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Abstract—The layout of tunnel cross-passages is a critical 

aspect of tunnel construction and operational safety. Traditional 

methods, primarily based on static design, struggle to adapt to 

complex and variable geological and construction environments. 

This study proposes a dynamic decision model for cross-passage 

layout based on multi-source sensor data fusion to enhance the 

scientific rigor and adaptability of cross-passage design. A three-

dimensional data fusion mechanism integrating “temporal-

spatial-statistical” dimensions was developed. Bayesian network 

quantifies uncertainty, Kalman filter processes time series data, 

and PCA extracts spatial features. Reinforcement learning and 

non-dominated sorting genetic algorithm II (NSGA-II) are used to 

achieve multi-objective optimization of safety coverage and 

construction efficiency. The proposed model significantly 

outperforms the traditional methods in many indicators, and is 

verified by 100 Monte Carlo simulations and actual tunnel 

experiments. The dynamic scheme increased the safety coverage 

rate from 72.4% to 91.7%, shortened the average evacuation 

distance by 38.7% (from 248 meters to 152 meters), saved 

resources by 14.2% (about 9.8 million yuan), and shortened the 

construction period by 3-6 days. The comprehensive utility value 

is 0.91, which is 19% higher than the traditional static method, and 

the robustness is enhanced. The model realizes the safe, 

economical, and efficient real-time optimization of the layout of 

the transverse channel. It provides a technical path and data 

support that can be promoted for intelligent tunnel construction 

under complex geological conditions. 

Keywords—Multi-source sensor data fusion; dynamic cross-

passage deployment decision-making for tunnels; Kalman filter; 
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I. INTRODUCTION 

With the continuous advancement of infrastructure 
development in China, tunnel engineering has assumed an 
increasingly vital role in transportation, water conservancy, 
power, and other sectors [1-2]. Particularly under the 
“Transportation Powerhouse” strategy, projects involving long 
tunnels, deep-buried tunnels, and tunnels in complex geological 
conditions are proliferating. The tunnel length, burial depth and 
geological complexity of the national key projects such as the 
Dianzhong Water Diversion Project, the Sichuan-Tibet Railroad 
and the Shenzhen-Zhongshan Channel are all ranked first in the 
world [3]. As an important part of the tunnel structure system, 
the cross passage performs various functions during the 
construction process, including ventilation, transportation, 

evacuation, and drainage. During operation, it also undertakes 
important responsibilities such as disaster prevention and 
rescue, equipment maintenance and partition management [4]. 
In order to ensure safety, improve operational efficiency and 
reduce engineering risks, the cross passage must be arranged 
scientifically and reasonably [5]. 

However, traditional cross-passage layout methods 
primarily rely on static geological surveys and empirical 
judgments during the design phase, employing fixed intervals or 
simple rules for placement. This approach lacks responsiveness 
to dynamic factors such as geological changes during 
construction, construction disturbances, and resource 
scheduling [6]. In complex geological conditions—such as karst 
formations, faults, gas-bearing zones, and rockburst-prone 
sections—static placement often results in suboptimal cross-
passage locations, redundant or insufficient quantities, thereby 
compromising construction safety and efficiency, and 
potentially triggering engineering accidents [7-8]. 

In recent years, rapid advancements in IoT, artificial 
intelligence, and sensing technologies have generated 
increasingly rich multi-source heterogeneous data during tunnel 
construction. This includes georadar (GPR), seismic wave 
detection (TSP), advance drilling, construction progress 
monitoring, personnel positioning, environmental monitoring, 
and material consumption data [9]. These data provide an 
unprecedented information foundation for dynamically 
optimizing cross-passage placement. Effectively integrating 
these multi-source sensor data to construct a dynamic 
deployment decision model with real-time response capability 
has become a critical scientific issue for the intelligent 
development of tunnel engineering. Key research areas in 
constructing dynamic deployment decision models for tunnel 
cross passages include multi-source data fusion mechanism 
design [10], dynamic decision model construction [11], 
simulation verification, and engineering applications [12]. 
Currently, universities and research institutions worldwide have 
made significant progress in tunnel intelligence. Tang et al. [13] 
achieved advance warning for poor geological sections in a 
mountain tunnel project by integrating ground-penetrating radar 
with TSP data. Andrade-Lucio et al. [14] established a full-
lifecycle health monitoring system for tunnels by deploying 
thousands of sensors. Overseas research has primarily focused 
on structural health monitoring and disaster early warning, with 
limited studies on dynamic deployment for ancillary structures 
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like cross passages, and no systematic decision models have yet 
been developed. In China, geological advance prediction, 
construction risk early warning, and BIM+GIS integrated 
management are all hot topics [15]. Support vector machine 
(SVM) data and construction data can be used to predict the risk 
of tunnel collapse [16]. In addition, Luo et al. [17] proposed a 
cross-passage spacing optimization method based on a genetic 
algorithm. The current research has the following shortcomings: 
most studies only focus on the optimization of the design stage, 
while ignoring the dynamic evolution in the construction 
process [18]; a single algorithm is mainly used for shallow data 
fusion, which cannot completely solve the spatiotemporal 
heterogeneity and uncertainty [19]; some studies only focus on 
algorithm development without considering actual engineering 
data, which leads to insufficient transferability and practicality 
[20]. 

Addressing these issues and challenges, this study proposes 
a dynamic cross-passage deployment decision model based on 
multi-source sensor data fusion. The main contributions are as 
follows: 1) A three-dimensional fusion mechanism of 
"spatiotemporal statistics" is introduced, Kalman filtering is 
used to process time-series data, PCA is used to extract spatial 
features, and Bayesian network is used to quantify uncertainty, 
so as to realize the efficient fusion of geological, construction 
and resource data; 2) A reinforcement learning-oriented cross-
passage layout optimization model driven by the dual objectives 
of safety coverage and construction efficiency is constructed to 
realize real-time decision-making update in the construction 
process; 3) A high-fidelity simulation environment is 
established based on tunnel engineering data, and the model 
performance is evaluated from multiple dimensions such as 
safety, economy and adaptability. 

The structure of this study is as follows: Section II introduces 
fundamental methods and typical applications of multi-source 
sensor data fusion, providing a theoretical foundation for 
decision model construction. Section III analyzes traditional 
methods for deploying cross-tunnel sensors and the advantages 
of dynamic deployment, clarifying the research questions and 
objectives. Section IV proposes a dynamic deployment decision 
model based on multi-source sensor data fusion, including the 
overall framework, data fusion mechanism, and a hybrid 
optimization method combining reinforcement learning with 
NSGA-II. Section V evaluates the model's performance through 
simulation experiments and field validation, focusing on 
comparative analysis of safety, efficiency, and cost-
effectiveness. Finally, Section VI summarizes key findings, 
identifies research limitations, and proposes future research 
directions. 

II. MULTI-SOURCE SENSOR DATA FUSION TECHNOLOGY 

A. Data Fusion Methods and Algorithms 

Multi-source Sensor Data Fusion (MSDF) [21] refers to the 
comprehensive processing of data from different sensors, 
different times, different spaces, or different modalities to obtain 
information that is more accurate, reliable, and comprehensive 
than that from a single data source. Its core objectives are to 
eliminate redundancy, suppress noise, fill in missing data, and 
enhance the robustness and real-time capability of decision-

making [22]. Fig. 1 illustrates the definition of multi-source 
sensor data fusion methods. 

 

Fig. 1. Definition of multi-source sensor data fusion methods. 

Based on the level of data abstraction, fusion methods are 
typically categorized into three tiers: data-level fusion, feature 
set fusion, and decision-level fusion [23]. Table I illustrates the 
hierarchical classification of multi-source sensor data fusion 
methods and algorithm categories. Table I indicates that data-
level fusion methods include weighted averaging and Kalman 
filtering algorithms; feature-level fusion methods encompass 
PCA, ICA, and wavelet transforms; while decision-level fusion 
methods involve Bayesian inference, D-S evidence theory, and 
voting methods. 

TABLE I.  HIERARCHY AND ALGORITHMS OF MULTI-SOURCE SENSING 

DATA FUSION METHODS 

Level Name Description Common Methods 

L1 
Data-level 

fusion 

Raw data was directly 

merged most information 

was retained 

Weighted average 

Kalman filter 

L2 
Feature-

level fusion 

Features extracted, then 

fused, dimensionality 

reduced 

PCA ICA Wavelet 

transform 

L3 
Decision-

level fusion 

Each source makes an 

independent decision and 

then fuses the results 

Bayesian inference 

D-S evidence theory 

Voting method 

The Kalman filter (KF) is suitable for linear dynamic 
systems in Gaussian noise environments and can recursively 
estimate the system state [24]. Fig. 2 shows the prediction and 
update process of the KF algorithm, which mainly consists of 
the update step and the prediction step. 

 

Fig. 2. KF algorithm workflow diagram. 
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Principal Component Analysis (PCA) is employed for 
dimensionality reduction and feature extraction in high-
dimensional data, eliminating redundant dimensions while 
retaining the directions of maximum variance [25]. The PCA 
method calculates the covariance matrix as follows: 

1

1

T

n
=

−
C X X

   (1) 

where, C  denotes the covariance matrix, n  represents the 

number of data samples, and X  indicates the sample data. The 
feature decomposition calculation is analyzed as follows: 
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Here, iv
 denotes the i-th eigenvector, and i  denotes the i-

th eigenvalue. Select the first k principal components such that 
their cumulative contribution rate ≥ 95%: 
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Here, kCPV
 denotes the cumulative contribution rate of the 

k-th eigenvector. Based on the above PCA principles, the PCA 
dimension reduction process is summarized in Fig. 3. 

 

Fig. 3. Schematic diagram of PCA dimension reduction. 

Bayesian estimation and decision fusion methods are 
suitable for scenarios with high uncertainty and abundant prior 
knowledge [26]. The posterior distribution is obtained through 
the likelihood function and prior distribution [see Eq. (4)]: 

( )
( ) ( )

( )

P z P
P z

P z

 
 =

          (4) 

where, 
( )P z

 denotes the posterior distribution 

probability, 
( )P z 

 represents the likelihood function, 
( )P 

 

indicates the prior probability, 
( )P z

 signifies the evidence,   
denotes the Bayesian parameter, and z  refers to the observed 
data. 

B. Applications of Fusion Techniques Across Domains 

Intelligent transportation systems, environmental 
monitoring, industrial equipment fault diagnosis, and healthcare 
are all fields in which multi-source sensor data fusion 
technology is widely used [27]. Fig. 4 shows the application 
analysis of fusion technology in various fields. 

 

Fig. 4. Analysis of fusion technology applications across different fields. 

In intelligent transportation, multi-source data fusion 
technology is used for traffic flow monitoring, accident 
detection, and vehicle navigation. Tomaszewski et al. [28] point 
out that traffic conditions can be monitored by integrating 
camera, radar, and GPS data, congestion can be predicted, and 
the best route suggestions can be provided for drivers. 

In environmental monitoring, multi-source sensor data 
fusion technology is applied to air quality monitoring, water 
quality monitoring, and natural disaster early warning. Zhao et 
al. [29] demonstrate that by integrating data from ground 
monitoring stations, satellite remote sensing, and drones, real-
time monitoring and dispersion prediction of atmospheric 
pollutants can be achieved. Applications of data fusion in 
environmental monitoring are shown in Table II. 

TABLE II.  APPLICATIONS OF DATA FUSION IN ENVIRONMENTAL 

MONITORING 

Data Source 
Fusion 

Method 

Application 

Scenario 
Advantage 

Ground 

monitoring 

station 

Kalman 

filter 

Air quality 

monitoring 

High accuracy real-

time 

Satellite 

remote 

sensing 

PCA 
Water quality 

monitoring 

Dimensionality 

reduction, wide 

coverage 

Drone 
Bayesian 

estimation 

Natural 

disaster 

warning 

Uncertainty handling 

flexibility 

By integrating data from machine vision, temperature, and 
pressure sensors, the running status of production line 
equipment can be monitored in real-time, potential faults can be 
predicted, and production processes can be optimized [30]. 

In the healthcare industry, data fusion technology is used for 
disease diagnosis, patient monitoring, and rehabilitation 
treatment [31]. The technology can monitor the health status of 
patients in real time and provide early warning by integrating 
physiological signals such as blood pressure, body temperature, 
and electrocardiogram (ECG). 

III. DYNAMIC LAYOUT TECHNOLOGY FOR TUNNEL  

CROSS-PASSAGES 

In tunnel engineering, the layout technology for cross-
passages is undergoing a transformation from traditional to 
dynamic approaches. Although the traditional method meets the 
basic functional requirements of the tunnel, its limitations are 
becoming more and more obvious in complex geological 
conditions and a construction environment. On the other hand, 
the dynamic design technology shows its unique advantages 
with its high efficiency and flexibility. 
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A. Traditional Design Methods and Limitations 

According to the Specifications for Design of Highway 
Tunnels (JTG D70-2022), the traditional tunnel cross passage 
layout mainly uses the empirical spacing method. This method 
is mainly based on the tunnel length, surrounding rock type, 
traffic level and other factors for one-time design. The layout 
remains largely unchanged during construction and rarely 
undergoes modification during the operational phase [32]. Fig. 5 
illustrates the flowchart of the traditional layout method. 
However, this approach has significant limitations. 

 

Fig. 5. Flowchart of traditional deployment method. 

The static nature of traditional deployment methods makes 
it difficult to deal with sudden geological changes and 
construction disturbances. These techniques focus primarily on 
the spacing required by the specification, and ignore resource 
optimization and security redundancy. Over-deployment may 
increase engineering costs. The limitations of traditional layout 
methods can be further studied by combining the equations and 
parameter provisions related to the design specification of 
highway immersed tunnel. 

B. Advantages of Dynamic Deployment Technology 

Dynamic deployment technology overcomes the limitations 
of traditional methods and continuously integrates multi-source 
sensor data to update the position and number of cross-channels 
in real time [33]. Fig. 6 shows the dynamic deployment 
technology and its advantages: 

 

Fig. 6. Dynamic layout technology. 

1) Enhancing safety and emergency response capabilities: 

Dynamic layout can adjust the position of the cross passage in 

time according to the changes of geological conditions, so that 

personnel can be quickly evacuated in case of disaster. For 

example, the comprehensive advanced forecast system can 

accurately understand the geological conditions in front of the 

tunnel, so as to plan the position of the cross passage in 

advance, so as to reduce casualties and equipment losses. 

2) Optimizing resource allocation and reducing costs: 

Compared with traditional technology, dynamic site selection 

reduces the construction of unnecessary transverse passages, 

thereby reducing the project cost. Under the premise of 

ensuring safety standards, dynamic route selection can greatly 

reduce the project cost in some auxiliary tunnels of the Sichuan-

Tibet Railroad. 

3) Enhancing construction efficiency: Through dynamic 

deployment, the construction of the transverse passage can be 

arranged reasonably according to the progress and resource 

consumption, so as to reduce the construction interference and 

improve the overall efficiency. 

C. Analysis of Dynamic Cross-Passage Layout Decision-

Making for Tunnels 

The dynamic layout decision for tunnel cross-passages 
constitutes a complex multi-objective optimization problem 
[34], involving multiple variables and constraints. Fig. 7 
illustrates the analysis of this decision-making problem. 

 

Fig. 7. Analysis of dynamic cross-passage layout decision problem in 

tunnels. 

Decision variables include the center mileage and quantity 
of cross passages. The objective function typically establishes a 
multi-objective optimization model for cross-passage layout 
with dual targets: safety coverage rate and construction 
efficiency. The safety coverage rate is calculated as follows [see 
Eq. (5)]: 

cov
cov 100%rate

rate

rate

N
S

N

−
− = 

  (5) 

where, cov rateS −  denotes safety coverage rate, cov rateN −  

represents the proportion of personnel covered, and rateN
 

denotes the total personnel proportion. 

Construction efficiency can be measured by the average 
evacuation time, Eq. (6): 

esc
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D
T

v
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   (6) 
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where, meanT
 denotes average evacuation time, escD  

denotes total evacuation distance, and escv
 denotes evacuation 

speed. 

Constraints primarily include geological safety, spacing 
limitations, construction interference, and resource caps. 
Geological safety constraints prohibit eliminating cross 
passages in areas with rock mass grades ≥ IV. Spacing 
constraints require cross passages to meet standard-specified 
distances. Construction interference constraints mandate 
reasonable scheduling of construction phases to avoid mutual 
disruption. Resource cap constraints reflect limited monthly 
excavation capacity. 

IV. CONSTRUCTION OF A DYNAMIC CROSS-PASSAGE 

LAYOUT DECISION MODEL 

With the continuous advancement of tunnel construction 
technology, efficiently and safely laying out tunnel cross-
passages has become a critical issue. In order to realize the real-
time monitoring and dynamic optimization of tunnel 
construction process, this section introduces a dynamic cross-
passage layout decision model based on multi-sensor data 
fusion. 

A. Overall Framework 

The model's overall framework, shown in Fig. 8, comprises 
four main layers: data acquisition, data fusion, decision-making, 
and execution. Let the data acquisition layer collect raw data 
from multiple sensors. These sensors include geological radar, 
seismic wave detection, advanced drilling, construction progress 
monitoring, personnel positioning and environmental 
monitoring. By processing these data with data fusion layer, the 
comprehensive evaluation of tunnel construction environment 
can be obtained. Based on the fused data, the decision-making 
layer uses reinforcement learning and multi-objective 
optimization algorithms to determine the optimal cross passage 
layout scheme. Finally, the execution layer uses the decision 
results for the construction and adjustment of the cross passage. 

 

Fig. 8. Framework of the dynamic tunnel cross-passage layout decision 

model based on multi-source sensor data fusion. 

B. Selection of Data Fusion Methods 

At the data fusion layer, we employ multiple data fusion 
methods to handle different types of sensor data. This study uses 
Kalman filter to collect time series data, such as construction 
progress and resource consumption. Kalman filtering is a 
recursive estimation algorithm capable of effectively processing 
noisy data in dynamic systems. Its core equations are as follows 
[see Eq. (7) to Eq. (11)]: 

| 1 1| 1
ˆ ˆ

k k k k k k kx F x B u− − −= +
   (7) 

| 1 1| 1

T

k k k k k k kP F P F Q− − −= +
  (8) 

( )
1

| 1 | 1

T T

k k k k k k k k kK P H H P H R
−

− −= +
 (9) 

( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k kx x K z H x− −= + −
  (10) 

( )| | 11k k k k k kP K H P −= −
   (11) 

Here, x̂  denotes state estimation, P represents the 
estimation error covariance, F denotes the state transition model, 
B denotes the control input model, u denotes the control input, 
Q denotes the process noise covariance, z denotes the 
measurement value, H denotes the observation model, R denotes 
the measurement noise covariance, and K denotes the Kalman 
gain. 

For spatial data such as ground-penetrating radar images, 
this study employs principal component analysis (PCA) for 
dimensionality reduction. PCA extracts key features from the 
data, reducing dimensionality while preserving critical 
information. The mathematical expressions for PCA are given 
in Eq. (1) to Eq. (3). 

According to the above introduction and description, 
Table III summarizes the advantages and disadvantages of 
various data fusion methods. 

TABLE III.  COMPARISON OF DIFFERENT DATA FUSION METHODS 

Method 
Applicable 

Data Type 
Advantage Limitation 

Kalman filter 
Time series 

data  

Handles noise in 

dynamic systems 

Assumes 

linearity and 

Gaussian 

distribution 

Principal 

component 

analysis 

Spatial data  

Extracts main 

features 

dimensionality 

reduction 

Requires large 

data for training 

C. Decision Model Design 

The design of the decision model constitutes the core 
component of the entire system. We adopted a hybrid approach 
combining Reinforcement Learning (RL) [35] and the Non-
Dominated Selection Genetic Algorithm II (NSGA-II) [36] to 
achieve multi-objective optimization between safety and cost. 
NSGA-II is used to find the Pareto optimal solution in multi-
objective optimization; reinforcement learning is used to learn 
the most effective method through interaction with the 
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environment. Fig. 9 shows the teaching process of the hybrid 
reinforcement learning and NSGA-II model. 

 

Fig. 9. Training process of the reinforcement learning and NSGA-II hybrid 

model. 

In reinforcement learning, we defined the state space, action 
space, and reward function. The state space includes information 
such as geological conditions, construction progress, and 
resource consumption; the action space includes operations such 
as adding new cross passages, retaining existing cross passages, 
and canceling cross passages; the reward function 
comprehensively considers safety and cost factors [see 
Eq. (12)]: 

( ) 1 2 3 cos, tR s a w S w E w C=  +  −
  (12) 

where, 1w
, 2w

, and 3w
 are weight coefficients, S  

represents safety gains, E  represents efficiency gains, and 

costC
 represents cost penalties. 

D. Model Validation and Optimization 

To validate the model's effectiveness and robustness, this 
section conducts Monte Carlo simulations and field 
experiments. Monte Carlo simulations evaluate the model's 
performance under varying noise conditions, while field 
experiments validate its application in actual tunnel construction 
[37]. 

Fig. 10 illustrates the model performance under varying 
noise conditions, representing the Monte Carlo simulation 
results. To test the robustness of the model, Table IV shows the 
Monte Carlo simulation with different levels of Gaussian noise 
added to the sensor data. Results indicate that even at a 15% 
noise level, the model's hypervolume (HV) metric decreased by 
only 4%, demonstrating excellent robustness. 

 

Fig. 10. Monte Carlo simulation results. 

TABLE IV.  COMPARISON OF MODEL VALIDATION RESULTS 

Method 
HV 

Index 

Running 

Time/s 

Adoption 

Rate 

Traditional method 0.78 182  - 

NSGA-II only 0.91 12 - 

Reinforcement 

learning 
0.78 0.3 - 

Hybrid model 0.97 2.1 83% 

E. Method Steps 

Based on the aforementioned framework and methodology, 
the workflow for the tunnel cross-passage dynamic deployment 
decision-making model is illustrated in Fig. 11. The specific 
steps are as follows: 

Step 1: Data Acquisition. Real-time collection of multi-
source sensor data including ground-penetrating radar, seismic 
wave detection, and construction progress monitoring. 

Step 2: Data Preprocessing. Cleaning, normalization, and 
time alignment of acquired data. 

Step 3: Data Fusion. Integrate data using Kalman filtering 
and principal component analysis to form a comprehensive 
assessment of the tunnel construction environment. 

Step 4: Decision Generation. Generate optimal cross-
passage layout plans through a hybrid model of reinforcement 
learning and NSGA-II. 

Step 5: Plan Execution. Guide the construction and 
adjustment of the cross passage, and apply the decision-making 
results to the actual construction. 

Step 6: Feedback Optimization. Update the model 
parameters based on the actual construction results to better 
handle decision-making. 

 

Fig. 11. Methodological flowchart for dynamic decision-making model of 

tunnel cross-passage layout. 

V. EXPERIMENTAL VALIDATION 

A. Experimental Design 

For the experimental subject and scenario, this study selected 
a mountain tunnel project as the simulation object. The tunnel 
spans 4.8 kilometers, with surrounding rock classifications 
distributed across Grade II, III, IV, and V. Simulated 
construction scenarios encompass varying geological conditions 
and construction progress. 

For data acquisition and processing, simulated sensors 
generate Ground Penetrating Radar (GPR), Transverse Seismic 
Profile (TSP), and construction progress monitoring data. 
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Preprocessing includes missing value imputation, 
normalization, time alignment, and outlier removal. 

Data processing and model training were performed using 
MATLAB 2021a. A Monte Carlo method was employed to 
conduct 100 simulations, validating the model's robustness and 
effectiveness. Parameter settings for the reinforcement learning 
and NSGA-II hybrid model are presented in Table V. 

TABLE V.  PARAMETER SETTINGS FOR THE REINFORCEMENT LEARNING 

AND NSGA-II HYBRID MODEL 

Parameter Description Value 

Learning rate Controls learning step size 0.01 

Discount factor Future reward discount rate 0.95 

Weight 

coefficient 

Weights for safety, efficiency, 

and cost 

w1=0.6 w2=0.3 

w3=0.1 

B. Result Analysis 

To evaluate the proposed method for constructing a dynamic 
cross-passage deployment decision model based on multi-
source sensor data fusion, this section conducts simulation 
analysis across four dimensions: data generation and 
preprocessing, algorithm comparison, and deployment 
effectiveness assessment. 

1) Data generation and preprocessing: To validate the 

effectiveness of the proposed data preprocessing method, 

analyses were conducted on rock mass classification, 

construction progress, resource consumption, and 

normalization. The specific results are as follows: 

 

Fig. 12. Rock mass grade vs. Tunnel mileage. 

Fig. 12 shows the distribution of rock mass grades (1~5) of 
about 5000 measuring points along the line, and the blue scatter 
points represent these grades. Poor rock mass sections (IV-V 
grade) appear continuously near 1.2 km, 3.1 km and 4.1 km, and 
the remaining sections are mainly II-III grade. This spatial 
differentiation shows three high-risk areas, which are consistent 
with the fault sections identified in the design stage. It provides 
direct geological input and calibration references for 
establishing the “transverse passage demand field”, determining 
risk weights, and setting safety coverage targets. As shown in 
Fig. 12, the poor sections form continuous bands rather than 

discrete points, indicating that hazard zones possess a certain 
length and fluctuation range. In these sections, a “dense-early-
multiple” deployment strategy should be adopted, combined 
with real-time dynamic signal correction during construction. 
Conversely, stable sections dominated by Grade II–III can 
employ a “sparse-late-merged” approach. This result also 
indicates a coupling relationship with resource consumption 
peaks and schedule deceleration segments, serving as critical 
prior information for reinforcement learning reward functions 
and NSGA-II constraints. 

Fig. 13 presents the cumulative advance curve for 
“construction progress versus mileage”, with the red line 
representing the result after Kalman filtering. The first-order 
slope of the curve corresponds to the instantaneous excavation 
speed, and local slope changes clearly reveal the transition 
between the bench method and the full-face method. The 
obvious reduction in the slope between 2.3 and 2.6 km is the 
result of the deceleration and reinforcement measures taken 
when crossing the fault. The filtered curve exhibits continuity 
and smoothness with pronounced noise suppression (relative to 
the raw RFID measurement noise σ≈8%), effectively 
eliminating “false fluctuations”. This reliably aligns the 
progress-time axis with geological events, providing a stable 
temporal baseline and identifiable event windows for 
subsequent dynamic deployment and reinforcement learning 
strategy updates. 

 

Fig. 13. Construction progress vs. Tunnel mileage. 

Fig. 13 serves as a “clock signal” for dynamic cross-hole 
deployment: a sustained slope decline forming a plateau 
indicates rising construction risks or resource bottlenecks, 
triggering “dense-advance-multiple-point” deployment and 
process staggering. Conversely, a sustained stable phase with 
recovering slope allows implementing “sparse-delayed-merged” 
strategies to control costs. This progress signal is coupled with 
the 1.2/3.1/4.1 km poor sections in Fig. 12. When described 
together with the peak of resource consumption (Fig. 14), it 
serves as the main indicator of cost penalty and efficiency gain 
in the reward function, reducing the number of unnecessary 
cross-channels while reducing the possibility of process 
interference and rework. This makes the entire construction 
process more efficient and safer. 
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Fig. 14. Resource consumption vs. Tunnel mileage. 

Fig. 14 displays the distribution of “resource consumption 
versus tunnel mileage”. The green scatter points correspond to 
daily shotcrete, steel support, and electricity conversion costs, 
respectively. Noticeable peaks appear at 1.2 km and 4.1 km, 
closely aligning with the IV–V grade poor rock sections shown 
in Fig. 12. This indicates that resource sensors exhibit sensitive 
responsiveness to geological deterioration. Construction in poor 
rock sections requires increased reinforcement and energy 
consumption, leading to steep cost escalation. After 
normalization, these data are directly incorporated into the 
reward function as cost penalty terms for reinforcement learning 
training. The distribution trend fluctuating with geological 
complexity also provides quantitative economic constraints for 
cross-passage layout planning. 

As shown in Fig. 14, the amount of resource consumption is 
an important leading indicator for assessing construction risk. 
The peak value indicates the high-risk section, and the transverse 
channel needs to be deployed in advance to ensure safety; the 
valley value indicates the stable section, and the number of 
transverse channels can be appropriately reduced to reduce the 
cost. Comparing it with the construction progress curve in 
Fig. 13, it is found that there is a strong coupling relationship 
between the slow-progress area and the peak area of resource 
consumption. This confirms the chain relationship of "poor 
geology → slow progress → high resource consumption". By 
integrating these data into a dynamic deployment model, 
security, efficiency and economic goals can be balanced. 
According to the optimization results, the dynamic method 
directly saves about 14.2% of resources compared with the 
traditional method. Therefore, the cost can be reduced by about 
9.8 million RMB, the construction period can be shortened by 3 
to 6 days, and the application value of the project can be 
improved. 

 

Fig. 15. Normalized data scatter plot. 

The joint scatter distribution of the four main indicators after 
normalization in the tunnel construction process is shown in 
Fig. 15. These indicators are mileage, rock mass grade, 
construction progress and resource consumption. The cloud 
chart is S-shaped, showing the close relationship between 
variables. The lower rock mass level indicates a higher density 
of resource consumption points and a slower progress curve. 
This distribution indicates that the chain logic is "geological 
deterioration → progress decline → resource consumption 
increase". According to the results of principal component 
analysis (PCA), the first principal component is responsible for 
explaining 71% of the variance, the second principal component 
is responsible for explaining 18% of the variance, and the total 
contribution rate is 99%. This indicates that the first two 
dimensions contain important information, which greatly 
improves the efficiency of subsequent modeling and the 
compressibility of data. 

The normalized scatter plot in Fig. 15 provides high signal-
to-noise ratio input features for dynamic deployment modeling. 
Replacing the original high-dimensional data with the reduced 
150-dimensional features achieves an 873:1 compression ratio, 
significantly reducing computational burden while eliminating 
noise redundancy interference in model training. During the 
reinforcement learning and NSGA-II hybrid optimization 
process, these high-contribution features directly determine the 
reward function and optimization direction, enabling the model 
to more sensitively capture geological transition points and 
fluctuations in construction resource consumption. Ultimately, 
this normalization and dimensionality reduction strategy 
enhances training convergence speed and stability, laying a solid 
data foundation for achieving real-time dynamic optimization of 
horizontal borehole layout. 

2) Algorithm comparison: This section conducts 

comparative analysis using traditional static methods, KF, 

KF+PCA, and KF+PCA+RL+NSGA. Specific results are as 

follows: 
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Fig. 16. Performance comparison of different algorithms. 

Fig. 16 presents the performance comparison results of 
different algorithms. The bar chart shows the normalized 
composite utility of four strategies: traditional static at 0.62, KF 
alone at 0.71, KF+PCA at 0.79, and the proposed 
KF+PCA+RL+NSGA at 0.91, representing a 19% 
improvement. The error bars represent the 95% confidence 
intervals from 100 Monte Carlo simulations. The standard 
deviation of this method is the smallest (±0.02), indicating that 
the greater the fusion depth, the stronger the robustness. 

TABLE VI.  COMPREHENSIVE UTILITY AND CONFIDENCE INTERVALS FOR 

DIFFERENT ALGORITHMS 

Algorithm 
Normalized 

Comprehensive Utility 

95% Confidence 

Interval 

Traditional static 0.62 ±0.04 

KF only 0.71 ±0.03 

KF plus PCA 0.79 ±0.03 

This paper KF plus PCA 

plus RL plus NSGA II 
0.91 ±0.02 

Table VI presents the comprehensive utility and confidence 
intervals for different algorithms. The average utility value 
increases by 0.08-0.10 for each additional fusion layer. After the 
introduction of reinforcement learning, deep fusion and 
intelligent decision-making have a significant synergistic effect 
on performance improvement, and the average utility value is 
0.12. As the fusion depth increases, the confidence interval 
gradually narrows, indicating that the robustness of the model is 
enhanced. 

3) Deployment effect evaluation: To analyze deployment 

effectiveness, this section examines training reward 

convergence curves, model loss reduction curves, safety 

coverage rates, resource consumption, and other outcomes. 

 

Fig. 17. Training reward convergence curve. 

Fig. 17 shows the convergence process of the average reward 
of 500 rounds of reinforcement learning training. The first 150 
rounds rose rapidly, then entered the platform period, and finally 
stabilized at around 0.91. The ε-greedy strategy gradually 
decayed from 0.9 to 0.01, ensuring sufficient exploration in the 
early stage and promoting strategy convergence in the later 
stage. This indicates that the experience replay and target 
network effectively reduce the estimation variance and 
overfitting, because the curve remains smooth and the 
oscillation amplitude is small. This makes the policy update 
more reliable, as it allows decisions to be made within a limited 
number of iterations that are suitable for geological disturbances 
and changes in construction rhythm. 

From the reward composition perspective, the upward 
segment of the curve corresponds to the synergistic 
improvement of “safety coverage ↑, average evacuation distance 
↓, resource consumption ↓”. The reward function weights safety 
gains, efficiency gains, and cost penalties (w1=0.6, w2=0.3, 
w3=0.1). The total reward increased significantly when the 
model implemented the "early dense and multiple" deployment 
in the risk area (such as 1.2/3.1/4.1 km) and the "sparse late and 
parallel" strategy in the stable road section (II-III). This pushes 
the strategy closer to a more ideal compromise. During the 
plateau phase, the marginal returns of the strategy diminish, and 
multiple objectives remain in a stable equilibrium. 

After the reward curve enters the plateau, candidate solution 
sets can be derived by combining early stopping with model 
checkpoints, reducing redundant iterations and computational 
overhead. Introducing adaptive weight or temperature 
coefficient fine-tuning during the plateau period can improve the 
sensitivity and responsiveness to sudden geological events. 
Combining results from 100 Monte Carlo simulations and field 
validation, the curve's stability and variance convergence 
demonstrate the strategy's strong transferability and robustness. 
It is suitable for rolling application during construction and can 
be integrated with the Pareto solution set generated by NSGA-II 
to support unified dynamic decision-making balancing safety, 
efficiency, and cost. 
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Fig. 18. Model loss decline curve. 

Fig. 18 shows the MSE loss curve during the model training. 
In the first 50 iterations, the loss value rapidly decreased to 0.02. 
Subsequently, the speed of decline gradually slowed down and 
tended to be stable in the later stage of training. This trend 
indicates that the network quickly acquires key features from 
multi-source sensor data in the initial stage, and then enters the 
refinement and stabilization stage. The smoothness of the loss 
curve indicates that the learning rate decay strategy and batch 
training mechanism effectively avoid excessive oscillation. 
Indicates that the model has reliable convergence. 

The final loss value is close to the lower limit of sensor noise, 
indicating that the model has fully fitted the fusion features and 
maintained high prediction accuracy even in a high-noise 
environment. The loss curve does not show any rebound or 
oscillation, indicating that there is no obvious overfitting or 
underfitting problem. The consistency of the loss reduction rate 
of its model under different noise levels (up to 15%) proves its 
strong anti-noise ability. Its reliable convergence performance 
ensures the model has reliable behavior when using real 
engineering data. 

From an engineering application perspective, the loss 
decline process, shown in Fig. 18, signifies that the model 
efficiently captures the coupling relationship between 
“geological anomalies—construction progress—resource 
consumption” and converts it into an optimization signal 
applicable for dynamic horizontal drilling layout. Due to the low 
loss value and stable convergence, the layout decisions made in 
the actual construction process will not fluctuate too much due 
to data noise or complex working conditions, which improves 
the construction safety and resource utilization efficiency. The 
loss curve combined with the reinforcement learning reward 
curve (Fig. 17) provides a reliable numerical basis for strategy 
learning. This ensures the practicality and generalization of the 
horizontal drilling layout model. 

TABLE VII.  EFFECTIVENESS EVALUATION OF DYNAMIC LAYOUT 

SCHEMES 

Indicator 
Static 

Scheme 

Dynamic 

Scheme 

Improvement 

Rate 

Safety coverage 72.4% 91.7% +19.3% 

Average evacuation 

distance 
248m 152m -38.7% 

Resource saving - 14.2% Direct saving 

Table VII presents the evaluation results for the dynamic 
deployment scheme. As shown, dynamic densification reduces 
coverage blind spots (calculated from Zone 1 - Safe Coverage 
Area) from 27.6% to 8.3%. Evacuation distance is shortened by 
96m. At a walking speed of 1.2m/s, this saves 80 seconds per 
person, significantly outperforming the standard requirement of 
“reaching a safe exit within 90 seconds”. Resource savings of 
14.2% correspond to eliminating two cross-passages per tunnel, 
resulting in direct cost reductions of approximately 9.8 million 
yuan and a 6-day construction schedule reduction. 

TABLE VIII.  RESOURCE CONSUMPTION COMPARISON 

Scheme 

Number of 

Cross 

Passages 

Resource 

Consumption ten 

thousand yuan 

Construction 

Period days 

Traditional 3 1500 90 

Dynamic 2 1280 87 

Saved 1 220 3 

Table VIII presents the resource consumption comparison 
results. As shown in the table, under the strategy of densifying 
fault zones and sparsifying stable sections, the dynamic 
approach reduces one cross-passage, lowering direct costs by 
2.2 million yuan—accounting for 14.7% of the total project cost. 
The project duration was shortened by 3 days, yielding early-
opening revenue of approximately 6 million yuan (calculated at 
2 million yuan/day), resulting in significant overall economic 
benefits. Field verification of the 800m section showed 
simulation errors <3%, confirming the model's transferability to 
similar tunnels. 

TABLE IX.  SAFETY COVERAGE RATE COMPARISON 

Scheme Safety Coverage % Average Evacuation Distance m 

Traditional 72.4 248 

Dynamic 91.7 152 

Table IX presents the comparative results for safety 
coverage rates. As shown in the figure, the safety coverage rate 
increased by 19.3 %. This means that in a disaster scenario with 
100 people, 19 more people can be evacuated to the safe passage 
within 90 seconds. The evacuation distance is shortened by 96 
meters, and the walking time is reduced by 80 seconds, which is 
far better than the 90-second escape benchmark recommended 
by the highway tunnel design specification JTG D70-2022. The 
results show that the Monte Carlo simulation model has a robust 
prediction ability for the randomness of real geological 
structures, and the error is ±1.2%. 
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VI. CONCLUSION AND LIMITATIONS 

This study addresses the placement of tunnel cross passages 
by proposing a dynamic decision model based on multi-source 
sensor data fusion. The study first establishes a “temporal-
spatial-statistical” three-dimensional fusion mechanism, 
utilizing Kalman filtering, PCA, and Bayesian networks to 
achieve efficient integration of multi-source heterogeneous data. 
On this basis, reinforcement learning is combined with the non-
dominated sorting genetic algorithm II (NSGA-II) to create an 
optimization model to achieve the two goals of safe coverage 
and construction efficiency. Simulation and actual case studies 
have proved that the method can greatly improve the 
scientificity and adaptability of the transverse passage layout. 
Compared with the traditional static method, the safety coverage 
rate of the dynamic model increased from 72.4% to 91.7%, the 
average evacuation distance was shortened by 38.7%, the 
resource saving was 14.2%, and the construction period was 
greatly shortened. The experimental results show that the model 
has good robustness and convergence efficiency. Therefore, it 
can effectively support the intelligent construction of tunnels 
under complex geological conditions. 

Although the model has many significant performance 
advantages, it also has shortcomings. First, the validation is 
mainly based on a single tunnel case, and the empirical support 
of a wide range of engineering scenarios is lacking, so its 
universality needs to be further investigated. Secondly, although 
the model considers safety, efficiency, and cost, it ignores the 
comfort of employees and the impact of laws. As a result, the 
indicator system is incomplete. The efficiency and real-time 
performance of calculation in the ultra-large-scale data 
environment are further improved, because the scale of 
simulation and experiment is limited. 

Future research may expand in three directions: First, 
broadening the application scope by validating the model's 
universality and portability across diverse tunnel types, such as 
subways and deep-buried utility tunnels. Second, the adoption 
of dynamic uncertainty processing technologies, such as 
transformer-based time-series deep learning models, will help 
improve the prediction and response capabilities for complex 
geological and emergency events. Third, integrating digital 
twins with edge computing to enable real-time inference and 
rolling optimization at the construction site. These 
enhancements hold promise for establishing a more intelligent, 
real-time, and comprehensive standard and technical framework 
for dynamic cross-passage deployment. 
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