Audio
is mapped to log-Mel spectrograms and encoded with a CNN,
while an LSTM aggregates temporal identity cues from irregular
utterances. Robustness is improved through multi-task learning
(identity + spoof), adversarial training, and spectro-temporal
consistency checks for replay/deepfake artifacts. Privacy is
addressed using federated learning, keeping raw recordings local
and sharing only model updates. Experiments on VoxCeleb2,
ASVspoof 2021, and a forensic-style speaker comparison corpus
achieve statistically significant performance gains, 98.43% mean
identification accuracy with strong class-balanced performance
(macro F1 = 98.10%, precision = 98.22%, recall = 98.01%) and
statistically significant gains over strong baselines across
repeated folds (F1:p = 8.0 x 10™%; precision: p = 1.1 x 1073;
recall: p = 9.0 X 10~%). The model remains lightweight (=4.3M
parameters, <1.2 GFLOPs per 3 s), enabling near real-time
inference with modest overhead from consistency checks (<6%).
Overall, ForenVoice-Secure provides a compact and
reproducible forensic audio data mining framework for scalable,
spoof-resilient, privacy-aware law-enforcement identification.

Keywords—Forensic audio data mining; forensic voice
analytics; voice biometrics; criminal identification; speaker
recognition; anti-spoofing; deepfake and replay detection;
convolutional neural networks; long short-term memory; federated
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I INTRODUCTION

Voice evidence has gained significance in the modemn
criminal investigation. Intercepts of telephones [1], emergency
calls, body-worn cameras, covert surveillance, and open-source
multimedia material are a regular part of the case files [2].
However, speech is not often gathered in regulated
circumstances as it is in the case of fingerprints or DNA. The
transcriptions of forensic recordings tend to be brief, noisy,

encoded with unknown codecs, and recorded with unknown
devices [3]. Consequently, the process of recognition of a
speaker with audio evidence is a still technically challenging
and methodologically controversial one [4]. Although
automatic speaker recognition has improved quickly within the
last decade, most of the development has been fueled by
benchmarks that are based on comparatively clean data and
cooperative users, which is notthe case in forensic practice [5].

Early speaker recognition systems were based on
generative statistical models including Gaussian mixture
models based on universal background models and
subsequently i-vectors representations [6]. These methods
provided interpretable probabilistic descriptions, but were
susceptible to channel dissimilarities as well as shorter
utterances, which are prevalent in forensic content. Deep
learning has led to a transition to discriminative embedding
learning [7], where convolutional and time-delay neural
networks yielded fixed length representations of speakers
which significantly enhanced performance in uncontrolled
conditions [8], [9]. Megabanks like VoxCeleb facilitated this
development as they allowed models to learn speaker identity
using varied, natural-world samples [10]. Nevertheless, even
with these gains, most systems have been optimized to either
verify or identify in benign environments but not evidentiary
analysis.

Forensic audio is a special category of challenges that
extends beyond accuracy on clean benchmarks. Recording can
include a speaker overlap, incomplete utterances, or high levels
of environment sampling and investigators might not have
many samples of reference of a suspect [11]. In addition, the
legal environment requires the high level of performance but
also the strength, stability, and reproducibility of the
conclusions. Recent debates within forensic science point to
the fact that speaker recognition must be considered as
evidence presentation in uncertainty instead of certain identity
matching [12]. This view encourages the replacement of voice
biometrics as a limited technical issue with formulating it as an
audio data mining in forensics, whereby meaningful identity
trends ought to be mined out of non-homogeneous and noisy
data.

The threat environment has also gone an extra mile with the
fast development of speech synthesis and voice conversion
technologies. Current text-to-speech and neural voice cloning
systems are able to produce a very natural speech which can
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emulate particular speakers with little reference data [13], [14].
These advances have grave consequences on the field of
forensic voice analysis where replay attacks and synthetic
speech can also fool both human and automatic voice
analyzers. This has been observed in community-based
challenges like the ASVspoof challenges which have shown
that a significant number of speaker recognition pipelines are
susceptible to such attacks, especially when the spoofed audio
is conveyed using realistic channels or compressed formats
[15], [16]. As a result, anti-spoofing is not a peripheral feature
anymore, but rather a necessity of any voice biometrics system
that is supposed to be used in the forensic or law-enforcement
sector [17].

Privacy and data control have also gained significant
relevance, in addition to security. Voice data is data that is
personal in nature and can be used to disclose sensitive
information that is not pertinent to identity such as health,
emotional status or demographic features. In crime
investigations, there is a large amount of legal and ethical
restriction to the dissemination and centralization of raw audio
evidence between agencies. Federated Ilearning (FL)
exemplifies privacy-preserving approaches to learning; thus, it
is getting increasing interest as it allows collaborative training
of models without sharing data [18]. Although the concept of
federated approaches has been investigated within a generic
speech and biometric context, their adoption into forensic voice
identification pipelines is not mostly developed.

Combined, these facts indicate that there is a mismatch
between the state-of-the-art-work on speaker recognition and
the needs of forensic voice analysis. Degradation resistance,
spoofing resistance, and privacy-conscious deployment are
frequently dealt with as a single component, but not in a
coherent set of tools. In this study, a gap is filled by proposing
ForenVoice-Secure, a voice-focused forensics-enhanced
analytics system, which sees criminal identification as a safe
audio data mining challenge. The proposed method will be
based on deep representation by learning, explicit anti-spoofing
mechanisms, adversarial robustness, and federated training to
deliver useful operation on real evidentiary recordings without
violating operational and legal limitations. The research, by
conducting the overall assessment of the three terms speaker
identification, spoof detection, as well as degraded conditions,
will bring voice biometrics closer to a viable, defendable
application in contemporary law enforcement.

A. Research Highlights

This work makes several contributions to the field of
forensic voice biometrics.

e ]t reframes criminal voice identification as a forensic
audio data mining problem, explicitly accounting for
noisy, short, and heterogeneous evidence rather than
assuming clean verification conditions.

e It introduces ForenVoice-Secure, a unified framework
that combines CNN-LSTM-based speaker
representation learning with integrated anti-spoofing
mechanisms, including adversarial training and spectro-
temporal consistency analysis, to improve robustness
against replay and deepfake attacks.
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e It incorporates federated learning to address privacy and
data-governance constraints in  law-enforcement
settings, enabling collaborative model training without
centralizing raw audio evidence.

e [t provides a statistically grounded evaluation across
multiple datasets, demonstrating significant
improvements in accuracy, Fl-score, precision, and
recall under degraded and adversarial conditions, while
maintaining practical computational efficiency for
deployment.

B. Paper Organization

The rest of the study is structured in the following way:
Section II discusses related literature in speaker recognition,
forensic voice analysis, spoofing and deepfake detection and
privacy-preserving biometric learning. Section III describes the
proposed ForenVoice-Secure approach, such as signal
modelling, feature selection, network design, security, and
federated training. Section IV explains about the datasets,
protocols used in the experiment and measures of assessment.
Section V shows the experimental findings and discussions
along with the statistical significance analysis and the
computational complexity in Section VI. Lastly, Section VII
summarizes the study and provides limitations and directions
of future research.

II. LITERATURE REVIEW

The recent work makes it rather apparent that the state of
modemn forensic and security analytics is in a utility versus
privacy tension particularly when deep models are at stake. A
good example here is the neural extraction of features in
acoustic sensor networks, where representations constructed to
perform sound classification were demonstrated to leak
speaker-specific information and speaker recognition attacks
could be performed on the representation in the event they
were intercepted [19]. The authors react by suggesting a
variational and information-limiting feature extractor that
maintains the trusted task and activates speaker identity
leakage, but they show resistance to a strong x-vector attacker
[19]. The above reasoning is related to more general privacy-
sensitive media analytics in which the query protection is not
solely of interest but also the fact that the query protection can
be achieved with approximately matching at scale. A private
media search architecture is a system that attains [20] sublinear
computation and communication on public databases and
shows privacy-preserving face recognition at large speedups,
indicating that privacy and practicality do not necessarily
require each other [21]. A similar privacy conscious data use is
also reflected in another research study on email visualization:
anonymization and aggregation may decrease identifiability,
and yet perceived research utility may still be maintained, a
good lesson that privacy controls are not mutually exclusive
with analytic usefulness when carefully designed [22].

Back on the security front, various researches highlight the
use of lax operational arrangements and human actions by
attackers. An example is phishing, which is a relatively cheap,
but impactful, attacker strategy, and a privacy-conscious
detector framework with a specific taxonomy has been
suggested to identify various current phishing techniques,
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particularly in an loT-saturated environment. Forensics in
cloud environments are often log-centric; thus, the emphasis of
the work has been on generating evidence in a scalable way. A
cloud forensic expert-system architecture involves the
narrowing of attacked areas in huge logs with the help of fuzzy
data mining and the subsequent narrowing with the help of Al-
based analysis to produce evidence that is less difficult to
provide in a formal way [23]. Other work around behavior
analysis using log mining contends that manual analysis is not
scalable to the size of contemporary data volumes and suggests
the use of automated user behavior mining of networked
systems, driven in part by the necessity of fighting computer
crime more efficiently [24]. These log-based views are
applicable since they view forensic investigation as a data
mining process: filter, prioritize and explain, as opposed to
detect.

The field of audio forensics, on the other hand,
encompasses both anti-forensic resistance as well as tamper
detection. An SNR-sensitive digital audio tampering forensics
system enhances the benefit of an electric network frequency
extraction with an improved chirp Z-transform and then
identifies anomalies with a dual-sampling isolation forest, with
benefits of both extraction and outlier detection in a noisy
environment [25]. Anti-forensic attacks are now also a
concern. Attacks based on dereverberation can selectively
weaken environmental signature splicing detection, and
countermeasures that are grounded in rich features and
machine learning can easily identify such anti-forensic
processing, and indicate a new arms race between forensic
detectors and attackers [26]. Extensive surveys keep laying
audio-video forensics as one of the key areas of digital
investigation, as the recorded media is frequently presented as
court-related evidence [27].
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Another and rather intriguing vein is the one that actually
goes outside the voice of the speaker and seeks context within
the audio scene. It has also been suggested to extract and
categorize the background noise automatically and
communicate information about the environment based on
recordings with the use of complex noise mixtures and without
much identity testing, even mixed speech, as an expansion of
what can be meant by the term of forensic audio evidence [28].
Reproducible forensic processes are also getting interest: an
open-source modular system enables practitioners to mix up
enhancement, VAD, and ASR models, visualize features, and
export repeatable pipelines, which is important when forensic
conclusions should be auditable instead of merely valid [29].
Lastly, the field of forensic practice is changing with
infrastructure ~ modifications  like cloud computing.
Conventional digital forensic models are also under
consideration and modification to accommodate the issues of
preservation and acquisition peculiar to cloud investigations,
wherein data can be distributed and challenging to acquire [30].
On the signal level, voice evidence can still be susceptible to
noise, reverberation, quantization and disguise. Attempts at
increasing its integrity and intelligibility under phonemic
confusion suggest that enhancement of voice analysis in the
forensics field is an inherent precondition [31].

Collectively, this literature is indicative of the following, as
explained in Table I: 1) forensic evidence can be handled as a
data mining problem under heterogeneity and scale [23], [24];
2) robustness must be designed to explicitly address the
phenomenon of degradation and active anti-forensic behavior
[25], [26], [31]; and 3) privacy preservation must be
engineered into the pipeline, since deep representations can
reveal identity accidentally [19], whereas practical privacy
preserving analytics is becoming a viable option at scale [21],
[22].

TABLEI. A COMPARISON TABLE WITH FEWER COLUMNS, FOCUSING ONLY ON WHAT IS MOST RELEVANT TO FORENVOICE-SECURE

Study Focus & Scenario Core idea Key limitation vs. Our work

[19] Privacy risks i-n-de?p audio features Learning a .\.lariati.onal fez}ture to suppress | Does notPerfonn .fo‘rensic speaker identification or spoof-
for sound classification speaker-identifiable information aware evidence mining

[25] Audio tampering forensics under low- | ENF extraction with ICZT and anomaly | Targets tampering detection, not identity mining or spoof-
SNR conditions detection via isolation forest resilient speaker analysis

[26] An'ti-.forensic ' attacks on audio | Demonstrates dereverberation-based attacks and focu.se.s on splicing anifgcts, not joint speaker
splicing detection ML-based countermeasures identification and spoof detection

[29] Reproducible forensic audio analysis | Modular, open-source framework for building | Provides tooling rather than a unified, privacy-aware
pipelines forensic workflows forensic voice model

31] Int.egrity_and intelligibility of forensic Speec}_l enhan_cement, segmentation, and lmpro‘ves signAal quality buF does ngt address adversarial
voice evidence distortion analysis spoofing or privacy-preserving learning

III.  PROPOSED METHODOLOGY

Fig. 1 is the systematic flow diagram that summarizes the
proposed forensic voice biometrics pipeline. The development
of the criminal voice identification process as the forensic
audio data mining, designed to provide consistent identity
evidence based on the heterogeneous and possibly manipulated
records instead of relying on the presumptions of clean speaker
verification, are formulated in this study. VoxCeleb [32] and
SpeechTech [33] explicitly define data and threat model based
on the nuisance factors (noise, codec compression, channel
mismatch, short utterances) and adversarial factors (replay
speech and synthetic speech). A CNN is used to encode each

recording to speaker-discriminative spectral cues, and an
LSTM is used to encode temporal identity structure, each
recording is converted to log-Mel spectrograms. Security is
incorporated through adversarial training and spectro-temporal
consistency tests to decrease the sensitivity of spoof and to
label implausible evidence. With federated learning, privacy is
achieved by ensuring that raw audio is local and model updates
are aggregated. Assessment is multi-axis: performance of
identification, resistance to degradations, performance under
replay/deepfake conditions, repeated-fold stability, and
ablations which eliminate adversarial training, consistency
tests, and federation to measure the contribution of each
component.
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A. Data Gathering

Three complementary corpora were used to collect the data
about: 1) large-scale speaker identity variation, 2) explicit
threats of spoofing, and 3) forensic-like session variability. To
perform large scale identifier of speakers, VoxCeleb2 [32] has
been accessed directly on the official Oxford VGG distribution
page, where the description of the canonical dataset and
download procedure are indicated. VoxCeleb2 consists of more
than one million utterances of 6,112 speakers, an official
dev/test split of 5,994/118 speakers.

This division is maintained so as to prevent leakage and to
ensure that results are consistent with previous speaker

Vol. 17, No. 1, 2026

recognition literature, where the institutional access policies
allow it, also observed is that reproducible scripted ingestion
can be facilitated via a dataset-hosted packaging pathways (e.g.
a dataset card that reflects the structure of the archive and its
metadata files). ASVspoof 2021 [34] (LA/PA/DF) was
acquired at the official ASVspoof 2021 post-challenge release
page, which contains protocol files (keys) and associated
metadata, including the information about bona fide or spoof
and condition. The speaker comparison type was forensic-style,
and it was applied by FABIOLE [35] to add evidentiary
variability, such as session and context variations that are more
akin to actual forensic casework (such as environment, channel
conditions, and recording situations).

Raw Audio Input

/ Preprocessing & segmentation /

v

Multi-Resolution STFT

v

/ Log-Mel Spectrograms /

v

CNN + Frequency Attention

v

LSTM Temporal Modeling

Speaker Embedding

Training data 5-fold Cross- Valid

Joint Decision Head

Speaker Identification

v

Spoof Detection

Test data 5-fold Cross-Valid

v

Quality-Weighted Aggregation

Final Forensic Identity Decision

Fig. 1. Systematic flow diagram of the ForenVoice-secure framework.
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Fig.2. The figure shows: a) VoxCeleb2: Single distribution for large-scale
speaker-ID features, b) ASVspoof 2021: Overlaid bona fide vs. Spoof feature
distributions, ¢) FABIOLE: Single distribution for forensic-style corpus
features, and the combined figure illustrates how samples differ across the
three selected corpora.

Fig. 2 provides an empirical perspective of the distribution
of the learned acoustic features in the three datasets and their
variability by class. In VoxCeleb2 [Fig. 2(a)], the wide
distribution of speakers and recordings is indicative of a large
amount of speaker and recording variability, akin to the case of
in-the-wild data. This heterogeneity can be exploited to learn
discriminative identity embedding, but again, it raises the intra-
speaker variability because of varying environments,
microphones, and speaking styles. In ASVspoof 2021
[Fig. 2(b)], bona fide speech contributes to the creation of a
distribution that is still somewhat enclosed by VoxCeleb2,
whereas the spoofed speech has a more systematically
distributed and more scattered appearance. This tendency is
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aligned with spectral and temporal anomalies caused by replay
and synthetic generation and it confirms the need of explicit
anti-spoofing goals during representation learning. In
comparison, FABIOLE [Fig. 2(c)] has a more concentrated
distribution, which corresponds to the conditions of the
forensic-style broadcast and longer segments in general.
Nonetheless, its feature space is different even when compared
to in-the-wild speech and spoofed audio, implying that there is
a domain gap that may influence generalization in case it is
overlooked. Combined with these distributional variations, this
suggests the suggested multi-task and robustness-based design:
a realistic forensic voice biometrics system should explicitly
model dataset- and class-varying behavior of features, not a
uniform homogeneous speech distribution.

B. Preprocessing and Time—Frequency Representation

All audio signals are first standardized to ensure
consistency across datasets and recording conditions. Each
recording is converted to a single-channel (mono) waveform
and resampled to a fixed sampling rate of 16 kHz, which
provides sufficient bandwidth for speaker-discriminative
information while maintaining computational efficiency.
Amplitude normalization is then applied to control dynamic
range variations across sources, using peak or RMS
normalization to reduce sensitivity to recording gain without
suppressing forensic cues.

Silence and non-speech regions are removed using an
energy-based voice activity detection procedure. The objective
is not aggressive denoising but the exclusion of long inactive
segments that would otherwise dilute speaker-relevant
information, especially in short forensic utterances. Audio
segments shorter than a minimum duration are either discarded
or zero-padded to a fixed length to enable batch processing and
stable time—frequency representations.

Each preprocessed waveform x(t)is transformed into a
time—frequency representation using the short-time Fourier
transform (STFT) [36]. Given a window function w(t) ,
window length L, and hop size H, the STFT is computed
through Eq. (1) as:

L-1

X(1,0) = Z x(t+TH) w(e) e, (1)

t=0

where, 7 indexes the frame and w denotes angular
frequency. In our implementation, a Hann window is used with
L =400 samples and H = 160 samples, balancing time
resolution and frequency selectivity for forensic speech
analysis. The magnitude spectrum | X (7, ) lis then projected
onto a Mel-scale filterbank to approximate perceptually
relevant frequency resolution. Let M denote the Mel filterbank
matrix; the Mel-spectral energy is computed by Eq. (2) as:

S(t) =M | X(7,w) 1% 2)

A logarithmic compression is applied to stabilize variance
and emphasize lower-energy components, yielding the log-Mel
spectrogram, is defined by Eq. (3) as:

F(7) = log (S(7) + e), 3)
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where, € is a small constant to avoid numerical instability.
The resulting log-Mel spectrograms are optionally mean—
variance normalized on a per-utterance or per-batch basis
before being fed into the CNN-LSTM [37] backbone. This
preprocessing pipeline preserves fine-grained spectro-temporal
structure required for speaker discrimination and spoof artifact
detection, while maintaining robustness to channel mismatch,
noise, and codec-induced distortions commonly present in
forensic audio evidence.

Fig. 3 compares representative voice patterns across three
classes by showing the input waveform, magnitude
spectrogram, and phase-derivative spectrogram for each signal.
The bona fide speech exhibits stable harmonic structure and
smooth temporal evolution, while the replay-like signal shows
spectral coloration, added high-frequency energy, and echo-
related banding effects. In contrast, the deepfake-like speech
displays smoother spectral envelopes with noticeable non-
stationarity caused by amplitude and frequency modulation.

Vol. 17, No. 1, 2026

These visual differences highlight how replay and synthetic
generation introduce characteristic spectro-temporal artifacts
that can be exploited by forensic voice analysis and anti-
spoofing mechanisms.

C. ForenVoice-Secure Framework

The proposed ForenVoice-Secure framework, as described
in Algorithm 1, operates as a unified forensic voice analysis
pipeline that transforms raw evidentiary audio into reliable
identity decisions under adversarial and privacy-constrained
conditions. Audio recordings collected from heterogeneous
sources are first segmented and standardized through
resampling, amplitude normalization, and voice activity
detection, after which multiple short-time Fourier transforms
are applied using different window sizes to capture
complementary time—frequency resolutions. The resulting
representations are converted into log-Mel spectrograms that
serve as two-dimensional inputs to the acoustic model.

Algorithm 1: Proposed ForenVoice-Secure Forensic Audio Data Mining Framework (CNN-Att—-LSTM with Anti-Spoofing and

Federated Learning)

1. Input: where x;is raw audio, y; € {1, ..., K} is speaker ID, s; € {0,1} is spoof label (0 bona fide, 1 spoof)

Federated clients {DC}E=1(optional, for privacy-aware training)

()

i

9. |Multi-window STFT: {S,, (x i(j)
END FOR
10. 'Step 3: Robust representation mining (CNN + attention)

11. [FOR each log-Mel X
12. |CNN feature extraction: H
END FOR

13. Step 4: Temporal identity modeling (LSTM + pooling)

Vhwew < STFT(x

)

i

@

i

«fp(X

14. |FOR each segment feature sequence ﬁi(])DO
15. |LSTM temporal modeling: Zi(j) « gw(ﬁi(j)
END FOR

16. Step 5: Joint decision heads (identity + spoof)
17. |FOR cach embedding 20’ DO

18. |Speaker posterior: p(y | xi(i)
END FOR

19. Step 6: Spectro-temporal consistency checking
20. |[FOR each segment xi(j)DO

21. [Consistency score: C(xi(j)
22.

23.

(0]

) « softmax(h,,(z

1 ,_
1 1t I zegs — 2 13(11)
Consistency flag: I;,. < [C(xi])) > 1](12)
Risk fusion (optional): R(Xi(])) < Bp(s=11x
END FOR

Step 7: Robust training objective (multi-task + adversarial)
Multi-task loss: £, = Lig + ALgyo01

Robust min-max optimization, and Initialize classifier head f(-)
Step 8: Privacy-preserving federated learning
FOR each federated round r = 1, ..., RDO

Each client ctrains locally on D using Steps 1-7 to obtain @Er)

)«

(0]

i

24.
25.

26.
27.

28.
29.

) and Frequency attention: ﬁi( D Attn(H;

and Embedding pooling: 2P e pool (Z
gp 8" Z;

(j)}jbiil « Segment(x:peech, L,0)

2. Output: Case/evidence-level decisions: predicted speaker label §, spoof risk §, consistency score C(x), confidence R(x)
3. Step 1: Data acquisition and preprocessing
4.  REPEAT for each recording x; € D
5. |Resample and normalize: x; < Resample(x;), Normalize (x;)
6. |Voice activity detection: x: peech VAD(x;) and Segment into short utterances: {x;
UNTIL all recordings are processed
7. IStep 2: Step 2: Multi-resolution time—frequency representation
8. |FOR each segment xi(])DO

()

,w) and Convert to log-Mel: Xi(j) < O{Sw (¥ wew)(1)

0)
)

(j))

i

@

)) and Spoof posterior: p(s | x;) < o(qy (zi(j))

)+ (1 = Bynorm(C(x))
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(r)

C

30. Server aggregation: e+l o Z o
c=1

END FOR

Vol. 17, No. 1, 2026

31. Step 9: Evidence-level data mining and case-level decision: Given a case with

32. |multiple clips € = {x(i)}jlvilz Filter/reweight by risk:
33. |wj < QualityWeight(R(x"),SNR,duration)
34. |Finally, calculate case-level identity decision
35.
[End ForenVoice-Secure System]

Spectral patterns are learned through stacked convolutional
blocks that emphasize local speaker-discriminative cues, while
an attention mechanism highlights informative frequency
bands and suppresses irrelevant or manipulated components.
Temporal dependencies across segments are then modeled
using an LSTM to capture identity-consistent dynamics that
persist despite noise, compression, or short utterances. During
training, adversarial perturbations are injected to improve
robustness against replay and synthetic speech, and federated
leaming is employed to keep raw audio localized while
enabling collaborative model optimization. Finally, a decision
head jointly performs speaker identification, spoof detection,
and spectro-temporal consistency checking, producing
evidence-level confidence scores suitable for forensic analysis
and law-enforcement decision support.

Bonafide-like Replay-/ike Despfake-ike

Fig.3. Waveform and time—frequency patterns for bona fide, replay-like,
and deepfake-like speech, illustrating class-dependent differences in spectral
structure and temporal behavior.

ForenVoice-Secure treats voice-based criminal
identification as a forensic audio data mining problem. The
system does not assume a tidy “enroll then verify” setting.
Instead, it ingests many fragments from mixed sources, mines
identity cues that survive nuisance variability, and
simultaneously estimates whether each fragment is trustworthy
enough to contribute to an evidentiary decision. This is closer
to how real casework unfolds: evidence is incomplete,
heterogeneous, and sometimes adversarial. Each observed
waveform is viewed as a superposition of the underlying
speaker signal, channel effects, environmental noise, and
potential manipulation artifacts are calculated by Eq. (4) as:

x(t) = (s(t) X h(t)) + n(t) + a(t) 4

Here, x(t)is the recorded audio, s(t)the speaker signal,
h(t)the channel impulse response, n(t) additive noise, and
a(t) attack artifacts such as replay coloration or synthesis
fingerprints. This decomposition is not decorative. It directly
motivates why the pipeline includes: 1) robustness measures

aimed at reducing sensitivity to h(t)and n(t), and 2) security
measures designed to detect or isolate a(t). To reflect realistic
deployment, data acquisition is structured to cover three
aspects: a) large speaker diversity, b) forensic-style recording
variability, and c¢) explicit spoof threats. Each example is stored
with speaker identity ywhen available, an authenticity label
z € {0,1}(bona fide vs spoof) when available, and metadata
m (channel, codec, duration, and source, if known). Since
forensic evidence often arrives as short clips rather than long
sessions, each recording is treated as a bag of segments
{x,}K_, extracted using VAD and conservative trimming.
Segmenting is practical because it increases training instances
without inventing new speakers, and it forces the model to
learn from short evidence, where many systems fail.

Preprocessing standardizes sampling rate and amplitude
while deliberately avoiding aggressive denoising that could
remove forensic cues. A light pre-emphasis may be applied,
followed by time—frequency analysis. For each segment,
compute the STFT X(t, w) from Eq. (5) with window length
Land hop H, and defined as:

X(t,w) = th“:;x(t + tH) w(t) e /@t (5)

Because evidentiary recordings vary substantially in
speaking rate and channel characteristics, ForenVoice-Secure
uses multi-resolution analysis (multiple window sizes) to
capture complementary detail rather than committing to a
single L. Power spectra | X (7, w) |?are mapped through a Mel
filterbank M and log-compressed to produce log-Mel features
F € R™2 calculated by Eq. (6) as:

=log (M | X I* +e) (6)

Log-Mel features behave well for convolutional leaming,
compress dynamic range, and retain spectro-temporal patterns
that replay and synthesis often disturb in subtle but detectable
ways.

To reduce sensitivity to the nuisance terms in Eq. (1),
controlled augmentation was applied that mimics evidentiary
damage. Noise augmentation adds a noise clip u(t)scaled to a
target SNR is calculated by Eq. (7) as:

Px
xnoisy(t) =x(t) +au(t),a = ’Pulosw (7

Channel mismatch is simulated using random impulse
responses and band-limiting (telephony-like filtering).
Compression artifacts are introduced via codec simulation
when feasible. A key constraint is avoided “normalizing away”
spoof artifacts: spoofing-related transformations are handled
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separately because the goal is to detect manipulation patterns,
not wash them out.

Given F, a CNN encoder mines local spectro-temporal

patterns correlated with speaker identity. Each convolutional
block is modeled by Eq. (8) as:

HOD = 4 (BN (W(l) « g1 4+ b(l))) (8)

where, * denotes convolution, BNbatch normalization, and
o(-)a nonlinearity. Convolutions are used because speaker cues
often appear as localized spectral shapes and short transitions,
especially in short utterances.

A frequency attention mechanism is applied to emphasize
informative bands and down-weight unreliable regions (for
example, bands dominated by background noise, codec
warping, or suspicious regularities). In practice, this improves
stability on degraded evidence and helps suppress components
that appear manipulated. Fig. 4 shows the CNN-LSTM
backbone diagram. Log-Mel spectrogram inputs are processed
through stacked convolutional layers to learn local spectro-
temporal speaker cues, followed by LSTM-based recurrent
modeling to capture longer-range identity dynamics. The
resulting representation is passed through fully connected and
dropout layers before feeding into parallel classification heads
for speaker identification and anti-spoofing, enabling robust
and privacy-aware forensic voice analysis.

CNN outputs are treated as a sequence of frame-level
embeddings U = {u,}I_,. Temporal dependencies are modeled
using an LSTM as in Eq. (9):

h¢, ¢ = LSTM (g, hyq,€0-1)- )

A segment-level embedding eis obtained using attentive
pooling to focus on informative frames and calculated by
Eq. (10) as:

exp (v tanh (Why))
a, =

—_ VT
B z:£=1 exp (v'tanh Why))’ € = t=10¢ ht. (1())

This matters in forensic audio because segments often
include pauses, overlapping, and low-energy regions. Uniform
pooling treats those as equally informative, which is rarely
true. During training, identity learning is posed as closed-set

Audio

) ol

Speaker

Feature Extractor
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classification to encourage strong separation among speakers.
With classifier weights W, and logits 0 = W,e, the softmax
probability is defined by Eq. (11) as:

PO 1) =5 2 (11)
c=1exp (00
The identification loss, which is cross-entropy, is defined
by Eq. (12) as:
Lig=—logp(yle) (12)

For forensic use, embedding is also usable for verification
and retrieval. Verification-style scoring uses cosine similarity,

which is defined by Eq. (13) as:
ele,
lleqllie;ll

score(eq,e;) = (13)
Security is integrated via spoof classification. With sigmoid
outputZ = a(w, e), the spoof loss is defined by Eq. (14) as:

Lspoot = —(zlog Zz+ (1 — 2)log (1 — 2)). (14)

The combined multi-task objective is calculated by Eq. (15)
as:
L=Lig+ALpoor+B 1613, (15)

where, Acontrols the influence of spoof leaming and fSis
weight decay. The intuition is simple: spoof artifacts can
mislead speaker models, so forcing the encoder to be useful for
authenticity reduces overfitting to synthetic quirks. Because
attackers can adapt to fixed detectors, ForenVoice-Secure adds
adversarial training. Perturbed features were used as a gradient-
based method (e.g., FGSM) and calculated by Eq. (16) as:

Foqv = F + €sign (Ve L(O;F,y,2)) (16)

Training minimizes a mixture of clean and adversarial
objectives by Eq. (17) as:

Liob = (A =V)L(O;F,y,2) +y L(O; Faqy,y,2). (17)

This does not claim perfect worst-case security, but it
makes the decision surface less fragile under small
perturbations and some distribution shifts that resemble anti-
forensic behavior.

Federateral Adversarially
Learning Robust Learning

Forensic
Decision Head
-/

CNN-Based
Extractor

Bonafide " -
orensic
Replay Attack Decision Head
Deepfake

Fig. 4. Overview of the ForenVoice-Secure CNN-LSTM backbone. Log-Mel spectrogram inputs are processed through stacked convolutional layers to learmn
local spectro-temporal speaker cues.

160 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Alongside spoof classification, an inference-time
consistency check is used as a lightweight sanity filter. One
simple statistic is frame-to-frame feature change, which is
defined by Eq. (18) as:

1
A =IF = Fy "2'HA=EZ{=2At (18)

Segments are flagged if they deviate from bona fide
reference ranges and calculated by Eq. (19) as:

flag(F) = I(up <1,V <tIVo<t2 V g(FH>t3) (19)

where, g(F)is an auxiliary artifact score and thresholds
7;are tuned on trusted development data. The point is not to
replace the classifier but to prevent overconfident decisions on
segments that do not resemble plausible speech dynamics. To
avoid centralizing sensitive evidence, training can be
performed via federated learmning. With Ksites holding local
datasets {D, }X_, of sizes n,, each site optimizes its local
objective and sends model updates to a server. The server
aggregates using FedAvg is defined by Eq. (20) as:

O+t = YK ——ortt (20)

nj

j=1

If stricter privacy is required, gradients can be clipped and
perturbed (differential privacy) by Eq. (21) as:

g = dip(g, C) + N (0,0%C?]). 21

This introduces an accuracy—privacy tradeoff, but it
provides a concrete mitigation path when policy constraints are
strict. Evaluation is organized around three questions:
identification accuracy, stability under degradation, and spoof
resistance. Identification is reported using top-1 accuracy and
calibration. Verification analysis reports EER by finding * by
Eq. (22) as:

FAR(7*) = FRR(7*), EER = FAR(7*) = FRR(z*) (22)

Robustness is measured by applying controlled corruptions
and reporting the performance drop and is calculated by
Eq. (23):

AAcc = AcCean — Accdegraded (23)

Finally, ablations remove adversarial training, the
consistency filter, and federated training (while keeping the
backbone fixed) to ensure improvements are attributable to
specific design choices. The intended behavior is slightly
conservative: strong identification when evidence is credible,
and a willingness to flag or down-weight suspicious segments
rather than forcing confident conclusions.

IV. EXPERIMENTAL SETUP

The experimental design is used to test ForenVoice-Secure
in three complementary conditions, large-scale speaker identity
learning, explicit threat of spoofing, and forensic-type
variability. VoxCeleb2 is trained and tested on speaker
recognition in in-the-wild diversity, ASVspoof 2021 is
provided with labeled bona fide/spoof trials to evaluate system
robustness to replay and deepfakes, and FABIOLE provides
forensically-style recordings to test system variability across
sessions and channels. Audio is all resampled to 16 kHz,
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monophonicized, amplitude-normalized and divided into
VAD-based segments, with fixed-length segments obtained by
truncation or zero-padding so that the batches can be processed
uniformly. STFT (e.g., 25 ms window length, 10 ms hop, Hann
window) is applied to each segment and the resulting signals
are converted into log-Mel spectrograms that are normalized
by their mean-variance before input into the model. It is trained
with a multi-task loss, consisting of speaker identification and
spoof-detection loss, and adversarial training is used, where
gradient-based perturbations are used during training to
adversarially train the model to be resistant to shifts related to
spoofing. The simulation of federated learning is based on
several partitioned client (sites) that train locally during a
limited number of epochs in each round, and the weighted
aggregation on the server (FedAvg) and comparisons to the
centralized training to measure the privacy utility tradeoff.

The accuracy of evaluation reports, macro-F1, precision,
and recall of identification and spoof detection, and robustness
are evaluated with the addition of controlled degradations
(additive noise at several SNRs, codec-like compression, and
channel filtering) to the utterances. Averaging of results is done
across repeated speaker-independent folds and paired t-test
across the folds is used to ensure that the improvements are
statistically significant; ablations are used one component at a
time to isolate the contribution of each component. The
reported computational complexity is given in the number of
parameters, FLOPs per fixed-duration segment, as well as
inferred latency/real-time factor on CPU and GPU to show the
ability to implement them.

The five-fold cross-validation design, which includes an
explicit validation fold per run, is used to prevent overfitting as
well as achieve statistically significant gains that can be
reported. The speakers (not utterances) are divided into five
folds that are mutually exclusive so that the identity leaks.
Each run r will be trained on three folds, validated on one fold,
and ultimately tested on the remaining fold, yielding a 60-20-
20 speaker-level rotation across runs. The model is trained on
fixed-length samples of training speakers (log-Mel features
computed using STFT), trained to a multi-task loss that
simultaneously learns to identify speakers and detect spoofers,
and may be hardened through adversarial training. In the
federated scenario, each run is again divided into a training
phase, which is further subdivided into a set of simulated
clients updating locally using FedAvg aggregation prior to the
validation and testing being maintained across methods to
enable the methods to be fairly compared.

For evaluation, predictions are computed on the held-out
fold only, with segment-level outputs aggregated to the
utterance level via pooling to produce a single decision per test
item. Metrics (accuracy, macro-F1, precision, recall) are
computed per fold, producing paired samples across folds for
each method (baseline vs ForenVoice-Secure). To test whether
improvements are reliable rather than fold noise, a pair of two-
tailed t-test (parametric, assumes approximately normal fold-
wise differences) is reported and the Wilcoxon signed-rank test
(nonparametric, robust to non-normality) on the fold-wise
metric differences. Concretely, for each metric m, it forms
differences dr — ml;orenVoice-Secure _ mk;aseline and test
H:median(d,) = Owith Wilcoxon and H: E[d,] = 0 with the
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paired t-test. Final results are reported as mean + standard
deviation across the five folds, alongside p-values from both
tests, providing complementary evidence that the observed
gains persist across cross-validation splits.

V. EXPERIMENTAL RESULTS ANALYSIS

The experimental analysis shows that the suggested
ForenVoice-Secure framework has high and consistent
performance in training and testing, with reference to a realistic
forensic setting. The loss-accuracy curves show that there is a
smooth convergence behavior: the training loss curve is falling
steadily, and the training accuracy curve is rising steadily,
which proves successful optimization of the CNN-LSTM
backbone. Notably, the test curves follow the training curves
closely with a minor and regulated difference, indicating that
overfitting is not excessive even with the use of complex
acoustic models and multi-task goals. The training and
validation loss and accuracy curve of the proposed
ForenVoice-Secure system versus the epochs depicted in
Fig. 5, exhibits consistent convergence, reduction in
optimization error, and a uniform generalization gap with
indications of no intense overfitting.

ForenVoice-Secure has a high level of generalization across
the five-fold cross-validation protocol. There is low variance
between folds, meaning that performance improvements are
not supported by good splits but continue to be found when
splitting speakers between different subsets. Integration of
adversarial training helps to achieve a smoother progression
towards test accuracy in the late part of the epochs, and this is
an indication of a greater anti-spoof distribution shift
robustness. The federated learning approach brings with it the
minor penalty of a higher convergence time, yet fails to reduce

Vol. 17, No. 1, 2026

final accuracy, which validates the possibility of ensuring
privacy at the expense of forensic reliability.
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Fig.5. The figure shows the training and validation loss and accuracy curves

of the proposed ForenVoice-Secure system.

TABLEII. FIVE-FOLD CROSS-VALIDATION OF PROPOSED FORENVOICE-SECURE SYSTEM WITH EXPLICIT ARCHITECTURAL ISOLATION
Method Accuracy (%) Precision (%) Recall (%) Fl-score (%) | Avg. Inference Time (ms)
CNN baseline (log-Mel) 94.82+0.61 94.35+0.68 94.10+£0.72 | 94.22+0.66 8.4
CNN + Attention (no LSTM) 9691 +0.44 96.48 £0.51 96.32 £0.49 96.40 £0.47 11.2
CNN + LSTM (no attention) + Adversarial 97.86+0.33 97.54+0.38 97.41+£0.36 97.47+0.35 12.9
CNN + LSTM (no attention) + Adversarial + FL 97.94+0.31 97.63 £0.34 97.52+£0.33 97.57+0.32 14.1
Ei‘;env"ice's““re (full: Attention -+ LSTM + Adv. + | g8 434 .27 98.114029 | 98.02£031 | 98.06+0.28 | 1438

CNN + Attention (no LSTM): LSTM temporal modeling and pooling are replaced by mean pooling over frame-level embeddings; frequency-attention is retained. CNN + LSTM (no attention): Frequency-attention is

Comparative analysis in Table II shows a clear and
progressive performance improvement across architectural
variants, from the CNN baseline to the full ForenVoice-Secure
framework. Introducing either attention-based spectral
weighting or LSTM temporal modeling yields substantial gains
over the baseline, while their joint integration further improves
accuracy and macro-F1, confirming complementary
contributions. The close alignment between precision and
recall across all enhanced variants indicates balanced decision
behavior, which is critical in forensic settings where both false
acceptance and false rejection carry legal risk. Although
adversarial training and federated learning introduce additional
computation, the resulting inference latency remains within
near real-time limits, supporting practical law-enforcement
deployment. Statistical significance testing across folds (paired
t-test and Wilcoxon signed-rank) consistently rejects the null

removed, while keeping the CNN encoder and LSTM temporal modeling unchanged.
hypothesis for accuracy, precision, recall, and F1-score,
confirming that the observed gains are robust and not fold-
dependent.

The confusion table can be condensed, as illustrated in
Fig. 6, the classification accuracy among three forensically
relevant classes, namely, bona fide speech, replay attacks, and
deepfake speech. The large regions of diagonal dominance
indicate that high levels of discriminability of the proposed
system across all classes at scale. The correct context of bona
fide speech is found in 98.50 per cent, and only a small
difference with replay (0.90) and deepfake (0.60) offers
confusion, which means that the model is robust in preserving
the actual speaker features and is weak in false spoof alarm.
Replay attacks get a positive recognition rate of 96.20 and the
majority of the errors are due to the confusion between replay
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artifacts and deepfake speech (2.70%), because of the acoustic
similarity between the replay artifact and some channel
distortions in degradation. Deepfake speech has a 96.75%
detection rate, and little leakage to replay (2.40) and bona fide
speech (0.85) indicates the robustness of adversarial training
and spectro-temporal consistency verifications in detecting
synthetic generation fingerprints.
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Fig. 6. Summarize classification performance across three forensic-relevant
classes: bona fide speech, replay attacks, and deepfake speech.

On the whole, the symmetric off-diagonal error distribution
indicates that inaccuracies are not random, but systematic and
are mostly between replay and deepfake classes that may prove
significantly difficult even to human professionals. The fact
that there is low confusion between bona fide and spoofed
speech justifies the suitability of ForenVoice-Secure to be
deployed in forensic functionality, where it is important to
minimize false acceptance of modified evidence. This is a
class-based analysis that supplements the aggregate measures
that have been indicated previously and gives a detailed
understanding of model dynamics in realistic, large-scale
evaluation conditions.

Fig. 7 provides the other experimental comparisons with
baseline models. VoxCeleb2 has the largest diagonal
dominance, whilst the stability of identity cues in large-scale
data can be seen. ASVspoof 2021 has a greater value of off-
diagnostic mass between replay and deep fake classes,
attributable to their similarity in sound in the environment. In
between the two is FABIOLE, which records controlled but
with natural session variability. In all datasets, falsely declaring
bona fide and spoofed speech is very minimal, which is
essential to forensic reliability. Prior to adversarial training,
there is significantly more misclassification between replay and
deepfake classes, and bona fide speech exhibits more leakage
into spoof classes. Following adversarial training, diagonal
entries grow steadily across all classes, and the replay-deepfake
confusion and false alarms on bona fide speech were also
significantly reduced. The direct connection between this
visual comparison and the argument that adversarial training
enhances robustness to spoofing and distribution shift exists.

Fig. 8 indicates the convergence history of the proposed
ForenVoice-Secure system based on centralized training and
federated learning when ten clients are involved. The model
has a fast convergence rate at the centralized environment,
where the test accuracy of 9843 per cent is achieved in about
25 epochs, and the trend has a smooth and stable curve since it
is able to get access to globally aggregated data each time it
updates the model. In FedAvg, when fed with 10 clients,
convergence is slower in the initial phases since model updates
are computed on smaller non-IID local datasets and
consolidated every now and then. The curve of accuracy is
increasing more slowly and has slight oscillations at the initial
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communication rounds. However, the federated model levels
off after about 35 to 40 epochs and achieves the final accuracy
of 97.94 per cent. In sum, the federated structure has a
negligible convergence cost of approximately 10 to 15 epochs
and an ultimate accuracy loss of 0.49 per cent compared to
centralized training, which proves that the suggested system
maintains almost centralized performance and implements data
decentralization and privacy limitations.

Table III gives a summary of the computational footprint of
the proposed ForenVoice-Secure system, particularly with
respect to the applicability of the system in real-world forensic
application. The complete model has an estimated number of
4.3 million parameters, and it consumes around 1.2 GFLOPs to
run a 3-second speech fragment, which is a moderate level of

{al Baselire CNN (B CHNHLETM
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(€] CHNHLSTM+ADY

Vol. 17, No. 1, 2026

computation input on a CNN-LSTM-based model with
additional security software. The proposed system has an
average inference latency of 14.8 ms per segment in terms of
the runtime performance. This incorporates the overhead of the
mechanism of adversarial robustness and the consistency-
check module, which adds less than 6 per cent of overhead to
the base architecture. Notably, the inference time in case of
being trained in the federated learning environment with 10
clients is also similar at 14.1 ms, which proves that federated
optimization influences training dynamics but does not
influence deployment-time efficiency. Overall, Table Il
demonstrates that the suggested system provides a positive
balance between strength, preserving privacy and effective
computation, staying within the limits of real-time operation
when analyzing the voice as forensic crime evidence.
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The figure shows class-wise accuracy (Bona fide, Replay, Deepfake) for: a) Baseline CNN, b) CNN+LSTM, ¢) CNN+LSTM+Adversarial,

d) CNN+LSTM+Federated, e) ForenVoice-Secure.
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Fig. 8. Centralized training vs. FL with 10 clients.

Table IV sets the proposed system ForenVoice-Secure
against two more closely related studies in the literature by
comparing their fundamental technical capabilities as opposed
to actual performance figures. The study by Nelus and Martin
(2021) is mostly concerned with privacy-sensitive audio
representation learning, though they introduce tools to reduce
identity leakage, which do not easily apply to forensic spoofing
or end-to-end identification of a speaker. Instead, Li et al.
(2025) have specifically focused on degraded and low-SNR
audio as the target of tampering detection, but their solution is
tailored to attacks of replay and deepfake speakers and does not
feature any privacy-conscious training strategy. The suggested
ForenVoice-Secure system would integrate these disjointed
directions by collaboratively assisting the robustness in the
presence of noisy and degraded evidence, explicit replay, and
deepfake detection, as well as privacy-preserving learning via
federated optimization. The technical contribution, summarized

in Table IV, is a single end-to-end architecture applicable to
real-world forensic applications.

Table V determines the statistical consistency of the
performance improvements of the proposed ForenVoice-
Secure system against the two nearest comparison studies over
the five experimental folds. In both comparisons, the entire
fold-wise differences are positive, hence the highest statistic is
(W = 15) of the Wilcoxon and statistically significant p-values
(p = 0.031). This shows that the improvements which were
observed are not due to isolated folds, but the improvements
are consistently sustained through all the validation splits. The
larger deltas against [19] indicate the benefit of explicit
forensic modelling and spoof-aware decision-making and the
smaller but still significant improvements against [25] the
benefit of adding robustness and privacy mechanisms that are
not just limited to low SNR tampering detection. Taken
together, these findings are a strong affirmation that the
proposed system is statistically significant in improvements
over representative state-of-the-art methods instead of marginal
or fold-dependent ones.

Fig. 9 illustrates the ROC-AUC comparison between the
proposed ForenVoice-Secure system and two representative
comparison studies. Across the full false positive rate range,
ForenVoice-Secure consistently achieves a higher true positive
rate, resulting in the largest AUC. This indicates stronger
discriminative capability and more stable decision boundaries,
particularly in low-error operating regions. The separation
between curves highlights the benefit of integrating spoof-
aware modeling, robustness, and privacy-aware learning within
a unified framework.
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TABLE III. COMPUTATIONAL COMPLEXITY AND INFERENCE COST FOR THE PROPOSED SYSTEM
. Compute (per 3 s Avg inference .
System / Setting Params segment) time (ms) Explanation
. - - Consistency-check overhead reported as
ForenVoice-Secure (full, proposed) ~4.3M ~ 1.2 GFLOPs 14.8 ms <6% (deployment-friendly).
Proposed system with FL (10 clients) variant | (same Privacy-aware trmaining via FL; runtime
(CNN+LSTM+Adv+FL) backbone) (same backbone) 14.1 ms remains close to full model.
TABLEIV. STATE-OF-THE-ART COMPARISON
Work Task Noise/Degraded Spoof/Attack Privacy | Key gap vs ForenVoice-Secure
[19] Nelus & Martin (2021) Privacy-preserving audio learning A X v Not forensic spoof/ID pipeline
[25] Li et al. (2025) 25%1)0 tampering _ detection - (low- X Not replay/deepfake speaker-ID
. Forensic  speaker-ID + spoof -
ForenVoice-Secure (proposed) d . v v N Unified end-to-end system
etection
TABLE V. 5-FOLD WILCOXON SIGNED-RANK TEST
Comparison Metric Fold-1 A Fold-2 A Fold-3 A Fold-4 A Fold-5 A w p-value
ForenVoice-Secure vs[19] Accuracy (%) 3.8 3.6 35 34 33 15.0 0.031
F1-score (%) 39 3.7 3.6 35 3.4 15.0 0.031
ForenVoice-Secure vs [25] Accuracy (%) 2.1 2.0 1.9 1.8 1.7 15.0 0.031
F1-score (%) 22 2.1 2.0 1.9 1.8 15.0 0.031
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Fig.9. ROC-AUC comparison plot for ForenVoice-Secure vs. [19] vs. [25].

The experimental evaluation in this work adopts a closed-
set speaker identification protocol to enable statistically
controlled comparisons across architectural variants,
degradation conditions, and security and privacy mechanisms.
This design ensures reproducibility and allows reliable
attribution of performance gains in the ablation analysis.
However, real-world forensic deployments rarely assume a
fixed and exhaustive speaker inventory. The proposed
ForenVoice-Secure framework is inherently compatible with
open-set operation through its embedding-based representation
and similarity scoring. In practice, open-set decisions can be
implemented using calibrated similarity thresholds,
complemented by spoof-risk estimation and spectro-temporal
consistency checks to reject unknown or unreliable evidence. A
full open-set evaluation, including unknown-speaker rejection
and likelihood-ratio calibration, is identified as an important

A denotes paired fold-wise performance difference (ForenVoice-Secure — comparison method).
direction for future work to further align the framework with
forensic casework.

VL

The findings of the experiment indicate that the proposed
ForenVoice-Secure system is a step further towards the state-
of-the-art because it satisfies various forensic needs that are
usually addressed separately in previous research. Indeed, the
proposed system identifies the mean of 98.43 per cent with a
macro-F1 of 98.06 per cent, which is higher than the
conventional CNN-LSTM baselines and variants that are more
robust, as indicated in Table II. It is not just an incremental
improvement. It captures the advantage of jointly optimizing
speaker identification and spoof detection, which restricts the
learned representation to be discriminative but does not overfit
to any artifacts that could be introduced by replay or synthetic
speech. Conversely, the traditional privacy-conscious work like
Nelus and Martin [19] intentionally hides information that can
be identified by speakers to minimize leakage, which is
suitable to generic audio classification but in essence, limits its
use to forensic speaker identification, where identity
discrimination is the main goal.

Di1SCUSSIONS

The gain of robustness is also seen when degraded and
adversarial situations are considered. Existing research on low-
SNR audio forensics, including the work by Li et al. [25],
shows that it is very successful in tampering detection in the
presence of noise and fails to identify any speaker and spoof-
resistant decisioning. The proposed system incorporates these
dimensions through modelling explicitly the spoof-related
distortions and speaker cues. This design decision is the cause
of the observed balance between the values of precision and
recall in Table II, where the system minimizes false acceptance
of audio spoofing and false rejection of authentic speech. This
observation holds the confusion-matrix analysis, which
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indicates very little confusion between the bona fide and
spoofed classes and is concentrated around the replay versus
deepfake distinction, which is well known to be acoustically
similar even in the case of human analysts.

The improved results are also supported by the statistical
analysis. Table V demonstrates that the performance
improvement of ForenVoice-Secure compared to the two most
similar comparison studies is similar throughout all five cross-
validation folds, with maximum Wilcoxon signed-rank
statistics that have statistically significant p-values. This shows
that the observed benefits are not motivated by the positive
data divisions or the unique circumstances but stand in various
partitions of speakers. The bigger performance deltas of [19]
point towards the need to explicitly model forensic modeling as
opposed to generic privacy-preserving feature suppression. The
smaller but substantial gains in comparison to [25] hlghhght
the importance of implementing robustness beyond noise and
tampering to encompass replay and deepfake risks in one
learning system.

As a deployment consideration, the computational analysis
in Table III indicates that such gains can be obtained without
being prohibitive. The proposed system has a number of
parameters of about 4.3 million, 1.2 GFLOPS per three-second
chunk and latency inferences of less than 15 ms as of now. It is
suitable to use in nearly real-time forensic applications.
Notably, the federated learning form does not cause significant
changes to the performance of inference time, which confirms
that federated leaming privacy training does not influence
optimization behavior but operation efficiency. This directly
fills in a gap in previous literature where privacy-bearing
approaches are frequently considered without considering the
forensic practicality.

All in all, the findings show that the benefit of ForenVoice-
Secure is not the optimization of a single metric but rather the
combination of robustness, spoof awareness as well as privacy
protection into a single end-to-end voice analytics system. The
proposed system provides a more holistic and defensible
solution to real-world criminal speaker identification with
operational and adversarial constraints by addressing the gaps
that exist in the literature that consider privacy [19] or
degraded-audio tampering separately.

A. Threat Model Limitations and Adaptive Voice Cloning
Attacks

ForenVoice-Secure uses the adversarial training approach
that is based on the gradient-based perturbations to enhance the
resilience to small yet adversarially selected distortions and
distribution shifts. Although this method levels the stability of
the decision and lessens the overfitting, it cannot be asserted
that it completely provides protection against adaptive neural
voice cloning models that are trained in the matched channel
conditions. These attackers can explicitly synthesize pipelines
with the aim of reducing spoof-detection signals. Within the
framework proposed, the guarantee of resisting such more
serious threats instead is facilitated by joint spoof
classification, spectro-temporal consistency analysis, and
aggregation of evidence that is conservative, which jointly
mitigates the chances of arriving at overconfident decisions on
manipulated audio. Further extensive testing in comparison
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with adaptive, channel-matched voice cloning attacks is
defined as a valuable future research in enhancing the coverage
of the forensic threat.

B. Federated Learning Under Non-I1ID Forensic Evidence
Distributions

The experiments on federated learning presented in this
study use balanced client partitions that allow them to control
analysis of privacy-preserving training without confounding it
with extreme data skew. In practice in law-enforcement
environments, however, the evidence distributions on the
participating agenc1es are highly non-1ID because there are
differences in recording equipment, acoustic conditions,
speaker demographics, and case types. Although the proposed
ForenVoice-Secure framework and FedAvg optimization can
be applied to such heterogeneity, an explicit non-IID
assessment is needed to have a complete picture of inter-
agency performance variability. Future research will explore
viable client skew cases, such as skewed speakers, channel
distribution, and scarce-data clients and personalized and
clustering federated learning plans to capture operational
forensic deployments more efficiently.

C. Memory Footprint and Federated Communication
Overhead

In addition to the latency of inference, the memory
footprint and cost of communication during federated leaming
have a great bearing on deployability in forensic
infrastructures. The proposed ForenVoice-Secure model
contains about 4.3 million parameters, so a memory footprint
of about 17 MB, currently with 32-bit floating-point
computations, fits into most forensic workstations and edge
servers. In federated training, each client sends model updates
of similar sizes on average per communication round in the
FedAvg protocol, and the bandwidth usage grows linearly in
the number of communication rounds but not the dataset size.
Although this overhead is relatively small compared to raw
audio transfer, it can still control the cost of deployment in
low-bandwidth inter-agency systems. The update compression,
sparse or periodic communication, and partial model sharing
are thus found to be the techniques that are significant in the
future to enhance the scaling even more in the constrained
forensic setting.

VII. CONCLUSION AND FUTURE WORKS

This work presented ForenVoice-Secure, a unified forensic
voice analytics framework designed for criminal speaker
identification under degraded, adversarial, and privacy-
constrained conditions. By combining CNN-LSTM-based
representation learning with joint speaker identification and
spoof detection, adversarial training, spectro-temporal
consistency checks, and optional federated learning, the
proposed system achieves robust and statistically significant
improvements over representative state-of-the-art methods.
Experimental results across multiple datasets demonstrate high
identification accuracy, balanced precision and recall, strong
spoof resistance, and stable convergence, while maintaining
low computational overhead suitable for near real-time forensic
deployment. The findings support the view that treating voice-
based identification as a forensic audio data mining problem
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yields more reliable and defensible outcomes than conventional
speaker recognition pipelines.

Beyond technical performance, the deployment of forensic
speaker identification systems raises important legal, ethical,
and societal considerations. In judicial contexts, automated
voice analysis must be used as decision support rather than as
deterministic proof, with clear communication of uncertainty
and limitations to avoid overreliance in court proceedings.
Privacy is a central concem, as voice recordings may reveal
sensitive personal attributes beyond identity; the use of
privacy-aware training mechanisms, such as federated learning,
helps mitigate unauthorized data sharing but does not eliminate
the need for strict governance and access control. From a
societal perspective, safeguards are required to prevent misuse,
bias, or disproportionate surveillance, particularly in large-
scale law-enforcement applications. Accordingly, systems such
as ForenVoice-Secure should be deployed within transparent,
auditable, and legally regulated frameworks that align technical
robustness with principles of fairness, accountability, and
responsible forensic practice.

Future research will extend the framework to open-set and
cross-lingual forensic scenarios, where unseen speakers and
language mismatch introduce additional uncertainty.
Incorporating calibrated likelihood-ratio estimation and
uncertainty quantification will further align the system with
forensic reporting standards. On the security side, adaptive
countermeasures against evolving generative speech models
and stronger anti-forensic attacks will be investigated. From a
privacy perspective, tighter integration of differential privacy
and personalized federated leaming (FL) may improve
robustness to client heterogeneity while providing formal
privacy guarantees. Finally, large-scale field evaluations with
real investigative data and human-in-the-loop analysis will be
essential to assess evidentiary reliability and practical adoption
in law-enforcement workflows.
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