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Abstract—The Nurse Scheduling Problem (NSP) is a 

constrained combinatorial optimisation problem that plays a 

critical role in healthcare scheduling and constraint optimisation. 

Traditional evolutionary approaches often rely on static fitness 

evaluation, which struggles to balance feasibility and solution 

quality under complex real-world constraints. This study proposes 

a competitive co-evolutionary algorithm for the NSP that 

introduces adaptive adversarial evaluation, where candidate 

schedules are assessed under dynamic competitive pressure to 

expose structural weaknesses and guide evolution more effectively. 

The proposed competitive NSP is evaluated on a 20-nurse, one-

week scheduling instance and compared against a classical Genetic 

Algorithm (GA) under identical conditions for 30 independent 

runs. Experimental results show that the competitive NSP 

achieves a mean best penalty of 447.28, compared to 651.30 for the 

classical GA, corresponding to an average improvement of 

approximately 31%. The competitive approach further exhibits 

smoother convergence behaviour across generations, indicating 

stronger optimisation dynamics and improved robustness. These 

findings demonstrate that competitive co-evolution provides an 

effective and practical alternative to static fitness-based 

evolutionary methods for nurse scheduling, with broader 

applicability to healthcare scheduling and constraint optimisation 

problems. 
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I. INTRODUCTION 

Hospitals worldwide face increasing pressure to deliver 
high-quality healthcare services under growing demand, 
workforce shortages, and strict regulatory requirements. 
Population growth and demographic aging have intensified 
healthcare utilisation, particularly in inpatient and emergency 
settings, where nurses play a central role in daily clinical 
operations [1], [2]. Effective nurse scheduling is therefore 
essential for ensuring adequate staff coverage, maintaining care 
quality, and controlling operational costs, yet remains 
challenging due to the need to balance legal regulations, skill 
requirements, workload distribution, and individual 
preferences. 

Within this context, the Nurse Scheduling Problem (NSP) 
is widely recognised as a highly constrained optimisation 
problem involving multiple conflicting objectives. Hard 
constraints, such as shift coverage, legal rest periods, and role-

based rules, must be strictly satisfied to ensure feasibility, while 
soft constraints related to fairness, preferences, and workload 
distribution influence schedule quality and staff satisfaction 
[3],[4]. Studies have shown that poor balance between these 
objectives can lead to increased absenteeism, reduced job 
satisfaction, and higher operational costs, highlighting the 
importance of robust scheduling approaches [3]. As a result, 
NSP has been extensively studied over the past decades. 

Consequently, numerous optimisation techniques have been 
proposed to address the NSP. Comprehensive survey and 
comparative studies consistently report difficulties when 
realistic constraints are considered, particularly in terms of 
scalability, robustness, and sensitivity to parameter tuning [5]. 
Despite these reported challenges, evolutionary approaches 
remain among the most widely explored solution paradigms for 
NSP due to their modelling flexibility and adaptability to 
complex constraints. Genetic algorithms have been widely 
adopted due to their flexibility in handling complex constraints 
[6], while memetic algorithms enhance search performance 
through hybridisation with local improvement strategies [7]. 
Harmony search and related metaheuristics have also been 
explored to address multi-constraint nurse rostering problems 
[8], alongside goal programming models that explicitly 
incorporate preference satisfaction [9]. Robust and scenario-
based optimisation approaches have further been proposed to 
address uncertainty in nurse rostering, although these often 
increase computational complexity [10], while fuzzy 
optimisation models incorporate uncertainty directly into 
preference and constraint modelling [11]. A common limitation 
identified across these studies is the reliance on static 
evaluation functions, where schedules are assessed using fixed 
penalty weights throughout the search. Such static evaluation 
may fail to reflect changing problem difficulty, especially in 
highly constrained settings where different violations become 
dominant at different stages of optimisation. 

In practical NSP settings, constraint interactions are 
inherently dynamic, where some violations are relatively easy 
to resolve during early search stages, while others become 
critical only after basic feasibility has been achieved. To 
address this challenge, co-evolutionary algorithms have been 
proposed as an extension of evolutionary optimisation, where 
multiple populations evolve simultaneously and influence one 
another during the search process [12]. Building on this 
foundation, competitive  co-evolutionary algorithms introduce 
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adaptive evaluation through direct competition rather than fixed 
fitness assessment. Rosin and Belew [13] first formalised this 
prototype by demonstrating how evolving opponents can 
expose weaknesses that static evaluation fails to capture, 
thereby sustaining selection pressure during optimisation. 
Subsequent studies extended this idea in adversarial 
optimisation and game theoretic contexts. Olsson [14] proposed 
a host-parasite genetic algorithm, showing how asymmetric 
competition can improve robustness by preventing dominance 
stagnation. Lehre [15] provided a runtime analysis of 
competitive co-evolution under maximin optimisation, 
highlighting its ability to overcome negative drift that 
commonly leads to premature convergence in static fitness 
landscapes. Fajardo et al. [16] further demonstrated that fitness 
aggregation mechanisms play a critical role in maintaining 
effective competition, while a follow-up study [18] showed that 
inappropriate aggregation can destabilise competitive dynamics 
and degrade optimisation performance. Harris et al. [17] 
complemented these findings by proposing opponent sampling 
strategies based on strength similarity to stabilise co-
evolutionary interactions and preserve meaningful selection 
pressure. 

Despite substantial progress in genetic algorithm-based 
nurse scheduling, most existing approaches optimise feasibility 
and schedule quality within a single evolutionary process. This 
coupled optimisation can limit further improvements once 
feasible solutions are reached, as enhancements in soft 
constraints often conflict with feasibility maintenance. In this 
study, a competitive nurse scheduling framework is proposed 
to explicitly model this conflict by introducing competitive 
evolutionary pressure between objectives, thereby enabling 
sustained optimisation beyond feasibility and addressing 
stagnation commonly observed in baseline genetic algorithms. 

Motivated by this gap, this study introduces a competitive 
co-evolutionary optimisation approach for the Nurse 
Scheduling Problem. The proposed algorithm preserves the 
original NSP formulation and constraint structure while 
enhancing optimisation dynamics through adaptive adversarial 
evaluation, showing that improved performance can be 
achieved without problem reformulation or additional 
constraints. Comparative experiments against a classical 
Genetic Algorithm for 30 independent runs demonstrate 
improved solution quality, convergence stability, and 
robustness under realistic scheduling conditions. These 
findings indicate that competitive co-evolution is a viable 
optimisation paradigm for complex healthcare scheduling 
problems and can be generalised to other highly constrained 
settings where static fitness evaluation leads to premature 
convergence. 

The remainder of this study is organised as follows: 
Section II reviews the literature on nurse scheduling and 
evolutionary optimisation. Section III presents the NSP 
formulation, including hard and soft constraints. Section IV 
describes the proposed competitive co-evolutionary 
methodology. Section V outlines the experimental setup and 
evaluation metrics. Section VI presents and discusses the 
results, followed by conclusions in Section VII. 

II. LITERATURE REVIEW 

A. Nurse Scheduling Problem and Conventional Solution 

Approaches 

The Nurse Scheduling Problem (NSP) has been widely 
studied due to its significant impact on hospital operations, staff 
wellbeing, and patient safety. Classical NSP formulations 
distinguish between hard constraints, which ensure feasibility 
and legal compliance, and soft constraints, which influence 
schedule quality, fairness, and preference satisfaction [3],[4]. 
Realistic NSP models often include multiple nurse roles, skill 
requirements, shift-pattern rules, and workload balance, 
resulting in complex and highly constrained scheduling 
problems. 

Early NSP solutions relied on exact mathematical 
programming and rule-based heuristics. However, these 
approaches scale poorly as problem size and constraint 
complexity increase. As a result, metaheuristic methods have 
become dominant in the literature. Techniques such as genetic 
algorithms and memetic algorithms have been widely applied 
with varying success [5],[6], while other metaheuristics, such 
as heuristic metaheuristic designs for hard and soft constraint 
nurse rostering, continue to be explored [7],[8]. While these 
methods are flexible and capable of handling complex 
constraints, many studies report sensitivity to fitness design, 
penalty calibration and stagnation during the search process [5], 
[6]. 

Several studies emphasise the importance of incorporating 
realistic operational constraints into NSP models. Azimi et al. 
showed that neglecting practical staffing rules can produce 
schedules that appear optimal numerically but are infeasible in 
practice [4]. Wright and Mahar further demonstrated that 
scheduling decisions directly influence both operational cost 
and nurse satisfaction, highlighting the need for balanced 
optimisation strategies [3]. Robust and scenario-based models 
have also been proposed to address uncertainty in staffing 
demand, although these often increase computational 
complexity [11]. More recently, exact and model-based 
approaches remain active, including mixed-integer 
programming nurse rostering models that incorporate 
preference and qualification structures [20] and practical MILP 
case studies that reduce workload imbalance [25]. 

Despite the diversity of solution methods, most NSP solvers 
rely on static evaluation functions with fixed penalty weights. 
While effective for benchmark problems, static evaluation can 
struggle when different constraint violations become dominant 
at different stages of optimisation, leading to premature 
convergence or extensive parameter tuning [5],[10]. 

B. Evolutionary and Co-Evolutionary Methods in Nurse 

Scheduling 

Evolutionary algorithms are among the most commonly 
used techniques for the NSP due to their flexibility and ability 
to handle complex constraints. Genetic Algorithms (GAs) have 
been widely applied in nurse scheduling, while memetic 
algorithms, which combine evolutionary search with local 
improvement, have been shown to improve convergence speed 
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and solution quality in some NSP variants [6]. Other 
approaches, such as bi-level heuristics and shift swapping 
strategies, further exploit problem structure to refine feasible 
schedules [9]. Recent evolutionary and hybrid systems continue 
to be proposed in practical healthcare settings, including 
Round-Robin GA-based scheduling systems that report 
improvements in fairness and execution time in real medical 
centre contexts [22], as well as healthcare workforce scheduling 
studies that formulate staffing as a multi-objective GA 
optimisation problem [24]. 

Co-evolutionary methods have received comparatively less 
attention in NSP research. Existing studies mainly focus on 
cooperative co-evolution, where multiple subpopulations 
contribute jointly to a single solution [12], [19]. While such 
approaches are effective for decomposable problems, they 
assume alignment between subcomponents as an assumption 
that does not always hold in NSP. 

In practical nurse scheduling, improving one aspect of a 
roster, such as fairness, may negatively affect another aspect, 
such as coverage or legal compliance. Cooperative co-evolution 
does not explicitly model this tension, as subpopulations are 
designed to collaborate rather than challenge candidate 
schedules. As a result, cooperative approaches may lose 
selection pressure once near-feasible solutions are obtained. 

While co-evolutionary approaches provide useful 
conceptual insights into evolutionary scheduling, this study 
focuses on the evaluation of a competitive nurse scheduling 
formulation in comparison with a baseline genetic algorithm. 

C. Competitive Co-Evolution and its Relevance to NSP 

Competitive co-evolutionary algorithms introduce adaptive 
selection pressure through direct competition rather than static 
fitness evaluation. Rosin and Belew [13] established the 
foundational concept of competitive co-evolution by 
demonstrating how evolving opponents can actively expose 
solution weaknesses that static evaluation fails to capture. 
Building on this idea, competitive co-evolution has been further 
explored in adversarial optimisation and robust learning 
contexts, where Olsson [14] showed that asymmetric host 
parasite interactions can improve robustness by preventing 
dominance stagnation. 

More recent studies have examined the dynamics and 
stability of competitive co-evolution in greater depth. Lehre 
[15] provided a runtime analysis showing how competitive 
evaluation can overcome negative drift in maximizing 
optimisation problems. Fajardo et al. [16] demonstrated that 
fitness aggregation mechanisms play a critical role in sustaining 
effective competition, while a follow-up study by the same 
authors [18] showed that inappropriate aggregation can 
destabilise co-evolutionary dynamics and hinder optimisation 
progress. Complementing these findings, Harris et al. [17] 
proposed opponent sampling strategies based on strength 
similarity to stabilise competition and preserve meaningful 
selection pressure. 

This competitive standard is particularly relevant to the 
NSP, where constraint violations can be viewed as challenges 
that reveal weaknesses in schedules. Certain shift patterns, role 
assignments or coverage configurations may consistently 

expose problematic structures. Competitive evaluation can 
adaptively focus on these weaknesses, enabling continued 
improvement even after basic feasibility has been achieved. 

Despite these advances, competitive co-evolution has 
received limited attention in nurse scheduling research. 
Existing co-evolutionary scheduling studies primarily adopt 
cooperative strategies, where multiple subpopulations work 
jointly toward a shared objective [12], [19]. While effective for 
certain decomposable problems, cooperative approaches do not 
explicitly model the inherent tension in NSP between feasibility 
and schedule quality, and may therefore struggle to maintain 
selection pressure once near feasible solutions are obtained. In 
parallel, recent non-coevolutionary NSP studies continue to 
explore alternative mechanisms for sustaining search pressure, 
including modern metaheuristics such as the Whale 
Optimization Algorithm adapted for nurse scheduling [23], 
highlighting the ongoing need for effective selection dynamics 
in realistic rostering problems. 

In summary, although substantial progress has been made 
in evolutionary and hybrid optimisation methods for NSP, most 
existing approaches rely on static evaluation and cooperative or 
single-population search strategies. Competitive co-evolution, 
despite its ability to maintain adaptive selection pressure and 
robustness in other domains, has not been systematically 
explored for nurse scheduling. Existing co-evolutionary studies 
in scheduling primarily focus on cooperation rather than 
adversarial evaluation. 

This gap motivates the development of a competitive co-
evolutionary NSP algorithm that explicitly captures the 
adversarial nature of constraint satisfaction. By embedding 
adaptive competition into schedule evaluation, competitive co-
evolution has the potential to address persistent challenges in 
NSP, including stagnation near feasibility, sensitivity to penalty 
tuning and limited robustness under complex real-world 
constraints. The proposed methodology, presented in the next 
section, adapts competitive co-evolutionary principles to the 
NSP context, while preserving practical feasibility and realistic 
scheduling requirements. 

III. PROBLEM FORMULATION 

The Nurse Scheduling Problem (NSP) addressed in this 
study concerns the construction of a weekly duty roster that 
assigns nurses to shifts while satisfying operational feasibility 
and quality requirements. Let 𝑁 = {1,2, . . . 𝑛} denote the set of 
nurses and 𝐷 = {1,2, . . .7} the set of planning days from 
Monday to Sunday. Each nurse is assigned exactly one shift per 
day from the set 𝑆 = {1,2,3,4} that represent Morning, 
Afternoon, Night, Post-Night and Off-day consecutively. 
Nurses belong to different roles, including sisters 𝑁𝑠, senior 
nurses 𝑁𝑠𝑒𝑛 and healthcare assistants 𝑁ℎ𝑐𝑎, where role 
membership determines eligibility for specific shifts and Off-
day rules. A schedule is represented by a discrete decision 
variable 𝑥𝑖,𝑑 ∈ 𝑆, where 𝑥𝑖,𝑑 denotes the shift assigned to nurse 

𝑖 on day 𝑑. The feasibility and quality of a schedule are 
evaluated through a set of hard and soft constraints. Hard 
constraints capture mandatory operational requirements and 
include minimum coverage for working shifts, role-based Off-
day restrictions and minimum weekly working hours. Any 
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violation of these constraints is considered unacceptable from 
an operational standpoint and incurs a large penalty. 

Soft constraints model preference and fairness 
considerations that influence schedule quality but do not 
invalidate feasibility. These include shift sequences such as the 
night shift must be followed by a post-night shift, balanced role 
coverage across shifts, acceptable ranges of weekly working 
hours and fair distribution of night shifts among eligible nurses. 
Soft constraint violations are penalised at a lower magnitude 
than hard constraints, reflecting their secondary priority. The 
overall penalty of a schedule 𝑥 is computed using an additive 
formulation, as in Eq. (1): 

   𝐹(𝑥)  =  𝐻𝐶(𝑥) + 𝑆𝐶(𝑥)          (1) 

where, 𝐻𝐶(𝑥) denotes the total hard constraint penalty and 
𝑆𝐶(𝑥) denotes the total soft constraint penalty. The classical 
NSP optimisation objective is therefore 𝑚𝑖𝑛 𝐹(𝑥), subject to 
the implicit domain restriction 𝑥𝑖,𝑑 ∈ 𝑆. This formulation aligns 

with conventional penalty based evolutionary approaches to 
nurse rostering and allows both feasibility and quality 
considerations to be captured within a single objective value. 

However, because the penalty function aggregates 
violations across all nurses and all days, schedules that achieve 
low overall penalty may still contain localised structural 

weaknesses, such as fragile shift sequences or concentrated 
workload patterns affecting specific nurses. These weaknesses 
can remain hidden when evaluation relies solely on the global 
objective 𝐹(𝑥), particularly when penalty tuning balances 
competing constraints at an aggregate level. As a result, 
conventional optimisation may converge to schedules with low 
overall penalty values while still containing local weaknesses 
that are not explicitly captured by the aggregate evaluation. 

To address this issue, the NSP formulation in this work is 
later extended with a competitive evaluation mechanism that 
preserves the same decision variables, constraints and penalty 
definitions, while altering the evaluation context under which 
schedules are compared. Rather than modifying the objective 
function itself, the competitive algorithm dynamically 
emphasises constraint sensitive positions during fitness 
assessment, enabling the optimisation process to distinguish 
between schedules that are merely low penalty and those that 
are robust under focused constraint stress. The competitive 
evaluation strategy and its integration into the evolutionary 
process are described in the following section. 

Table I lists the hard and soft constraints used in the 
competitive NSP evaluation. The constraint set is consistent 
with conventional NSP formulations and is reused to isolate the 
effect of competitive fitness evaluation. 

TABLE I.  HARD AND SOFT CONSTRAINTS CONSIDERED IN COMPETITIVE NSP 

ID Constraint Description Penalty Type 

HC1 Minimum coverage for AM, PM, and Night shifts per day Hard 

HC2 Role based OFF-day rules (sisters: weekend OFF; others: exactly one OFF) Hard 

HC3 Minimum weekly working hours per nurse (Role based) Hard 

SC1 Legal shift sequence (Night must be followed by Post-Night) Soft 

SC2 Sisters assigned only AM/PM shifts on weekdays Soft 

SC3 Balanced role coverage across shifts (SEN and HCA presence) Soft 

SC4 Weekly working hours within preferred range Soft 

SC5 Fair distribution of night shifts among non-sisters Soft 

IV. METHODOLOGY 

This study employs a competitive co-evolutionary 
optimisation algorithm, representing an advanced evolutionary 
optimisation model, to solve the Nurse Scheduling Problem 
(NSP) formulated in Section III. The underlying NSP model, 
including decision variables, constraints, and penalty 
definitions, remains unchanged. Unlike classical single 
population, genetic algorithms that rely on static fitness 
evaluation, the proposed approach introduces an adaptive 
competitive evaluation mechanism in which candidate 
schedules are assessed under adversarial selection pressure that 
varies dynamically throughout the evolutionary process. 

A. Competitive Co-Evolutionary Algorithm 

The proposed algorithm maintains two concurrently 
evolving populations with distinct roles. The first population 
consists of candidate nurse schedules, where each individual 
encodes a complete weekly roster represented as a nurse, day 
and shift assignment matrix. Each entry specifies the shift 

assigned to a nurse on a given day using discrete shift codes 
defined in the NSP formulation. 

The second population acts as an evaluation population and 
does not represent alternative schedules. Instead, individuals in 
this population encode binary evaluation masks defined over 
the same nurse-to-day grid. A value of 1 activates focused 
evaluation at a specific nurse-to-day position, while a value of 
0 excludes it. This design allows the algorithm to dynamically 
intensify selection pressure on structurally weak regions of 
schedules without introducing new constraints or modifying 
feasibility rules. 

Fig. 1 illustrates the overall workflow of the proposed 
competitive co-evolutionary nurse scheduling algorithm. The 
approach operates on the original NSP formulation and 
maintains two populations that evolve concurrently. The 
schedule population encodes complete weekly nurse rosters, 
while the evaluation population encodes binary evaluation 
masks that selectively emphasise constraint sensitive nurse to 
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day assignments. During each generation, candidate schedules 
are assessed using a competitive fitness function that augments 
the base NSP penalty with a focused adversarial term. This 
mechanism introduces adaptive selection pressure without 
modifying the underlying constraints or objective definition. 
Evolutionary operators are applied independently to both 
populations, and the final solution is selected from the 
scheduled population based on the base NSP objective function. 

 
Fig. 1. Overview of the competitive co-evolutionary nurse scheduling 

algorithm. 

B. Chromosome Representation 

In the schedule population, each chromosome encodes a full 
weekly roster. For example, a row corresponding to Nurse i 
may be represented as: 

Nurse 𝑖: [0 1 4 2 3 0 4] 

where, the values denote Morning, Afternoon, Off-day, 
Night, Post-Night, Morning, and Off-day assignments 
respectively. In contrast, the evaluation population encodes 
binary masks over the same structure. A corresponding 
evaluation chromosome may be represented as: 

Mask Nurse 𝒊: [1 0 0 1 1 0 0] 

Here, a value of 1 indicates that the corresponding nurse-to-
day assignment is selected for focused evaluation, while a value 
of 0 indicates that it is ignored in the focused penalty 
computation. 

C. Competitive Evaluation Mechanism 

For each candidate schedule 𝑥, the base schedule quality is 
first evaluated using the standard NSP objective function as in 
Eq. (1). Competitive evaluation is introduced through an 
additional focused penalty term 𝛥(𝑥, 𝑎) computed jointly from 
the schedule 𝑥 and an evaluation mask 𝑎. 

Here, 𝛥(𝑥, 𝑎)  denotes the focused adversarial penalty 
induced by evaluation mask 𝛼 on schedule 𝑥. In the competitive 
process, 𝛥(𝑥 ∗, 𝛼) is used to evaluate adversaries against the 
current best schedule 𝑥 ∗, while 𝛥(𝑥, 𝛼 ∗) is used to evaluate all 
candidate schedules under the selected strongest adversary 𝛼 ∗. 

This distinction reflects the asymmetric roles of adversary 
selection and schedule evaluation in the competitive co-
evolutionary algorithm. 

The focused penalty re-evaluates existing constraint rules 
only at nurse-to-day positions activated by the mask. At these 
positions, local conditions such as role legality, Off-day 
requirements and night-to post-night sequencing are checked 
and penalised if violated. Positions not selected by the mask do 
not contribute to this term. Importantly, no new constraints are 
introduced, instead the mechanism amplifies the impact of 
existing violations at selected locations. The competitive fitness 
of a schedule is defined as Eq. (2): 

          𝐹𝑒𝑣𝑎𝑙(𝑥|𝑎∗) = 𝐻𝐶(𝑥) + 𝑆𝐶(𝑥) + 𝛥(𝑥, 𝑎∗)         (2) 

This formulation discourages schedules that achieve low 
aggregate penalties by relying on fragile local patterns, thereby 
promoting robustness under adversarial evaluation. 

D. Adversarial Selection and Population Interaction 

At each generation, a reference schedule 𝑥 
∗ is identified as 

the individual with the lowest base penalty 𝐹(𝑥)  in the 
schedule population. The evaluation population is then assessed 
against this reference schedule, and the strongest evaluator 𝑎∗ 
is selected by maximising 𝑥 𝛥(𝑥∗ ,𝑎). 

All candidate schedules are subsequently evaluated using 
the same evaluator 𝑎∗, ensuring a consistent competitive 
context within each generation. Evaluation individuals are 
selected based solely on their ability to expose weaknesses in 
the reference schedule, while schedule individuals are selected 
based on their competitive fitness. The two populations interact 
only through this adversarial evaluation mechanism, without 
chromosome exchange, cooperative pairing, or decomposition. 

E. Evolutionary Operators and Termination 

Both populations evolve using standard genetic operators, 
where the scheduled population applies selection, crossover, 
and mutation operators designed to preserve role eligibility and 
basic feasibility. The evaluation of the population evolves 
independently using analogous operators suitable for binary 
representations, encouraging diversity in evaluation focus and 
preventing stagnation. 

The evolutionary process continues until a pre-defined 
termination condition is met. Throughout the search, solution 
quality is monitored using the base NSP objective 𝐹(𝑥) to 
ensure fair comparison with baseline algorithms. 

The overall workflow of the proposed competitive co-
evolutionary nurse scheduling algorithm is summarised in 
Pseudocode, illustrating the parallel evolution of schedule and 
evaluation populations and their interaction through adversarial 
fitness assessment. 

Having described the proposed competitive co-evolutionary 
nurse scheduling algorithm and its adversarial evaluation 
mechanism combined, as in Eq. (2), the next section details the 
experimental setup used to assess its effectiveness. This 
includes the problem instances, parameter settings, baseline 
algorithms for comparison, and performance metrics employed 
to ensure a fair and reproducible evaluation of the proposed 
approach. 
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Pseudocode: Competitive Co-Evolutionary NSP 

Initialize schedule population 𝑆 

Initialize adversarial population 𝐴 
 

Evaluate base penalty 𝐹(𝑥) for all 𝑥 ∈  𝑆 

bestSoFar ← 𝑚𝑖𝑛 𝐹(𝑥) 

For generation = 1 to MAX_GENERATION do 
 

     Identify reference schedule: 

           𝑥 ∗ ←  𝑎𝑟𝑔 𝑚𝑖𝑛 𝐹(𝑥), 𝑥 ∈  𝑆 

     Identify strongest adversary: 

            𝑎 ∗ ←  𝑎𝑟𝑔 𝑚𝑎𝑥 𝛥(𝑥 ∗, 𝑎), 𝑎 ∈  𝐴 

      

      For each schedule x ∈ S do 

            𝐹𝑒𝑣𝑎𝑙(𝑥)  ←  𝐻𝐶(𝑥)  +  𝑆𝐶(𝑥)  +  𝛥(𝑥, 𝑎 ∗) 

      End For 
 

      For each adversary 𝑎 ∈  𝐴 do 

            𝐺(𝑎)  ←  𝛥(𝑥 ∗, 𝑎) 

      End For 

      Evolve 𝑆 using tournament selection on 𝐹𝑒𝑣𝑎𝑙  

     Evolve 𝐴 using tournament selection on 𝐺 
 

     If 𝑚𝑖𝑛𝑥∈𝑆𝐹(𝑥) < 𝐹(𝑏𝑒𝑠𝑡𝑆𝑜𝐹𝑎𝑟) then 

              bestSoFar← 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐹(𝑥)𝑥∈𝑆 

      End If 

Update bestSoFar if a lower 𝐹(𝑥) is found 

End For 

Return bestSoFar // // best schedule from Schedule Population S 

//selected by NSP population objective, 𝐹(𝑥) 

V. DATASET AND EXPERIMENTAL SETUP 

The proposed competitive co-evolutionary approach was 
evaluated using benchmark nurse scheduling instances derived 
from realistic ward-level rostering scenarios. Each dataset 
represents a seven-day planning horizon from Monday to 
Sunday and includes multiple nurse roles, including sisters, 
senior nurses and healthcare assistants. The datasets 
incorporated role-based shift eligibility, coverage requirements, 
legal rest rules, and workload balance to reflect practical 
hospital scheduling conditions. 

The experimental evaluation focuses on a 20-nurse, one-
week scheduling instance, which was deliberately selected to 
provide a controlled and interpretable setting for comparative 
analysis. This scale enables clear observation of optimisation 
dynamics, convergence behaviour and robustness differences 
between evolutionary strategies without introducing 
confounding effects from instance size. 

All compared methods were operated on identical problem 
instances and shared the same schedule representation, 
constraint definitions and penalty structure. This ensures that 
observed performance differences arise from optimisation 
strategy rather than differences in problem formulation. 

The experimental evaluation considered two optimisation 
approaches, namely a classical genetic algorithm (GA) and the 
proposed competitive co-evolutionary NSP. The approaches 
differ only in their evolutionary interaction and fitness 

evaluation mechanisms, while genetic operators and 
representations remain consistent across both methods. 

Algorithm parameters follow commonly adopted settings in 
evolutionary nurse scheduling studies and are held constant 
across methods unless otherwise stated. Each algorithm was 
executed for a fixed number of generations with identical 
population sizes and stopping criteria. To account for stochastic 
effects, 30 independent runs were performed for each dataset 
using different random seeds. 

Performance was assessed using best and average penalty 
values across generations, together with convergence trends 
over time. All reported results were computed using the base 
NSP objective function to ensure that comparisons reflect 
genuine schedule quality rather than effects introduced by 
adversarial evaluation. 

All experiments were conducted on the same computational 
platform using a consistent software environment. Execution 
time, convergence behaviour and solution quality were 
recorded for each run and form the basis of the comparative 
analysis presented in the following section. 

While larger and more diverse nurse scheduling instances 
are important for evaluating scalability, the primary objective 
of this study is methodological validation of competitive co-
evolutionary optimisation under controlled conditions. 
Extension of the proposed approach to larger scale and multiple 
ward nurse scheduling problems is therefore identified as a key 
direction for future work. 

Table II summarises the dataset characteristics and 
scheduling requirements used to evaluate the proposed 
competitive co-evolutionary NSP. The problem definition 
follows standard nurse rostering practice and was adopted to 
enable fair comparison across optimisation strategies. 

TABLE II.  PROBLEM PARAMETERS FOR COMPETITIVE NURSE 

SCHEDULING EXPERIMENTS 

Parameter Description Value 

Planning horizon 
Number of days per 

scheduling period 
7 

Number of nurses Total nurses per instance 20 

Nurse roles 
Sisters / Senior Nurses / 

HCAs 
5/8/7 

Shift types 
AM, PM, Night, Post-

Night, OFF 
5 

Shifts per nurse 

per day 
Assignment constraint Exactly one 

Coverage 

requirement 

Minimum staff per working 

shift 

≥1 Nurse and ≥1 HCA 

(role-dependent) 

Weekly OFF rules 
Role-specific OFF 

constraints 
Enforced 

Working hours 

rule 
Minimum weekly hours Enforced 

Shift sequence 

rules 

Legal patterns (e.g., N → 

PN) 
Enforced 

Constraint 

handling 
Hard vs soft constraints Penalty-based 

Objective 

definition 
Schedule quality measure 

𝐻𝐶 (𝑥)  +  𝑆𝐶(𝑥) 

(base NSP objective) 

Table III reports the algorithmic parameters used in the 
experimental comparison of classical GA and the proposed 
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competitive co-evolutionary approach. Both methods share 
identical operator settings unless stated otherwise. 

TABLE III.  ALGORITHM AND EXPERIMENTAL PARAMETERS 

Parameter Setting 

Optimisation methods Genetic Algorithm (GA) NSP, Competitive NSP 

Population size 50 individuals per population 

Number of populations GA NSP = 1, Competitive NSP = 2 

Parent selection Tournament selection (size = 2) 

Crossover operator One-point crossover 

Crossover probability 0.7 

Mutation operator Role-constrained shift reassignment 

Mutation probability GA NSP = 0.7, Competitive NSP = 0.05 

Replacement strategy 
Worst individual replacement based on the 

respective fitness definition 

Maximum generations 15,000 

Independent runs 30 runs per dataset 

Fitness used for 

selection 

GA NSP = Static base fitness, 

Competitive NSP = Adversarial competitive 

evaluation 

Performance metric 

reported 
Base NSP penalty (hard + soft constraints) 

To ensure fair runtime measurement, execution time was 
recorded for the optimisation process only, excluding file 
input/output and result printing, which do not affect the 
optimisation logic. 

VI. RESULTS AND DISCUSSION 

This section presents the experimental evaluation of the 
proposed Competitive Co-Evolutionary Nurse Scheduling 
Problem (NSP) algorithm. The method was compared against 
the classical Genetic Algorithm (GA), where both algorithms 
shared identical problem representations, constraint 
formulations, and dataset parameter settings to ensure fair 
comparison. Performance was assessed using the total penalty 
value, defined as the sum of hard and soft constraint violations. 

A. Performance Consistency for 30 Independent Runs 

To evaluate robustness and repeatability, the Competitive 
NSP was executed for 30 independent runs using different 
random seeds. Across these runs, best penalty values ranged 
from 337.00 to 503.81, while average penalty values ranged 
from 339.72 to 590.16, indicating some variability inherent to 
stochastic optimisation. 

TABLE IV.  STATISTICAL SUMMARY OF COMPETITIVE NSP PERFORMANCE 

ACROSS 30 RUNS 

Metric Best Penalty Average Penalty 

Mean 447.28 520.14 

Std. Dev. 41.63 60.27 

Minimum 337 339.72 

Maximum 503.81 590.16 

The statistical summary of these runs is reported in 
Table IV. The method achieves a mean best penalty of 447.28 
and a mean average penalty of 520.14, with relatively low 
standard deviations of 41.63 and 60.27, respectively. These 
results demonstrate stable convergence behaviour and confirm 
that the proposed competitive algorithm consistently produces 

high-quality nurse schedules across repeated executions rather 
than relying on isolated favourable runs. 

B. Comparative Statistical Analysis 

A comparative statistical summary for both methods was 
reported in Table V. The classical GA achieves a mean best 
penalty of 651.3 and a mean average penalty of 884.6. While 
the GA exhibits relatively low variance, its final penalty values 
remain substantially higher than those obtained by the 
Competitive NSP, suggesting premature convergence once 
basic feasibility is achieved. 

TABLE V.  COMPARATIVE PERFORMANCE SUMMARY OF GA AND 

COMPETITIVE NSP 

Metric 
Genetic Algorithm 

(GA) NSP 

Competitive 

NSP 

Mean Best Penalty 651.30 447.28 

Mean Average Penalty 884.60 520.14 

Std. Dev. (Best) 37.90 41.63 

Std. Dev. (Average) 40.80 60.27 

Minimum Penalty 581.70 337.00 

Maximum Penalty 703.60 503.81 

In contrast, the Competitive NSP demonstrates markedly 
improved performance. The mean best penalty is reduced to 
447.28, representing a 31.3% reduction compared to the 
baseline GA, while the mean average penalty decreases from 
884.6 to 520.14, corresponding to a 41.2% reduction. These 
results indicate that introducing competitive evaluation 
significantly enhances optimisation effectiveness without 
modifying the underlying NSP formulation. 

TABLE VI.  EXECUTION TIME COMPARISON OF GA AND COMPETITIVE 

NSP 

Metric 
Genetic Algorithm 

(GA) NSP 
Competitive NSP 

Mean (sec) 20.53 12.67 

Std. Dev (sec) 0.17 0.38 

Minimum (sec) 20.22 12.12 

Maximum (sec) 20.73 13.41 

Median (sec) 20.54 12.48 

Table VI reports the execution time statistics for both 
optimisation methods over 30 independent runs under identical 
computational settings. The baseline Genetic Algorithm (GA) 
records the higher mean execution time, with an average 
runtime of 20.53 seconds, reflecting its reliance on a single 
population search and static fitness evaluation, which typically 
requires additional generations to refine feasible schedules. 

In contrast, the Competitive NSP achieves a substantially 
lower mean execution time of 12.67 seconds, representing a 
reduction of approximately 38.3% compared to the baseline 
GA. Although the Competitive NSP introduces additional 
evaluation mechanisms to model competition between 
objectives, its runtime remains efficient and well within 
practical limits for offline nurse scheduling. This improvement 
in computational efficiency, together with the significant gains 
in solution quality reported earlier, demonstrates the 
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effectiveness of competitive evaluation without incurring 
prohibitive computational cost. 

C. Convergence Behaviour Analysis 

The convergence behaviour of both methods is illustrated in 
Fig. 2 and Fig. 3, corresponding to GA NSP and Competitive 
NSP, respectively. 

 
Fig. 2. Convergence of best and average penalty values for the genetic 

algorithm in NSP. 

As shown in Fig. 2, the GA exhibits rapid initial 
improvement during the early generations, with penalty values 
decreasing sharply as feasible schedules are identified. 
However, convergence stagnates shortly thereafter, indicating 
premature convergence. This behaviour can be attributed to the 
reliance on static fitness evaluation within a single population, 
which limits further exploration once basic feasibility is 
achieved. 

In contrast, Fig. 3 demonstrates that the Competitive NSP 
maintains a smooth and sustained reduction in penalty values 
throughout the evolutionary process. While its early 
convergence trend is visually similar to that of the GA, the 
Competitive NSP continues to refine solutions beyond the 
initial feasibility phase. This is evidenced by the progressively 
narrowing gap between the best-of-generation and average 
penalty values, indicating stronger population-wide 
improvement. 

 
Fig. 3. Convergence of best and average penalty values for the competitive 

co-evolutionary NSP. 

This convergence behaviour reflects more persistent 
selection pressure introduced by competitive evaluation, 
enabling continued optimisation and reducing the likelihood of 
stagnation. These results highlight the effectiveness of the 
Competitive NSP in sustaining meaningful optimisation 
progress compared to the baseline GA. 

D. Discussion of Competitive Advantage 

The superior performance of the Competitive NSP can be 
attributed to its relative evaluation mechanism, which 
fundamentally alters how selection pressure is applied during 
the search process. Unlike classical Genetic Algorithms, which 
optimise schedules against static evaluation criteria, the 
competitive algorithm continuously challenges candidate 
schedules under evolving evaluation contexts. This adaptive 
pressure discourages overfitting to fixed penalty weightings 
and prevents premature stagnation, allowing the algorithm to 
refine solution quality even after feasible schedules have been 
identified. Similar limitations associated with static fitness 
evaluation have been reported in recent nurse scheduling 
studies [21] employing hybrid genetic algorithms and multi-
objective formulations, where convergence tends to plateau 
once basic feasibility is achieved due to fixed objective 
definitions [22],[24]. In contrast, the competitive evaluation 
strategy sustains selection pressure beyond feasibility, enabling 
continued improvement in solution quality. 

From an optimisation perspective, the competitive 
evaluation mechanism effectively exposes localised structural 
weaknesses that may remain hidden under aggregate penalty 
evaluation. Conventional NSP solvers assess schedules 
primarily through global penalty accumulation, which can mask 
fragile shift sequences or concentrated workload patterns 
affecting individual nurses. By selectively amplifying such 
weaknesses, adversarial evaluation forces the evolutionary 
process to address them explicitly. This behaviour is consistent 
with observations from competitive co-evolutionary research in 
other optimisation domains, where adaptive opponent-based 
evaluation has been shown to maintain meaningful selection 
pressure and mitigate stagnation caused by static fitness 
landscapes [15],[16]. The present results extend these findings 
by demonstrating that similar advantages can be realised within 
a practical nurse scheduling setting. 

Importantly, both methods evaluated in this study optimise 
the same base objective function and share identical constraint 
definitions. The observed performance gains, therefore, stem 
from differences in evolutionary interaction and selection 
dynamics rather than changes to the NSP formulation itself. 
This characteristic differentiates the proposed approach from 
recent integer and mixed-integer programming-based nurse 
rostering models, which typically rely on fixed optimisation 
objectives and predefined constraint weighting schemes to 
achieve solution quality [20],[25]. While such exact and hybrid 
models offer strong feasibility guarantees, their optimisation 
behaviour remains tightly coupled to the chosen formulation 
and does not adapt dynamically during the search. 

The competitive co-evolutionary algorithm also provides a 
distinct alternative to recent nature-inspired metaheuristics 
proposed for NSP, such as whale optimisation and related 
population-based methods, which primarily enhance 
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exploration through novel operators while retaining static 
fitness evaluation [23]. Rather than increasing operator 
complexity, the proposed method introduces adaptivity directly 
at the evaluation level, resulting in improved robustness 
without additional tuning parameters. This property is 
particularly relevant for real-world nurse scheduling 
environments, where constraint interactions are dynamic and 
difficult to capture through fixed penalty calibration. 

Overall, these findings indicate that competitive co-
evolution improves optimisation effectiveness through adaptive 
search dynamics rather than problem reformulation or operator 
augmentation. The results position competitive evaluation as a 
promising direction for healthcare scheduling and constraint 
optimisation, especially for highly constrained NSP instances 
where sustained adaptability and robustness are essential for 
producing high-quality schedules. 

VII. CONCLUSION 

This study examined the effectiveness of a competitive 
nurse scheduling formulation for solving the Nurse Scheduling 
Problem (NSP) and compared its performance with a classical 
Genetic Algorithm (GA). Unlike conventional evolutionary 
approaches that rely on static fitness evaluation within a single 
population, the proposed method introduces competitive 
evaluation into the evolutionary process, enabling adaptive and 
continuously informative selection pressure throughout the 
search. 

Experimental results across 30 independent runs 
demonstrate clear differences in convergence behaviour 
between the two methods. The classical GA achieves rapid 
early improvement, but exhibits premature stagnation once 
near-feasible solutions are obtained, leading to higher final 
penalty values. In contrast, the Competitive NSP maintains 
sustained and smooth improvement across generations, 
achieving lower best and average penalties with a progressively 
narrowing gap between them. This behaviour indicates stronger 
population-wide refinement and improved robustness of the 
resulting schedules. 

Notably, these performance gains are achieved without 
altering the underlying NSP formulation, constraint definitions, 
or penalty structure. The observed improvements arise solely 
from the introduction of competitive evaluation and its 
influence on evolutionary dynamics, rather than from problem 
reformulation or additional model complexity. This 
demonstrates the effectiveness of competitive evolutionary 
pressure in addressing stagnation commonly observed in GA-
based nurse scheduling. 

Future work will focus on extending the proposed 
competitive NSP to larger-scale nurse scheduling instances and 
integrated healthcare scheduling problems involving operating 
theatres and patient admissions. Further investigation into 
incorporating domain-specific knowledge within the 
competitive evaluation process is also planned. In addition, 
cooperative co-evolutionary algorithms may be explored as a 
complementary framework to examine how cooperative and 
competitive evolutionary pressures interact in complex and 
highly constrained healthcare scheduling environments. 
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