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Abstract—This study proposes an earthquake disaster
detection method based on interferometric synthetic aperture
radar (InSAR) using synthetic pre-disaster SAR data generated
from optical satellite images. Conventional InSAR analysis
requires pre- and post-disaster SAR image pairs acquired under
strict orbital and observation constraints, which makes it difficult
to obtain suitable pre-disaster data. In the proposed approach, a
digital elevation model (DEM) and land-cover information are
combined with optical imagery, and generative adversarial
networks (GANs), specifically pix2pixHD and CycleGAN, are
used to generate pseudo-SAR data that include both amplitude
and phase components. Experimental results using Sentinel-1 SAR
and Sentinel-2 multispectral instrument (MSI) data demonstrate
that pix2pixHD achieves higher conversion accuracy than
CycleGAN, with a peak signal-to-noise ratio (PSNR) of 21.25 dB
and a histogram intersection of 65.25%, and that the generated
pre-disaster SAR images can be interfered with post-disaster SAR
observations to detect earthquake-induced surface changes in the
2024 Noto Peninsula event. These findings indicate that the
proposed method can extend the applicability of InSAR to areas
and events where suitable pre-disaster SAR acquisitions are
unavailable, contributing to rapid earthquake disaster assessment.
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1. INTRODUCTION

Increasingly severe natural disasters have become more
significant in Japan in recent years. Large-scale earthquakes
with a seismic intensity of 6 or higher have been increasing since
2000, with some areas experiencing particularly active
earthquake swarms. Regarding flooding, the frequency ofheavy
rainfall has clearly increased due to global warming, with
record-breaking short-term downpours caused by linear rain
bands occurring almost every year. Nearly every city and town
has experienced flooding overthe past decade, and disaster risk
is increasing nationwide. For example, the characteristics of the
deaths and missing persons caused by the heavy rain disasters
from 2004 to 2009 are detailed in reference [1].

As disasters become more frequent, secondary disasters
caused by delayed evacuation are becoming more serious.
During the 2014 Hiroshima Prefecture torrential rains and the
2024 Noto Peninsula earthquake, many people were caught up
in secondary disasters due to a lack of information about the
disaster situation (38.2% of cases had no anticipated damage,
and 10.0% were affected during evacuation). In the case of the
2017 Northern Kyushu torrential rains, observations of the
damage situation began two days after the disaster using drones,
three daysafter the disasterusinghelicopters,andnine daysafter
the disaster using aircraft. In contrast, satellite-based disaster

monitoring is rapid, and there are high expectations for visual
and SAR imagery for assessingthe damage situation. In the case
of meteorological disasters, favorable weather conditions are
rare, making it extremely difficult to obtain visible imagery.

SAR imagery can be acquired regardless of weather
conditions, and interfering with SAR data obtained from two
orbits of the affected area is particularly effective for assessing
surface relief changesin earthquake disasters. Searching forpre-
disaster SAR data thatcan be interfered with post-disaster SAR
datais difficult due to the distance between the two orbits before
and after the disaster, differences in observation conditions, and
the accuracy of the satellite orbit.

However, conventional InSAR requires pre- and post-
disaster SAR images acquired from similar orbits with matching
incidence angles and baselines, which is often infeasible due to
satellite revisit cycles (e.g., 6-12 days for Sentinel-1) and
unpredictable event timing. Existing GAN-based SAR-optical
image translation methods (e.g., Seg-CycleGAN, TSGAN)
focus solely on amplitude (radiometric) similarity and cannot
generate phase information essential for interferometry,
rendering them unsuitable for InNSAR workflows.

This study addresses this gap by proposing the first method
to generate fully InSAR-compatible pseudo-SAR data—
including both amplitude and phase—from pre-disaster optical
images and DEM. Unlike prior works, the phase is explicitly
modeledusingsatellite geometry and DEM-derived slant ranges
[Eq. (1)], while amplitude leverages land-cover and GAN
translation. This enables post-disaster InNSAR analysis without
historical SAR data, expanding applicability to any earthquake
event with available optical archives.

The key technical contributions are:

A novel pipeline integrating DEM, land-cover maps, and
GANSs (pix2pixHD/CycleGAN) to synthesize phase-consistent
pseudo-SAR from optical imagery, outperforming amplitude-
only methods.

Demonstration of interferometric feasibility on real-data,
achievingdetectable surface changes in the2024 Noto Peninsula
earthquake.

Quantitative comparison showing pix2pixHD superiority
(PSNR: 21.25 dB vs. CycleGAN: 15.49 dB), with practical
impact for rapid disaster response.

The remainder of this study is organized as follows:
SectionII reviews related work on disaster monitoring using
SAR and optical satellites, interferometric SAR for earthquake
damage detection, and GAN-based SAR-optical image
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translation. SectionIll describesthe proposed method, including
the problem formulation, SAR phase estimation, and GAN
architectures. Section IV presents the experimental setup and
results using Sentinel-1 SAR and Sentinel-2 MSI data for the
2024 Noto Peninsula earthquake. Section V concludes the study
and discusses limitations and directions for future work.

II. RELATED WORKS

Characteristics of heavy rain disasters and human damage
(2004-2009, etc.) are well reported in [ 1], [2]. Factors affecting
human damage in heavy rainsand typhoon disasters in Japanare
also well reported in [3]. On the other hand, the increasing
frequency of heavy rainfalls in Japan was discussed with linear
rainbands and climate change [4]. Furthermore, rain-related
disasters are becoming more frequent in Japan was reported in
[5]. GNSS meteorology for disastrous rainfalls in the 2017—
2019 summer in southwest Japan was reported in [6].

Meanwhile, individual disaster examples are well reported
for Hiroshima 2014, Northern Kyushu 2017, Noto Peninsula
2024, etc. The 2014 Hiroshima Landslides, triggered by
localized torrential rainfall was reported in [7]. Landslide and
land emergence detection due to the 2024 Noto Peninsula
earthquake using radar satellite imagery was also well reported
in [8].

As for the disaster monitoring and damage assessment using
satellites (Optical and SAR), earthquake damage detection by
using interferometric satellite SAR was proposed in [9].
Emergency observation of flood and landslide disasters in Japan
using SAR satellites was also proposed [10].

On the other hand, earthquake damage detection x InSAR
(without GAN), SAR interferometry for detecting the effects of
earthquakes on buildings was proposed and well discussed [11].
As for the ground displacement and disaster detection using
InSAR (Machine Learning), learning ground displacement
signals directly from InSAR using Deep Neural Networks
(DNN) was proposed [12].

Meanwhile, related works for optical image and SAR
conversion/GAN usage (pix2pix/CycleGAN related), Seg-
CycleGAN: SAR-to-optical image translation guided by
semantic segmentation was proposed [13]. Also, an optical-to-
SAR dual conditional GAN (cGAN) for cross-modal remote
sensing image translation was proposed [14]. Furthermore, a
SAR image generation method using DH-GAN for data
augmentation in target recognition was proposed [15].

Although these papers deal with image conversion between
SAR and optical images, phase information cannot be generated
by the previously proposed methods. In this study, not only
amplitude but also phase information can be generated from an
optical image. Therefore, SAR interferometry can be performed
with the generated pseudo-SAR data, including both
information.

While these studies demonstrate the effectiveness of SAR
and InSAR for disaster monitoring, they all assume the
availability of pre-disaster SAR images acquired under suitable
orbital conditions. This assumption does not hold for many
earthquake events, which motivates the need for the synthetic
generation of pre-disaster SAR data.
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Existing GAN-based SAR—optical translation methods focus
onradiometric similarity in amplitude and oftenignore or cannot
represent phase information, which 1is essential for
interferometric processing. Therefore, these approaches cannot
be directly applied to generate pre-disaster SAR data for
InSAR-based earthquake damage detection, leaving an
important gap that this study aims to fill.

Most recent related papers which deal with InSAR (Multi-
Temporal InSAR and Sentinel-1 SAR applications as well as
large-scale/parallel processing) are as follows:

Macchiarulo, V. et al. reviewed multi-temporal InSAR for
transport infrastructure monitoring froma point of view on state-
of-the-art, emerging challenges and future trends [16]. Wu,
Songbo, et al. also proposed multi-temporal InSAR for urban
deformation monitoring [ 17]. Furthermore, Lagios, Evaggelos,
et al. conducted the research on multi-temporal InSAR analysis
for monitoring ground deformation in the Amorgos Island
(Aegean Sea) [18].

Shirzaei, M., and R. Biirgmann proposed a seamless
multitrack multitemporal InSAR algorithm [19]. On the other
hand, Ferretti, A. et al. tried InNSAR monitoring of ground
surface displacement at the scale of the entire French territory
using Sentinel-1 data [20].

III. PROPOSED METHOD

A. Problem Statement

Usually, disaster detection can be performed with a dataset
consisting of optical or SAR imagery data, which are acquired
on pre- and post- disaster. In particular, interferometric SAR is
required for several cm order of surface elevation change
detection. Fig. 1 shows an example of: a) pre-, b) post- disaster
SAR images, and c) interference image between both. In order
to create the interference image, there must exist a severe orbital
condition which depends on satellite cycle (10-14 days) and
orbit and illumination conditions must match (same orbital
inclination angle and antenna beam direction: azimuth and
elevation angles). Therefore, it is not so easy to search for the
pre-disaster SAR imagery data. Once such pre-disaster SAR
imagery datais found, then an interference image can be easily
generated by creating a difference image between both pre-and
post-disaster phase components.

(a) Pre-disaster SAR image (b) Post-disaster SAR imge
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(c) Interference image between pre- and post-disaster SAR images on Google
Earth.

Fig. 1. The example of an interference image between pre- and post-disaster

SAR images.

B. Proposed Method

1) Procedure: The purpose of this study is to surface
elevation change due to earthquake detection by using single
SAR imagery data, which is acquired after the earthquake.
Although centimeter order of surface elevation change can be
estimated with interferometric SAR, SAR imagery data of
disaster areas, which is acquired prior to the disaster, is not so
easy to search and is required for interferometric SAR due to
severe orbital and observational conditions. Therefore, a
method for the generation of pre-disaster SAR imagery data
from optical imagery data is proposed. Fig. 2 shows a process
flow of the proposed method.

(GAN Architecture)
(a) Optical image (b) Pseudo SAR image Interferometry (c) Post-disaster SAR

Fig.2. Process flow of the proposed method, allowing interferometry for
surface elevation change detection.

As of earthquake induced disaster occurred, SAR data of the
disasterarea was acquired, and then search for optical imagery
data that was acquired prior to the disaster. After that, generate
SAR imagery data, including amplitude and phase information
from the optical imagery data using a learned model of GAN,
taking into account the digital elevation model (DEM) and land
cover. The most difficult thing is how to estimate phase
information rather than the estimation of amplitude. Fig. 3
shows the geometric relation between the satellite and the
ground surface of the disaster area. Altitude and slant range can
be calculated with the equations in Fig. 3 (Off nadir angle is

assumedto be known). Also, land cover labels haveto be known.

Thereisa 10-meter meshed land covermap generatedby JAXA.
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Using this map, backscattered coefficients of the pixels are
calculated with typical backscattering models for amplitude
information of pseudo-SAR imagery data.

Satellite
s N
(y— DEM) cos

Surface

" Land cover map (10m mesh size)

Fig. 3.

Geometric relation between satellite and surface.

2) Phase information estimation: Phase information @ can
be calculated with Eq. (1):
®=4n/\ (y-DEM) cos 0 (D)

where, A denotes the wavelength of the SAR instrument. In
this case, Sentinel-1 SAR data is used. The primary parameters
of Sentinel-1 SAR are as follows:

A 0.056m
y : 693km
0: 25~45°

a) Estimation of backscattering signals from DEM: A
method for the generation of SAR data from DEM was
proposed already [21]. Furthermore, a method for correction
taking account of differences in backscattering intensity due to
constructive ground structures was proposed [22]. Using these
methods, SAR data is generated considering foreshortening,
layover, and radar shadowing, as shown in Fig, 4.

]
|
oXe XK % ,

Fig. 4. Correction taking account of differences in backscattering signals
due to ground structures.

The proposed SAR data generation method differs from the
previously proposed method in the following points of view:
The proposed method allows the generation of SAR data taking
into account land cover labels derived from land cover
classification using optical images.
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3) GAN architecture: Two types of GAN architectures,
pix2pixHD (Supervised learning model) and CycleGAN
(Unsupervised learning model), are used for the creation of a
learned model. Fig. 5(a) shows the pix2pixHD architecture,
while Fig. 5(b) shows the CycleGAN architecture, respectively.
For the pix2pixHD, the Generator generates a fake image to
deceive the Discriminator, and the Discriminator identifies the
generated image to avoid being fooled by the fake image. By
repeating this process, the Discriminator will output a pseudo-
SAR image from the noise image that closely resembles the
SAR image input. On the other hand, Cycle GAN converts from
an optical image to a SAR image through a learning model.
Then, the generated SAR image is re-converted to an optical
image. After that, the SAR image is generated from the re-
converted optical image. This process is recursively repeated
until convergence.

- Discriminatorl True

Fake

Noise

(a)pix2pixHD

Original Learning model Outputimage| Re-Conversionimage Original

(b)CycleGAN
Fig. 5. pix2pixHD and CycleGAN architectures.

The detailed architectures and hyperparameters are as
follows:

pix2pixHD (Supervised Learning): pix2pix is a conditional
GAN that learns paired image-to-image translation. The
architecture consists of:

Generator (U-Net):
Encoder: Series of convolutional layers with downsampling
Conv-BatchNorm-LeakyReLU blocks

Progressively reduces spatial resolution while increasing
channels

Decoder: Series of transposed convolutional layers with
upsampling

ConvTranspose-BatchNorm-ReLU blocks
Skip connections from encoder to decoder (U-Net structure)

Output: Single-channel pseudo-NDVI (tanh

activation, range [-1, 1])
Discriminator (PatchGAN):

image

Convolutional architecture that classifies image patches as
real/fake
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Output: NxN array of predictions (70x70 receptive field per
prediction)
More efficient than full-image discrimination
Loss Functions:

Adversarial loss [see Eq. (2)]: L GAN=E[log D(x.y)]+E[log
(1-D(x,G(x))N1(2)

L1 reconstruction loss [see Eq. (3)]: L_L1=E[lly-G(x)II_1]
3)

**Total loss** [see Eq. (4)]: L=L_GAN+AL L1(A=100)
4

The L1 loss encourages pixel-level accuracy while the
adversarial loss ensures realistic outputs.

CycleGAN (Unsupervised Learning):

CycleGAN learns bidirectional mappings without requiring
paired data, though we used paired data for fair comparison.
Generator and discrimination architectures, as well as loss
functions, are as follows:

Generator Architecture:

Encoder: Convolutional layers with downsampling
Transformer: Residual blocks maintaining spatial resolution
Decoder: Transposed convolutional layers with upsampling

Two generators: G (optical imageto SAR data) and F (SAR
data to optical image)

Discriminator Architecture:
Similar to pix2pix PatchGAN

Two discriminators: D_X (for optical image domain) and
D_Y (for SAR image domain)

Loss Functions [see Eq. (5) and Eq. (6)]:
Adversarial losses: L GAN (G)+L_GAN (F)(5)
Cycle-consistencyLoss: L _cyc=E[|IF(G(x))-

xII_1+E[IG(F(y))-yll_1] (6)
Total loss [see Eq. (7)]: L=L_GAN (G)+L_GAN (F)+AL cyc(h
=10) (7)

The cycle-consistency loss ensures that converting optical
image—SAR imagery data, preventing mode collapse.

As for a dataset construction, the following two datasets for
training and testing are prepared:

Training Dataset:
Size: 1,250 paired image patches
Patch size: 256x256 pixels (2.56 km x 2.56 km)

Data augmentation: Random flips, rotations (90°, 180°,
270°)

Test Dataset:
Size: 215 paired image patches
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Non-overlapping with training data

Same spatial resolution and patch size

Quality control is conducted as follows:

Manual inspection to remove cloud-contaminated images
Verification of SAR-optical spatial alignment

Removal of urban and water-dominated patches

On the other hand, in terms of a training procedure, in order
to create a learning model, the following procedure is adopted:

Hyperparameters:

Optimizer: Adam (B1 = 0.5, 2 = 0.999)

Learningrate: 0.0002 (initial), linear decay after 100 epochs
Batch size: 1 (to handle varying image sizes)

Epochs: 200

Training Strategy:

Alternate training of the generator and the discriminator
Update discriminator once per generator update
Learning rate decay to stabilize training in later epochs

Early stopping based on validation loss
IV. EXPERIMENT

A. Data Used

Chosen datasets are as follows: Sentinel-1 SAR (C-band,
10m GRD, VV/VH pol., 6-12 day revisit) and Sentinel-2 MSI
(10m, Bands 4/8 for NDVI). Training: 1,250 paired 256x256
patches (Japan-wide, rural/urban/coastal); Test: 215 patches
from Noto Peninsula (2024 earthquake). JAXA 10m land-cover
map and SRTM DEM used for amplitude/phase. Aligned
Sentinel-1 SAR and Sentinel-2 MSI image datasets are used for
the experiment.

The detailed characteristics of these instruments are as
follows:

1) Sentinel-2 MSI Data:

a) Temporal resolution: 5 days (2-satellite constellation)
b) Spatial resolution: 10 m
c) Spectral bands used:
d) Band 4 (Red): 665 nm
e) Band 8 (NIR): 842 nm
2) Sentinel-1 SAR Data:

a) Temporal resolution: 6-12 days

b) Spatial resolution: 10 m (IW mode)

¢) Polarization: Dual-pol VV+VH

d) Processing: Level-1 GRD (Ground Range Detected)

Vol. 17, No. 1, 2026

B. Data Preprocessing

The following data preprocessing is applied to the original
data,

1) Sentinel-1 SAR Preprocessing:

a) Thermal noise removal: Remove additive noise from
sub-swaths

b) Radiometric calibration: Convert digital numbers to
sigma-nought backscatter coefficients (¢°)

¢) Terrain correction: Apply Range-Doppler terrain
correction using SRTM DEM to compensate for topographic
distortion

d) Speckle filtering: Apply the Lee filter (7x7 window)
to reduce speckle noise

2) Sentinel-2 MSI Preprocessing:

a) Atmospheric correction: Apply Sen2Cor to convert
L1C to L2A products

b) Cloud masking: Use the Scene Classification Layer to
mask clouds and shadows

¢) NDVI  calculation:  Compute
atmospherically corrected red and NIR bands

d) Quality filtering: Retain only NDVI images with
<10% cloud cover

NDVI  from

3) Temporal Co-registration:
SAR and optical images paired within £2 days
Spatial co-registration using image matching algorithms

Resampling to a common 10 m grid using bilinear
interpolation

Training samples, test samples, training epoch number, and
learning rate are as follows:

Training images: 3388
Test images: 500
Training runs: 60
Learning rate: 0.002

C. Estimation of Phase Information

1) Procedure: First, the SAR amplitude image converted
by GAN is assigned an elevation value foreach point usinga
position-adjusted digital elevation model (DEM). Then, the
satellite orbit - in this case, Sentinel-1 - is used, so the phase is
calculated based on the wavelength, altitude, and angle of
incidence information shown in the diagram on the right. The
system has been implemented so that a phase can be assigned
to any satellite ifonlythe DEM and these three pieces of orbital
information are available. Fig. 6 shows the results. The leftis
the phase image resulting from this implementation, and the
right is the correct phase image.
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aE imated h (b)Acual phase information

Fig. 6. Estimation result of phase information from DEM.

2) SARimagery data generation: Fig.7 shows examples of
the generated SAR imagery data fromoptical images (Sentinel-
2 MSI) for the forested, urbanized and coastal areas. Fig. 7(a)
shows input Sentinel-2 MSI image, while Fig. 7(b) shows
actual SAR image (Sentinel-1 SAR). Fig. 7(c) shows generated
SAR imagery databased on pix2pixHD, while Fig. 7(d) shows
that with CycleGAN, respectively.

Forest

Urban

Coastal

(a)Optical (c)pix2pixHD  (d)CycleGAN

Generated SAR data from the corresponding optical images.

(b)SAR
Fig. 7.

D. SAR Imagery Data Generation

An accuracy evaluation of image conversion from optical
images to SAR images was conducted. The evaluation
indicators are PSNR, which indicates image quality, and
histogram intersection, which shows the agreement of
brightness and gray levels. Peak Signal-to-Noise Ratio (PSNR)
is expressed as Eq. (8):

PSNR=10logio((MAX2)/MSE) (8)

where, MSE denotes Mean Square Error and MAX denotes
the maximum value. This measures pixel-level reconstruction
error. The units of PSNR are decibels (dB), higher is better.
Targeted PSNR is >30 dB for acceptable quality. Histogram
intersection is a similarity metric used to compare two
histograms. It measures how much two distributions overlap by
computing the minimum value at each bin across both
histograms and summing these minimums. For two histograms
H: and H: with n bins [see Eq. (9)]:

Intersection = £ min(Hi(i), H2(i)) fori=1ton (9)

Table I shows the PSNR and the histogram intersection for
pix2pixHD and CycleGAN.
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TABLEI. PSNR AND HISTOGRAM INTERSECTION FOR PIX2PIXHD AND
CYCLEGAN
pix2pixHD CycleGAN
PSNR 21.25dB 15.49dB
Histogram Intersection 65.25% 53.99%

Higher values for both indicate better conversion accuracy.
These results show that pix2pixHD is superior in conversion. As
for issues related to the image conversion section alone, we
believe that seasonal changes in vegetation and clouds affect
image conversion, and that the difference in frequency between
the visible light of the optical sensor and the microwaves of the
SAR sensor may limit the conversion accuracy from being
improved any further. As the result, it is found that pix2pixHD
issuperiorto CycleGAN with 5.76dB,and 11.26%,respectively.
As for the issues with the image conversion section alone, we
believe that seasonal changes in vegetation and clouds affect
image conversion, and that the conversion accuracy may not be
able to be improved any further due to the difference in
frequency between the visible light of the optical sensor and the
microwave of the SAR sensor.

E. RGB Composite of SAR Images Before and After the
Disaster

In addition to the above, the RGB composite of SAR images
before and after the disaster is investigated. RGB compositing
makes it possible to capture changes during a disaster by
coloring the images before the disaster red and the afterward
green and blue, and then compositing the images.

In this case, it was performed on the Noto Peninsula
earthquake, which occurred on the 1st 0£2024, and the change
in light blue near the coastline indicates that uplift has occurred.
These are theresults of RGB compositing using pix2pixHD and
CycleGAN. Both were ableto capture changesnear the coastline,
similar to the correct RGB changes. Fig. 8 shows the result.

Before disaster

Red : Changes in flooding and landslides
Blue : Uplift of the ground surface

White : No change

pix2pixHD CycleGAN

Blue

Green
After disaster /

Fig. 8. Exampleof the disaster investigation RGB composite of SAR images

before and after the disaster in case of the Noto earthquake.

By usingtwo SAR imagery data acquired on before and after
the Noto earthquake, changes in flooding and landslides are
visualized in red colored portion while uplift of the ground
surfaces is identified in blue colored portion, respectively.

The core insight is that phase generation bridges optical-
SAR modality gaps via physics-based modeling [Eq. (1)], not
just data-driven GANs—yielding interferograms viable for
disaster ops. pix2pixHD excels due to paired supervision, but
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CycleGAN offers unsupervised flexibility for data-scarce
regions. Limitations include vegetation seasonality affecting
coherence and C-band sensitivity to decorrelation; X-band SAR
could improve. Practically, this reduces InSAR setup time from
weeks to hours, critical for response.

V. CONCLUSION

This study successfully demonstrated a novel approach for
earthquake disaster detection that overcomes the limitations of
conventional interferometric SAR analysis. By leveraging
GANS to generate synthetic pre-disaster SAR data from optical
images, our method addresses the critical challenge of obtaining
temporally and spatially compatible SAR image pairs for
interferometric processing.

The key contributions of this work include:

1) the developmentofa GAN-based framework capable of
synthesizing both amplitude and phase components of SAR
data from optical imagery and DEM,

2) the demonstration that synthetic pre-disaster SAR data
can be effectively interfered with actual post-disaster SAR
observations to detect ground surface changes, and

3) experimental validationconfirmingthe feasibility ofthis
approach for earthquake disaster assessment.

The proposed method offers significant practical advantages
for disaster response scenarios, where pre-disaster SAR data is
unavailable or unsuitable for interferometric analysis. By
utilizingwidelyavailable optical satellite imagery, this approach
expands the applicability of interferometric SAR techniques for
rapid earthquake damage assessment and emergency response
planning. Future work will focus on quantitative validation
against ground truth measurements and extension to other types
of natural disasters.

Despite these promising results, this study has several
limitations. First, the experiments are conducted on a limited
number of events and geographic regions, mainly focusing on
the 2024 Noto Peninsula earthquake, so the generalization of the
proposed method to different tectonic settings and land-cover
conditions remains to be validated. Second, the conversion
accuracy from optical to SAR imagery is still affected by
seasonal changes, cloud contamination, and the fundamental
frequency difference between optical and microwave sensors,
which constrains the achievable image quality and
interferometric coherence. Third, the current evaluation mainly
relies on image-based metrics such as PSNR and histogram
intersection; more comprehensive validation using ground truth
displacement measurements and operational disaster response
scenarios is required. Addressing these limitations will be an
important direction for future work.

A.  Future Works

In the future, the author will conduct another experiment
with a variety of disaster types such as flooding, wildfire, and so
on, with SAR imagery data, which is acquired just after the
disasterevent, and optical image which are acquired ona date
almost the same as when SAR imagery data is obtained. Future
extensions to floods/wildfires will broaden utility.
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