
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

8 | P a g e
www.ijacsa.thesai.org

AI-Driven Anomaly Prediction in Encrypted Network

Traffic

Sina Ahmadi

National Coalition of Independent Scholars (NCIS), Seattle, USA

Abstract—The rapid growth of computer networks has

increased demand for more sophisticated tools for network

traffic analysis and monitoring. The increasing reliance on

networks has amplified the need for robust security and

intrusion detection mechanisms. Numerous studies have sought

to develop efficient methods for fast and accurate intrusion

detection, each addressing the challenge from different

perspectives. A common limitation among these approaches is

their reliance on expert-engineered features extracted from

network traffic. This dependency makes them less adaptable to

emerging attack techniques and changes in normal traffic

patterns, often resulting in suboptimal performance. In this

study, we propose a method leveraging recent advancements in

artificial neural networks and deep learning, specifically using

recurrent neural networks (RNNs), for network traffic analysis

and intrusion detection. The key advantage of this approach is its

ability to autonomously extract features from network traffic

without human intervention. Trained on the ISCX IDS 2012

dataset, the proposed model achieved an accuracy of 0.99 in

distinguishing between malicious and normal traffic.

Keywords—Machine learning; deep learning; recurrent neural

networks; intrusion detection

I. INTRODUCTION

With the expansion of communication technology,
computer security has become an essential part of everyday
life. The widespread use of computer systems has increased the
importance of security in computer systems, as well as the
increasing number of threats, such as malware and mobile
phone threats. Despite ongoing research in cybersecurity,
security challenges remain unresolved. The rapid advancement
of computer networks and the widespread interconnection of
systems have heightened concerns, particularly in Internet
security, where numerous devices are interconnected,
increasing vulnerability risks.

Since the Internet Protocol (IP) is not designed to ensure
the highest security standards, network administrators are faced
with a huge flood of intrusion attempts by people with
malicious intent [1]. According to statistics provided by
Symantec [2] on Internet security, more than three billion
malware attacks were reported in 2010, and the number of
denial-of-service attacks has increased significantly. Anomaly
detection plays a crucial role in data analysis. The goal of
anomaly detection is to find anomalous data in a dataset. This
has been widely studied in statistics and machine learning, as
anomalies can trigger critical and potentially harmful events,
making their detection essential.

For example, in computer networks, unusual traffic can
mean infiltration of a computer where a compromised system
transmits data to an unauthorized entity [3]. Conventional
approaches for anomaly detection include deep packet
inspection, statistical, and machine learning. Statistical and
deep packet inspection methods do not perform well against
emerging attacks in real-life scenarios.

Moreover, these methods are highly dependent on expert
knowledge. Research in this field aims to develop anomaly
detection systems that not only perform well but also operate
autonomously while maintaining their high accuracy [4].
Understanding the characteristics of modern network traffic
requires a deep knowledge of the structure and dynamics of
Internet traffic, which also plays a crucial role in managing and
monitoring Internet service provider (ISP) networks [5].
Although the rationale for intrusion detection in the context of
computer networks is clear, several practical problems still
exist with intrusion detection systems (IDS) [6]. One of the
most pressing concerns in network security is the increasing
sophistication and frequency of cyberattacks, coupled with
evolving user behavior and software usage patterns. Traditional
models that rely on historical attack data often become obsolete
as new threats emerge, highlighting the need for adaptive
intrusion detection systems that can be continuously updated to
maintain effectiveness [7].

A significant challenge in intrusion detection is packet
encryption and encapsulation. Encryption alters network traffic
characteristics, making it difficult to differentiate between
normal and malicious activity. Traditional intrusion detection
methods rely on identifiable traffic patterns, which encryption
effectively conceals, thereby reducing their accuracy.
Additionally, packet encapsulation and encryption make
traditional expert-defined feature extraction ineffective. The
randomized nature of encrypted traffic prevents manual feature
engineering, emphasizing the necessity for fully automated
systems capable of independently capturing complex patterns
in encrypted traffic [8].

Another important aspect is the high-speed nature of
modern networks, which also makes real-time intrusion
detection difficult. Anomaly detection, or outlier detection,
examines normal data trends in a network and marks any
deviations as a potential threat. One widely used approach is
anomaly-based intrusion detection, where normal network
traffic is first recorded, and any data deviating from learned
normal behavior is classified as an anomaly [9].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

9 | P a g e
www.ijacsa.thesai.org

Among deep learning techniques, deep convolutional
networks, stacked self-encryptors, and recurrent neural
networks (RNNs) have demonstrated tremendous success.
These methods have been continuously used for various
applications such as voice processing [10], computer vision
[11], natural language processing [12], network traffic
classification [13], and cyberattack detection [14], delivering
strong performance. It is clear from different studies that deep
learning performance is far beyond the performance of
traditional methods in the aforementioned applications.
Perhaps the greatest advantage of deep learning is the
autonomous extraction and learning of features [15], which
eliminates the need for manual feature engineering. There are
other deep learning methods available, including unsupervised
and quasi-supervised methods, which increase adaptability
even further.

In the next sections, we will discuss two particular types of
networks that were used for this study, and we will also
describe the key principles for these networks in more detail.

The ability to recognize temporal order and sequence is
what makes recurrent neural networks (RNNs) one of the most
powerful models in deep learning. It also makes them
especially good at natural language processing and network
traffic processing. These networks are suitable to learn patterns
in sequence data such as genes, texts, and time sequences [16].

II. RESEARCH BACKGROUND

Ji et al. (2024) conducted a systematic review of AI-driven
anomaly detection methods for encrypted network traffic. The
study established key research questions and selected relevant
literature based on specific eligibility criteria. The findings
confirmed that a variety of AI techniques have been applied to
anomaly detection in encrypted traffic. While some of these
methods resemble those used for unencrypted traffic, others
employ distinct approaches tailored to the challenges posed by
encryption [17].

Zeng et al. [18] demonstrated the importance of user
engagement regarding the effectiveness of AI-based
cybersecurity systems by discussing the concept of technology
acceptance and human-AI interaction. The study proposes
building a security-conscious culture via ongoing education
and skills training, which can help to better protect smart cities
against new forms of cyber-attacks. The framework functions
as a base for future empirical studies as well as an important
tool for policymakers and city planners concerned with the
digital borders of smart cities of the future.

Aakash [19] explores the use of machine learning to
enhance network monitoring capabilities. The study outlines
key network monitoring tools and examines their current
approaches to anomaly detection. It then discusses machine
learning techniques for developing predictive models based on
historical data. Additionally, the research proposes a
framework for integrating trained models as extensions to
existing monitoring tools. The findings indicate that AI-driven
methods offer more precise and automated anomaly detection
compared to traditional techniques.

Alwhbi et al. [20] examined the modern application of
machine learning to encrypted traffic analysis, as well as its

classification, through a comprehensive survey. These goals
break down into two objectives. First, the overall workflow is
illustrated to clarify how machine learning is used to analyze
and classify encrypted network traffic. And second, perform a
literature review of the most sophisticated approaches to traffic
analysis. This research attempts to shed light on contemporary
practices and give directions for future works in the realm of
encrypted traffic analysis, and especially, in the field of
machine learning.

III. PROPOSED METHODS

Our proposed methods use deep learning and specifically a
deep recurrent neural network (RNN) architecture for intrusion
detection in network traffic. As highlighted in the introduction,
one of the key challenges in this domain is the extraction of
appropriate features for attack detection. Traditional methods
rely on features extracted by an expert, which limits their
ability to detect new and evolving attacks. Such models that
rely on manual feature selection often face generalization
problems and bear the risk of failing against zero-day attacks or
attacks that slightly deviate from established patterns. Deep
learning solves this issue by extracting features automatically
from raw data. In this case, regular traffic patterns and attacks
are provided as input to a deep learning model so that it can
learn on its own. Among deep neural network architectures,
recurrent neural networks (RNNs) are particularly effective for
sequence-based learning, making them well-suited for
analyzing network traffic, which consists of sequential packet
flows. RNNs can process network flows as sequential data,
allowing them to extract long-term dependencies within the
traffic.

We designed and evaluated three different approaches
based on recurrent neural networks, each of which is explored
in detail:

1) Anomaly detection using a recurrent self-encryptor: In

this approach, a recurrent self-encryptor neural network model

is trained on normal network traffic data. In case new data is

provided to the system and the reconstruction error exceeds a

certain threshold, the data will be classified as an attack.

2) Anomaly detection using an RNN: In this approach,

both normal and attack traffic are incorporated into an RNN

for training. The model is trained as a classifier to differentiate

between normal and attack traffic based on the learned

patterns.

3) Anomaly detection using multiple learning (Hybrid):

This approach considers the above methods in tandem. A

recurrent self-encryptor network is first trained, and the output

of the cryptographic part of the self-encryptor network is then

fed into a classifier neural network, which learns to classify

normal and attack traffic. These two networks are connected

and trained simultaneously, leveraging both anomaly detection

and classification techniques for enhanced accuracy.

The novelty of this work lies in integrating a self-
encrypting autoencoder with a supervised RNN classifier in a
hybrid architecture. Unlike conventional deep learning
methods that treat anomaly detection and classification
separately, this dual-task framework allows simultaneous

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

10 | P a g e
www.ijacsa.thesai.org

feature learning for both unsupervised anomaly detection and
supervised classification, optimizing performance for
encrypted traffic scenarios.

In the subsequent sections, we will examine each of the
proposed methods and discuss their implementation and
effectiveness in network intrusion detection.

A. Anomaly Detection by Recursive Self-Encryptor

In this method, the objective is to train a recurrent self-
encryptor for anomaly detection. As explained in Chapter One,
anomaly detection involves training a model on normal
network data so that it learns to extract key features of normal
traffic. Any data that deviates significantly from this learned
pattern is classified as an anomaly. One way to achieve this is
by using a self-encryptor, which is trained to reconstruct
normal data. Once trained, if the network encounters abnormal
data, its reconstruction error will be significantly higher
compared to normal traffic. By defining a threshold, data with
a reconstruction error above this limit is identified as an
anomaly.

Intrusion detection in networks can be effectively modeled
as an anomaly detection problem. Given that recurrent neural
networks (RNNs) are particularly suited for processing
sequential data, we implemented a self-encrypting network
composed of LSTM layers. The general architecture of this
recurrent self-encrypting network is shown in Fig. 1.

Fig. 1. General model of recursive self-encryption.

The designed neural network consists of two primary
components: the encryption part and the decryption part. The
encryption section is responsible for compressing the input
data, while the decryption section reconstructs the original
data. The encryption part begins with two LSTM layers, which
extract long-term dependencies from the network stream. The
output of these LSTM layers is then passed through a
smoothing layer, preparing the data for input into fully
connected layers. The two fully connected layers further reduce
data dimensionality and extract higher-level abstract features.

Once the encryption process is completed, the decryption
phase begins, where the model reconstructs the original data.
The decryption section has a structure mirroring the encryption
part, starting with two fully connected layers, followed by two
LSTM layers that reconstruct long-term dependencies and
restore the original traffic data. If the network can successfully

reconstruct normal network data, it can serve as a robust
anomaly detection system. To prevent overfitting between the
fully connected layers, we incorporate random dropout layers.
The full details of this implemented model for intrusion
detection will be discussed in the following sections.

B. Intrusion Detection by a Recurrent Neural Network

Our second proposed solution is to train a recurrent neural
network for classification. This network utilizes multiple
recurrent layers of the LSTM type, where sequence return is
active, meaning that each LSTM cell produces an output that is
aggregated and passed as input to the next layer. Following the
LSTM layers, the network includes a series of fully connected
layers, and finally, two neurons with a smooth maximum
activation function, with each neuron representing either
normal or attack traffic label. The network learns to extract
features from the sequence of packets in a flow, gradually
refining these features into more complex features, to
distinguish between normal and attack traffic. The structure of
this approach is illustrated in Fig. 2.

Fig. 2. Attack detection by a recurrent neural network.

The designed network begins with two LSTM layers,
which extract long-term dependencies from the neural network
input. The output of these layers is then processed by a
smoothing layer before being passed through four fully
connected layers, which refine the extracted features by
extracting more abstract features and enhance the model’s
ability to classify traffic. The final output is processed through
a smooth maximum function with two neurons, each
corresponding to normal or attack traffic. To prevent
overfitting between the fully connected layers, we incorporate
random dropout layers. Further details on the implementation
and evaluation of this model for intrusion detection are
discussed in Section V.

C. Intrusion Detection by Multiple Learning

In the third approach, a deep self-encrypting recurrent
neural network is first built, followed by the integration of a
fully connected network into its middle layer. This additional
network is designed to classify traffic into attack or normal
categories.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

11 | P a g e
www.ijacsa.thesai.org

Both networks are trained simultaneously with their errors
propagating through the system to refine their predictions. This
multi-task learning approach allows the recurrent neural
network to extract generalized features that can both
reconstruct network traffic and distinguish between normal and
malicious activity at the same time. The high-dimensional
nature of byte-level packet sequences and the temporal
dependencies inherent in traffic flows necessitate deeper
architectures. Multiple LSTM layers are essential to capture
long-range patterns in encrypted traffic, while dense layers
refine the latent representations for more accurate
classification. Simpler models lack the capacity to extract such
hierarchical features.

Solving these two tasks together enhances the performance
of both. The auto-encrypting network learns comprehensive
traffic features, while the classification network guides feature
extraction toward detecting anomalies. These two combined
are more comprehensive, as they capture more complete flow
information, allowing them to reconstruct network traffic while
also identifying attacks. As a result, this model performs more
effectively in real-world scenarios, adapting better to new types
of traffic and emerging attacks. An overview of this approach
is illustrated in Fig. 3.

Fig. 3. Attack detection by multiple learning.

Like the first approach, this neural network consists of an
auto-encrypting component that processes network flows. The
input flows are first passed through two LSTM layers, which
extract long-term dependencies from the sequence data. The
processed data is then flattened and passed through three fully
connected layers that reduce dimensionality while preserving
meaningful patterns. The output of this section is then fed into
two separate neural networks. One of these networks serves as
a decoder, which mirrors the structure of the encrypting
network. It consists of two fully connected layers, whose
output is fed into two LSTM layers that are responsible for
generating long-term dependencies and reconstructing the
original data. Meanwhile, the second network is responsible

for classification. This network consists of three fully
connected layers, whose output is fed into a maximum
smoothing layer with two neurons, each representing either the
normal traffic or attack classes. To prevent overfitting between
the fully connected layers, we apply random dropout layers. By
combining self-encrypting and classification in this
architecture, the model can both learn meaningful traffic
representations and effectively detect anomalies in encrypted
and unencrypted network traffic.

A major advantage of this approach is its adaptability. If the
model misclassifies normal traffic as an attack or vice versa,
the misclassified samples can be added to the training set, and
the network can be retrained over several epochs. This self-
improving mechanism ensures that the model continuously
adapts to new traffic patterns and emerging threats, enhancing
its ability to detect previously unseen attacks.

IV. RESULTS

This section highlights the procedures carried out for data
preprocessing and preparing the dataset for training and
evaluation. Afterwards, three proposed methods will be
discussed, followed by an examination of the outputs from the
methods and the evaluation of the methods’ effectiveness.

A. Preprocessing

As mentioned in the previous section, this study uses the
ISCX IDS 2012 dataset, which contains PCAP files with both
normal and attack network traffic [21]. The preprocessing step
was important to clean and structure the dataset for training and
evaluation, resulting in a consistent form to be presented as
input to the neural network.

The first stage involved capturing network flows from the
PCAP files. This was done by determining the source and
destination IP address pairs and their relative port numbers.
After extraction, the corresponding flows were tagged as
normal or attack traffic based on the information available in
the ISCX Laboratory’s metadata.

Then, each packet within a flow was processed at the byte
level, with each byte serving as an input feature for the neural
network.

While flow-level modeling provides contextual information
across an entire session, we adopt a packet-level approach to
focus on fine-grained byte-level patterns. In encrypted traffic,
metadata and payload features are heavily obfuscated, making
it critical to extract local-level byte transitions. Future work
may explore combining both packet and flow-level models to
balance context and granularity.

The base-10 value of each byte was computed and
normalized by dividing it by 255, ensuring that feature values
were scaled between 0 and 1. Additionally, the time interval
between each packet and its preceding packet was calculated
and incorporated into the feature vector.

Since neural networks require fixed-size inputs, but
network traffic varies in length, standardizing stream and
packet lengths was necessary. As shown in Fig. 4, each stream
was decided to be set to a fixed length of 100 packets. If a
stream contained more than 100 packets, the excess packets

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

12 | P a g e
www.ijacsa.thesai.org

were removed, whereas if it contained fewer, zero-padding was
applied to ensure uniformity.

Similarly, each packet was limited to 200 bytes, consistent
with prior research [5], which shows that most informative
features in encrypted traffic, including TLS handshake and
early payload indicators, are embedded within the first 200
bytes. Fig. 5 illustrates the length of the packets within the
streams. Any packets exceeding this length were truncated,
while shorter packets were zero-padded to maintain
consistency. Choosing other packet sizes (e.g., 1,500 bytes)
would significantly increase memory overhead and training
time without measurable gains in accuracy.

Fig. 4. Graph of the number of packets within each flow.

Fig. 5. Packet size diagram.

Deep neural networks are capable of learning highly
complex features, but this can sometimes lead to overfitting on
non-informative attributes. To prevent the model from
extracting misleading patterns, non-relevant fields such as IP
addresses and checksums were zeroed out. These fields do not
contribute meaningfully to intrusion detection and could
introduce unwanted biases into the model.

After completing these preprocessing steps, each network
stream was stored as a separate file, with each line representing
the details of a single packet within that stream. This structured
format ensures that the neural network processes sequential
packet data efficiently, preserving the temporal relationships
within each stream. By following these steps, the dataset was
standardized and optimized, allowing the deep learning model
to effectively detect patterns in both normal and attack traffic.

To ensure robust evaluation, the ISCX IDS 2012 dataset
was partitioned into three distinct subsets: 70% for training,
15% for validation, and 15% for testing. The splitting was done
at the flow level to prevent data leakage across sets. The model
was trained using the training set, hyperparameters were tuned
using the validation set, and final performance was measured
on the unseen test set. This approach ensures generalization
and prevents overfitting to specific traffic patterns.

B. Anomaly Detection by Self-Encrypting Network

As discussed in the previous section, if a self-encrypting
network that is trained on normal network data learns to
accurately reconstruct normal traffic patterns, when presented
with a new stream, if the reconstruction error exceeds a
predefined threshold, the stream is identified as an anomaly. To
implement this approach, we designed a recurrent self-
encrypting network, the architecture of which is shown in
Fig. 6.

Fig. 6. Self-encrypting network architecture.

Each self-encrypting neural network consists of two main
components: the encryptor and the decryptor. As illustrated in
Fig. 6, the network begins with two LSTM layers responsible
for extracting long-term dependencies from the input stream.
The extracted features are then passed through a smoothing
layer, followed by three fully connected layers with 2,500,
1,250, and 650 neurons, which reduce dimensionality and
extract meaningful features for data reconstruction. The
decryption network follows an inverse structure of the
encryption network. It starts with two fully connected layers
(1,250 and 2,500 neurons), after which the data is processed
through two LSTM layers that reconstruct the original traffic
patterns by capturing long-term dependencies between packets.
To mitigate overfitting, random dropout layers were applied
between the fully connected layers. Given the large volume of
normal network data required for training, we randomly
selected a subset from each protocol, totaling 30,000 samples,
always keeping a 20% reserved for validation. Additionally,
10,000 samples (including both attack and normal traffic) were
used for testing. The reduction in reconstruction error during
training is depicted in Fig. 7.

Upon evaluating the model with test data, we calculated
reconstruction errors, as shown in Fig. 8, for both normal and
attack traffic. However, as seen in Fig. 8, the reconstruction
error distributions for attack and normal traffic are too close,
making them difficult to separate with a fixed threshold. The

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

13 | P a g e
www.ijacsa.thesai.org

optimal threshold determined for this dataset was 975, based
on which the test data was classified.

The results, presented in Table I, indicate that this approach
did not achieve high accuracy. The primary limitation was the
insufficient volume of normal network data for training. Due to
hardware constraints, we were only able to train the model on
30,000 normal flows, which impacted its performance. Future
improvements should focus on scaling the dataset and
enhancing feature extraction techniques to improve detection
accuracy.

Fig. 7. Reduction of reconstruction error during training.

Fig. 8. Test data reconstruction error.

TABLE I. TEST DATA CLASSIFICATION RESULTS WITH SELF-
ENCRYPTING NEURAL NETWORK

Class Precision Recall F1-Score

Normal 0.74 0.61 0.58

Attack 0.52 0.95 0.67

Total 0.74 0.61 0.58

C. Intrusion Detection by a Recurrent Neural Network

In this method, we aim to train a classifier to distinguish
between attack and normal traffic. To achieve this, we
developed a recurrent neural network (RNN) with LSTM
layers and trained it using all available attack data along with
20,000 normal flows, ensuring coverage of all protocols
present in the dataset. Fig. 9 shows the network architecture.
As depicted in this figure, this network architecture consists of
nine layers designed to effectively capture sequential patterns
in network traffic and improve classification accuracy.

Fig. 9. Recurrent neural network structure.

First, the data is fed into two LSTM layers, which consist
of 100 and 50 neurons, respectively. These are responsible for
extracting long-term dependencies from the data. The output of
the above layers goes to the smoothing layer and is then fed as
input into four fully connected layers consisting of 1250, 512,
256, 64 neurons to extract abstract features from it. Then, the
output of the fully connected layers is fed into a smooth
maximum with two neurons, which are responsible for
detecting normal versus attack traffic. Random dropout layers
are placed between the fully connected layers with a
probability of 25% to prevent overfitting. Fig. 10 depicts the
chart of the reduction of the classification error of the training
data. In general, the best way to find the most suitable neural
network for training data is to perform a complete search on
the parameters of the neural network, such as the number of
neurons in the layers and the number of layers, etc. However,
since our neural network is of the recurrent type and has a large
size, training this network takes a lot of time, and it was not
feasible to perform a comprehensive search on its parameters.
Through experimentation with logically structured
architectures based on prior research in this field, we developed
a neural network design that demonstrated strong practical
performance. After training the model, we evaluated its
effectiveness using test data, with the corresponding evaluation
metrics presented in Table II.

Fig. 10. Reduction of classification error during training.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

14 | P a g e
www.ijacsa.thesai.org

TABLE II. RESULTS OF CLASSIFICATION OF TEST DATA BY THE NEURAL

NETWORK

F1-Score Recall Precision Class

0.99 1.0 0.98 Normal

0.99 0.97 1.0 Attack

0.99 0.99 0.99 Total

As shown in Table II, the classifier demonstrated high
accuracy. To enhance processing speed, we optimized the
network by reducing its size, resulting in a more efficient
architecture, as illustrated in Fig. 11. This modification
significantly improved the training and inference speed
compared to the original model.

This change, as shown in Table III, however, led to a
decrease in accuracy. The trade-off between speed and
accuracy highlights the need for further optimizations to
balance efficiency and detection accuracy.

Fig. 11. Reduction of classification error during training.

TABLE III. RESULTS OF CLASSIFICATION OF TEST DATA IN THE REDUCED

CLASSIFIER NEURAL NETWORK

Class Precision Recall F1-Score

Normal 0.95 0.94 0.95

Attack 0.93 0.95 0.94

Total 0.94 0.94 0.94

D. Evaluation

As demonstrated in the previous section, the proposed
methods achieved high accuracy in detecting attacks using the
ISCX IDS 2012 dataset. To further evaluate their performance,
we simulated 390,000 attack flows across HTTPS, HTTP,
DNS, and FTP protocols using the 111-Spirent device. From
these, 7,000 attack flows were randomly selected and added to
the training set, while another 40,000 flows were randomly
selected from the remaining flows to assess the multi-layer
neural network model.

The evaluation results showed an attack detection accuracy
of 0.99, confirming the model's effectiveness. However, one
limitation is processing speed, as the neural network requires
0.039 seconds per flow. While this speed is sufficient for
certain applications, real-world intrusion detection systems
demand faster processing, making computational efficiency an
area for further optimization.

Unlike prior approaches relying solely on handcrafted
features or static classifiers, our method combines both
reconstruction-based and classification-based techniques
within a hybrid deep learning architecture. This dual-model
approach demonstrated F1 scores of 0.99, showing significant
improvement over baseline RNNs and self-encoder models in
similar datasets. Table IV shows the results of the evaluation.

TABLE IV. RESULTS OF CLASSIFICATION OF TEST DATA IN MULTIPLE

NEURAL NETWORKS

Class Precision Recall F1-Score

Normal 0.99 0.99 0.99

Attack 0.99 0.99 0.99

Total 0.99 0.99 0.99

E. Implementation Tools

We utilized the dpkt library in Python for network data
processing. All neural networks and deep learning models were
implemented using the Keras library [6], which operates on
TensorFlow [22]. To evaluate the performance of our
classifiers, we employed the scikit-learn machine learning
library [23].

For hardware acceleration during model training, we used
an NVIDIA GeForce GTX 1080 GPU with 8GB of memory,
significantly improving computational efficiency.

V. CONCLUSION

This study addresses the issue of applying deep learning in
anomaly detection. First, we reviewed the literature on the
subject and the research conducted on each of the parameters
discussed in this area. Our analysis of existing research
identified both key focus areas and underexplored domains
with the potential for innovative solutions. One such area is
automatic feature extraction from both the header and payload
of network packets, including encrypted traffic such as
HTTPS. Building on this, we proposed three deep learning-
based approaches for intrusion detection in computer networks,
all of which automatically extract features from packet headers
and payloads. In this study, we utilized the latest available
dataset and further enhanced it by incorporating additional
attack samples to improve its diversity and robustness. The
proposed methods were then rigorously evaluated using
established performance metrics.

Looking ahead, we plan to pursue the following research
directions:

A. Optimizing Data Reduction Methods

Our first goal is to enhance the data reduction process.
Currently, flows are categorized based on their protocol, and a
subset of packets is randomly selected from each protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

15 | P a g e
www.ijacsa.thesai.org

While this is a straightforward approach, it can be improved
with a more intelligent selection strategy. For instance, we can
extract handcrafted features from network flows, cluster the
data based on these features, and eliminate clusters that are
least relevant to attack detection.

B. Developing a Standardized Dataset

One of the most impactful contributions in this field would
be the creation of a comprehensive, standardized dataset.

While ISCX IDS 2012 is dated, it remains widely used due
to its balance of normal and attack traffic, packet-level
granularity, and availability of labels. Its consistent structure
allows comparative benchmarking, but it has several
limitations:

• Limited protocol diversity, requiring an expansion to
reflect real-world traffic more accurately.

• Insufficient attack variety, with attack traffic
constituting only a small fraction of the dataset,
necessitating better balance between normal and
malicious traffic.

• High redundancy, as the dataset contains a large number
of repetitive flows that could be filtered out to retain
only the most informative samples.

• As ISCX IDS 2012 was collected over a decade ago, it
is less representative of modern network traffic patterns
and attack techniques.

Given these limitations, we plan to develop a new
standardized dataset with greater protocol diversity, an
improved balance of normal and attack traffic, and a reduced
volume of redundant data, ensuring its effectiveness for future
research in intrusion detection.

Future work will validate the model across multiple
datasets (e.g., CIC-IDS2017, TON_IoT) to assess
generalizability and adaptability to modern encrypted traffic
beyond ISCX.

C. Enhancing Detection of Multi-Stream Attacks (DDoS

Detection)

As outlined in previous sections, our current approach
processes individual network streams, making it ineffective in
detecting attacks that involve multiple concurrent streams, such
as Distributed Denial-of-Service (DDoS) attacks. Since DDoS
attacks are a significant category of cyber threats, developing a
detection mechanism for them is a key focus of our future
work.

One possible approach is to aggregate traffic directed to a
specific host within a predefined time window and use this as
input data. By analyzing traffic patterns over time, we aim to
design a solution that can effectively identify DDoS attacks
and other multi-stream-based intrusions.

D. Leveraging Generative Models for Attack and Normal

Traffic Simulation

Another promising research direction is the development of
a generative model for both attack traffic and normal network

data. Such a model would learn the probability distribution of
real-world network traffic and be capable of generating
synthetic attack flow samples and normal traffic patterns.

This approach offers several advantages:

• Enhances dataset diversity by generating realistic attack
scenarios, improving model robustness.

• Facilitates zero-day attack detection, as the generative
model can create unseen attack variations, allowing the
intrusion detection system to generalize better.

• Reduces data collection limitations, enabling continuous
updates to training data without relying solely on real-
world attack logs.

By pursuing these advancements, we aim to develop a
highly adaptive intrusion detection system capable of
automatically extracting attack features and effectively
detecting zero-day attacks in real-world network environments.

REFERENCES

[1] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly

detection techniques,” Journal of Network and Computer Applications,

vol. 60, pp. 19–31, 2016.

[2] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep

packet: A novel approach for encrypted traffic classification using deep

learning,” CoRR, vol. abs/1709.02656, 2017. [Online]. Available:

http://arxiv.org/abs/1709.02656

[3] J. Khalife, A. Hajjar, and J. Diaz-Verdejo, “A multilevel taxonomy and

requirements for an optimal traffic-classification model,” International

Journal of Network Management, vol. 24, no. 2, pp. 101– 120, 2014.

[4] H. Park, S.-h. Sh in, B.-h. Roh, and C. Lee, “Identification of hosts

behind a nat device utilizing multiple f ields of ip and tcp,” in

Information and Communication Technology Convergence (ICTC),

2016 International Conference on. IEEE, 2016, pp. 484–486.

[5] H. Alizadeh and A. Zúquete, “Traffic classification for managing

applications’ networking profiles,” Security and Communication

Networks, vol. 9, no. 14, pp. 2557–2575, 2016.

[6] G. Sajeev and L. M. Nair, “Laser: A novel hybrid peer to peer network

traffic classification technique,” in Advances in Computing,

Communications and Informatics (ICACCI), 2016 International

Conference on. IEEE, 2016, pp. 1364–1370.

[7] Y.-n. Dong, J.-j. Zhao, and J. Jin, “Novel feature selection and

classification of internet video traffic based on a hierarchical scheme,”

Computer Networks, vol. 119, pp. 102–111, 2017.

[8] W. De Donato, A. Pescapé, and A. Dainotti, “Traffic identification

engine: an open platform for traffic classification,” IEEE Network, vo l.

28, no. 2, pp. 56–64, 2014.

[9] M. Stevanovic and J. M. Pedersen, “Detecting bots using multi-level

traffic analysis,” International Journal on Cyber Situational Awareness

(ijcsa), 2016.

[10] Đ. T. Grozdić, S. T. Jovičić, and M. Subotić, “Whispered speech

recognition using deep denoising autoencoder,” Engineering

Applications of Artificial Intelligence, vol. 59, pp. 15–22, 2017.

[11] W. Yu, K. Yang, H. Yao, X. Sun, and P. Xu, “Exploiting the

complementary strengths of multi-layer cnn features for image

retrieval,” Neurocomputing, vol. 237, pp. 235–241, 2017.

[12] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep

convolutional networks for natural language processing,” arXiv preprint

arXiv:1606.01781, 2016.

[13] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep

packet: A novel approach for encrypted traffic classification using deep

learning,” CoRR, vol. abs/1709.02656, 2017. [Online]. Available:

http://arxiv.org/abs/1709.02656

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

16 | P a g e
www.ijacsa.thesai.org

[14] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey

of deep learning-based network anomaly detection,” Cluster Computing,

Sep 2017. [Online]. Available: https://doi.org/10.1007/s10586-017-

1117-8

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www. deeplearningbook.org.

[16] G. Dorffner, “Neural networks for time series processing,” in Neural

network world. Citeseer, 1996.

[17] Ji, I. H., Lee, J. H., Kang, M. J., Park, W. J., Jeon, S. H., & Seo, J. T.

(2024). Art ificial Intelligence-Based Anomaly Detection Technology

over Encrypted Traffic: A Systematic Literature Review. Sensors, 24(3),

898. https://doi.org/10.3390/s24030898

[18] Heng Zeng, Manal Yunis, Ayman Khalil, Nawazish Mirza,(2024).

Towards a conceptual framework for AI-driven anomaly detection in

smart city IoT networks for enhanced cybersecurity, Journal of

Innovation & Knowledge, Volume 9, Issue 4, 2024,

https://doi.org/10.1016/j.jik.2024.100601.

[19] Aluwala, Aakash. (2024). AI-Driven Anomaly Detection in Network

Monitoring Techniques and Tools. Journal of Artificial Intelligence &

Cloud Computing. 1-6. 10.47363/JAICC/2024(3)310.

[20] Alwhbi, I. A., Zou, C. C., & Alharbi, R. N. (2024). Encrypted Network

Traffic Analysis and Classification Utilizing Machine Learning. Sensors

(Basel, Switzerland), 24(11), 3509. https://doi.org/10.3390/s24113509

[21] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, Ali A. Ghorbani, Toward

developing a systematic approach to generate benchmark datasets for

intrusion detection, Computers & Security, Volume 31, Issue 3, May

2012, Pages 357-374, ISSN 0167-4048, 10.1016/j.cose.2011.12.012.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.

Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.

Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.

Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.

Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.

Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015, software available

from tensorflow.org. [Online]. Available: http://tensorflow.org/

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.

Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

