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Abstract—Speech is now routine evidence in criminal 

investigations, but forensic audio rarely matches the clean 

assumptions of standard speaker recognition. Clips are short, 

noisy, codec-compressed, and channel-mismatched, and they are 

increasingly exposed to replay and synthetic speech 

manipulation. Therefore, the cast criminal voice identification is 

forensic audio data mining, aiming to extract a stable identity 

structure from heterogeneous and potentially adversarial 

evidence, while respecting operational and privacy constraints. 

In this study, a novel ForenVoice-Secure system is proposed, a 

unified pipeline that combines robust representation learning, 

spoof-aware decisioning, and privacy-preserving training. Audio 

is mapped to log-Mel spectrograms and encoded with a CNN, 

while an LSTM aggregates temporal identity cues from irregular 

utterances. Robustness is improved through multi-task learning 

(identity + spoof), adversarial training, and spectro-temporal 

consistency checks for replay/deepfake artifacts. Privacy is 

addressed using federated learning, keeping raw recordings local 

and sharing only model updates. Experiments on VoxCeleb2, 

ASVspoof 2021, and a forensic-style speaker comparison corpus 

achieve statistically significant performance gains, 98.43% mean 

identification accuracy with strong class-balanced performance 

(macro F1 = 98.10%, precision = 98.22%, recall = 98.01%) and 

statistically significant gains over strong baselines across 

repeated folds (F1: 𝒑 = 𝟖. 𝟎 × 𝟏𝟎−𝟒; precision: 𝒑 = 𝟏. 𝟏 × 𝟏𝟎−𝟑; 

recall: 𝒑 = 𝟗. 𝟎 × 𝟏𝟎−𝟒). The model remains lightweight (≈4.3M 

parameters, ≈1.2 GFLOPs per 3 s), enabling near real-time 

inference with modest overhead from consistency checks (<6%). 

Overall, ForenVoice-Secure provides a compact and 

reproducible forensic audio data mining framework for scalable, 

spoof-resilient, privacy-aware law-enforcement identification. 
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I. INTRODUCTION 

Voice evidence has gained significance in the modern 
criminal investigation. Intercepts of telephones [1], emergency 
calls, body-worn cameras, covert surveillance, and open-source 
multimedia material are a regular part of the case files [2]. 
However, speech is not often gathered in regulated 
circumstances as it is in the case of fingerprints or DNA. The 
transcriptions of forensic recordings tend to be brief, noisy, 

encoded with unknown codecs, and recorded with unknown 
devices [3]. Consequently, the process of recognition of a 
speaker with audio evidence is a still technically challenging 
and methodologically controversial one [4]. Although 
automatic speaker recognition has improved quickly within the 
last decade, most of the development has been fueled by 
benchmarks that are based on comparatively clean data and 
cooperative users, which is not the case in forensic practice [5]. 

Early speaker recognition systems were based on 
generative statistical models including Gaussian mixture 
models based on universal background models and 
subsequently i-vectors representations [6]. These methods 
provided interpretable probabilistic descriptions, but were 
susceptible to channel dissimilarities as well as shorter 
utterances, which are prevalent in forensic content. Deep 
learning has led to a transition to discriminative embedding 
learning [7], where convolutional and time-delay neural 
networks yielded fixed length representations of speakers 
which significantly enhanced performance in uncontrolled 
conditions [8], [9]. Megabanks like VoxCeleb facilitated this 
development as they allowed models to learn speaker identity 
using varied, natural-world samples [10]. Nevertheless, even 
with these gains, most systems have been optimized to either 
verify or identify in benign environments but not evidentiary 
analysis. 

Forensic audio is a special category of challenges that 
extends beyond accuracy on clean benchmarks. Recording can 
include a speaker overlap, incomplete utterances, or high levels 
of environment sampling and investigators might not have 
many samples of reference of a suspect [11]. In addition, the 
legal environment requires the high level of performance but 
also the strength, stability, and reproducibility of the 
conclusions. Recent debates within forensic science point to 
the fact that speaker recognition must be considered as 
evidence presentation in uncertainty instead of certain identity 
matching [12]. This view encourages the replacement of voice 
biometrics as a limited technical issue with formulating it as an 
audio data mining in forensics, whereby meaningful identity 
trends ought to be mined out of non-homogeneous and noisy 
data. 

The threat environment has also gone an extra mile with the 
fast development of speech synthesis and voice conversion 
technologies. Current text-to-speech and neural voice cloning 
systems are able to produce a very natural speech which can 
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emulate particular speakers with little reference data [13], [14]. 
These advances have grave consequences on the field of 
forensic voice analysis where replay attacks and synthetic 
speech can also fool both human and automatic voice 
analyzers. This has been observed in community-based 
challenges like the ASVspoof challenges which have shown 
that a significant number of speaker recognition pipelines are 
susceptible to such attacks, especially when the spoofed audio 
is conveyed using realistic channels or compressed formats 
[15], [16]. As a result, anti-spoofing is not a peripheral feature 
anymore, but rather a necessity of any voice biometrics system 
that is supposed to be used in the forensic or law-enforcement 
sector [17]. 

Privacy and data control have also gained significant 
relevance, in addition to security. Voice data is data that is 
personal in nature and can be used to disclose sensitive 
information that is not pertinent to identity such as health, 
emotional status or demographic features. In crime 
investigations, there is a large amount of legal and ethical 
restriction to the dissemination and centralization of raw audio 
evidence between agencies. Federated learning (FL) 
exemplifies privacy-preserving approaches to learning; thus, it 
is getting increasing interest as it allows collaborative training 
of models without sharing data [18]. Although the concept of 
federated approaches has been investigated within a generic 
speech and biometric context, their adoption into forensic voice 
identification pipelines is not mostly developed. 

Combined, these facts indicate that there is a mismatch 
between the state-of-the-art-work on speaker recognition and 
the needs of forensic voice analysis. Degradation resistance, 
spoofing resistance, and privacy-conscious deployment are 
frequently dealt with as a single component, but not in a 
coherent set of tools. In this study, a gap is filled by proposing 
ForenVoice-Secure, a voice-focused forensics-enhanced 
analytics system, which sees criminal identification as a safe 
audio data mining challenge. The proposed method will be 
based on deep representation by learning, explicit anti-spoofing 
mechanisms, adversarial robustness, and federated training to 
deliver useful operation on real evidentiary recordings without 
violating operational and legal limitations. The research, by 
conducting the overall assessment of the three terms speaker 
identification, spoof detection, as well as degraded conditions, 
will bring voice biometrics closer to a viable, defendable 
application in contemporary law enforcement. 

A. Research Highlights 

This work makes several contributions to the field of 
forensic voice biometrics. 

• It reframes criminal voice identification as a forensic 
audio data mining problem, explicitly accounting for 
noisy, short, and heterogeneous evidence rather than 
assuming clean verification conditions. 

•  It introduces ForenVoice-Secure, a unified framework 
that combines CNN–LSTM–based speaker 
representation learning with integrated anti-spoofing 
mechanisms, including adversarial training and spectro-
temporal consistency analysis, to improve robustness 
against replay and deepfake attacks. 

• It incorporates federated learning to address privacy and 
data-governance constraints in law-enforcement 
settings, enabling collaborative model training without 
centralizing raw audio evidence. 

• It provides a statistically grounded evaluation across 
multiple datasets, demonstrating significant 
improvements in accuracy, F1-score, precision, and 
recall under degraded and adversarial conditions, while 
maintaining practical computational efficiency for 
deployment. 

B. Paper Organization 

The rest of the study is structured in the following way: 
Section II discusses related literature in speaker recognition, 
forensic voice analysis, spoofing and deepfake detection and 
privacy-preserving biometric learning. Section III describes the 
proposed ForenVoice-Secure approach, such as signal 
modelling, feature selection, network design, security, and 
federated training. Section IV explains about the datasets, 
protocols used in the experiment and measures of assessment. 
Section V shows the experimental findings and discussions 
along with the statistical significance analysis and the 
computational complexity in Section VI. Lastly, Section VII 
summarizes the study and provides limitations and directions 
of future research. 

II. LITERATURE REVIEW 

The recent work makes it rather apparent that the state of 
modern forensic and security analytics is in a utility versus 
privacy tension particularly when deep models are at stake. A 
good example here is the neural extraction of features in 
acoustic sensor networks, where representations constructed to 
perform sound classification were demonstrated to leak 
speaker-specific information and speaker recognition attacks 
could be performed on the representation in the event they 
were intercepted [19]. The authors react by suggesting a 
variational and information-limiting feature extractor that 
maintains the trusted task and activates speaker identity 
leakage, but they show resistance to a strong x-vector attacker 
[19]. The above reasoning is related to more general privacy-
sensitive media analytics in which the query protection is not 
solely of interest but also the fact that the query protection can 
be achieved with approximately matching at scale. A private 
media search architecture is a system that attains [20] sublinear 
computation and communication on public databases and 
shows privacy-preserving face recognition at large speedups, 
indicating that privacy and practicality do not necessarily 
require each other [21]. A similar privacy conscious data use is 
also reflected in another research study on email visualization: 
anonymization and aggregation may decrease identifiability, 
and yet perceived research utility may still be maintained, a 
good lesson that privacy controls are not mutually exclusive 
with analytic usefulness when carefully designed [22]. 

Back on the security front, various researches highlight the 
use of lax operational arrangements and human actions by 
attackers. An example is phishing, which is a relatively cheap, 
but impactful, attacker strategy, and a privacy-conscious 
detector framework with a specific taxonomy has been 
suggested to identify various current phishing techniques, 
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particularly in an IoT-saturated environment. Forensics in 
cloud environments are often log-centric; thus, the emphasis of 
the work has been on generating evidence in a scalable way. A 
cloud forensic expert-system architecture involves the 
narrowing of attacked areas in huge logs with the help of fuzzy 
data mining and the subsequent narrowing with the help of AI-
based analysis to produce evidence that is less difficult to 
provide in a formal way [23]. Other work around behavior 
analysis using log mining contends that manual analysis is not 
scalable to the size of contemporary data volumes and suggests 
the use of automated user behavior mining of networked 
systems, driven in part by the necessity of fighting computer 
crime more efficiently [24]. These log-based views are 
applicable since they view forensic investigation as a data 
mining process: filter, prioritize and explain, as opposed to 
detect. 

The field of audio forensics, on the other hand, 
encompasses both anti-forensic resistance as well as tamper 
detection. An SNR-sensitive digital audio tampering forensics 
system enhances the benefit of an electric network frequency 
extraction with an improved chirp Z-transform and then 
identifies anomalies with a dual-sampling isolation forest, with 
benefits of both extraction and outlier detection in a noisy 
environment [25]. Anti-forensic attacks are now also a 
concern. Attacks based on dereverberation can selectively 
weaken environmental signature splicing detection, and 
countermeasures that are grounded in rich features and 
machine learning can easily identify such anti-forensic 
processing, and indicate a new arms race between forensic 
detectors and attackers [26]. Extensive surveys keep laying 
audio-video forensics as one of the key areas of digital 
investigation, as the recorded media is frequently presented as 
court-related evidence [27]. 

Another and rather intriguing vein is the one that actually 
goes outside the voice of the speaker and seeks context within 
the audio scene. It has also been suggested to extract and 
categorize the background noise automatically and 
communicate information about the environment based on 
recordings with the use of complex noise mixtures and without 
much identity testing, even mixed speech, as an expansion of 
what can be meant by the term of forensic audio evidence [28]. 
Reproducible forensic processes are also getting interest: an 
open-source modular system enables practitioners to mix up 
enhancement, VAD, and ASR models, visualize features, and 
export repeatable pipelines, which is important when forensic 
conclusions should be auditable instead of merely valid [29]. 
Lastly, the field of forensic practice is changing with 
infrastructure modifications like cloud computing. 
Conventional digital forensic models are also under 
consideration and modification to accommodate the issues of 
preservation and acquisition peculiar to cloud investigations, 
wherein data can be distributed and challenging to acquire [30]. 
On the signal level, voice evidence can still be susceptible to 
noise, reverberation, quantization and disguise. Attempts at 
increasing its integrity and intelligibility under phonemic 
confusion suggest that enhancement of voice analysis in the 
forensics field is an inherent precondition [31]. 

Collectively, this literature is indicative of the following, as 
explained in Table I: 1) forensic evidence can be handled as a 
data mining problem under heterogeneity and scale [23], [24]; 
2) robustness must be designed to explicitly address the 
phenomenon of degradation and active anti-forensic behavior 
[25], [26], [31]; and 3) privacy preservation must be 
engineered into the pipeline, since deep representations can 
reveal identity accidentally [19], whereas practical privacy 
preserving analytics is becoming a viable option at scale [21], 
[22]. 

TABLE I.  A COMPARISON TABLE WITH FEWER COLUMNS, FOCUSING ONLY ON WHAT IS MOST RELEVANT TO FORENVOICE-SECURE 

Study Focus & Scenario Core idea Key limitation vs. Our work 

[19] 
Privacy risks in deep audio features 

for sound classification 

Learning a variational feature to suppress 

speaker-identifiable information 

Does not perform forensic speaker identification or spoof-

aware evidence mining 

[25] 
Audio tampering forensics under low-

SNR conditions 

ENF extraction with ICZT and anomaly 

detection via isolation forest 

Targets tampering detection, not identity mining or spoof-

resilient speaker analysis 

[26] 
Anti-forensic attacks on audio 

splicing detection 

Demonstrates dereverberation-based attacks and 

ML-based countermeasures 

Focuses on splicing artifacts, not joint speaker 

identification and spoof detection 

[29] 
Reproducible forensic audio analysis 

pipelines 

Modular, open-source framework for build ing 

forensic workflows 

Provides tooling rather than a unified, privacy-aware 

forensic voice model 

[31] 
Integrity and intelligib ility of forensic 

voice evidence 

Speech enhancement, segmentation, and 

distortion analysis 

Improves signal quality but does not address adversarial 

spoofing or privacy-preserving learning 
 

III. PROPOSED METHODOLOGY 

Fig. 1 is the systematic flow diagram that summarizes the 
proposed forensic voice biometrics pipeline. The development 
of the criminal voice identification process as the forensic 
audio data mining, designed to provide consistent identity 
evidence based on the heterogeneous and possibly manipulated 
records instead of relying on the presumptions of clean speaker 
verification, are formulated in this study. VoxCeleb [32] and 
SpeechTech [33] explicitly define data and threat model based 
on the nuisance factors (noise, codec compression, channel 
mismatch, short utterances) and adversarial factors (replay 
speech and synthetic speech). A CNN is used to encode each 

recording to speaker-discriminative spectral cues, and an 
LSTM is used to encode temporal identity structure, each 
recording is converted to log-Mel spectrograms. Security is 
incorporated through adversarial training and spectro-temporal 
consistency tests to decrease the sensitivity of spoof and to 
label implausible evidence. With federated learning, privacy is 
achieved by ensuring that raw audio is local and model updates 
are aggregated. Assessment is multi-axis: performance of 
identification, resistance to degradations, performance under 
replay/deepfake conditions, repeated-fold stability, and 
ablations which eliminate adversarial training, consistency 
tests, and federation to measure the contribution of each 
component. 
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A. Data Gathering 

Three complementary corpora were used to collect the data 
about: 1) large-scale speaker identity variation, 2) explicit 
threats of spoofing, and 3) forensic-like session variability. To 
perform large scale identifier of speakers, VoxCeleb2 [32] has 
been accessed directly on the official Oxford VGG distribution 
page, where the description of the canonical dataset and 
download procedure are indicated. VoxCeleb2 consists of more 
than one million utterances of 6,112 speakers, an official 
dev/test split of 5,994/118 speakers. 

This division is maintained so as to prevent leakage and to 
ensure that results are consistent with previous speaker 

recognition literature, where the institutional access policies 
allow it, also observed is that reproducible scripted ingestion 
can be facilitated via a dataset-hosted packaging pathways (e.g. 
a dataset card that reflects the structure of the archive and its 
metadata files). ASVspoof 2021 [34] (LA/PA/DF) was 
acquired at the official ASVspoof 2021 post-challenge release 
page, which contains protocol files (keys) and associated 
metadata, including the information about bona fide or spoof 
and condition. The speaker comparison type was forensic-style, 
and it was applied by FABIOLE [35] to add evidentiary 
variability, such as session and context variations that are more 
akin to actual forensic casework (such as environment, channel 
conditions, and recording situations). 

 
Fig. 1. Systematic flow diagram of the ForenVoice-secure framework. 
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Fig. 2. The figure shows: a) VoxCeleb2: Single distribution for la rge-scale 

speaker-ID features, b) ASVspoof 2021: Overlaid bona  fide vs. Spoof feature 

distributions, c) FABIOLE: Single distribution for forensic-style corpus 

features, and the combined figure illustrates how samples differ across the 

three selected corpora. 

Fig. 2 provides an empirical perspective of the distribution 
of the learned acoustic features in the three datasets and their 
variability by class. In VoxCeleb2 [Fig. 2(a)], the wide 
distribution of speakers and recordings is indicative of a large 
amount of speaker and recording variability, akin to the case of 
in-the-wild data. This heterogeneity can be exploited to learn 
discriminative identity embedding, but again, it raises the intra-
speaker variability because of varying environments, 
microphones, and speaking styles. In ASVspoof 2021 
[Fig. 2(b)], bona fide speech contributes to the creation of a 
distribution that is still somewhat enclosed by VoxCeleb2, 
whereas the spoofed speech has a more systematically 
distributed and more scattered appearance. This tendency is 

aligned with spectral and temporal anomalies caused by replay 
and synthetic generation and it confirms the need of explicit 
anti-spoofing goals during representation learning. In 
comparison, FABIOLE [Fig. 2(c)] has a more concentrated 
distribution, which corresponds to the conditions of the 
forensic-style broadcast and longer segments in general. 
Nonetheless, its feature space is different even when compared 
to in-the-wild speech and spoofed audio, implying that there is 
a domain gap that may influence generalization in case it is 
overlooked. Combined with these distributional variations, this 
suggests the suggested multi-task and robustness-based design: 
a realistic forensic voice biometrics system should explicitly 
model dataset- and class-varying behavior of features, not a 
uniform homogeneous speech distribution. 

B. Preprocessing and Time–Frequency Representation 

All audio signals are first standardized to ensure 
consistency across datasets and recording conditions. Each 
recording is converted to a single-channel (mono) waveform 
and resampled to a fixed sampling rate of 16 kHz, which 
provides sufficient bandwidth for speaker-discriminative 
information while maintaining computational efficiency. 
Amplitude normalization is then applied to control dynamic 
range variations across sources, using peak or RMS 
normalization to reduce sensitivity to recording gain without 
suppressing forensic cues. 

Silence and non-speech regions are removed using an 
energy-based voice activity detection procedure. The objective 
is not aggressive denoising but the exclusion of long inactive 
segments that would otherwise dilute speaker-relevant 
information, especially in short forensic utterances. Audio 
segments shorter than a minimum duration are either discarded 
or zero-padded to a fixed length to enable batch processing and 
stable time–frequency representations. 

Each preprocessed waveform 𝑥(𝑡) is transformed into a 
time–frequency representation using the short-time Fourier 
transform (STFT) [36]. Given a window function 𝑤(𝑡) , 
window length 𝐿 , and hop size 𝐻 , the STFT is computed 
through Eq. (1) as: 

𝑋(𝜏, 𝜔) = ∑ 𝑥(𝑡 + 𝜏𝐻) 𝑤(𝑡) 

𝐿−1

𝑡=0

𝑒−𝑗𝜔𝑡,    (1) 

where, 𝜏  indexes the frame and 𝜔 denotes angular 
frequency. In our implementation, a Hann window is used with 
𝐿 = 400 samples and 𝐻 = 160  samples, balancing time 
resolution and frequency selectivity for forensic speech 
analysis. The magnitude spectrum ∣ 𝑋(𝜏, 𝜔) ∣is then projected 
onto a Mel-scale filterbank to approximate perceptually 
relevant frequency resolution. Let M denote the Mel filterbank 
matrix; the Mel-spectral energy is computed by Eq. (2) as: 

S(𝜏) = M  ∣ 𝑋(𝜏, 𝜔) ∣2 .                          (2) 

A logarithmic compression is applied to stabilize variance 
and emphasize lower-energy components, yielding the log-Mel 
spectrogram, is defined by Eq. (3) as: 

F(𝜏) = log (S(𝜏) + 𝜖),                           (3) 
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where, 𝜖 is a small constant to avoid numerical instability. 
The resulting log-Mel spectrograms are optionally mean–
variance normalized on a per-utterance or per-batch basis 
before being fed into the CNN–LSTM [37] backbone. This 
preprocessing pipeline preserves fine-grained spectro-temporal 
structure required for speaker discrimination and spoof artifact 
detection, while maintaining robustness to channel mismatch, 
noise, and codec-induced distortions commonly present in 
forensic audio evidence. 

Fig. 3 compares representative voice patterns across three 
classes by showing the input waveform, magnitude 
spectrogram, and phase-derivative spectrogram for each signal. 
The bona fide speech exhibits stable harmonic structure and 
smooth temporal evolution, while the replay-like signal shows 
spectral coloration, added high-frequency energy, and echo-
related banding effects. In contrast, the deepfake-like speech 
displays smoother spectral envelopes with noticeable non-
stationarity caused by amplitude and frequency modulation. 

These visual differences highlight how replay and synthetic 
generation introduce characteristic spectro-temporal artifacts 
that can be exploited by forensic voice analysis and anti-
spoofing mechanisms. 

C. ForenVoice-Secure Framework 

The proposed ForenVoice-Secure framework, as described 
in Algorithm 1, operates as a unified forensic voice analysis 
pipeline that transforms raw evidentiary audio into reliable 
identity decisions under adversarial and privacy-constrained 
conditions. Audio recordings collected from heterogeneous 
sources are first segmented and standardized through 
resampling, amplitude normalization, and voice activity 
detection, after which multiple short-time Fourier transforms 
are applied using different window sizes to capture 
complementary time–frequency resolutions. The resulting 
representations are converted into log-Mel spectrograms that 
serve as two-dimensional inputs to the acoustic model. 

Algorithm 1:  Proposed ForenVoice-Secure Forensic Audio Data Mining Framework (CNN–Att–LSTM with Anti-Spoofing and 

Federated Learning) 

1. Input:  where xiis raw audio, yi ∈ {1, … , K} is speaker ID, si ∈ {0,1} is spoof label (0 bona fide, 1 spoof) 

Federated clients {𝒟c}c=1
C (optional, for privacy-aware training) 

2. Output:  Case/evidence-level decisions: predicted speaker label ŷ, spoof risk ŝ, consistency score C(x), confidence R(x) 
3. Step 1: Data acquisition and preprocessing 

4. REPEAT for each recording xi ∈ 𝒟    

5. Resample and normalize: xi ← Resample(xi), Normalize (xi) 

6. Voice activity detection: x
i

speech
← VAD(xi) and Segment into short utterances: {x

i

(j)
}

j=1

Mi ← Segment(x
i

speech
, L, O) 

UNTIL all recordings are processed 

7. Step 2: Step 2: Multi-resolution time–frequency representation  

8. FOR each segment xi

(j)
DO 

9. Multi-window STFT: {Sw (x
i

(j)
)}w∈𝒲 ← STFT(x

i

(j)
,w) and Convert to log-Mel: X

i

(j)
← ϕ({Sw(x

i

(j)
)}w∈𝒲 )(1) 

END FOR 

10. Step 3:  Robust representation mining (CNN + attention)  

11. FOR each log-Mel X
i

(j)
 DO 

12. CNN feature extraction: Hi

(j)
← fθ(Xi

(j)
) and Frequency attention: H̃i

(j)
← Attn(Hi

(j)
) 

END FOR 

13. Step 4: Temporal identity modeling (LSTM + pooling)  

14. FOR each segment feature sequence H̃i

(j)
DO 

15. LSTM temporal modeling: Zi

(j)
← gψ(H̃i

(j)
) and Embedding pooling: zi

(j)
← pool(Zi

(j)
) 

END FOR 

16.  Step 5: Joint decision heads (identity + spoof)  

17. FOR each embedding zi

(j)
DO 

18. Speaker posterior: p̂(y ∣ xi

(j)
) ← softmax(hω(zi

(j)
)) and Spoof posterior: p̂(s ∣ xi

(j)
) ← σ(qη(zi

(j)
) 

END FOR  

19. Step 6: Spectro-temporal consistency checking  

20. FOR each segment xi

(j)
DO 

21. Consistency score: C(xi

(j)
) ←

1

T′ −1
∑ ∥T′−1

t=1 zt+1 − zt ∥2
2(11) 

22. Consistency flag: 𝕀inc ← [C(x
i

(j)
) > τ](12) 

23. Risk fusion (optional): R(x
i

(j)
) ← βp̂(s = 1 ∣ x

i

(j)
) + (1 − β)norm(C(x

i

(j)
)) 

END FOR 

24. Step 7: Robust training objective (multi-task + adversarial)  

25. Multi-task loss: 𝓛mt = 𝓛id + 𝛌𝓛spoof 

26. Robust min-max optimization, and Initialize classifier head f(·) 

27. Step 8: Privacy-preserving federated learning  

28. FOR each federated round r = 1, … , RDO 

29. Each client ctrains locally on 𝒟cusing Steps 1–7 to obtain Θc

(r)
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Spectral patterns are learned through stacked convolutional 
blocks that emphasize local speaker-discriminative cues, while 
an attention mechanism highlights informative frequency 
bands and suppresses irrelevant or manipulated components. 
Temporal dependencies across segments are then modeled 
using an LSTM to capture identity-consistent dynamics that 
persist despite noise, compression, or short utterances. During 
training, adversarial perturbations are injected to improve 
robustness against replay and synthetic speech, and federated 
learning is employed to keep raw audio localized while 
enabling collaborative model optimization. Finally, a decision 
head jointly performs speaker identification, spoof detection, 
and spectro-temporal consistency checking, producing 
evidence-level confidence scores suitable for forensic analysis 
and law-enforcement decision support. 

 
Fig. 3. Waveform and time–frequency patterns for bona  fide, replay-like, 

and deepfake-like speech, illustrating class-dependent differences in spectral 

structure and temporal behavior. 

ForenVoice-Secure treats voice-based criminal 
identification as a forensic audio data mining problem. The 
system does not assume a tidy “enroll then verify” setting. 
Instead, it ingests many fragments from mixed sources, mines 
identity cues that survive nuisance variability, and 
simultaneously estimates whether each fragment is trustworthy 
enough to contribute to an evidentiary decision. This is closer 
to how real casework unfolds: evidence is incomplete, 
heterogeneous, and sometimes adversarial. Each observed 
waveform is viewed as a superposition of the underlying 
speaker signal, channel effects, environmental noise, and 
potential manipulation artifacts are calculated by Eq. (4) as: 

𝑥(𝑡) = (𝑠(𝑡) × ℎ(𝑡)) + 𝑛(𝑡) + 𝑎(𝑡)               (4) 

Here, 𝑥(𝑡)is the recorded audio, 𝑠(𝑡) the speaker signal, 
ℎ(𝑡)the channel impulse response, 𝑛(𝑡) additive noise, and 
𝑎(𝑡) attack artifacts such as replay coloration or synthesis 
fingerprints. This decomposition is not decorative. It directly 
motivates why the pipeline includes: 1) robustness measures 

aimed at reducing sensitivity to ℎ(𝑡)and 𝑛(𝑡), and 2) security 
measures designed to detect or isolate 𝑎(𝑡). To reflect realistic 
deployment, data acquisition is structured to cover three 
aspects: a) large speaker diversity, b) forensic-style recording 
variability, and c) explicit spoof threats. Each example is stored 
with speaker identity 𝑦when available, an authenticity label 
𝑧 ∈ {0,1}(bona fide vs spoof) when available, and metadata 
𝑚 (channel, codec, duration, and source, if known). Since 
forensic evidence often arrives as short clips rather than long 
sessions, each recording is treated as a bag of segments 
{𝑥𝑘}𝑘=1

𝐾 extracted using VAD and conservative trimming. 
Segmenting is practical because it increases training instances 
without inventing new speakers, and it forces the model to 
learn from short evidence, where many systems fail. 

Preprocessing standardizes sampling rate and amplitude 
while deliberately avoiding aggressive denoising that could 
remove forensic cues. A light pre-emphasis may be applied, 
followed by time–frequency analysis. For each segment, 
compute the STFT 𝑋(𝜏, 𝜔) from Eq. (5) with window length 
𝐿and hop 𝐻, and defined as: 

𝑋(𝜏, 𝜔) = ∑ 𝑥(𝑡 + 𝜏𝐻) 𝑤(𝑡) 
𝐿−1

𝑡=0
𝑒−𝑗𝜔𝑡.            (5) 

Because evidentiary recordings vary substantially in 
speaking rate and channel characteristics, ForenVoice-Secure 
uses multi-resolution analysis (multiple window sizes) to 
capture complementary detail rather than committing to a 
single 𝐿. Power spectra ∣ 𝑋(𝜏, 𝜔) ∣2are mapped through a Mel 
filterbank 𝑀and log-compressed to produce log-Mel features 
𝐹 ∈ ℝ𝑇×𝐵 calculated by Eq. (6) as: 

𝐹 = log  (𝑀  ∣ 𝑋 ∣2 +𝜖)                    (6) 

Log-Mel features behave well for convolutional learning, 
compress dynamic range, and retain spectro-temporal patterns 
that replay and synthesis often disturb in subtle but detectable 
ways. 

To reduce sensitivity to the nuisance terms in Eq. (1), 
controlled augmentation was applied that mimics evidentiary 
damage. Noise augmentation adds a noise clip 𝑢(𝑡)scaled to a 
target SNR is calculated by Eq. (7) as: 

𝑥noisy(𝑡) = 𝑥(𝑡) + 𝛼𝑢(𝑡), 𝛼 = √
𝑃𝑥

𝑃𝑢 10SNR/10           (7) 

Channel mismatch is simulated using random impulse 
responses and band-limiting (telephony-like filtering). 
Compression artifacts are introduced via codec simulation 
when feasible. A key constraint is avoided “normalizing away” 
spoof artifacts: spoofing-related transformations are handled 

30. Server aggregation: Θ(r+1) ← ∑
nc

N

C

c=1
Θc

(r)
 

END FOR 

31.  Step 9: Evidence-level data mining and case-level decision: Given a case with  

32. multiple clips ℰ = {x(j)}j=1
M : Filter/reweight by risk: 

33. wj ← QualityWeight(R(x(j)),SNR,duration) 

34. Finally, calculate case-level identity decision 

35.  

[End ForenVoice-Secure System] 
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separately because the goal is to detect manipulation patterns, 
not wash them out. 

Given 𝐹 , a CNN encoder mines local spectro-temporal 
patterns correlated with speaker identity. Each convolutional 
block is modeled by Eq. (8) as: 

𝐻(𝑙) = 𝜎  (BN (𝑊(𝑙) ∗ 𝐻(𝑙−1) + 𝑏(𝑙)))           (8) 

where, ∗ denotes convolution, BNbatch normalization, and 
𝜎(⋅)a nonlinearity. Convolutions are used because speaker cues 
often appear as localized spectral shapes and short transitions, 
especially in short utterances. 

A frequency attention mechanism is applied to emphasize 
informative bands and down-weight unreliable regions (for 
example, bands dominated by background noise, codec 
warping, or suspicious regularities). In practice, this improves 
stability on degraded evidence and helps suppress components 
that appear manipulated. Fig. 4 shows the CNN–LSTM 
backbone diagram. Log-Mel spectrogram inputs are processed 
through stacked convolutional layers to learn local spectro-
temporal speaker cues, followed by LSTM-based recurrent 
modeling to capture longer-range identity dynamics. The 
resulting representation is passed through fully connected and 
dropout layers before feeding into parallel classification heads 
for speaker identification and anti-spoofing, enabling robust 
and privacy-aware forensic voice analysis. 

CNN outputs are treated as a sequence of frame-level 
embeddings 𝑈 = {𝑢𝑡}𝑡=1

𝑇 . Temporal dependencies are modeled 
using an LSTM as in Eq. (9): 

ℎ𝑡, 𝑐𝑡 = LSTM(𝑢𝑡,ℎ𝑡−1 ,𝑐𝑡−1).                    (9) 

A segment-level embedding 𝑒 is obtained using attentive 
pooling to focus on informative frames and calculated by 
Eq. (10) as: 

𝛼𝑡 =
exp (𝑣⊤tanh (𝑊ℎ𝑡))

∑ exp  𝑇
𝑘=1 (𝑣⊤tanh (𝑊ℎ𝑘))

, 𝑒 = ∑ 𝛼𝑡
𝑇
𝑡=1 ℎ𝑡.      (10) 

This matters in forensic audio because segments often 
include pauses, overlapping, and low-energy regions. Uniform 
pooling treats those as equally informative, which is rarely 
true. During training, identity learning is posed as closed-set 

classification to encourage strong separation among speakers. 
With classifier weights 𝑊𝑠 and logits 𝑜 = 𝑊𝑠𝑒 , the softmax 
probability is defined by Eq. (11) as: 

𝑝(𝑦 ∣ 𝑒) =
exp (𝑜𝑦)

∑ exp (
𝐶

𝑐=1
𝑜𝑐)

                          (11) 

The identification loss, which is cross-entropy, is defined 
by Eq. (12) as: 

ℒid = −log 𝑝(𝑦 ∣ 𝑒)                           (12) 

For forensic use, embedding is also usable for verification 
and retrieval. Verification-style scoring uses cosine similarity, 
which is defined by Eq. (13) as: 

score(𝑒1 ,𝑒2) =
𝑒1

⊤𝑒2

∥𝑒1∥∥𝑒2∥
                          (13) 

Security is integrated via spoof classification. With sigmoid 
output 𝑧̂ = 𝜎(𝑤𝑎

⊤𝑒), the spoof loss is defined by Eq. (14) as: 

ℒspoof = −(𝑧log 𝑧̂ + (1 − 𝑧)log (1 − 𝑧̂)).          (14) 

The combined multi-task objective is calculated by Eq. (15) 
as: 

ℒ = ℒid + 𝜆 ℒspoof + 𝛽 ∥ 𝜃 ∥2
2 ,                      (15) 

where, 𝜆controls the influence of spoof learning and 𝛽 is 
weight decay. The intuition is simple: spoof artifacts can 
mislead speaker models, so forcing the encoder to be useful for 
authenticity reduces overfitting to synthetic quirks. Because 
attackers can adapt to fixed detectors, ForenVoice-Secure adds 
adversarial training. Perturbed features were used as a gradient-
based method (e.g., FGSM) and calculated by Eq. (16) as: 

𝐹adv = 𝐹 + 𝜖 sign (∇𝐹ℒ(𝜃;𝐹, 𝑦, 𝑧))                 (16) 

Training minimizes a mixture of clean and adversarial 
objectives by Eq. (17) as: 

ℒrob = (1 − 𝛾)ℒ(𝜃; 𝐹, 𝑦, 𝑧) + 𝛾 ℒ(𝜃; 𝐹adv ,𝑦, 𝑧).    (17) 

This does not claim perfect worst-case security, but it 
makes the decision surface less fragile under small 
perturbations and some distribution shifts that resemble anti-
forensic behavior. 

 
Fig. 4. Overview of the ForenVoice-Secure CNN–LSTM backbone. Log-Mel spectrogram inputs are processed through stacked convolutional layers to learn 

local spectro-temporal speaker cues. 
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Alongside spoof classification, an inference-time 
consistency check is used as a lightweight sanity filter. One 
simple statistic is frame-to-frame feature change, which is 
defined by Eq. (18) as: 

Δ𝑡 =∥ 𝐹𝑡 − 𝐹𝑡−1 ∥2 , 𝜇Δ =
1

𝑇−1
∑ Δ𝑡

𝑇
𝑡=2             (18) 

Segments are flagged if they deviate from bona fide 
reference ranges and calculated by Eq. (19) as: 

𝑓𝑙𝑎𝑔(𝐹) = 𝕀(𝜇Δ < 𝜏1 ∨  <τ1 ∨ σ <τ2  ∨  g(F)>τ3)  (19) 

where, 𝑔(𝐹) is an auxiliary artifact score and thresholds 
𝜏𝑖are tuned on trusted development data. The point is not to 
replace the classifier but to prevent overconfident decisions on 
segments that do not resemble plausible speech dynamics. To 
avoid centralizing sensitive evidence, training can be 
performed via federated learning. With 𝐾sites holding local 
datasets {𝒟𝑘}𝑘=1

𝐾 of sizes 𝑛𝑘 , each site optimizes its local 
objective and sends model updates to a server. The server 
aggregates using FedAvg is defined by Eq. (20) as: 

𝜃𝑟+1 = ∑
𝑛𝑘

∑ 𝑛𝑗

𝐾

𝑗=1

𝐾
𝑘=1 𝜃𝑘

𝑟+1                      (20) 

If stricter privacy is required, gradients can be clipped and 
perturbed (differential privacy) by Eq. (21) as: 

𝑔 = clip(𝑔, 𝐶) + 𝒩(0, 𝜎2𝐶2𝐼).                 (21) 

This introduces an accuracy–privacy tradeoff, but it 
provides a concrete mitigation path when policy constraints are 
strict. Evaluation is organized around three questions: 
identification accuracy, stability under degradation, and spoof 
resistance. Identification is reported using top-1 accuracy and 
calibration. Verification analysis reports EER by finding 𝜏⋆ by 
Eq. (22) as: 

FAR(𝜏⋆) = FRR(𝜏⋆), EER = FAR(𝜏⋆) = FRR(𝜏⋆)   (22) 

Robustness is measured by applying controlled corruptions 
and reporting the performance drop and is calculated by 
Eq. (23): 
 

ΔAcc = Accclean − Accdegraded                  (23) 

Finally, ablations remove adversarial training, the 
consistency filter, and federated training (while keeping the 
backbone fixed) to ensure improvements are attributable to 
specific design choices. The intended behavior is slightly 
conservative: strong identification when evidence is credible, 
and a willingness to flag or down-weight suspicious segments 
rather than forcing confident conclusions. 

IV. EXPERIMENTAL SETUP 

The experimental design is used to test ForenVoice-Secure 
in three complementary conditions, large-scale speaker identity 
learning, explicit threat of spoofing, and forensic-type 
variability. VoxCeleb2 is trained and tested on speaker 
recognition in in-the-wild diversity, ASVspoof 2021 is 
provided with labeled bona fide/spoof trials to evaluate system 
robustness to replay and deepfakes, and FABIOLE provides 
forensically-style recordings to test system variability across 
sessions and channels. Audio is all resampled to 16 kHz, 

monophonicized, amplitude-normalized and divided into 
VAD-based segments, with fixed-length segments obtained by 
truncation or zero-padding so that the batches can be processed 
uniformly. STFT (e.g., 25 ms window length, 10 ms hop, Hann 
window) is applied to each segment and the resulting signals 
are converted into log-Mel spectrograms that are normalized 
by their mean-variance before input into the model. It is trained 
with a multi-task loss, consisting of speaker identification and 
spoof-detection loss, and adversarial training is used, where 
gradient-based perturbations are used during training to 
adversarially train the model to be resistant to shifts related to 
spoofing. The simulation of federated learning is based on 
several partitioned client (sites) that train locally during a 
limited number of epochs in each round, and the weighted 
aggregation on the server (FedAvg) and comparisons to the 
centralized training to measure the privacy utility tradeoff. 

The accuracy of evaluation reports, macro-F1, precision, 
and recall of identification and spoof detection, and robustness 
are evaluated with the addition of controlled degradations 
(additive noise at several SNRs, codec-like compression, and 
channel filtering) to the utterances. Averaging of results is done 
across repeated speaker-independent folds and paired t-test 
across the folds is used to ensure that the improvements are 
statistically significant; ablations are used one component at a 
time to isolate the contribution of each component. The 
reported computational complexity is given in the number of 
parameters, FLOPs per fixed-duration segment, as well as 
inferred latency/real-time factor on CPU and GPU to show the 
ability to implement them. 

The five-fold cross-validation design, which includes an 
explicit validation fold per run, is used to prevent overfitting as 
well as achieve statistically significant gains that can be 
reported. The speakers (not utterances) are divided into five 
folds that are mutually exclusive so that the identity leaks. 
Each run r will be trained on three folds, validated on one fold, 
and ultimately tested on the remaining fold, yielding a 60-20-
20 speaker-level rotation across runs. The model is trained on 
fixed-length samples of training speakers (log-Mel features 
computed using STFT), trained to a multi-task loss that 
simultaneously learns to identify speakers and detect spoofers, 
and may be hardened through adversarial training. In the 
federated scenario, each run is again divided into a training 
phase, which is further subdivided into a set of simulated 
clients updating locally using FedAvg aggregation prior to the 
validation and testing being maintained across methods to 
enable the methods to be fairly compared. 

For evaluation, predictions are computed on the held-out 
fold only, with segment-level outputs aggregated to the 
utterance level via pooling to produce a single decision per test 
item. Metrics (accuracy, macro-F1, precision, recall) are 
computed per fold, producing paired samples across folds for 
each method (baseline vs ForenVoice-Secure). To test whether 
improvements are reliable rather than fold noise, a pair of two-
tailed 𝑡-test (parametric, assumes approximately normal fold-
wise differences) is reported and the Wilcoxon signed-rank test 
(nonparametric, robust to non-normality) on the fold-wise 
metric differences. Concretely, for each metric 𝑚 , it forms 

differences 𝑑𝑟 = 𝑚𝑟
ForenVoice-Secure − 𝑚𝑟

baseline and test 
𝐻0:median(𝑑𝑟) = 0with Wilcoxon and 𝐻0:𝔼[𝑑𝑟] = 0 with the 
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paired 𝑡 -test. Final results are reported as mean ± standard 
deviation across the five folds, alongside 𝑝-values from both 
tests, providing complementary evidence that the observed 
gains persist across cross-validation splits. 

V. EXPERIMENTAL RESULTS ANALYSIS 

The experimental analysis shows that the suggested 
ForenVoice-Secure framework has high and consistent 
performance in training and testing, with reference to a realistic 
forensic setting. The loss-accuracy curves show that there is a 
smooth convergence behavior: the training loss curve is falling 
steadily, and the training accuracy curve is rising steadily, 
which proves successful optimization of the CNN-LSTM 
backbone. Notably, the test curves follow the training curves 
closely with a minor and regulated difference, indicating that 
overfitting is not excessive even with the use of complex 
acoustic models and multi-task goals. The training and 
validation loss and accuracy curve of the proposed 
ForenVoice-Secure system versus the epochs depicted in 
Fig. 5, exhibits consistent convergence, reduction in 
optimization error, and a uniform generalization gap with 
indications of no intense overfitting. 

ForenVoice-Secure has a high level of generalization across 
the five-fold cross-validation protocol. There is low variance 
between folds, meaning that performance improvements are 
not supported by good splits but continue to be found when 
splitting speakers between different subsets. Integration of 
adversarial training helps to achieve a smoother progression 
towards test accuracy in the late part of the epochs, and this is 
an indication of a greater anti-spoof distribution shift 
robustness. The federated learning approach brings with it the 
minor penalty of a higher convergence time, yet fails to reduce 

final accuracy, which validates the possibility of ensuring 
privacy at the expense of forensic reliability. 

 

 
Fig. 5. The figure shows the training and validation loss and accuracy curves 

of the proposed ForenVoice-Secure system. 

TABLE II.  FIVE-FOLD CROSS-VALIDATION OF PROPOSED FORENVOICE-SECURE SYSTEM WITH EXPLICIT ARCHITECTURAL ISOLATION 

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) Avg. Inference Time (ms) 

CNN baseline (log-Mel) 94.82 ± 0.61 94.35 ± 0.68 94.10 ± 0.72 94.22 ± 0.66 8.4 

CNN + Attention (no LSTM) 96.91 ± 0.44 96.48 ± 0.51 96.32 ± 0.49 96.40 ± 0.47 11.2 

CNN + LSTM (no attention) + Adversarial 97.86 ± 0.33 97.54 ± 0.38 97.41 ± 0.36 97.47 ± 0.35 12.9 

CNN + LSTM (no attention) + Adversarial + FL 97.94 ± 0.31 97.63 ± 0.34 97.52 ± 0.33 97.57 ± 0.32 14.1 

ForenVoice-Secure (full: Attention + LSTM + Adv. + 

FL) 
98.43 ± 0.27 98.11 ± 0.29 98.02 ± 0.31 98.06 ± 0.28 14.8 

CNN + Attention (no LSTM): LSTM temporal modeling and pooling are replaced by mean pooling over frame-level embeddings; frequency-attention is retained. CNN + LSTM (no attention): Frequency-attention is 

removed, while keeping the CNN encoder and LSTM temporal modeling unchanged.  

Comparative analysis in Table II shows a clear and 
progressive performance improvement across architectural 
variants, from the CNN baseline to the full ForenVoice-Secure 
framework. Introducing either attention-based spectral 
weighting or LSTM temporal modeling yields substantial gains 
over the baseline, while their joint integration further improves 
accuracy and macro-F1, confirming complementary 
contributions. The close alignment between precision and 
recall across all enhanced variants indicates balanced decision 
behavior, which is critical in forensic settings where both false 
acceptance and false rejection carry legal risk. Although 
adversarial training and federated learning introduce additional 
computation, the resulting inference latency remains within 
near real-time limits, supporting practical law-enforcement 
deployment. Statistical significance testing across folds (paired 
t-test and Wilcoxon signed-rank) consistently rejects the null 

hypothesis for accuracy, precision, recall, and F1-score, 
confirming that the observed gains are robust and not fold-
dependent. 

The confusion table can be condensed, as illustrated in 
Fig. 6, the classification accuracy among three forensically 
relevant classes, namely, bona fide speech, replay attacks, and 
deepfake speech. The large regions of diagonal dominance 
indicate that high levels of discriminability of the proposed 
system across all classes at scale. The correct context of bona 
fide speech is found in 98.50 per cent, and only a small 
difference with replay (0.90) and deepfake (0.60) offers 
confusion, which means that the model is robust in preserving 
the actual speaker features and is weak in false spoof alarm. 
Replay attacks get a positive recognition rate of 96.20 and the 
majority of the errors are due to the confusion between replay 
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artifacts and deepfake speech (2.70%), because of the acoustic 
similarity between the replay artifact and some channel 
distortions in degradation. Deepfake speech has a 96.75% 
detection rate, and little leakage to replay (2.40) and bona fide 
speech (0.85) indicates the robustness of adversarial training 
and spectro-temporal consistency verifications in detecting 
synthetic generation fingerprints. 

 

 

 

 

 

Fig. 6. Summarize classification performance across three forensic-relevant 

classes: bona fide speech, replay attacks, and deepfake speech. 

On the whole, the symmetric off-diagonal error distribution 
indicates that inaccuracies are not random, but systematic and 
are mostly between replay and deepfake classes that may prove 
significantly difficult even to human professionals. The fact 
that there is low confusion between bona fide and spoofed 
speech justifies the suitability of ForenVoice-Secure to be 
deployed in forensic functionality, where it is important to 
minimize false acceptance of modified evidence. This is a 
class-based analysis that supplements the aggregate measures 
that have been indicated previously and gives a detailed 
understanding of model dynamics in realistic, large-scale 
evaluation conditions. 

Fig. 7 provides the other experimental comparisons with 
baseline models. VoxCeleb2 has the largest diagonal 
dominance, whilst the stability of identity cues in large-scale 
data can be seen. ASVspoof 2021 has a greater value of off-
diagnostic mass between replay and deep fake classes, 
attributable to their similarity in sound in the environment. In 
between the two is FABIOLE, which records controlled but 
with natural session variability. In all datasets, falsely declaring 
bona fide and spoofed speech is very minimal, which is 
essential to forensic reliability. Prior to adversarial training, 
there is significantly more misclassification between replay and 
deepfake classes, and bona fide speech exhibits more leakage 
into spoof classes. Following adversarial training, diagonal 
entries grow steadily across all classes, and the replay-deepfake 
confusion and false alarms on bona fide speech were also 
significantly reduced. The direct connection between this 
visual comparison and the argument that adversarial training 
enhances robustness to spoofing and distribution shift exists. 

Fig. 8 indicates the convergence history of the proposed 
ForenVoice-Secure system based on centralized training and 
federated learning when ten clients are involved. The model 
has a fast convergence rate at the centralized environment, 
where the test accuracy of 98.43 per cent is achieved in about 
25 epochs, and the trend has a smooth and stable curve since it 
is able to get access to globally aggregated data each time it 
updates the model. In FedAvg, when fed with 10 clients, 
convergence is slower in the initial phases since model updates 
are computed on smaller non-IID local datasets and 
consolidated every now and then. The curve of accuracy is 
increasing more slowly and has slight oscillations at the initial 
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communication rounds. However, the federated model levels 
off after about 35 to 40 epochs and achieves the final accuracy 
of 97.94 per cent. In sum, the federated structure has a 
negligible convergence cost of approximately 10 to 15 epochs 
and an ultimate accuracy loss of 0.49 per cent compared to 
centralized training, which proves that the suggested system 
maintains almost centralized performance and implements data 
decentralization and privacy limitations. 

Table III gives a summary of the computational footprint of 
the proposed ForenVoice-Secure system, particularly with 
respect to the applicability of the system in real-world forensic 
application. The complete model has an estimated number of 
4.3 million parameters, and it consumes around 1.2 GFLOPs to 
run a 3-second speech fragment, which is a moderate level of 

computation input on a CNN-LSTM-based model with 
additional security software. The proposed system has an 
average inference latency of 14.8 ms per segment in terms of 
the runtime performance. This incorporates the overhead of the 
mechanism of adversarial robustness and the consistency-
check module, which adds less than 6 per cent of overhead to 
the base architecture. Notably, the inference time in case of 
being trained in the federated learning environment with 10 
clients is also similar at 14.1 ms, which proves that federated 
optimization influences training dynamics but does not 
influence deployment-time efficiency. Overall, Table III 
demonstrates that the suggested system provides a positive 
balance between strength, preserving privacy and effective 
computation, staying within the limits of real-time operation 
when analyzing the voice as forensic crime evidence. 

 
Fig. 7. The figure shows class-wise accuracy (Bona  fide, Replay, Deepfake) for: a) Baseline CNN, b) CNN+LSTM, c) CNN+LSTM+Adversarial, 

d) CNN+LSTM+Federated, e) ForenVoice-Secure. 

 
Fig. 8. Centralized training vs. FL with 10 clients. 

Table IV sets the proposed system ForenVoice-Secure 
against two more closely related studies in the literature by 
comparing their fundamental technical capabilities as opposed 
to actual performance figures. The study by Nelus and Martin 
(2021) is mostly concerned with privacy-sensitive audio 
representation learning, though they introduce tools to reduce 
identity leakage, which do not easily apply to forensic spoofing 
or end-to-end identification of a speaker. Instead, Li et al. 
(2025) have specifically focused on degraded and low-SNR 
audio as the target of tampering detection, but their solution is 
tailored to attacks of replay and deepfake speakers and does not 
feature any privacy-conscious training strategy. The suggested 
ForenVoice-Secure system would integrate these disjointed 
directions by collaboratively assisting the robustness in the 
presence of noisy and degraded evidence, explicit replay, and 
deepfake detection, as well as privacy-preserving learning via 
federated optimization. The technical contribution, summarized 

in Table IV, is a single end-to-end architecture applicable to 
real-world forensic applications. 

Table V determines the statistical consistency of the 
performance improvements of the proposed ForenVoice-
Secure system against the two nearest comparison studies over 
the five experimental folds. In both comparisons, the entire 
fold-wise differences are positive, hence the highest statistic is 
(W = 15) of the Wilcoxon and statistically significant p-values 
(p = 0.031). This shows that the improvements which were 
observed are not due to isolated folds, but the improvements 
are consistently sustained through all the validation splits. The 
larger deltas against [19] indicate the benefit of explicit 
forensic modelling and spoof-aware decision-making and the 
smaller but still significant improvements against [25] the 
benefit of adding robustness and privacy mechanisms that are 
not just limited to low SNR tampering detection. Taken 
together, these findings are a strong affirmation that the 
proposed system is statistically significant in improvements 
over representative state-of-the-art methods instead of marginal 
or fold-dependent ones. 

Fig. 9 illustrates the ROC–AUC comparison between the 
proposed ForenVoice-Secure system and two representative 
comparison studies. Across the full false positive rate range, 
ForenVoice-Secure consistently achieves a higher true positive 
rate, resulting in the largest AUC. This indicates stronger 
discriminative capability and more stable decision boundaries, 
particularly in low-error operating regions. The separation 
between curves highlights the benefit of integrating spoof-
aware modeling, robustness, and privacy-aware learning within 
a unified framework. 
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TABLE III.  COMPUTATIONAL COMPLEXITY AND INFERENCE COST FOR THE PROPOSED SYSTEM 

System / Setting Params 
Compute (per 3 s 

segment) 

Avg inference 

time (ms) 
Explanation 

ForenVoice-Secure (full, proposed) ≈ 4.3M ≈ 1.2 GFLOPs 14.8 ms 
Consistency-check overhead reported as 

<6% (deployment-friendly). 

Proposed system with FL (10 clients) variant 

(CNN+LSTM+Adv+FL) 

(same 

backbone) 
(same backbone) 14.1 ms 

Privacy-aware training via FL; runtime 

remains close to full model. 

TABLE IV.  STATE-OF-THE-ART COMPARISON 

Work Task Noise/Degraded Spoof/Attack Privacy Key gap vs ForenVoice-Secure 

[19] Nelus & Martin (2021) Privacy-preserving audio learning △ ✗ ✓ Not forensic spoof/ID pipeline 

[25] Li et al. (2025) 
Audio tampering detection (low-

SNR) 
✓ ✗ ✗ Not replay/deepfake speaker-ID 

ForenVoice-Secure (proposed) 
Forensic speaker-ID + spoof 

detection 
✓ ✓ ✓ Unified end-to-end system 

TABLE V.  5-FOLD WILCOXON SIGNED-RANK TEST 

Comparison Metric Fold-1 Δ Fold-2 Δ Fold-3 Δ Fold-4 Δ Fold-5 Δ W p-value 

ForenVoice-Secure vs [19] Accuracy (%) 3.8 3.6 3.5 3.4 3.3 15.0 0.031 

 F1-score (%) 3.9 3.7 3.6 3.5 3.4 15.0 0.031 

ForenVoice-Secure vs [25] Accuracy (%) 2.1 2.0 1.9 1.8 1.7 15.0 0.031 

 F1-score (%) 2.2 2.1 2.0 1.9 1.8 15.0 0.031 

Δ denotes paired fold-wise performance difference (ForenVoice-Secure − comparison method). 

 
Fig. 9. ROC–AUC comparison plot for ForenVoice-Secure vs. [19] vs. [25]. 

The experimental evaluation in this work adopts a closed-
set speaker identification protocol to enable statistically 
controlled comparisons across architectural variants, 
degradation conditions, and security and privacy mechanisms. 
This design ensures reproducibility and allows reliable 
attribution of performance gains in the ablation analysis. 
However, real-world forensic deployments rarely assume a 
fixed and exhaustive speaker inventory. The proposed 
ForenVoice-Secure framework is inherently compatible with 
open-set operation through its embedding-based representation 
and similarity scoring. In practice, open-set decisions can be 
implemented using calibrated similarity thresholds, 
complemented by spoof-risk estimation and spectro-temporal 
consistency checks to reject unknown or unreliable evidence. A 
full open-set evaluation, including unknown-speaker rejection 
and likelihood-ratio calibration, is identified as an important 

direction for future work to further align the framework with 
forensic casework. 

VI. DISCUSSIONS 

The findings of the experiment indicate that the proposed 
ForenVoice-Secure system is a step further towards the state-
of-the-art because it satisfies various forensic needs that are 
usually addressed separately in previous research. Indeed, the 
proposed system identifies the mean of 98.43 per cent with a 
macro-F1 of 98.06 per cent, which is higher than the 
conventional CNN-LSTM baselines and variants that are more 
robust, as indicated in Table II. It is not just an incremental 
improvement. It captures the advantage of jointly optimizing 
speaker identification and spoof detection, which restricts the 
learned representation to be discriminative but does not overfit 
to any artifacts that could be introduced by replay or synthetic 
speech. Conversely, the traditional privacy-conscious work like 
Nelus and Martin [19] intentionally hides information that can 
be identified by speakers to minimize leakage, which is 
suitable to generic audio classification but in essence, limits its 
use to forensic speaker identification, where identity 
discrimination is the main goal. 

The gain of robustness is also seen when degraded and 
adversarial situations are considered. Existing research on low-
SNR audio forensics, including the work by Li et al. [25], 
shows that it is very successful in tampering detection in the 
presence of noise and fails to identify any speaker and spoof-
resistant decisioning. The proposed system incorporates these 
dimensions through modelling explicitly the spoof-related 
distortions and speaker cues. This design decision is the cause 
of the observed balance between the values of precision and 
recall in Table II, where the system minimizes false acceptance 
of audio spoofing and false rejection of authentic speech. This 
observation holds the confusion-matrix analysis, which 
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indicates very little confusion between the bona fide and 
spoofed classes and is concentrated around the replay versus 
deepfake distinction, which is well known to be acoustically 
similar even in the case of human analysts. 

The improved results are also supported by the statistical 
analysis. Table V demonstrates that the performance 
improvement of ForenVoice-Secure compared to the two most 
similar comparison studies is similar throughout all five cross-
validation folds, with maximum Wilcoxon signed-rank 
statistics that have statistically significant p-values. This shows 
that the observed benefits are not motivated by the positive 
data divisions or the unique circumstances but stand in various 
partitions of speakers. The bigger performance deltas of [19] 
point towards the need to explicitly model forensic modeling as 
opposed to generic privacy-preserving feature suppression. The 
smaller but substantial gains in comparison to [25] highlight 
the importance of implementing robustness beyond noise and 
tampering to encompass replay and deepfake risks in one 
learning system. 

As a deployment consideration, the computational analysis 
in Table III indicates that such gains can be obtained without 
being prohibitive. The proposed system has a number of 
parameters of about 4.3 million, 1.2 GFLOPS per three-second 
chunk and latency inferences of less than 15 ms as of now. It is 
suitable to use in nearly real-time forensic applications. 
Notably, the federated learning form does not cause significant 
changes to the performance of inference time, which confirms 
that federated learning privacy training does not influence 
optimization behavior but operation efficiency. This directly 
fills in a gap in previous literature where privacy-bearing 
approaches are frequently considered without considering the 
forensic practicality. 

All in all, the findings show that the benefit of ForenVoice-
Secure is not the optimization of a single metric but rather the 
combination of robustness, spoof awareness as well as privacy 
protection into a single end-to-end voice analytics system. The 
proposed system provides a more holistic and defensible 
solution to real-world criminal speaker identification with 
operational and adversarial constraints by addressing the gaps 
that exist in the literature that consider privacy [19] or 
degraded-audio tampering separately. 

A. Threat Model Limitations and Adaptive Voice Cloning 

Attacks 

ForenVoice-Secure uses the adversarial training approach 
that is based on the gradient-based perturbations to enhance the 
resilience to small yet adversarially selected distortions and 
distribution shifts. Although this method levels the stability of 
the decision and lessens the overfitting, it cannot be asserted 
that it completely provides protection against adaptive neural 
voice cloning models that are trained in the matched channel 
conditions. These attackers can explicitly synthesize pipelines 
with the aim of reducing spoof-detection signals. Within the 
framework proposed, the guarantee of resisting such more 
serious threats instead is facilitated by joint spoof 
classification, spectro-temporal consistency analysis, and 
aggregation of evidence that is conservative, which jointly 
mitigates the chances of arriving at overconfident decisions on 
manipulated audio. Further extensive testing in comparison 

with adaptive, channel-matched voice cloning attacks is 
defined as a valuable future research in enhancing the coverage 
of the forensic threat. 

B. Federated Learning Under Non-IID Forensic Evidence 

Distributions 

The experiments on federated learning presented in this 
study use balanced client partitions that allow them to control 
analysis of privacy-preserving training without confounding it 
with extreme data skew. In practice in law-enforcement 
environments, however, the evidence distributions on the 
participating agencies are highly non-IID because there are 
differences in recording equipment, acoustic conditions, 
speaker demographics, and case types. Although the proposed 
ForenVoice-Secure framework and FedAvg optimization can 
be applied to such heterogeneity, an explicit non-IID 
assessment is needed to have a complete picture of inter-
agency performance variability. Future research will explore 
viable client skew cases, such as skewed speakers, channel 
distribution, and scarce-data clients and personalized and 
clustering federated learning plans to capture operational 
forensic deployments more efficiently. 

C. Memory Footprint and Federated Communication 

Overhead 

In addition to the latency of inference, the memory 
footprint and cost of communication during federated learning 
have a great bearing on deployability in forensic 
infrastructures. The proposed ForenVoice-Secure model 
contains about 4.3 million parameters, so a memory footprint 
of about 17 MB, currently with 32-bit floating-point 
computations, fits into most forensic workstations and edge 
servers. In federated training, each client sends model updates 
of similar sizes on average per communication round in the 
FedAvg protocol, and the bandwidth usage grows linearly in 
the number of communication rounds but not the dataset size. 
Although this overhead is relatively small compared to raw 
audio transfer, it can still control the cost of deployment in 
low-bandwidth inter-agency systems. The update compression, 
sparse or periodic communication, and partial model sharing 
are thus found to be the techniques that are significant in the 
future to enhance the scaling even more in the constrained 
forensic setting. 

VII. CONCLUSION AND FUTURE WORKS 

This work presented ForenVoice-Secure, a unified forensic 
voice analytics framework designed for criminal speaker 
identification under degraded, adversarial, and privacy-
constrained conditions. By combining CNN–LSTM–based 
representation learning with joint speaker identification and 
spoof detection, adversarial training, spectro-temporal 
consistency checks, and optional federated learning, the 
proposed system achieves robust and statistically significant 
improvements over representative state-of-the-art methods. 
Experimental results across multiple datasets demonstrate high 
identification accuracy, balanced precision and recall, strong 
spoof resistance, and stable convergence, while maintaining 
low computational overhead suitable for near real-time forensic 
deployment. The findings support the view that treating voice-
based identification as a forensic audio data mining problem 
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yields more reliable and defensible outcomes than conventional 
speaker recognition pipelines. 

Beyond technical performance, the deployment of forensic 
speaker identification systems raises important legal, ethical, 
and societal considerations. In judicial contexts, automated 
voice analysis must be used as decision support rather than as 
deterministic proof, with clear communication of uncertainty 
and limitations to avoid overreliance in court proceedings. 
Privacy is a central concern, as voice recordings may reveal 
sensitive personal attributes beyond identity; the use of 
privacy-aware training mechanisms, such as federated learning, 
helps mitigate unauthorized data sharing but does not eliminate 
the need for strict governance and access control. From a 
societal perspective, safeguards are required to prevent misuse, 
bias, or disproportionate surveillance, particularly in large-
scale law-enforcement applications. Accordingly, systems such 
as ForenVoice-Secure should be deployed within transparent, 
auditable, and legally regulated frameworks that align technical 
robustness with principles of fairness, accountability, and 
responsible forensic practice. 

Future research will extend the framework to open-set and 
cross-lingual forensic scenarios, where unseen speakers and 
language mismatch introduce additional uncertainty. 
Incorporating calibrated likelihood-ratio estimation and 
uncertainty quantification will further align the system with 
forensic reporting standards. On the security side, adaptive 
countermeasures against evolving generative speech models 
and stronger anti-forensic attacks will be investigated. From a 
privacy perspective, tighter integration of differential privacy 
and personalized federated learning (FL) may improve 
robustness to client heterogeneity while providing formal 
privacy guarantees. Finally, large-scale field evaluations with 
real investigative data and human-in-the-loop analysis will be 
essential to assess evidentiary reliability and practical adoption 
in law-enforcement workflows. 
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