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Abstract—The Nurse Scheduling Problem (NSP) is a
constrained combinatorial optimisation problem that plays a
critical role in healthcare scheduling and constraint optimisation.
Traditional evolutionary approaches often rely on static fitness
evaluation, which struggles to balance feasibility and solution
quality under complex real-world constraints. This study proposes
a competitive co-evolutionary algorithm for the NSP that
introduces adaptive adversarial evaluation, where candidate
schedules are assessed under dynamic competitive pressure to
expose structural weaknesses and guide evolution more effectively.
The proposed competitive NSP is evaluated on a 20-nurse, one-
week scheduling instance and compared against a classical Genetic
Algorithm (GA) under identical conditions for 30 independent
runs. Experimental results show that the competitive NSP
achieves a mean best penalty of 447.28, compared to 651.30 for the
classical GA, corresponding to an average improvement of
approximately 31%. The competitive approach further exhibits
smoother convergence behaviour across generations, indicating
stronger optimisation dynamics and improved robustness. These
findings demonstrate that competitive co-evolution provides an
effective and practical alternative to static fitness-based
evolutionary methods for nurse scheduling, with broader
applicability to healthcare scheduling and constraint optimisation
problems.
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I.  INTRODUCTION

Hospitals worldwide face increasing pressure to deliver
high-quality healthcare services under growing demand,
workforce shortages, and strict regulatory requirements.
Population growth and demographic aging have intensified
healthcare utilisation, particularly in inpatient and emergency
settings, where nurses play a central role in daily clinical
operations [1], [2]. Effective nurse scheduling is therefore
essential for ensuringadequate staff coverage, maintaining care
quality, and controlling operational costs, yet remains
challenging due to the need to balance legal regulations, skill
requirements, workload distribution, and individual
preferences.

Within this context, the Nurse Scheduling Problem (NSP)
is widely recognised as a highly constrained optimisation
problem involving multiple conflicting objectives. Hard
constraints, such as shift coverage, legal rest periods, and role-

based rules, mustbe strictly satisfied to ensure feasibility, while
soft constraints related to fairness, preferences, and workload
distribution influence schedule quality and staff satisfaction
[3],[4]. Studies have shown that poor balance between these
objectives can lead to increased absenteeism, reduced job
satisfaction, and higher operational costs, highlighting the
importance of robust scheduling approaches [3]. As a result,
NSP has been extensively studied over the past decades.

Consequently, numerous optimisation techniques have been
proposed to address the NSP. Comprehensive survey and
comparative studies consistently report difficulties when
realistic constraints are considered, particularly in terms of
scalability, robustness, and sensitivity to parameter tuning [5].
Despite these reported challenges, evolutionary approaches
remain amongthe mostwidely explored solution paradigms for
NSP due to their modelling flexibility and adaptability to
complex constraints. Genetic algorithms have been widely
adopted due to their flexibility in handling complex constraints
[6], while memetic algorithms enhance search performance
through hybridisation with local improvement strategies [7].
Harmony search and related metaheuristics have also been
explored to address multi-constraint nurse rostering problems
[8], alongside goal programming models that explicitly
incorporate preference satisfaction [9]. Robust and scenario-
based optimisation approaches have further been proposed to
address uncertainty in nurse rostering, although these often
increase computational complexity [10], while fuzzy
optimisation models incorporate uncertainty directly into
preference andconstraint modelling[11]. A common limitation
identified across these studies is the reliance on static
evaluation functions, where schedules are assessed using fixed
penalty weights throughout the search. Such static evaluation
may fail to reflect changing problem difficulty, especially in
highly constrained settings where different violations become
dominant at different stages of optimisation.

In practical NSP settings, constraint interactions are
inherently dynamic, where some violations are relatively easy
to resolve during early search stages, while others become
critical only after basic feasibility has been achieved. To
address this challenge, co-evolutionary algorithms have been
proposed as an extension of evolutionary optimisation, where
multiple populations evolve simultaneously and influence one
another during the search process [12]. Building on this
foundation, competitive co-evolutionary algorithms introduce
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adaptive evaluationthrough directcompetitionrather than fixed
fitness assessment. Rosin and Belew [13] first formalised this
prototype by demonstrating how evolving opponents can
expose weaknesses that static evaluation fails to capture,
thereby sustaining selection pressure during optimisation.
Subsequent studies extended this idea in adversarial
optimisation and game theoretic contexts. Olsson [ 14] proposed
a host-parasite genetic algorithm, showing how asymmetric
competition can improve robustness by preventing dominance
stagnation. Lehre [15] provided a runtime analysis of
competitive co-evolution under maximin optimisation,
highlighting its ability to overcome negative drift that
commonly leads to premature convergence in static fitness
landscapes. Fajardo et al. [16] further demonstrated that fitness
aggregation mechanisms play a critical role in maintaining
effective competition, while a follow-up study [ 18] showed that
inappropriate aggregation candestabilise competitive dynamics
and degrade optimisation performance. Harris et al. [17]
complemented these findings by proposing opponent sampling
strategies based on strength similarity to stabilise co-
evolutionary interactions and preserve meaningful selection
pressure.

Despite substantial progress in genetic algorithm-based
nurse scheduling, most existing approaches optimise feasibility
and schedule quality within a single evolutionary process. This
coupled optimisation can limit further improvements once
feasible solutions are reached, as enhancements in soft
constraints often conflict with feasibility maintenance. In this
study, a competitive nurse scheduling framework is proposed
to explicitly model this conflict by introducing competitive
evolutionary pressure between objectives, thereby enabling
sustained optimisation beyond feasibility and addressing
stagnation commonly observed in baseline genetic algorithms.

Motivated by this gap, this study introduces a competitive
co-evolutionary optimisation approach for the Nurse
Scheduling Problem. The proposed algorithm preserves the
original NSP formulation and constraint structure while
enhancing optimisation dynamics through adaptive adversarial
evaluation, showing that improved performance can be
achieved without problem reformulation or additional
constraints. Comparative experiments against a classical
Genetic Algorithm for 30 independent runs demonstrate
improved solution quality, convergence stability, and
robustness under realistic scheduling conditions. These
findings indicate that competitive co-evolution is a viable
optimisation paradigm for complex healthcare scheduling
problems and can be generalised to other highly constrained
settings where static fitness evaluation leads to premature
convergence.

The remainder of this study is organised as follows:
Section I reviews the literature on nurse scheduling and
evolutionary optimisation. Section III presents the NSP
formulation, including hard and soft constraints. Section IV
describes the proposed competitive co-evolutionary
methodology. Section V outlines the experimental setup and
evaluation metrics. Section VI presents and discusses the
results, followed by conclusions in Section VII.
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II. LITERATURE REVIEW

A. Nurse Scheduling Problem and Conventional Solution
Approaches

The Nurse Scheduling Problem (NSP) has been widely
studieddueto its significant impact on hospital operations, staff
wellbeing, and patient safety. Classical NSP formulations
distinguish between hard constraints, which ensure feasibility
and legal compliance, and soft constraints, which influence
schedule quality, fairness, and preference satisfaction [3],[4].
Realistic NSP models often include multiple nurse roles, skill
requirements, shift-pattern rules, and workload balance,
resulting in complex and highly constrained scheduling
problems.

Early NSP solutions relied on exact mathematical
programming and rule-based heuristics. However, these
approaches scale poorly as problem size and constraint
complexity increase. As a result, metaheuristic methods have
become dominantin the literature. Techniques such as genetic
algorithms and memetic algorithms have been widely applied
with varying success [5],[6], while other metaheuristics, such
as heuristic metaheuristic designs for hard and soft constraint
nurse rostering, continue to be explored [7],[8]. While these
methods are flexible and capable of handling complex
constraints, many studies report sensitivity to fitness design,
penaltycalibration and stagnation duringthe searchprocess|[5],

[6].

Several studies emphasise the importance of incorporating
realistic operational constraints into NSP models. Azimi et al.
showed that neglecting practical staffing rules can produce
schedules that appear optimal numerically but are infeasible in
practice [4]. Wright and Mahar further demonstrated that
scheduling decisions directly influence both operational cost
and nurse satisfaction, highlighting the need for balanced
optimisation strategies [3]. Robust and scenario-based models
have also been proposed to address uncertainty in staffing
demand, although these often increase computational
complexity [11]. More recently, exact and model-based
approaches remain active, including mixed-integer
programming nurse rostering models that incorporate
preference and qualification structures [20] and practical MILP
case studies that reduce workload imbalance [25].

Despite the diversity of solution methods, most NSPsolvers
rely on static evaluation functions with fixed penalty weights.
While effective for benchmark problems, static evaluation can
struggle when different constraint violations become dominant
at different stages of optimisation, leading to premature
convergence or extensive parameter tuning [5],[10].

B. Evolutionary and Co-Evolutionary Methods in Nurse

Scheduling

Evolutionary algorithms are among the most commonly
used techniques for the NSP due to their flexibility and ability
to handle complex constraints. Genetic Algorithms (GAs) have
been widely applied in nurse scheduling, while memetic
algorithms, which combine evolutionary search with local
improvement, have been shown to improve convergence speed
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and solution quality in some NSP variants [6]. Other
approaches, such as bi-level heuristics and shift swapping
strategies, further exploit problem structure to refine feasible
schedules [9]. Recentevolutionary and hybrid systems continue
to be proposed in practical healthcare settings, including
Round-Robin GA-based scheduling systems that report
improvements in fairness and execution time in real medical
centre contexts [22],as well as healthcare workforce scheduling
studies that formulate staffing as a multi-objective GA
optimisation problem [24].

Co-evolutionary methods have received comparatively less
attention in NSP research. Existing studies mainly focus on
cooperative co-evolution, where multiple subpopulations
contribute jointly to a single solution [12], [19]. While such
approaches are effective for decomposable problems, they
assume alignment between subcomponents as an assumption
that does not always hold in NSP.

In practical nurse scheduling, improving one aspect of a
roster, such as fairness, may negatively affect another aspect,
such as coverage or legalcompliance. Cooperative co-evolution
does not explicitly model this tension, as subpopulations are
designed to collaborate rather than challenge candidate
schedules. As a result, cooperative approaches may lose
selection pressure once near-feasible solutions are obtained.

While co-evolutionary approaches provide useful
conceptual insights into evolutionary scheduling, this study
focuses on the evaluation of a competitive nurse scheduling
formulation in comparison with a baseline genetic algorithm.

C. Competitive Co-Evolution and its Relevance to NSP

Competitive co-evolutionary algorithms introduce adaptive
selection pressure through direct competition rather than static
fitness evaluation. Rosin and Belew [13] established the
foundational concept of competitive co-evolution by
demonstrating how evolving opponents can actively expose
solution weaknesses that static evaluation fails to capture.
Buildingon thisidea, competitive co-evolution has been further
explored in adversarial optimisation and robust learning
contexts, where Olsson [14] showed that asymmetric host
parasite interactions can improve robustness by preventing
dominance stagnation.

More recent studies have examined the dynamics and
stability of competitive co-evolution in greater depth. Lehre
[15] provided a runtime analysis showing how competitive
evaluation can overcome negative drift in maximizing
optimisation problems. Fajardo et al. [16] demonstrated that
fitness aggregation mechanismsplaya critical role in sustaining
effective competition, while a follow-up study by the same
authors [18] showed that inappropriate aggregation can
destabilise co-evolutionary dynamics and hinder optimisation
progress. Complementing these findings, Harris et al. [17]
proposed opponent sampling strategies based on strength
similarity to stabilise competition and preserve meaningful
selection pressure.

This competitive standard is particularly relevant to the
NSP, where constraint violations can be viewed as challenges
that reveal weaknesses in schedules. Certain shift patterns, role
assignments or coverage configurations may consistently
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expose problematic structures. Competitive evaluation can
adaptively focus on these weaknesses, enabling continued
improvement even after basic feasibility has been achieved.

Despite these advances, competitive co-evolution has
received limited attention in nurse scheduling research.
Existing co-evolutionary scheduling studies primarily adopt
cooperative strategies, where multiple subpopulations work
jointly toward a shared objective [12], [19]. While effective for
certain decomposable problems, cooperative approaches donot
explicitlymodel the inherent tension in NSP between feasibility
and schedule quality, and may therefore struggle to maintain
selection pressure once near feasible solutions are obtained. In
parallel, recent non-coevolutionary NSP studies continue to
explore alternative mechanisms for sustaining search pressure,
including modern metaheuristics such as the Whale
Optimization Algorithm adapted for nurse scheduling [23],
highlighting the ongoing need for effective selection dynamics
in realistic rostering problems.

In summary, although substantial progress has been made
inevolutionary and hybrid optimisation methods for NSP, most
existingapproachesrely on static evaluationand cooperative or
single-population search strategies. Competitive co-evolution,
despite its ability to maintain adaptive selection pressure and
robustness in other domains, has not been systematically
explored for nurse scheduling. Existing co-evolutionary studies
in scheduling primarily focus on cooperation rather than
adversarial evaluation.

This gap motivates the development of a competitive co-
evolutionary NSP algorithm that explicitly captures the
adversarial nature of constraint satisfaction. By embedding
adaptive competition into schedule evaluation, competitive co-
evolution has the potential to address persistent challenges in
NSP, includingstagnation near feasibility, sensitivity to penalty
tuning and limited robustness under complex real-world
constraints. The proposed methodology, presented in the next
section, adapts competitive co-evolutionary principles to the
NSP context, while preserving practical feasibility and realistic
scheduling requirements.

III. PROBLEM FORMULATION

The Nurse Scheduling Problem (NSP) addressed in this
study concerns the construction of a weekly duty roster that
assigns nurses to shifts while satisfying operational feasibility
and quality requirements. Let N = {1,2,...n} denote the setof
nurses and D ={1,2,...7} the set of planning days from
Monday to Sunday. Each nurse is assigned exactly one shiftper
day from the set S ={1,2,3,4}that represent Morning,
Afternoon, Night, Post-Night and Off-day consecutively.
Nurses belong to different roles, including sisters N, senior
nurses N, and healthcare assistants Np.,, where role
membership determines eligibility for specific shifts and Off-
day rules. A schedule is represented by a discrete decision
variable x; ; € S, where x; ; denotes the shift assigned to nurse
i on day d. The feasibility and quality of a schedule are
evaluated through a set of hard and soft constraints. Hard
constraints capture mandatory operational requirements and
include minimum coverage for working shifts, role-based Off-
day restrictions and minimum weekly working hours. Any
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violation of these constraints is considered unacceptable from
an operational standpoint and incurs a large penalty.

Soft constraints model preference and fairness
considerations that influence schedule quality but do not
invalidate feasibility. These include shift sequences such as the
night shift must be followed by a post-night shift, balanced role
coverage across shifts, acceptable ranges of weekly working
hours and fair distribution of night shifts amongeligible nurses.
Soft constraint violations are penalised at a lower magnitude
than hard constraints, reflecting their secondary priority. The
overall penalty of a schedule x is computed using an additive
formulation, as in Eq. (1):

F(x) = HC(x) + SC(x) (D

where, HC (x) denotes the total hard constraint penalty and
SC(x) denotes the total soft constraint penalty. The classical
NSP optimisation objective is therefore min F(x), subject to
the implicitdomain restriction x; 4 € S. This formulation aligns
with conventional penalty based evolutionary approaches to
nurse rostering and allows both feasibility and quality
considerations to be captured within a single objective value.

However, because the penalty function aggregates
violations across allnurses and all days, schedules that achieve
low overall penalty may still contain localised structural
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weaknesses, such as fragile shift sequences or concentrated
workload patterns affecting specific nurses. These weaknesses
can remain hidden when evaluationrelies solely on the global
objective F(x), particularly when penalty tuning balances
competing constraints at an aggregate level. As a result,
conventional optimisation may converge to schedules with low
overall penalty values while still containing local weaknesses
that are not explicitly captured by the aggregate evaluation.

To address this issue, the NSP formulation in this work is
later extended with a competitive evaluation mechanism that
preserves the same decision variables, constraints and penalty
definitions, while altering the evaluation context under which
schedules are compared. Rather than modifying the objective
function itself, the competitive algorithm dynamically
emphasises constraint sensitive positions during fitness
assessment, enabling the optimisation process to distinguish
between schedules that are merely low penalty and those that
are robust under focused constraint stress. The competitive
evaluation strategy and its integration into the evolutionary
process are described in the following section.

Table 1 lists the hard and soft constraints used in the
competitive NSP evaluation. The constraint set is consistent
with conventional NSP formulations andis reused to isolate the
effect of competitive fitness evaluation.

TABLE 1. HARD AND SOFT CONSTRAINTS CONSIDERED IN COMPETITIVE NSP
ID Constraint Description Penalty Type
HClI Minimum coverage for AM, PM, and Night shifts per day Hard
HC2 Role based OFF-day rules (sisters: weekend OFF; others: exactly one OFF) Hard
HC3 Minimum weekly working hours per nurse (Role based) Hard
SC1 Legal shift sequence (Night must be followed by Post-Night) Soft
SC2 Sisters assigned only AM/PM shifts on weekdays Soft
SC3 Balanced role coverage across shifts (SEN and HCA presence) Soft
SC4 Weekly working hours within preferred range Soft
SCs Fair distribution of night shifts among non-sisters Soft

IV. METHODOLOGY

This study employs a competitive co-evolutionary
optimisation algorithm, representing an advanced evolutionary
optimisation model, to solve the Nurse Scheduling Problem
(NSP) formulated in Section IIl. The underlying NSP model,
including decision variables, constraints, and penalty
definitions, remains unchanged. Unlike classical single
population, genetic algorithms that rely on static fitness
evaluation, the proposed approach introduces an adaptive
competitive evaluation mechanism in which candidate
schedules are assessed under adversarial selection pressure that
varies dynamically throughout the evolutionary process.

A. Competitive Co-Evolutionary Algorithm

The proposed algorithm maintains two concurrently
evolving populations with distinct roles. The first population
consists of candidate nurse schedules, where each individual
encodes a complete weekly roster represented as a nurse, day
and shift assignment matrix. Each entry specifies the shift

assigned to a nurse on a given day using discrete shift codes
defined in the NSP formulation.

The second population acts as an evaluation population and
does not represent alternative schedules. Instead, individuals in
this population encode binary evaluation masks defined over
the same nurse-to-day grid. A value of 1 activates focused
evaluation at a specific nurse-to-day position, while a value of
0 excludesit. This design allows the algorithm to dynamically
intensify selection pressure on structurally weak regions of
schedules without introducing new constraints or modifying
feasibility rules.

Fig. 1 illustrates the overall workflow of the proposed
competitive co-evolutionary nurse scheduling algorithm. The
approach operates on the original NSP formulation and
maintains two populations that evolve concurrently. The
schedule population encodes complete weekly nurse rosters,
while the evaluation population encodes binary evaluation
masks that selectively emphasise constraint sensitive nurse to
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day assignments. During each generation, candidate schedules
are assessed using a competitive fitness function that augments
the base NSP penalty with a focused adversarial term. This
mechanism introduces adaptive selection pressure without
modifying the underlying constraints or objective definition.
Evolutionary operators are applied independently to both
populations, and the final solution is selected from the
scheduled populationbased on the base NSP objective function.

Overview of Competitive Co-Evolutionary NSP Algorithm

Nurse Scheduling Problem (NSP) Model
Constraints + Roles + Shift + Penalty Definitions

Initlalize Schedule Population (S) Initialize Evaluation Population (A)
Candidate Nurse Weekly Rosters (Shift Assignment) Binary Evaluation Mask (Nurse-Day Indicator)
L J

Competitive Evaluation
Base Penalty : F(x)= HC(x) + SC(x)
Focused adversarial term : Alx, a)
Competitive Fitness : F,pfxla®)= HC + SC + Afx,a%)
]
4 R

Evolve Schedule Population (S) Evolve Schedule Population (A)
Selection on Fom{xla*) Selection on 4(x,a*)
Crossover + Mutation Crossover + Mutation

L

v

Termination condition
Maximum Generation

2

Output: Best Nurse Schedule
Selected from Schedule Population (s)

Fig. 1. Overview of the competitive co-evolutionary nurse scheduling
algorithm.

B. Chromosome Representation

In the schedulepopulation, each chromosomeencodesa full
weekly roster. For example, a row corresponding to Nurse i
may be represented as:

Nurse i:[0142304]

where, the values denote Morning, Afternoon, Off-day,
Night, Post-Night, Morning, and Off-day assignments
respectively. In contrast, the evaluation population encodes
binary masks over the same structure. A corresponding
evaluation chromosome may be represented as:

Mask Nurse i: [1 00110 0]

Here, a value of 1 indicates that the corresponding nurse-to-
day assignmentis selected for focused evaluation, whilea value
of 0 indicates that it is ignored in the focused penalty
computation.

C. Competitive Evaluation Mechanism

For each candidate schedule x, the base schedule quality is
first evaluated using the standard NSP objective function as in

Eq. (1). Competitive evaluation is introduced through an
additional focused penalty term A(x, a) computed jointly from
the schedule x and an evaluation mask a.

Here, A(x,a) denotes the focused adversarial penalty
induced by evaluation mask a on schedule x. In the competitive
process, A(x *,a) is used to evaluate adversaries against the
currentbestschedule x *,while A(x, @ *) is used to evaluateall
candidate schedules under the selected strongestadversary a *.
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This distinction reflects the asymmetric roles of adversary
selection and schedule evaluation in the competitive co-
evolutionary algorithm.

The focused penalty re-evaluates existing constraint rules
only at nurse-to-day positions activated by the mask. At these
positions, local conditions such as role legality, Off-day
requirements and night-to post-night sequencing are checked
and penalised if violated. Positions not selected by the mask do
not contribute to this term. Importantly, no new constraints are
introduced, instead the mechanism amplifies the impact of
existingviolations at selectedlocations. The competitive fitness
of a schedule is defined as Eq. (2):

F,a(xla®) =HC(x)+ SC(x) + A(x,a") )

This formulation discourages schedules that achieve low
aggregate penalties by relying on fragile local patterns, thereby
promoting robustness under adversarial evaluation.

D. Adversarial Selection and Population Interaction

At each generation, a reference schedule x* is identified as
the individual with the lowest base penalty F(x) in the
schedule population. The evaluation population is then assessed
against this reference schedule, and the strongest evaluator a*
is selected by maximising x 4(x*,a).

All candidate schedules are subsequently evaluated using
the same evaluator a*, ensuring a consistent competitive
context within each generation. Evaluation individuals are
selected based solely on their ability to expose weaknesses in
the reference schedule, while schedule individuals are selected
based on their competitive fitness. The two populations interact
only through this adversarial evaluation mechanism, without
chromosome exchange, cooperative pairing, or decomposition.

E. Evolutionary Operators and Termination

Both populations evolve using standard genetic operators,
where the scheduled population applies selection, crossover,
and mutation operators designed to preserverole eligibility and
basic feasibility. The evaluation of the population evolves
independently using analogous operators suitable for binary
representations, encouraging diversity in evaluation focus and
preventing stagnation.

The evolutionary process continues until a pre-defined
termination condition is met. Throughout the search, solution
quality is monitored using the base NSP objective F(x) to
ensure fair comparison with baseline algorithms.

The overall workflow of the proposed competitive co-
evolutionary nurse scheduling algorithm is summarised in
Pseudocode, illustrating the parallel evolution of schedule and
evaluation populations and their interaction through adversarial
fitness assessment.

Havingdescribed the proposed competitive co-evolutionary
nurse scheduling algorithm and its adversarial evaluation
mechanism combined, as in Eq. (2), the nextsection details the
experimental setup used to assess its effectiveness. This
includes the problem instances, parameter settings, baseline
algorithms for comparison, and performance metrics employed
to ensure a fair and reproducible evaluation of the proposed
approach.
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Pseudocode: Competitive Co-Evolutionary NSP

Initialize schedule population S

Initialize adversarial population A

Evaluate base penalty F(x) for allx € S
bestSoFar < min F(x)
For generation =1 to MAX_ GENERATION do

Identify reference schedule:

x* e« argminF(x), x € §
Identify strongest adversary:

a*« argmax A(x*,a), a € A

For each schedule x € S do
Fopai(x) « HC(x) + SC(x) + A(x,a*)
End For

For each adversary a € A do
G(a) « A(x x,a)
End For
Evolve S using tournament selection on Fg,q;
Evolve A using tournament selection on G

If minyesF (x) < F(bestSoFar) then
bestSoFar< arg min F (x) yes
End If
Update bestSoFar if a lower F(x) is found
End For

Return bestSoFar // // best schedule from Schedule Population S
/Iselected by NSP population objective, F (x)

V. DATASET AND EXPERIMENTAL SETUP

The proposed competitive co-evolutionary approach was
evaluated using benchmark nurse scheduling instances derived
from realistic ward-level rostering scenarios. Each dataset
represents a seven-day planning horizon from Monday to
Sunday and includes multiple nurse roles, including sisters,
senior nurses and healthcare assistants. The datasets
incorporatedrole-based shift eligibility, coverage requirements,
legal rest rules, and workload balance to reflect practical
hospital scheduling conditions.

The experimental evaluation focuses on a 20-nurse, one-
week scheduling instance, which was deliberately selected to
provide a controlled and interpretable setting for comparative
analysis. This scale enables clear observation of optimisation
dynamics, convergence behaviour and robustness differences
between evolutionary strategies without introducing
confounding effects from instance size.

All compared methods were operated on identical problem
instances and shared the same schedule representation,
constraint definitions and penalty structure. This ensures that
observed performance differences arise from optimisation
strategy rather than differences in problem formulation.

The experimental evaluation considered two optimisation
approaches, namely a classical genetic algorithm (GA) and the
proposed competitive co-evolutionary NSP. The approaches
differ only in their evolutionary interaction and fitness
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evaluation mechanisms, while genetic operators and
representations remain consistent across both methods.

Algorithm parameters follow commonly adopted settings in
evolutionary nurse scheduling studies and are held constant
across methods unless otherwise stated. Each algorithm was
executed for a fixed number of generations with identical
population sizes and stoppingcriteria. To account for stochastic
effects, 30 independent runs were performed for each dataset
using different random seeds.

Performance was assessed using best and average penalty
values across generations, together with convergence trends
over time. All reported results were computed using the base
NSP objective function to ensure that comparisons reflect
genuine schedule quality rather than effects introduced by
adversarial evaluation.

All experiments were conducted on the same computational
platform using a consistent software environment. Execution
time, convergence behaviour and solution quality were
recorded for each run and form the basis of the comparative
analysis presented in the following section.

While larger and more diverse nurse scheduling instances
are important for evaluating scalability, the primary objective
of this study is methodological validation of competitive co-
evolutionary optimisation under controlled conditions.
Extension ofthe proposed approach to larger scale and multiple
ward nurse scheduling problems is therefore identified as a key
direction for future work.

Table II summarises the dataset characteristics and
scheduling requirements used to evaluate the proposed
competitive co-evolutionary NSP. The problem definition
follows standard nurse rostering practice and was adopted to
enable fair comparison across optimisation strategies.

TABLE II. PROBLEM PARAMETERS FOR COMPETITIVE NURSE
SCHEDULING EXPERIMENTS
Parameter Description Value

Number of days per

Planning horizon scheduling period ’
Number of nurses | Total nurses per instance 20
Sisters / Senior Nurses /
Nurse roles HCAs 5/8/7
. AM, PM, Night, Post-
Shift types Night, OFF 5

Shifts per nurse

perday

Assignment constraint

Exactly one

Coverage
requirement

Minimum staff per working
shift

>1 Nurse and>1 HCA

(role-dependent)

Role-specific OFF

Weekly OFF rules . Enforced
constraints

ch;rkmg hours Minimum weekly hours Enforced

Shift sequence | Legal patterns (e.g, N — Enforced

rules PN)

Const-ramt Hard vs soft constraints Penalty-based

handling

Objective . HC (x) + SC(x)

definition Schedule quality measure (base NSP objective)

Table Il reports the algorithmic parameters used in the
experimental comparison of classical GA and the proposed
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competitive co-evolutionary approach. Both methods share
identical operator settings unless stated otherwise.

TABLE III. ALGORITHM AND EXPERIMENTAL PARAMETERS

Parameter Setting

Optimisation methods | Genetic Algorithm (GA) NSP, Competitive NSP

Population size 50 individuals per population

Number of populations | GA NSP = 1, Competitive NSP =2

Parent selection Tournament selection (size = 2)

Crossover operator One-point crossover

Crossover probability 0.7

Mutation operator Role-constrained shift reassignment

Mutation probability GA NSP = 0.7, Competitive NSP =0.05

Worst individual replacement based on the

Replacement strate R S
P & respective fitness definition

Maximum generations | 15,000

Independent runs 30 runs per dataset

Fitness used for GA NSP = Static base fitness,

. Competitive NSP = Adversarial competitive
selection .
evaluation
Perf tri .
criomance - metic | pa e NSP penalty (hard + soft constraints)
reported

To ensure fair runtime measurement, execution time was
recorded for the optimisation process only, excluding file
input/output and result printing, which do not affect the
optimisation logic.

VI. RESULTS AND DISCUSSION

This section presents the experimental evaluation of the
proposed Competitive Co-Evolutionary Nurse Scheduling
Problem (NSP) algorithm. The method was compared against
the classical Genetic Algorithm (GA), where both algorithms
shared identical problem representations, constraint
formulations, and dataset parameter settings to ensure fair
comparison. Performance was assessed using the total penalty
value, defined as the sum of hard and soft constraint violations.

A. Performance Consistency for 30 Independent Runs

To evaluate robustness and repeatability, the Competitive
NSP was executed for 30 independent runs using different
random seeds. Across these runs, best penalty values ranged
from 337.00 to 503.81, while average penalty values ranged
from 339.72 to 590.16, indicating some variability inherent to
stochastic optimisation.

TABLEIV. STATISTICAL SUMMARY OF COMPETITIVENSP PERFORMANCE
ACROSS 30 RUNS
Metric Best Penalty Average Penalty
Mean 44728 520.14
Std. Dev. 41.63 60.27
Minimum 337 339.72
Maximum 503.81 590.16

The statistical summary of these runs is reported in
Table IV. The method achieves a mean best penalty of 447.28
and a mean average penalty of 520.14, with relatively low
standard deviations of 41.63 and 60.27, respectively. These
results demonstrate stable convergence behaviour and confirm
that the proposed competitive algorithm consistently produces
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high-quality nurse schedules across repeated executions rather
than relying on isolated favourable runs.

B. Comparative Statistical Analysis

A comparative statistical summary for both methods was
reported in Table V. The classical GA achieves a mean best
penalty of 651.3 and a mean average penalty of 884.6. While
the GA exhibitsrelatively low variance, its final penalty values
remain substantially higher than those obtained by the
Competitive NSP, suggesting premature convergence once
basic feasibility is achieved.

TABLE V. COMPARATIVE PERFORMANCE SUMMARY OF GA AND
COMPETITIVE NSP
Metric Genc;t(i:A ;&l}g}(s);ithm Cong)selt)itive
Mean Best Penalty 651.30 44728
Mean Average Penalty 884.60 520.14
Std. Dev. (Best) 37.90 41.63
Std. Dev. (Average) 40.80 60.27
Minimum Penalty 581.70 337.00
Maximum Penalty 703.60 503.81

In contrast, the Competitive NSP demonstrates markedly
improved performance. The mean best penalty is reduced to
44728, representing a 31.3% reduction compared to the
baseline GA, while the mean average penalty decreases from
884.6 to 520.14, corresponding to a 41.2% reduction. These
results indicate that introducing competitive evaluation
significantly enhances optimisation effectiveness without
modifying the underlying NSP formulation.

TABLE VI. EXECUTION TIME COMPARISON OF GA AND COMPETITIVE
NSp
. Genetic Algorithm .

Metric (GA) NSP Competitive NSP
Mean (sec) 20.53 12.67
Std. Dev (sec) 0.17 0.38
Minimum (sec) 20.22 12.12
Maximum (sec) 20.73 13.41
Median (sec) 20.54 12.48

Table VI reports the execution time statistics for both
optimisation methods over 30 independent runs under identical
computational settings. The baseline Genetic Algorithm (GA)
records the higher mean execution time, with an average
runtime of 20.53 seconds, reflecting its reliance on a single
population search and static fitness evaluation, which typically
requires additional generations to refine feasible schedules.

In contrast, the Competitive NSP achieves a substantially
lower mean execution time of 12.67 seconds, representing a
reduction of approximately 38.3% compared to the baseline
GA. Although the Competitive NSP introduces additional
evaluation mechanisms to model competition between
objectives, its runtime remains efficient and well within
practical limits for offline nurse scheduling. This improvement
in computational efficiency, together with the significant gains
in solution quality reported earlier, demonstrates the
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effectiveness of competitive evaluation without incurring
prohibitive computational cost.

C. Convergence Behaviour Analysis

The convergence behaviour of both methods is illustrated in
Fig. 2 and Fig. 3, corresponding to GA NSP and Competitive
NSP, respectively.

Genetic Algorithm NSP
= Best Penalty = Average Penalty
G000 —
4000 +
2
@
c
@
n'2000—
0 ———f
2500 5000 7500 10000 12500 15000
Generation

Fig.2. Convergence of best and average penalty values for the genetic
algorithm in NSP.

As shown in Fig. 2, the GA exhibits rapid initial
improvement during the early generations, with penalty values
decreasing sharply as feasible schedules are identified.
However, convergence stagnates shortly thereafter, indicating
premature convergence. This behaviour can be attributed to the
reliance on static fitness evaluation within a single population,
which limits further exploration once basic feasibility is
achieved.

In contrast, Fig. 3 demonstrates that the Competitive NSP
maintains a smooth and sustained reduction in penalty values
throughout the evolutionary process. While its early
convergence trend is visually similar to that of the GA, the
Competitive NSP continues to refine solutions beyond the
initial feasibility phase. This is evidenced by the progressively
narrowing gap between the best-of-generation and average
penalty values, indicating stronger population-wide
improvement.

Competitive Co-Evolutionary NSP
= Best Penalty = Average Penalty
8000

6000

4000 ++

Penalty

2000 ++

-
0 f } } |
1000 2000 3000 4000

Generation

Fig.3. Convergence of best and average penalty values for the competitive
co-evolutionary NSP.
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This convergence behaviour reflects more persistent
selection pressure introduced by competitive evaluation,
enabling continued optimisation and reducing the likelihood of
stagnation. These results highlight the effectiveness of the
Competitive NSP in sustaining meaningful optimisation
progress compared to the baseline GA.

D. Discussion of Competitive Advantage

The superior performance of the Competitive NSP can be
attributed to its relative evaluation mechanism, which
fundamentally alters how selection pressure is applied during
the search process. Unlike classical Genetic Algorithms, which
optimise schedules against static evaluation criteria, the
competitive algorithm continuously challenges candidate
schedules under evolving evaluation contexts. This adaptive
pressure discourages overfitting to fixed penalty weightings
and prevents premature stagnation, allowing the algorithm to
refine solution quality even after feasible schedules have been
identified. Similar limitations associated with static fitness
evaluation have been reported in recent nurse scheduling
studies [21] employing hybrid genetic algorithms and multi-
objective formulations, where convergence tends to plateau
once basic feasibility is achieved due to fixed objective
definitions [22],[24]. In contrast, the competitive evaluation
strategy sustains selection pressure beyond feasibility, enabling
continued improvement in solution quality.

From an optimisation perspective, the competitive
evaluation mechanism effectively exposes localised structural
weaknesses that may remain hidden under aggregate penalty
evaluation. Conventional NSP solvers assess schedules
primarily through global penalty accumulation, which can mask
fragile shift sequences or concentrated workload patterns
affecting individual nurses. By selectively amplifying such
weaknesses, adversarial evaluation forces the evolutionary
process to address them explicitly. This behaviour is consistent
with observations from competitive co-evolutionary research in
other optimisation domains, where adaptive opponent-based
evaluation has been shown to maintain meaningful selection
pressure and mitigate stagnation caused by static fitness
landscapes [15],[16]. The present results extend these findings
by demonstratingthat similar advantages can be realised within
a practical nurse scheduling setting.

Importantly, both methods evaluated in this study optimise
the same base objective function and share identical constraint
definitions. The observed performance gains, therefore, stem
from differences in evolutionary interaction and selection
dynamics rather than changes to the NSP formulation itself.
This characteristic differentiates the proposed approach from
recent integer and mixed-integer programming-based nurse
rostering models, which typically rely on fixed optimisation
objectives and predefined constraint weighting schemes to
achieve solution quality [20],[25]. While such exact and hybrid
models offer strong feasibility guarantees, their optimisation
behaviour remains tightly coupled to the chosen formulation
and does not adapt dynamically during the search.

The competitive co-evolutionary algorithm also provides a
distinct alternative to recent nature-inspired metaheuristics
proposed for NSP, such as whale optimisation and related
population-based methods, which primarily enhance
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exploration through novel operators while retaining static
fitness evaluation [23]. Rather than increasing operator
complexity, the proposed method introduces adaptivity directly
at the evaluation level, resulting in improved robustness
without additional tuning parameters. This property is
particularly relevant for real-world nurse scheduling
environments, where constraint interactions are dynamic and
difficult to capture through fixed penalty calibration.

Overall, these findings indicate that competitive co-
evolutionimprovesoptimisation effectiveness through adaptive
search dynamics rather than problem reformulation or operator
augmentation. The results position competitive evaluation as a
promising direction for healthcare scheduling and constraint
optimisation, especially for highly constrained NSP instances
where sustained adaptability and robustness are essential for
producing high-quality schedules.

VII. CONCLUSION

This study examined the effectiveness of a competitive
nurse scheduling formulation for solving the Nurse Scheduling
Problem (NSP) and compared its performance with a classical
Genetic Algorithm (GA). Unlike conventional evolutionary
approaches that rely on static fitness evaluation within a single
population, the proposed method introduces competitive
evaluation into the evolutionary process, enabling adaptive and
continuously informative selection pressure throughout the
search.

Experimental results across 30 independent runs
demonstrate clear differences in convergence behaviour
between the two methods. The classical GA achieves rapid
early improvement, but exhibits premature stagnation once
near-feasible solutions are obtained, leading to higher final
penalty values. In contrast, the Competitive NSP maintains
sustained and smooth improvement across generations,
achievinglowerbestand average penalties with a progressively
narrowing gap between them. This behaviour indicates stronger
population-wide refinement and improved robustness of the
resulting schedules.

Notably, these performance gains are achieved without
alteringthe underlying NSP formulation, constraint definitions,
or penalty structure. The observed improvements arise solely
from the introduction of competitive evaluation and its
influence on evolutionary dynamics, rather than from problem
reformulation or additional model complexity. This
demonstrates the effectiveness of competitive evolutionary
pressure in addressing stagnation commonly observed in GA -
based nurse scheduling.

Future work will focus on extending the proposed
competitive NSP to larger-scale nurse scheduling instances and
integrated healthcare scheduling problems involving operating
theatres and patient admissions. Further investigation into
incorporating domain-specific knowledge within the
competitive evaluation process is also planned. In addition,
cooperative co-evolutionary algorithms may be explored as a
complementary framework to examine how cooperative and
competitive evolutionary pressures interact in complex and
highly constrained healthcare scheduling environments.
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