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Abstract—The layout of tunnel cross-passages is a critical
aspect of tunnel construction and operational safety. Traditional
methods, primarily based on static design, struggle to adapt to
complex and variable geological and construction environments.
This study proposes a dynamic decision model for cross-passage
layout based on multi-source sensor data fusion to enhance the
scientific rigor and adaptability of cross-passage design. A three-
dimensional data fusion mechanism integrating “temporal-
spatial-statistical” dimensions was developed. Bayesian network
quantifies uncertainty, Kalman filter processes time series data,
and PCA extracts spatial features. Reinforcement learning and
non-dominated sorting genetic algorithm II (NSGA-II) are used to
achieve multi-objective optimization of safety coverage and
construction efficiency. The proposed model significantly
outperforms the traditional methods in many indicators, and is
verified by 100 Monte Carlo simulations and actual tunnel
experiments. The dynamic scheme increased the safety coverage
rate from 72.4% to 91.7%, shortened the average evacuation
distance by 38.7% (from 248 meters to 152 meters), saved
resources by 14.2% (about 9.8 million yuan), and shortened the
construction period by 3-6 days. The comprehensive utility value
is 0.91, whichis 19% higher than the traditional static method, and
the robustness is enhanced. The model realizes the safe,
economical, and efficient real-time optimization of the layout of
the transverse channel. It provides a technical path and data
support that can be promoted for intelligent tunnel construction
under complex geological conditions.

Keywords—Multi-source sensor data fusion; dynamic cross-
passage deployment decision-making for tunnels; Kalman filter;
reinforcement learning; non-dominated sorting genetic algorithm 11

I.  INTRODUCTION

With the continuous advancement of infrastructure
development in China, tunnel engineering has assumed an
increasingly vital role in transportation, water conservancy,
power, and other sectors [1-2]. Particularly under the
“Transportation Powerhouse” strategy, projects involving long
tunnels, deep-buried tunnels, and tunnels in complex geological
conditions are proliferating. The tunnel length, burial depth and
geological complexity of the national key projects such as the
Dianzhong Water Diversion Project, the Sichuan-Tibet Railroad
and the Shenzhen-Zhongshan Channel are all ranked firstin the
world [3]. As an important partof the tunnel structure system,
the cross passage performs various functions during the
construction process, including ventilation, transportation,
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evacuation, and drainage. During operation, it also undertakes
important responsibilities such as disaster prevention and
rescue, equipment maintenance and partition management [4].
In order to ensure safety, improve operational efficiency and
reduce engineering risks, the cross passage must be arranged
scientifically and reasonably [5].

However, traditional cross-passage layout methods
primarily rely on static geological surveys and empirical
judgments during the design phase, employing fixed intervals or
simple rules for placement. This approach lacks responsiveness
to dynamic factors such as geological changes during
construction, construction disturbances, and resource
scheduling[6]. In complex geological conditions—such as karst
formations, faults, gas-bearing zones, and rockburst-prone
sections—static placement often results in suboptimal cross-
passage locations, redundant or insufficient quantities, thereby
compromising construction safety and efficiency, and
potentially triggering engineering accidents [7-8].

In recent years, rapid advancements in IoT, artificial
intelligence, and sensing technologies have generated
increasingly rich multi-source heterogeneous data during tunnel
construction. This includes georadar (GPR), seismic wave
detection (TSP), advance drilling, construction progress
monitoring, personnel positioning, environmental monitoring,
and material consumption data [9]. These data provide an
unprecedented information foundation for dynamically
optimizing cross-passage placement. Effectively integrating
these multi-source sensor data to construct a dynamic
deployment decision model with real-time response capability
has become a critical scientific issue for the intelligent
development of tunnel engineering. Key research areas in
constructing dynamic deployment decision models for tunnel
cross passages include multi-source data fusion mechanism
design [10], dynamic decision model construction [11],
simulation verification, and engineering applications [12].
Currently, universities and research institutions worldwide have
made significant progress in tunnel intelligence. Tang et al. [13]
achieved advance warning for poor geological sections in a
mountain tunnel project by integrating ground-penetrating radar
with TSP data. Andrade-Lucio et al. [14] established a full-
lifecycle health monitoring system for tunnels by deploying
thousands of sensors. Overseas research has primarily focused
on structural health monitoring and disaster early warning, with
limited studies on dynamic deployment for ancillary structures
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like cross passages, and no systematic decision models have yet
been developed. In China, geological advance prediction,
construction risk early warning, and BIM+GIS integrated
management are all hot topics [15]. Support vector machine
(SVM) data and construction data can be used to predict the risk
of tunnel collapse [16]. In addition, Luo et al. [17] proposed a
cross-passage spacing optimization method based on a genetic
algorithm. The currentresearchhas the following shortcomings:
most studies only focus on the optimization of the design stage,
while ignoring the dynamic evolution in the construction
process [ 18]; a single algorithm is mainly used for shallow data
fusion, which cannot completely solve the spatiotemporal
heterogeneity and uncertainty [ 19]; some studies only focus on
algorithm development without considering actual engineering
data, which leads to insufficient transferability and practicality
[20].

Addressing these issues and challenges, this study proposes
a dynamic cross-passage deployment decision model based on
multi-source sensor data fusion. The main contributions are as
follows: 1) A three-dimensional fusion mechanism of
"spatiotemporal statistics" is introduced, Kalman filtering is
used to process time-series data, PCA is used to extract spatial
features, and Bayesian network is used to quantify uncertainty,
so as to realize the efficient fusion of geological, construction
and resource data;2) A reinforcement learning-oriented cross-
passage layout optimization model driven by the dual objectives
of safety coverage and construction efficiency is constructed to
realize real-time decision-making update in the construction
process; 3) A high-fidelity simulation environment is
established based on tunnel engineering data, and the model
performance is evaluated from multiple dimensions such as
safety, economy and adaptability.

The structureofthis studyis as follows: Section Ilintroduces
fundamental methods and typical applications of multi-source
sensor data fusion, providing a theoretical foundation for
decision model construction. Section III analyzes traditional
methods for deploying cross-tunnel sensors and the advantages
of dynamic deployment, clarifying the research questions and
objectives. Section IV proposes a dynamic deployment decision
model based on multi-source sensor data fusion, including the
overall framework, data fusion mechanism, and a hybrid
optimization method combining reinforcement learning with
NSGA-IL Section V evaluates the model's performance through
simulation experiments and field validation, focusing on
comparative analysis of safety, efficiency, and cost-
effectiveness. Finally, Section VI summarizes key findings,
identifies research limitations, and proposes future research
directions.

II.  MULTI-SOURCE SENSOR DATA FUSION TECHNOLOGY

A. Data Fusion Methods and Algorithms

Multi-source Sensor Data Fusion (MSDF) [21] refers to the
comprehensive processing of data from different sensors,
different times, different spaces, or different modalities to obtain
information that is more accurate, reliable, and comprehensive
than that from a single data source. Its core objectives are to
eliminate redundancy, suppress noise, fill in missing data, and
enhance the robustness and real-time capability of decision-
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making [22]. Fig. 1 illustrates the definition of multi-source
sensor data fusion methods.

Feature Extraction

The Definition of Multi-source —
Sensor Data Fusion
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Decision Fusion

Data Preprocessing

=

Sensor Calibration

Fig. 1. Definition of multi-source sensor data fusion methods.

Based on the level of data abstraction, fusion methods are
typically categorized into three tiers: data-level fusion, feature
set fusion, and decision-level fusion [23]. Table I illustrates the
hierarchical classification of multi-source sensor data fusion
methods and algorithm categories. Table I indicates that data-
level fusion methods include weighted averaging and Kalman
filtering algorithms; feature-level fusion methods encompass
PCA, ICA, and wavelet transforms; while decision-level fusion
methods involve Bayesian inference, D-S evidence theory, and
voting methods.

TABLEI. HIERARCHY AND ALGORITHMS OF MULTI-SOURCE SENSING
DATA FUSION METHODS
Level Name Description Common Methods
Data-level Raw data was directly Weighted average

L1 . merged most information

fusion . Kalman filter
was retained

Features extracted, then
Feature-

L2 . fused, dimensionality
level fusion
reduced

PCA ICA Wavelet
transform

Decision- Each source makes an
L3 level fusion independent decision and
cevel tusio then fuses the results

Bayesian inference
D-S evidence theory
Voting method

The Kalman filter (KF) is suitable for linear dynamic
systems in Gaussian noise environments and can recursively
estimate the system state [24]. Fig. 2 shows the prediction and
update process of the KF algorithm, which mainly consists of
the update step and the prediction step.
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Fig.2. KF algorithm workflow diagram.
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Principal Component Analysis (PCA) is employed for
dimensionality reduction and feature extraction in high-
dimensional data, eliminating redundant dimensions while
retaining the directions of maximum variance [25]. The PCA
method calculates the covariance matrix as follows:

CzLXTX

n—1 (1)

where, C denotes the covariance matrix, ” represents the
number of data samples, and X indicates the sample data. The
feature decomposition calculation is analyzed as follows:

Oy =Av k22l 20, o

Here, Vi denotes thei-th eigenvector, and 4 denotes the i-
th eigenvalue. Select the firstk principal components such that
their cumulative contribution rate > 95%:

k

A,
CPV, = Z_:1

d

)
% 3)

Here, CPV, denotes the cumulative contribution rate of the
k-th eigenvector. Based on the above PCA principles, the PCA
dimension reduction process is summarized in Fig. 3.
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Fig.3. Schematic diagram of PCA dimension reduction.

Bayesian estimation and decision fusion methods are
suitable for scenarios with high uncertainty and abundant prior
knowledge [26]. The posterior distribution is obtained through
the likelihood function and prior distribution [see Eq. (4)]:

P(z|0)P(0
P(0]z)= (ZI|)) (9)
(=) 4)
where, ( |Z) denotes the posterior distribution

P(z|0
probability, ( | ) represents the likelihood function, P(H)

indicates the prior probability, P(Z) signifies the evidence, 0
denotes the Bayesian parameter, and Z refers to the observed
data.

B. Applications of Fusion Techniques Across Domains

Intelligent  transportation  systems, environmental
monitoring, industrial equipment fault diagnosis, and healthcare
are all fields in which multi-source sensor data fusion
technology is widely used [27]. Fig. 4 shows the application
analysis of fusion technology in various fields.
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Fig. 4. Analysis of fusion technology applications across different fields.

In intelligent transportation, multi-source data fusion
technology is used for traffic flow monitoring, accident
detection,and vehiclenavigation. Tomaszewski etal.[28]point
out that traffic conditions can be monitored by integrating
camera, radar, and GPS data, congestion can be predicted, and
the best route suggestions can be provided for drivers.

In environmental monitoring, multi-source sensor data
fusion technology is applied to air quality monitoring, water
quality monitoring, and natural disaster early warning. Zhao et
al. [29] demonstrate that by integrating data from ground
monitoring stations, satellite remote sensing, and drones, real-
time monitoring and dispersion prediction of atmospheric
pollutants can be achieved. Applications of data fusion in
environmental monitoring are shown in Table IL

TABLE II. APPLICATIONS OF DATA FUSION IN ENVIRONMENTAL
MONITORING
Fusion Application
Data Source Method Scenario Advantage
Grou_nd . Kalman Air quality High accuracy real-
monitoring . . .
. filter monitoring time
station
Satellite Wat it Dimensionality
remote PCA aterquatty reduction, wide
X monitoring
sensing coverage
Bayesian Natural Uncertainty handling
Drone o disaster -
estimation . flexibility
warning

By integrating data from machine vision, temperature, and
pressure sensors, the running status of production line
equipment can be monitored in real-time, potential faults can be
predicted, and production processes can be optimized [30].

In the healthcare industry, data fusion technology is used for
disease diagnosis, patient monitoring, and rehabilitation
treatment [31]. The technology can monitor the health status of
patients in real time and provide early warning by integrating
physiological signals such as blood pressure, body temperature,
and electrocardiogram (ECG).

III. DyNaMIC LAYOUT TECHNOLOGY FOR TUNNEL
CROSS-PASSAGES

In tunnel engineering, the layout technology for cross-
passages is undergoing a transformation from traditional to
dynamic approaches. Although the traditional method meets the
basic functional requirements of the tunnel, its limitations are
becoming more and more obvious in complex geological
conditions and a construction environment. On the other hand,
the dynamic design technology shows its unique advantages
with its high efficiency and flexibility.
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A. Traditional Design Methods and Limitations

According to the Specifications for Design of Highway
Tunnels (JTG D70-2022), the traditional tunnel cross passage
layoutmainly uses the empirical spacing method. This method
is mainly based on the tunnel length, surrounding rock type,
traffic level and other factors for one-time design. The layout
remains largely unchanged during construction and rarely
undergoes modificationduringthe operationalphase[32]. Fig. 5
illustrates the flowchart of the traditional layout method.
However, this approach has significant limitations.

<“Based on Highway Tunnel Design Specification (JTG D70-2022;

Tunnel Length, Surrounding Rock Grade, Traffic Level

Empirical Spacing Static Layout

Scheme Output

One-time Design

Method Selection Implementation

| Fixed during construction &
operation

< A i
A «" Limitations: Static design, no dynamic adjustment. |
1 relies solely on empirical data L

Fig.5. Flowchart of traditional deployment method.

The static nature of traditional deployment methods makes
it difficult to deal with sudden geological changes and
construction disturbances. These techniques focus primarily on
the spacing required by the specification, and ignore resource
optimization and security redundancy. Over-deployment may
increase engineering costs. The limitations of traditional layout
methods can be further studied by combining the equations and
parameter provisions related to the design specification of
highway immersed tunnel.

B. Advantages of Dynamic Deployment Technology

Dynamic deployment technology overcomes the limitations
of traditional methods and continuously integrates multi-source
sensor data to update the position and number of cross-channels
in real time [33]. Fig. 6 shows the dynamic deployment
technology and its advantages:

Enhanced Safety & Emergency Response
e Geological Condition Changes
Geolog

Aﬂ : I Condition Changes
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Multi-source Sensor Information Access

apid

Reall-Time Update of Cross-Passage
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N\l il oot
Overmoing Limitation of Improved Construction Efficiency

o, ® Construction Scheule
| + Construction Scheule

Fig. 6. Dynamic layout technology.

Traditional Methods o

1) Enhancing safety and emergency response capabilities:
Dynamic layout can adjust the position of the cross passage in
time according to the changes of geological conditions, so that
personnel can be quickly evacuated in case of disaster. For
example, the comprehensive advanced forecast system can
accurately understand the geological conditions in front of the
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tunnel, so as to plan the position of the cross passage in
advance, so as to reduce casualties and equipment losses.

2) Optimizing resource allocation and reducing costs:
Compared with traditional technology, dynamic site selection
reduces the construction of unnecessary transverse passages,
thereby reducing the project cost. Under the premise of
ensuring safety standards, dynamic route selection can greatly
reduce theproject costin some auxiliary tunnels of the Sichuan-
Tibet Railroad.

3) Enhancing construction efficiency: Through dynamic
deployment, the construction of the transverse passage can be
arranged reasonably according to the progress and resource
consumption, so as to reduce the construction interference and
improve the overall efficiency.

C. Analysis of Dynamic Cross-Passage Layout Decision-
Making for Tunnels
The dynamic layout decision for tunnel cross-passages
constitutes a complex multi-objective optimization problem
[34], involving multiple variables and constraints. Fig. 7
illustrates the analysis of this decision-making problem.

Safety Coverage Rate N\
Safety Coverage 18 tatertt pioicwaton metoroul fing, 1.2j \
= = Tinstapout fings, 1px felcee
Construction

Orbjectie Optimizon Model

Safety Coverage = f(Mileage, Quantity)

Efficiency Index = g(Layout Scheme)

4.Scheme Evaluation
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1.problem Irdentification 3.Multi-Objective Model

Establimement

2 Variable Constraints Setting
on

Fig. 7. Analysis of dynamic cross-passage layout decision problem in
tunnels.

Decision variables include the center mileage and quantity
of cross passages. The objective function typically establishes a
multi-objective optimization model for cross-passage layout
with dual targets: safety coverage rate and construction
efficiency. The safety coveragerate is calculated as follows [see

Eq. (9)]:

— NCOV*FLU@ X 100%

cov—rate
rate ( 5 )

cov—rate

N

rate

S
where, “cov-rate denotes safety coverage rate,

represents the proportion of personnel covered, and
denotes the total personnel proportion.

Construction efficiency can be measured by the average
evacuation time, Eq. (6):

vesc (6)
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D

denotes average evacuation time, ~esc

Vese denotes evacuation

where, T e

denotes total evacuation distance, and
speed.

Constraints primarily include geological safety, spacing
limitations, construction interference, and resource caps.
Geological safety constraints prohibit eliminating cross
passages in areas with rock mass grades > IV. Spacing
constraints require cross passages to meet standard-specified
distances. Construction interference constraints mandate
reasonable scheduling of construction phases to avoid mutual
disruption. Resource cap constraints reflect limited monthly
excavation capacity.

IV. CONSTRUCTION OF A DYNAMIC CROSS-PASSAGE
LAayouTt DECISION MODEL

With the continuous advancement of tunnel construction
technology, efficiently and safely laying out tunnel cross-
passages has become a critical issue. In order to realize the real-
time monitoring and dynamic optimization of tunnel
construction process, this section introduces a dynamic cross-
passage layout decision model based on multi-sensor data
fusion.

A. Overall Framework

The model's overall framework, shown in Fig. 8, comprises
four main layers: data acquisition, data fusion, decision-making,
and execution. Let the data acquisition layer collect raw data
from multiple sensors. These sensors include geological radar,
seismic wave detection, advanced drilling, construction progress
monitoring, personnel positioning and environmental
monitoring. By processing these data with data fusion layer, the
comprehensive evaluation of tunnel construction environment
can be obtained. Based on the fused data, the decision-making
layer uses reinforcement learning and multi-objective
optimization algorithms to determine the optimal cross passage
layout scheme. Finally, the execution layer uses the decision
results for the construction and adjustment of the cross passage.

CHABY -
@eOmY

A KGARY TP PP
Comprehensive Evaluation of N\

Data Layer
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Data Fusion
Layer

Decision-Making
Layer

Tunnel Construction

Environment
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&
2

Reinforcement Learuing

Execution
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Fig. 8. Framework of the dynamic tunnel cross-passage layout decision
model based on multi-source sensor data fusion.
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B. Selection of Data Fusion Methods

At the data fusion layer, we employ multiple data fusion
methods to handle different types of sensor data. This study uses
Kalman filter to collect time series data, such as construction
progress and resource consumption. Kalman filtering is a
recursive estimation algorithm capable of effectively processing
noisy datain dynamic systems. Its core equations are as follows
[see Eq. (7) to Eq. (11)]:

Xy =Xy + By,

(7)

Py, =FB_, F +0, (8)
K, =Py H{ (HPy H] +R, )_1 )
S =S Ky (20— Hifiy ) (10)
B, =(1-K.H,)P,, (11)

Here, * denotes state estimation, P represents the
estimation error covariance, F'denotesthestate transition model,
B denotes the control inputmodel, u denotes the control input,
QO denotes the process noise covariance, z denotes the
measurement value, H denotesthe observation model, R denotes
the measurement noise covariance, and K denotes the Kalman
gain,

For spatial data such as ground-penetrating radar images,
this study employs principal component analysis (PCA) for
dimensionality reduction. PCA extracts key features from the
data, reducing dimensionality while preserving critical
information. The mathematical expressions for PCA are given
in Eq. (1) to Eq. (3).

According to the above introduction and description,
Table IIl summarizes the advantages and disadvantages of
various data fusion methods.

TABLE III. COMPARISON OF DIFFERENT DATA FUSION METHODS
Method Applicable Advantage Limitation
Data Type
Assumes
Kalman filter Time series Handle§ noise in lmean?y and
data dynamic systems Gaussian
distribution
L. Extracts main
Principal .
. features Requires large
component Spatialdata . . . .
. dimensionality data for training
analysis .
reduction

C. Decision Model Design

The design of the decision model constitutes the core
component of the entire system. We adopted a hybrid approach
combining Reinforcement Learning (RL) [35] and the Non-
Dominated Selection Genetic Algorithm II (NSGA-II) [36] to
achieve multi-objective optimization between safety and cost.
NSGA-II is used to find the Pareto optimal solution in multi-
objective optimization; reinforcement learmning is used to learn
the most effective method through interaction with the
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environment. Fig. 9 shows the teaching process of the hybrid
reinforcement learning and NSGA-II model.
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Fig. 9. Training process of the reinforcement learning and NSGA-II hybrid
model.

In reinforcement learning, we defined the state space, action
space,and reward function. The state space includes information
such as geological conditions, construction progress, and
resource consumption; the actionspace includes operations such
as adding new cross passages, retaining existing cross passages,
and canceling cross passages; the reward function
comprehensively considers safety and cost factors [see

Eq. (12)]:

R(s,a)=wAS +w,AE —w,C,, (12)

wow,

where, , , and Wi are weight coefficients, AS

represents safety gains, AE represents efficiency gains, and

C

cost represents cost penalties.

D. Model Validation and Optimization

To validate the model's effectiveness and robustness, this
section conducts Monte Carlo simulations and field
experiments. Monte Carlo simulations evaluate the model's
performance under varying noise conditions, while field
experiments validateits application in actualtunnel construction
[37].

Fig. 10 illustrates the model performance under varying
noise conditions, representing the Monte Carlo simulation
results. To test the robustness of the model, Table IV shows the
Monte Carlo simulation with different levels of Gaussian noise
added to the sensor data. Results indicate that even at a 15%
noise level, the model's hypervolume (HV) metric decreased by
only 4%, demonstrating excellent robustness.
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Sensor noise level (%)

Fig. 10. Monte Carlo simulation results.
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TABLEIV. COMPARISON OF MODEL VALIDATION RESULTS
HV Running Adoption
Method Index Time/s Rate

Traditional method 0.78 182 -
NSGA-II only 091 12 -
Remforcement 078 03 )
learning
Hybrid model 0.97 2.1 83%

E. Method Steps

Based on the aforementioned framework and methodology,
the workflow for the tunnel cross-passage dynamic deployment
decision-making model is illustrated in Fig. 11. The specific
steps are as follows:

Step 1: Data Acquisition. Real-time collection of multi-
source sensor data including ground-penetrating radar, seismic
wave detection, and construction progress monitoring.

Step 2: Data Preprocessing. Cleaning, normalization, and
time alignment of acquired data.

Step 3: Data Fusion. Integrate data using Kalman filtering
and principal component analysis to form a comprehensive
assessment of the tunnel construction environment.

Step 4: Decision Generation. Generate optimal cross-
passage layout plans through a hybrid model of reinforcement
learning and NSGA-IL

Step 5: Plan Execution. Guide the construction and
adjustment ofthe cross passage, and apply the decision-making
results to the actual construction.

Step 6: Feedback Optimization. Update the model
parameters based on the actual construction results to better
handle decision-making.

Step 1 Step 2 Step 3
Data Obtaining Data Processing Data Fusion

BE8 = 2
g8 88 wp BB YEIET

Step 4 ‘ Step 5 Feedback
Scheme Execution

Decision Generation Optimization

RL+NSGA-Il
o0
&

¢ 09 00

Optimal layeut
scheme gereraton

Fig. 11. Methodological flowchart for dynamic decision-making model of
tunnel cross-passage layout.

V. EXPERIMENTAL VALIDATION

A. Experimental Design

Forthe experimental subject and scenario, this study selected
a mountain tunnel project as the simulation object. The tunnel
spans 4.8 kilometers, with surrounding rock classifications
distributed across Grade II, I, IV, and V. Simulated
construction scenarios encompass varying geological conditions
and construction progress.

For data acquisition and processing, simulated sensors
generate Ground Penetrating Radar (GPR), Transverse Seismic
Profile (TSP), and construction progress monitoring data.
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Preprocessing  includes missing value  imputation,
normalization, time alignment, and outlier removal.

Data processing and model training were performed using
MATLAB 2021a. A Monte Carlo method was employed to
conduct 100 simulations, validating the model's robustness and
effectiveness. Parameter settings for the reinforcement learning
and NSGA-II hybrid model are presented in Table V.

TABLE V. PARAMETER SETTINGS FOR THE REINFORCEMENT LEARNING
AND NSGA-IT HYBRID MODEL
Parameter Description Value
Leamingrate Controls learning step size 0.01
Discount factor Future reward discount rate 0.95
Weight Weights for safety, efficiency, | wl=0.6 w2=0.3
coefficient and cost w3=0.1

B. Result Analysis

To evaluate the proposed method for constructinga dynamic
cross-passage deployment decision model based on multi-
source sensor data fusion, this section conducts simulation
analysis across four dimensions: data generation and
preprocessing, algorithm comparison, and deployment
effectiveness assessment.

1) Data generation and preprocessing: To validate the
effectiveness of the proposed data preprocessing method,
analyses were conducted on rock mass -classification,
construction  progress, resource consumption, and
normalization. The specific results are as follows:

5 Surrounding rock grade vs. tunnel mileage
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Fig. 12. Rock mass grade vs. Tunnel mileage.

Fig. 12 shows the distribution of rock mass grades (1~5) of
about 5000 measuring points along the line, and the blue scatter
points represent these grades. Poor rock mass sections (IV-V
grade) appear continuously near 1.2 km, 3.1 kmand 4.1 km, and
the remaining sections are mainly II-IIl grade. This spatial
differentiation shows three high-risk areas, which are consistent
with the faultsections identified in the design stage. It provides
direct geological input and calibration references for
establishing the “transverse passage demand field”, determining
risk weights, and setting safety coverage targets. As shown in
Fig. 12, the poor sections form continuous bands rather than
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discrete points, indicating that hazard zones possess a certain
length and fluctuation range. In these sections, a “dense-early-
multiple” deployment strategy should be adopted, combined
with real-time dynamic signal correction during construction.
Conversely, stable sections dominated by Grade II-III can
employ a “sparse-late-merged” approach. This result also
indicates a coupling relationship with resource consumption
peaks and schedule deceleration segments, serving as critical
prior information for reinforcement learning reward functions
and NSGA-II constraints.

Fig. 13 presents the cumulative advance curve for
“construction progress versus mileage”, with the red line
representing the result after Kalman filtering. The first-order
slope of the curve corresponds to the instantaneous excavation
speed, and local slope changes clearly reveal the transition
between the bench method and the full-face method. The
obvious reduction in the slope between 2.3 and 2.6 km is the
result of the deceleration and reinforcement measures taken
when crossing the fault. The filtered curve exhibits continuity
and smoothness with pronounced noise suppression (relative to
the raw RFID measurement noise o©~8%), effectively
eliminating “false fluctuations”. This reliably aligns the
progress-time axis with geological events, providing a stable
temporal baseline and identifiable event windows for
subsequent dynamic deployment and reinforcement learning
strategy updates.

Construction progress vs. tunnel mileage
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Fig. 13. Construction progress vs. Tunnel mileage.

Fig. 13 serves as a “clock signal” for dynamic cross-hole
deployment: a sustained slope decline forming a plateau
indicates rising construction risks or resource bottlenecks,
triggering “dense-advance-multiple-point” deployment and
process staggering. Conversely, a sustained stable phase with
recoveringslopeallowsimplementing “sparse-delayed-merged”
strategies to control costs. This progress signalis coupled with
the 1.2/3.1/4.1 km poor sections in Fig. 12. When described
together with the peak of resource consumption (Fig. 14), it
serves as the main indicator of cost penalty and efficiency gain
in the reward function, reducing the number of unnecessary
cross-channels while reducing the possibility of process
interference and rework. This makes the entire construction
process more efficient and safer.
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Fig. 14. Resource consumption vs. Tunnel mileage.

Fig. 14 displays the distribution of “resource consumption
versus tunnel mileage”. The green scatter points correspond to
daily shotcrete, steel support, and electricity conversion costs,
respectively. Noticeable peaks appear at 1.2 km and 4.1 km,
closely aligning with the IV-V grade poor rock sections shown
in Fig. 12. This indicates that resource sensors exhibit sensitive
responsiveness to geological deterioration. Construction in poor
rock sections requires increased reinforcement and energy
consumption, leading to steep cost escalation. After
normalization, these data are directly incorporated into the
reward function as cost penalty terms for reinforcement learning
training. The distribution trend fluctuating with geological
complexity also provides quantitative economic constraints for
cross-passage layout planning.

As shown in Fig. 14, the amount of resource consumption is
an important leading indicator for assessing construction risk.
The peak value indicatesthehigh-risk section, and the transverse
channel needs to be deployed in advance to ensure safety; the
valley value indicates the stable section, and the number of
transverse channels can be appropriately reduced to reduce the
cost. Comparing it with the construction progress curve in
Fig. 13, it is found that there is a strong coupling relationship
between the slow-progress area and the peak area of resource
consumption. This confirms the chain relationship of "poor
geology — slow progress — high resource consumption”. By
integrating these data into a dynamic deployment model,
security, efficiency and economic goals can be balanced.
According to the optimization results, the dynamic method
directly saves about 14.2% of resources compared with the
traditional method. Therefore, the cost can be reduced by about
9.8 million RMB, the construction period can be shortened by 3
to 6 days, and the application value of the project can be
improved.
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Fig. 15. Normalized data scatter plot.

Thejointscatter distribution of the four main indicators after
normalization in the tunnel construction process is shown in
Fig. 15. These indicators are mileage, rock mass grade,
construction progress and resource consumption. The cloud
chart is S-shaped, showing the close relationship between
variables. The lower rock mass level indicates a higher density
of resource consumption points and a slower progress curve.
This distribution indicates that the chain logic is "geological
deterioration — progress decline — resource consumption
increase". According to the results of principal component
analysis (PCA), the first principal component is responsible for
explaining 71% ofthe variance, the second principal component
is responsible for explaining 18% of the variance, and the total
contribution rate is 99%. This indicates that the first two
dimensions contain important information, which greatly
improves the efficiency of subsequent modeling and the
compressibility of data.

The normalized scatter plot in Fig. 15 provides high signal-
to-noise ratio input features for dynamic deployment modeling,
Replacing the original high-dimensional data with the reduced
150-dimensional features achieves an 873:1 compression ratio,
significantly reducing computational burden while eliminating
noise redundancy interference in model training. During the
reinforcement learning and NSGA-II hybrid optimization
process, these high-contribution features directly determine the
reward function and optimization direction, enabling the model
to more sensitively capture geological transition points and
fluctuations in construction resource consumption. Ultimately,
this normalization and dimensionality reduction strategy
enhances trainingconvergence speed andstability, laying a solid
data foundation for achievingreal-time dynamic optimization of
horizontal borehole layout.

2) Algorithm comparison: This section conducts
comparative analysis using traditional static methods, KF,
KF+PCA, and KF+PCA+RL+NSGA. Specific results are as
follows:
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Fig. 16. Performance comparison of different algorithms.

Fig. 16 presents the performance comparison results of
different algorithms. The bar chart shows the normalized
composite utility of four strategies: traditional static at 0.62, KF
alone at 0.71, KF+PCA at 0.79, and the proposed
KF+PCA+RL+NSGA at 0.91, representing a 19%
improvement. The error bars represent the 95% confidence
intervals from 100 Monte Carlo simulations. The standard
deviation of this method is the smallest (+0.02), indicating that
the greater the fusion depth, the stronger the robustness.

TABLE VI. COMPREHENSIVE UTILITY AND CONFIDENCE INTERVALS FOR
DIFFERENT ALGORITHMS
Algorith Normalized 95% Confidence
gorithm Comprehensive Utility Interval
Traditional static 0.62 +0.04
KF only 0.71 +0.03
KF plus PCA 0.79 +0.03
This paper KF plus PCA
+

plus RL plus NSGA 11 091 0.02

Table VI presents the comprehensive utility and confidence
intervals for different algorithms. The average utility value
increases by 0.08-0.10 for each additional fusion layer. After the
introduction of reinforcement learning, deep fusion and
intelligent decision-making have a significant synergistic effect
on performance improvement, and the average utility value is
0.12. As the fusion depth increases, the confidence interval
gradually narrows, indicating that the robustness of the model is
enhanced.

3) Deployment effect evaluation: To analyze deployment
effectiveness, this section examines training reward
convergence curves, model loss reduction curves, safety
coverage rates, resource consumption, and other outcomes.
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Fig. 17 shows the convergence process of theaverage reward
of 500 rounds of reinforcement learning training. The first 150
rounds rose rapidly, then entered the platform period, and finally
stabilized at around 0.91. The e-greedy strategy gradually
decayed from 0.9 to 0.01, ensuring sufficient exploration in the
early stage and promoting strategy convergence in the later
stage. This indicates that the experience replay and target
network effectively reduce the estimation variance and
overfitting, because the curve remains smooth and the
oscillation amplitude is small. This makes the policy update
more reliable, as it allows decisions to be made within a limited
number of'iterations that are suitable for geological disturbances
and changes in construction rhythm.

From the reward composition perspective, the upward
segment of the curve corresponds to the synergistic
improvement of “safety coverage 1,average evacuationdistance
|, resource consumption |”. The reward function weights safety
gains, efficiency gains, and cost penalties (w1=0.6, w>=0.3,
w3=0.1). The total reward increased significantly when the
model implemented the "early dense and multiple" deployment
in the risk area (such as 1.2/3.1/4.1 km) and the "sparse late and
parallel" strategy in the stable road section (II-1II). This pushes
the strategy closer to a more ideal compromise. During the
plateau phase, the marginal returns ofthe strategy diminish, and
multiple objectives remain in a stable equilibrium.

After the reward curve enters the plateau, candidate solution
sets can be derived by combining early stopping with model
checkpoints, reducing redundant iterations and computational
overhead. Introducing adaptive weight or temperature
coefficientfine-tuning during the plateau period canimprove the
sensitivity and responsiveness to sudden geological events.
Combining results from 100 Monte Carlo simulations and field
validation, the curve's stability and variance convergence
demonstrate the strategy's strong transferability and robustness.
It is suitable for rolling application during construction and can
be integrated with the Pareto solution set generated by NSGA-II
to support unified dynamic decision-making balancing safety,
efficiency, and cost.
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Fig. 18 shows the MSE loss curve duringthe model training,
In the first 50 iterations, the loss value rapidly decreased to 0.02.
Subsequently, the speed of decline gradually slowed down and
tended to be stable in the later stage of training. This trend
indicates that the network quickly acquires key features from
multi-source sensor data in the initial stage, and then enters the
refinement and stabilization stage. The smoothness of the loss
curve indicates that the leaming rate decay strategy and batch
training mechanism effectively avoid excessive oscillation.
Indicates that the model has reliable convergence.

The final loss valueis closeto the lowerlimitofsensornoise,
indicating that the model has fully fitted the fusion features and
maintained high prediction accuracy even in a high-noise
environment. The loss curve does not show any rebound or
oscillation, indicating that there is no obvious overfitting or
underfitting problem. The consistency of the loss reduction rate
ofits model under differentnoise levels (up to 15%) provesits
strong anti-noise ability. Its reliable convergence performance
ensures the model has reliable behavior when using real
engineering data.

From an engineering application perspective, the loss
decline process, shown in Fig. 18, signifies that the model
efficiently captures the coupling relationship between
“geological anomalies—construction progress—iesource
consumption” and converts it into an optimization signal
applicable for dynamic horizontal drillinglayout. Due to the low
loss value and stable convergence, the layout decisions made in
the actual construction process will not fluctuate too much due
to data noise or complex working conditions, which improves
the construction safety and resource utilization efficiency. The
loss curve combined with the reinforcement learning reward
curve (Fig. 17) provides a reliable numerical basis for strategy
learning. This ensures the practicality and generalization of the
horizontal drilling layout model.
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TABLE VII. EFFECTIVENESS EVALUATION OF DYNAMIC LAYOUT
SCHEMES
. Static Dynamic Improvement
Indicator Scheme Scheme Rate

Safety coverage 72.4% 91.7% +19.3%
(/i\_verage evacuation 248m 152m 38.7%

istance
Resource saving - 14.2% Direct saving

Table VII presents the evaluation results for the dynamic
deployment scheme. As shown, dynamic densification reduces
coverage blind spots (calculated from Zone 1 - Safe Coverage
Area) from 27.6% to 8.3%. Evacuation distance is shortened by
96m. At a walking speed of 1.2m/s, this saves 80 seconds per
person, significantly outperforming the standard requirement of
“reaching a safe exit within 90 seconds”. Resource savings of
14.2% correspond to eliminating two cross-passages per tunnel,
resulting in direct costreductions of approximately 9.8 million
yuan and a 6-day construction schedule reduction.

TABLE VIII. RESOURCE CONSUMPTION COMPARISON
Number of Resource .
. Construction
Scheme Cross Consumption ten .
Period days
Passages thousand yuan
Traditional | 3 1500 90
Dynamic 2 1280 87
Saved 1 220 3

Table VIII presents the resource consumption comparison
results. As shown in the table, under the strategy of densifying
fault zones and sparsifying stable sections, the dynamic
approach reduces one cross-passage, lowering direct costs by
2.2 million yuan—accounting for 14.7% ofthetotal projectcost.
The project duration was shortened by 3 days, yielding early-
opening revenue of approximately 6 million yuan (calculated at
2 million yuan/day), resulting in significant overall economic
benefits. Field verification of the 800m section showed
simulation errors <3%, confirming the model's transferability to
similar tunnels.

TABLE IX. SAFETY COVERAGE RATE COMPARISON
Scheme Safety Coverage % Average Evacuation Distance m
Traditional | 72.4 248
Dynamic 91.7 152

Table IX presents the comparative results for safety
coverage rates. As shown in the figure, the safety coverage rate
increased by 19.3 %. This means thatin a disaster scenario with
100 people, 19 more people canbe evacuated to the safe passage
within 90 seconds. The evacuation distance is shortened by 96
meters, and the walking time is reduced by 80 seconds, which is
far better than the 90-second escape benchmark recommended
by the highway tunnel design specification JTG D70-2022. The
results show that the Monte Carlo simulation model has a robust
prediction ability for the randomness of real geological
structures, and the error is £1.2%.

209 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

VI. CONCLUSION AND LIMITATIONS

This study addresses the placement of tunnel cross passages
by proposing a dynamic decision model based on multi-source
sensor data fusion. The study first establishes a “temporal-
spatial-statistical” three-dimensional fusion mechanism,
utilizing Kalman filtering, PCA, and Bayesian networks to
achieve efficient integration of multi-source heterogeneous data.
On this basis, reinforcement learning is combined with the non-
dominated sorting genetic algorithm II (NSGA-II) to create an
optimization model to achieve the two goals of safe coverage
and construction efficiency. Simulation and actual case studies
have proved that the method can greatly improve the
scientificity and adaptability of the transverse passage layout.
Compared with the traditional static method, the safety coverage
rate of the dynamic model increased from 72.4% to 91.7%, the
average evacuation distance was shortened by 38.7%, the
resource saving was 14.2%, and the construction period was
greatly shortened. The experimental results show that the model
has good robustness and convergence efficiency. Therefore, it
can effectively support the intelligent construction of tunnels
under complex geological conditions.

Although the model has many significant performance
advantages, it also has shortcomings. First, the validation is
mainly based on a single tunnel case, and the empirical support
of a wide range of engineering scenarios is lacking, so its
universality needs to be further investigated. Secondly, although
the model considers safety, efficiency, and cost, it ignores the
comfort of employees and the impact of laws. As a result, the
indicator system is incomplete. The efficiency and real-time
performance of calculation in the ultra-large-scale data
environment are further improved, because the scale of
simulation and experiment is limited.

Future research may expand in three directions: First,
broadening the application scope by validating the model's
universality and portability across diverse tunnel types, such as
subways and deep-buried utility tunnels. Second, the adoption
of dynamic uncertainty processing technologies, such as
transformer-based time-series deep learning models, will help
improve the prediction and response capabilities for complex
geological and emergency events. Third, integrating digital
twins with edge computing to enable real-time inference and
rolling optimization at the construction site. These
enhancements hold promise for establishing a more intelligent,
real-time,and comprehensive standard and technical framework
for dynamic cross-passage deployment.
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