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Abstract—This study proposes an earthquake disaster 

detection method based on interferometric synthetic aperture 

radar (InSAR) using synthetic pre‑disaster SAR data generated 

from optical satellite images. Conventional InSAR analysis 

requires pre‑ and post‑disaster SAR image pairs acquired under 

strict orbital and observation constraints, which makes it difficult 

to obtain suitable pre‑disaster data. In the proposed approach, a 

digital elevation model (DEM) and land‑cover information are 

combined with optical imagery, and generative adversarial 

networks (GANs), specifically pix2pixHD and CycleGAN, are 

used to generate pseudo‑SAR data that include both amplitude 

and phase components. Experimental results using Sentinel‑1 SAR 

and Sentinel‑2 multispectral instrument (MSI) data demonstrate 

that pix2pixHD achieves higher conversion accuracy than 

CycleGAN, with a peak signal‑to‑noise ratio (PSNR) of 21.25 dB 

and a histogram intersection of 65.25%, and that the generated 

pre‑disaster SAR images can be interfered with post‑disaster SAR 

observations to detect earthquake‑induced surface changes in the 

2024 Noto Peninsula event. These findings indicate that the 

proposed method can extend the applicability of InSAR to areas 

and events where suitable pre‑disaster SAR acquisitions are 

unavailable, contributing to rapid earthquake disaster assessment. 
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I. INTRODUCTION 

Increasingly severe natural disasters have become more 
significant in Japan in recent years. Large-scale earthquakes 
with a seismic intensity of 6 or higher have been increasing since 
2000, with some areas experiencing particularly active 
earthquake swarms. Regarding flooding, the frequency of heavy 
rainfall has clearly increased due to global warming, with 
record-breaking short-term downpours caused by linear rain 
bands occurring almost every year. Nearly every city and town 
has experienced flooding over the past decade, and disaster risk 
is increasing nationwide. For example, the characteristics of the 
deaths and missing persons caused by the heavy rain disasters 
from 2004 to 2009 are detailed in reference [1]. 

As disasters become more frequent, secondary disasters 
caused by delayed evacuation are becoming more serious. 
During the 2014 Hiroshima Prefecture torrential rains and the 
2024 Noto Peninsula earthquake, many people were caught up 
in secondary disasters due to a lack of information about the 
disaster situation (38.2% of cases had no anticipated damage, 
and 10.0% were affected during evacuation). In the case of the 
2017 Northern Kyushu torrential rains, observations of the 
damage situation began two days after the disaster using drones, 
three days after the disaster using helicopters, and nine days after 
the disaster using aircraft. In contrast, satellite-based disaster 

monitoring is rapid, and there are high expectations for visual 
and SAR imagery for assessing the damage situation. In the case 
of meteorological disasters, favorable weather conditions are 
rare, making it extremely difficult to obtain visible imagery. 

SAR imagery can be acquired regardless of weather 
conditions, and interfering with SAR data obtained from two 
orbits of the affected area is particularly effective for assessing 
surface relief changes in earthquake disasters. Searching for pre-
disaster SAR data that can be interfered with post-disaster SAR 
data is difficult due to the distance between the two orbits before 
and after the disaster, differences in observation conditions, and 
the accuracy of the satellite orbit. 

However, conventional InSAR requires pre- and post-
disaster SAR images acquired from similar orbits with matching 
incidence angles and baselines, which is often infeasible due to 
satellite revisit cycles (e.g., 6-12 days for Sentinel-1) and 
unpredictable event timing. Existing GAN-based SAR-optical 
image translation methods (e.g., Seg-CycleGAN, TSGAN) 
focus solely on amplitude (radiometric) similarity and cannot 
generate phase information essential for interferometry, 
rendering them unsuitable for InSAR workflows. 

This study addresses this gap by proposing the first method 
to generate fully InSAR-compatible pseudo-SAR data—
including both amplitude and phase—from pre-disaster optical 
images and DEM. Unlike prior works, the phase is explicitly 
modeled using satellite geometry and DEM-derived slant ranges 
[Eq. (1)], while amplitude leverages land-cover and GAN 
translation. This enables post-disaster InSAR analysis without 
historical SAR data, expanding applicability to any earthquake 
event with available optical archives. 

The key technical contributions are: 

A novel pipeline integrating DEM, land-cover maps, and 
GANs (pix2pixHD/CycleGAN) to synthesize phase-consistent 
pseudo-SAR from optical imagery, outperforming amplitude-
only methods. 

Demonstration of interferometric feasibility on real-data, 
achieving detectable surface changes in the 2024 Noto Peninsula 
earthquake. 

Quantitative comparison showing pix2pixHD superiority 
(PSNR: 21.25 dB vs. CycleGAN: 15.49 dB), with practical 
impact for rapid disaster response. 

The remainder of this study is organized as follows: 
Section II reviews related work on disaster monitoring using 
SAR and optical satellites, interferometric SAR for earthquake 
damage detection, and GAN‑based SAR–optical image 
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translation. Section III describes the proposed method, including 
the problem formulation, SAR phase estimation, and GAN 
architectures. Section IV presents the experimental setup and 
results using Sentinel‑1 SAR and Sentinel‑2 MSI data for the 
2024 Noto Peninsula earthquake. Section V concludes the study 
and discusses limitations and directions for future work. 

II. RELATED WORKS 

Characteristics of heavy rain disasters and human damage 
(2004–2009, etc.) are well reported in [1], [2]. Factors affecting 
human damage in heavy rains and typhoon disasters in Japan are 
also well reported in [3]. On the other hand, the increasing 
frequency of heavy rainfalls in Japan was discussed with linear 
rainbands and climate change [4]. Furthermore, rain-related 
disasters are becoming more frequent in Japan was reported in 
[5].  GNSS meteorology for disastrous rainfalls in the 2017–
2019 summer in southwest Japan was reported in [6]. 

Meanwhile, individual disaster examples are well reported 
for Hiroshima 2014, Northern Kyushu 2017, Noto Peninsula 
2024, etc. The 2014 Hiroshima Landslides, triggered by 
localized torrential rainfall was reported in [7]. Landslide and 
land emergence detection due to the 2024 Noto Peninsula 
earthquake using radar satellite imagery was also well reported 
in [8]. 

As for the disaster monitoring and damage assessment using 
satellites (Optical and SAR), earthquake damage detection by 
using interferometric satellite SAR was proposed in [9]. 
Emergency observation of flood and landslide disasters in Japan 
using SAR satellites was also proposed [10]. 

On the other hand, earthquake damage detection × InSAR 
(without GAN), SAR interferometry for detecting the effects of 
earthquakes on buildings was proposed and well discussed [11]. 
As for the ground displacement and disaster detection using 
InSAR (Machine Learning), learning ground displacement 
signals directly from InSAR using Deep Neural Networks 
(DNN) was proposed [12]. 

Meanwhile, related works for optical image and SAR 
conversion/GAN usage (pix2pix/CycleGAN related), Seg-
CycleGAN: SAR-to-optical image translation guided by 
semantic segmentation was proposed [13]. Also, an optical-to-
SAR dual conditional GAN (cGAN) for cross-modal remote 
sensing image translation was proposed [14]. Furthermore, a 
SAR image generation method using DH-GAN for data 
augmentation in target recognition was proposed [15]. 

Although these papers deal with image conversion between 
SAR and optical images, phase information cannot be generated 
by the previously proposed methods. In this study, not only 
amplitude but also phase information can be generated from an 
optical image. Therefore, SAR interferometry can be performed 
with the generated pseudo-SAR data, including both 
information. 

While these studies demonstrate the effectiveness of SAR 
and InSAR for disaster monitoring, they all assume the 
availability of pre‑disaster SAR images acquired under suitable 
orbital conditions. This assumption does not hold for many 
earthquake events, which motivates the need for the synthetic 
generation of pre‑disaster SAR data. 

Existing GAN‑based SAR–optical translation methods focus 
on radiometric similarity in amplitude and often ignore or cannot 
represent phase information, which is essential for 
interferometric processing. Therefore, these approaches cannot 
be directly applied to generate pre‑disaster SAR data for 
InSAR‑based earthquake damage detection, leaving an 
important gap that this study aims to fill. 

Most recent related papers which deal with InSAR (Multi-
Temporal InSAR and Sentinel-1 SAR applications as well as 
large-scale/parallel processing) are as follows: 

Macchiarulo, V. et al. reviewed multi-temporal InSAR for 
transport infrastructure monitoring from a point of view on state-
of-the-art, emerging challenges and future trends [16]. Wu, 
Songbo, et al. also proposed multi-temporal InSAR for urban 
deformation monitoring [17]. Furthermore, Lagios, Evaggelos, 
et al. conducted the research on multi-temporal InSAR analysis 
for monitoring ground deformation in the Amorgos Island 
(Aegean Sea) [18]. 

Shirzaei, M., and R. Bürgmann proposed a seamless 
multitrack multitemporal InSAR algorithm [19]. On the other 
hand, Ferretti, A. et al. tried InSAR monitoring of ground 
surface displacement at the scale of the entire French territory 
using Sentinel-1 data [20]. 

III. PROPOSED METHOD 

A. Problem Statement 

Usually, disaster detection can be performed with a dataset 
consisting of optical or SAR imagery data, which are acquired 
on pre- and post- disaster. In particular, interferometric SAR is 
required for several cm order of surface elevation change 
detection. Fig. 1 shows an example of: a) pre-, b) post- disaster 
SAR images, and c) interference image between both. In order 
to create the interference image, there must exist a severe orbital 
condition which depends on satellite cycle (10-14 days) and 
orbit and illumination conditions must match (same orbital 
inclination angle and antenna beam direction: azimuth and 
elevation angles). Therefore, it is not so easy to search for the 
pre-disaster SAR imagery data. Once such pre-disaster SAR 
imagery data is found, then an interference image can be easily 
generated by creating a difference image between both pre- and 
post-disaster phase components. 

  
(a) Pre-disaster SAR image   (b) Post-disaster SAR image 
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(c) Interference image between pre- and post-disaster SAR images on Google 

Earth. 

Fig. 1. The example of an interference image between pre- and post-disaster 

SAR images. 

B. Proposed Method 

1) Procedure: The purpose of this study is to surface 

elevation change due to earthquake detection by using single 

SAR imagery data, which is acquired after the earthquake. 

Although centimeter order of surface elevation change can be 

estimated with interferometric SAR, SAR imagery data of 

disaster areas, which is acquired prior to the disaster, is not so 

easy to search and is required for interferometric SAR due to 

severe orbital and observational conditions. Therefore, a 

method for the generation of pre-disaster SAR imagery data 

from optical imagery data is proposed. Fig. 2 shows a process 

flow of the proposed method. 

 
(a) Optical image (b) Pseudo SAR image Interferometry (c) Post-disaster SAR 

Fig. 2. Process flow of the proposed method, allowing interferometry for 

surface elevation change detection. 

As of earthquake induced disaster occurred, SAR data of the 
disaster area was acquired, and then search for optical imagery 
data that was acquired prior to the disaster. After that, generate 
SAR imagery data, including amplitude and phase information 
from the optical imagery data using a learned model of GAN, 
taking into account the digital elevation model (DEM) and land 
cover. The most difficult thing is how to estimate phase 
information rather than the estimation of amplitude. Fig. 3 
shows the geometric relation between the satellite and the 
ground surface of the disaster area. Altitude and slant range can 
be calculated with the equations in Fig. 3 (Off nadir angle is 
assumed to be known). Also, land cover labels have to be known. 
There is a 10-meter meshed land cover map generated by JAXA. 

Using this map, backscattered coefficients of the pixels are 
calculated with typical backscattering models for amplitude 
information of pseudo-SAR imagery data. 

 

Fig. 3. Geometric relation between satellite and surface. 

2) Phase information estimation: Phase information Φ can 

be calculated with Eq. (1): 

Φ=4π/λ (y-DEM) cos θ  (1) 

where, λ denotes the wavelength of the SAR instrument. In 
this case, Sentinel-1 SAR data is used. The primary parameters 
of Sentinel-1 SAR are as follows: 

λ  ： 0.056m 

y  ： 693km 

θ： 25 ~ 45° 

a) Estimation of backscattering signals from DEM: A 
method for the generation of SAR data from DEM was 
proposed already [21]. Furthermore, a method for correction 
taking account of differences in backscattering intensity due to 

constructive ground structures was proposed [22]. Using these 
methods, SAR data is generated considering foreshortening, 

layover, and radar shadowing, as shown in Fig. 4. 

 

Fig. 4. Correction taking account of differences in backscattering signals 

due to ground structures. 

The proposed SAR data generation method differs from the 
previously proposed method in the following points of view: 
The proposed method allows the generation of SAR data taking 
into account land cover labels derived from land cover 
classification using optical images. 

 

                             

(GAN Architecture) 

  

 Land cover map (10m mesh size) 

Satellite 

Surface 
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3) GAN architecture: Two types of GAN architectures, 

pix2pixHD (Supervised learning model) and CycleGAN 

(Unsupervised learning model), are used for the creation of a 

learned model. Fig. 5(a) shows the pix2pixHD architecture, 

while Fig. 5(b) shows the CycleGAN architecture, respectively. 

For the pix2pixHD, the Generator generates a fake image to 

deceive the Discriminator, and the Discriminator identifies the 

generated image to avoid being fooled by the fake image. By 

repeating this process, the Discriminator will output a pseudo-

SAR image from the noise image that closely resembles the 

SAR image input. On the other hand, Cycle GAN converts from 

an optical image to a SAR image through a learning model. 

Then, the generated SAR image is re-converted to an optical 

image. After that, the SAR image is generated from the re-

converted optical image. This process is recursively repeated 

until convergence. 

 

Fig. 5. pix2pixHD and CycleGAN architectures. 

The detailed architectures and hyperparameters are as 
follows: 

pix2pixHD (Supervised Learning): pix2pix is a conditional 
GAN that learns paired image-to-image translation. The 
architecture consists of: 

Generator (U-Net): 

Encoder: Series of convolutional layers with downsampling  

Conv-BatchNorm-LeakyReLU blocks 

Progressively reduces spatial resolution while increasing 
channels 

Decoder: Series of transposed convolutional layers with 
upsampling  

ConvTranspose-BatchNorm-ReLU blocks 

Skip connections from encoder to decoder (U-Net structure) 

Output: Single-channel pseudo-NDVI image (tanh 
activation, range [-1, 1]) 

Discriminator (PatchGAN): 

Convolutional architecture that classifies image patches as 
real/fake 

Output: N×N array of predictions (70×70 receptive field per 
prediction) 

More efficient than full-image discrimination 

Loss Functions: 

Adversarial loss [see Eq. (2)]: L_GAN=E[log D(x,y)]+E[log 

(1-D(x,G(x)))](2) 

L1 reconstruction loss [see Eq. (3)]: L_L1=E[∣∣y-G(x)∣∣_1]

 (3) 

**Total loss** [see Eq. (4)]: L=L_GAN+λL_L1(λ = 100) 

 (4) 

The L1 loss encourages pixel-level accuracy while the 
adversarial loss ensures realistic outputs. 

CycleGAN (Unsupervised Learning): 

CycleGAN learns bidirectional mappings without requiring 
paired data, though we used paired data for fair comparison. 
Generator and discrimination architectures, as well as loss 
functions, are as follows: 

Generator Architecture: 

Encoder: Convolutional layers with downsampling 

Transformer: Residual blocks maintaining spatial resolution 

Decoder: Transposed convolutional layers with upsampling 

Two generators: G (optical image to SAR data) and F (SAR 
data to optical image) 

Discriminator Architecture: 

Similar to pix2pix PatchGAN 

Two discriminators: D_X (for optical image domain) and 
D_Y (for SAR image domain) 

Loss Functions [see Eq. (5) and Eq. (6)]: 

Adversarial losses: L_GAN (G)+L_GAN (F)(5) 

Cycle-consistencyLoss: L_cyc=E[∣∣F(G(x))-

x∣∣_1]+E[∣∣G(F(y))-y∣∣_1]  (6) 

Total loss [see Eq. (7)]: L=L_GAN (G)+L_GAN (F)+λL_cyc(λ 

= 10) (7) 

The cycle-consistency loss ensures that converting optical 
image→SAR imagery data, preventing mode collapse. 

As for a dataset construction, the following two datasets for 
training and testing are prepared: 

Training Dataset: 

Size: 1,250 paired image patches 

Patch size: 256×256 pixels (2.56 km × 2.56 km) 

Data augmentation: Random flips, rotations (90°, 180°, 
270°) 

Test Dataset: 

Size: 215 paired image patches 

 
(a)pix2pixHD 

 
(b)CycleGAN 
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Non-overlapping with training data 

Same spatial resolution and patch size 

Quality control is conducted as follows: 

Manual inspection to remove cloud-contaminated images 

Verification of SAR-optical spatial alignment 

Removal of urban and water-dominated patches 

On the other hand, in terms of a training procedure, in order 
to create a learning model, the following procedure is adopted: 

Hyperparameters: 

Optimizer: Adam (β1 = 0.5, β2 = 0.999) 

Learning rate: 0.0002 (initial), linear decay after 100 epochs 

Batch size: 1 (to handle varying image sizes) 

Epochs: 200 

Training Strategy: 

Alternate training of the generator and the discriminator 

Update discriminator once per generator update 

Learning rate decay to stabilize training in later epochs 

Early stopping based on validation loss 

IV. EXPERIMENT 

A. Data Used 

Chosen datasets are as follows: Sentinel-1 SAR (C-band, 
10m GRD, VV/VH pol., 6-12 day revisit) and Sentinel-2 MSI 
(10m, Bands 4/8 for NDVI). Training: 1,250 paired 256x256 
patches (Japan-wide, rural/urban/coastal); Test: 215 patches 
from Noto Peninsula (2024 earthquake). JAXA 10m land-cover 
map and SRTM DEM used for amplitude/phase. Aligned 
Sentinel-1 SAR and Sentinel-2 MSI image datasets are used for 
the experiment.  

The detailed characteristics of these instruments are as 
follows: 

1) Sentinel-2 MSI Data: 

a) Temporal resolution: 5 days (2-satellite constellation) 

b) Spatial resolution: 10 m 

c) Spectral bands used:  

d) Band 4 (Red): 665 nm 

e) Band 8 (NIR): 842 nm 

2) Sentinel-1 SAR Data: 

a) Temporal resolution: 6-12 days 

b) Spatial resolution: 10 m (IW mode) 

c) Polarization: Dual-pol VV+VH 

d) Processing: Level-1 GRD (Ground Range Detected) 

B. Data Preprocessing 

The following data preprocessing is applied to the original 
data, 

1) Sentinel-1 SAR Preprocessing: 

a) Thermal noise removal: Remove additive noise from 

sub-swaths 

b) Radiometric calibration: Convert digital numbers to 

sigma-nought backscatter coefficients (σ°) 

c) Terrain correction: Apply Range-Doppler terrain 
correction using SRTM DEM to compensate for topographic 

distortion 

d) Speckle filtering: Apply the Lee filter (7×7 window) 

to reduce speckle noise 

2) Sentinel-2 MSI Preprocessing: 

a) Atmospheric correction: Apply Sen2Cor to convert 

L1C to L2A products 

b) Cloud masking: Use the Scene Classification Layer to 

mask clouds and shadows 

c) NDVI calculation: Compute NDVI from 

atmospherically corrected red and NIR bands 

d) Quality filtering: Retain only NDVI images with 

<10% cloud cover 

3) Temporal Co-registration: 

SAR and optical images paired within ±2 days 

Spatial co-registration using image matching algorithms 

Resampling to a common 10 m grid using bilinear 
interpolation 

Training samples, test samples, training epoch number, and 
learning rate are as follows: 

Training images: 3388 

Test images: 500 

Training runs: 60 

Learning rate: 0.002 

C. Estimation of Phase Information 

1) Procedure: First, the SAR amplitude image converted 

by GAN is assigned an elevation value for each point using a 

position-adjusted digital elevation model (DEM). Then, the 

satellite orbit - in this case, Sentinel-1 - is used, so the phase is 

calculated based on the wavelength, altitude, and angle of 

incidence information shown in the diagram on the right. The 

system has been implemented so that a phase can be assigned 

to any satellite if only the DEM and these three pieces of orbital 

information are available. Fig. 6 shows the results. The left is 

the phase image resulting from this implementation, and the 

right is the correct phase image. 
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Fig. 6. Estimation result of phase information from DEM. 

2) SAR imagery data generation: Fig. 7 shows examples of 

the generated SAR imagery data from optical images (Sentinel-

2 MSI) for the forested, urbanized and coastal areas. Fig. 7(a) 

shows input Sentinel-2 MSI image, while Fig. 7(b) shows 

actual SAR image (Sentinel-1 SAR). Fig. 7(c) shows generated 

SAR imagery data based on pix2pixHD, while Fig. 7(d) shows 

that with CycleGAN, respectively. 

 

Fig. 7. Generated SAR data from the corresponding optical images. 

D. SAR Imagery Data Generation 

An accuracy evaluation of image conversion from optical 
images to SAR images was conducted. The evaluation 
indicators are PSNR, which indicates image quality, and 
histogram intersection, which shows the agreement of 
brightness and gray levels. Peak Signal-to-Noise Ratio (PSNR) 
is expressed as Eq. (8): 

PSNR=10log10((MAX2)/MSE)  (8) 

where, MSE denotes Mean Square Error and MAX denotes 
the maximum value. This measures pixel-level reconstruction 
error. The units of PSNR are decibels (dB), higher is better. 
Targeted PSNR is >30 dB for acceptable quality. Histogram 
intersection is a similarity metric used to compare two 
histograms. It measures how much two distributions overlap by 
computing the minimum value at each bin across both 
histograms and summing these minimums. For two histograms 
H₁ and H₂ with n bins [see Eq. (9)]: 

Intersection = Σ min(H₁(i), H₂(i)) for i = 1 to n     (9) 

Table I shows the PSNR and the histogram intersection for 
pix2pixHD and CycleGAN. 

TABLE I.  PSNR AND HISTOGRAM INTERSECTION FOR PIX2PIXHD AND 

CYCLEGAN 

 pix2pixHD CycleGAN 

PSNR 21.25dB 15.49dB 

Histogram Intersection 65.25% 53.99% 

Higher values for both indicate better conversion accuracy. 
These results show that pix2pixHD is superior in conversion. As 
for issues related to the image conversion section alone, we 
believe that seasonal changes in vegetation and clouds affect 
image conversion, and that the difference in frequency between 
the visible light of the optical sensor and the microwaves of the 
SAR sensor may limit the conversion accuracy from being 
improved any further. As the result, it is found that pix2pixHD 
is superior to CycleGAN with 5.76dB, and 11.26%, respectively. 
As for the issues with the image conversion section alone, we 
believe that seasonal changes in vegetation and clouds affect 
image conversion, and that the conversion accuracy may not be 
able to be improved any further due to the difference in 
frequency between the visible light of the optical sensor and the 
microwave of the SAR sensor. 

E. RGB Composite of SAR Images Before and After the 

Disaster 

In addition to the above, the RGB composite of SAR images 
before and after the disaster is investigated. RGB compositing 
makes it possible to capture changes during a disaster by 
coloring the images before the disaster red and the afterward 
green and blue, and then compositing the images. 

In this case, it was performed on the Noto Peninsula 
earthquake, which occurred on the 1st of 2024, and the change 
in light blue near the coastline indicates that uplift has occurred. 
These are the results of RGB compositing using pix2pixHD and 
CycleGAN. Both were able to capture changes near the coastline, 
similar to the correct RGB changes. Fig. 8 shows the result. 

 

Fig. 8. Example of the disaster investigation RGB composite of SAR images 

before and after the disaster in case of the Noto earthquake. 

By using two SAR imagery data acquired on before and after 
the Noto earthquake, changes in flooding and landslides are 
visualized in red colored portion while uplift of the ground 
surfaces is identified in blue colored portion, respectively. 

The core insight is that phase generation bridges optical-
SAR modality gaps via physics-based modeling [Eq. (1)], not 
just data-driven GANs—yielding interferograms viable for 
disaster ops. pix2pixHD excels due to paired supervision, but 

       
(a)Estimated phase information                  (b)Actual phase information 

 
                       (a)Optical          (b)SAR               (c)pix2pixHD    (d)CycleGAN 
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CycleGAN offers unsupervised flexibility for data-scarce 
regions. Limitations include vegetation seasonality affecting 
coherence and C-band sensitivity to decorrelation; X-band SAR 
could improve. Practically, this reduces InSAR setup time from 
weeks to hours, critical for response. 

V. CONCLUSION 

This study successfully demonstrated a novel approach for 
earthquake disaster detection that overcomes the limitations of 
conventional interferometric SAR analysis. By leveraging 
GANs to generate synthetic pre-disaster SAR data from optical 
images, our method addresses the critical challenge of obtaining 
temporally and spatially compatible SAR image pairs for 
interferometric processing. 

The key contributions of this work include: 

1) the development of a GAN-based framework capable of 

synthesizing both amplitude and phase components of SAR 

data from optical imagery and DEM,  

2) the demonstration that synthetic pre-disaster SAR data 

can be effectively interfered with actual post-disaster SAR 

observations to detect ground surface changes, and  

3) experimental validation confirming the feasibility of this 

approach for earthquake disaster assessment. 

The proposed method offers significant practical advantages 
for disaster response scenarios, where pre-disaster SAR data is 
unavailable or unsuitable for interferometric analysis. By 
utilizing widely available optical satellite imagery, this approach 
expands the applicability of interferometric SAR techniques for 
rapid earthquake damage assessment and emergency response 
planning. Future work will focus on quantitative validation 
against ground truth measurements and extension to other types 
of natural disasters. 

Despite these promising results, this study has several 
limitations. First, the experiments are conducted on a limited 
number of events and geographic regions, mainly focusing on 
the 2024 Noto Peninsula earthquake, so the generalization of the 
proposed method to different tectonic settings and land‑cover 
conditions remains to be validated. Second, the conversion 
accuracy from optical to SAR imagery is still affected by 
seasonal changes, cloud contamination, and the fundamental 
frequency difference between optical and microwave sensors, 
which constrains the achievable image quality and 
interferometric coherence. Third, the current evaluation mainly 
relies on image‑based metrics such as PSNR and histogram 
intersection; more comprehensive validation using ground truth 
displacement measurements and operational disaster response 
scenarios is required. Addressing these limitations will be an 
important direction for future work. 

A. Future Works 

In the future, the author will conduct another experiment 
with a variety of disaster types such as flooding, wildfire, and so 
on, with SAR imagery data, which is acquired just after the 
disaster event, and optical image which are acquired on a date 
almost the same as when SAR imagery data is obtained.  Future 
extensions to floods/wildfires will broaden utility. 
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