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Abstract—The rapid growth of computer networks has 

increased demand for more sophisticated tools for network 

traffic analysis and monitoring. The increasing reliance on 

networks has amplified the need for robust security and 

intrusion detection mechanisms. Numerous studies have sought 

to develop efficient methods for fast and accurate intrusion 

detection, each addressing the challenge from different 

perspectives. A common limitation among these approaches is 

their reliance on expert-engineered features extracted from 

network traffic. This dependency makes them less adaptable to 

emerging attack techniques and changes in normal traffic 

patterns, often resulting in suboptimal performance. In this 

study, we propose a method leveraging recent advancements in 

artificial neural networks and deep learning, specifically using 

recurrent neural networks (RNNs), for network traffic analysis 

and intrusion detection. The key advantage of this approach is its 

ability to autonomously extract features from network traffic 

without human intervention. Trained on the ISCX IDS 2012 

dataset, the proposed model achieved an accuracy of 0.99 in 

distinguishing between malicious and normal traffic. 
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I. INTRODUCTION 

With the expansion of communication technology, 
computer security has become an essential part of everyday 
life. The widespread use of computer systems has increased the 
importance of security in computer systems, as well as the 
increasing number of threats, such as malware and mobile 
phone threats. Despite ongoing research in cybersecurity, 
security challenges remain unresolved. The rapid advancement 
of computer networks and the widespread interconnection of 
systems have heightened concerns, particularly in Internet 
security, where numerous devices are interconnected, 
increasing vulnerability risks. 

Since the Internet Protocol (IP) is not designed to ensure 
the highest security standards, network administrators are faced 
with a huge flood of intrusion attempts by people with 
malicious intent [1]. According to statistics provided by 
Symantec [2] on Internet security, more than three billion 
malware attacks were reported in 2010, and the number of 
denial-of-service attacks has increased significantly. Anomaly 
detection plays a crucial role in data analysis. The goal of 
anomaly detection is to find anomalous data in a dataset. This 
has been widely studied in statistics and machine learning, as 
anomalies can trigger critical and potentially harmful events, 
making their detection essential. 

For example, in computer networks, unusual traffic can 
mean infiltration of a computer where a compromised system 
transmits data to an unauthorized entity [3]. Conventional 
approaches for anomaly detection include deep packet 
inspection, statistical, and machine learning. Statistical and 
deep packet inspection methods do not perform well against 
emerging attacks in real-life scenarios. 

Moreover, these methods are highly dependent on expert 
knowledge. Research in this field aims to develop anomaly 
detection systems that not only perform well but also operate 
autonomously while maintaining their high accuracy [4]. 
Understanding the characteristics of modern network traffic 
requires a deep knowledge of the structure and dynamics of 
Internet traffic, which also plays a crucial role in managing and 
monitoring Internet service provider (ISP) networks [5]. 
Although the rationale for intrusion detection in the context of 
computer networks is clear, several practical problems still 
exist with intrusion detection systems (IDS) [6]. One of the 
most pressing concerns in network security is the increasing 
sophistication and frequency of cyberattacks, coupled with 
evolving user behavior and software usage patterns. Traditional 
models that rely on historical attack data often become obsolete 
as new threats emerge, highlighting the need for adaptive 
intrusion detection systems that can be continuously updated to 
maintain effectiveness [7]. 

A significant challenge in intrusion detection is packet 
encryption and encapsulation. Encryption alters network traffic 
characteristics, making it difficult to differentiate between 
normal and malicious activity. Traditional intrusion detection 
methods rely on identifiable traffic patterns, which encryption 
effectively conceals, thereby reducing their accuracy. 
Additionally, packet encapsulation and encryption make 
traditional expert-defined feature extraction ineffective. The 
randomized nature of encrypted traffic prevents manual feature 
engineering, emphasizing the necessity for fully automated 
systems capable of independently capturing complex patterns 
in encrypted traffic [8]. 

Another important aspect is the high-speed nature of 
modern networks, which also makes real-time intrusion 
detection difficult. Anomaly detection, or outlier detection, 
examines normal data trends in a network and marks any 
deviations as a potential threat. One widely used approach is 
anomaly-based intrusion detection, where normal network 
traffic is first recorded, and any data deviating from learned 
normal behavior is classified as an anomaly [9]. 
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Among deep learning techniques, deep convolutional 
networks, stacked self-encryptors, and recurrent neural 
networks (RNNs) have demonstrated tremendous success. 
These methods have been continuously used for various 
applications such as voice processing [10], computer vision 
[11], natural language processing [12], network traffic 
classification [13], and cyberattack detection [14], delivering 
strong performance. It is clear from different studies that deep 
learning performance is far beyond the performance of 
traditional methods in the aforementioned applications. 
Perhaps the greatest advantage of deep learning is the 
autonomous extraction and learning of features [15], which 
eliminates the need for manual feature engineering. There are 
other deep learning methods available, including unsupervised 
and quasi-supervised methods, which increase adaptability 
even further. 

In the next sections, we will discuss two particular types of 
networks that were used for this study, and we will also 
describe the key principles for these networks in more detail. 

The ability to recognize temporal order and sequence is 
what makes recurrent neural networks (RNNs) one of the most 
powerful models in deep learning. It also makes them 
especially good at natural language processing and network 
traffic processing. These networks are suitable to learn patterns 
in sequence data such as genes, texts, and time sequences [16]. 

II. RESEARCH BACKGROUND 

Ji et al. (2024) conducted a systematic review of AI-driven 
anomaly detection methods for encrypted network traffic. The 
study established key research questions and selected relevant 
literature based on specific eligibility criteria. The findings 
confirmed that a variety of AI techniques have been applied to 
anomaly detection in encrypted traffic. While some of these 
methods resemble those used for unencrypted traffic, others 
employ distinct approaches tailored to the challenges posed by 
encryption [17]. 

Zeng et al. [18] demonstrated the importance of user 
engagement regarding the effectiveness of AI-based 
cybersecurity systems by discussing the concept of technology 
acceptance and human-AI interaction. The study proposes 
building a security-conscious culture via ongoing education 
and skills training, which can help to better protect smart cities 
against new forms of cyber-attacks. The framework functions 
as a base for future empirical studies as well as an important 
tool for policymakers and city planners concerned with the 
digital borders of smart cities of the future. 

Aakash [19] explores the use of machine learning to 
enhance network monitoring capabilities. The study outlines 
key network monitoring tools and examines their current 
approaches to anomaly detection. It then discusses machine 
learning techniques for developing predictive models based on 
historical data. Additionally, the research proposes a 
framework for integrating trained models as extensions to 
existing monitoring tools. The findings indicate that AI-driven 
methods offer more precise and automated anomaly detection 
compared to traditional techniques. 

Alwhbi et al. [20] examined the modern application of 
machine learning to encrypted traffic analysis, as well as its 

classification, through a comprehensive survey. These goals 
break down into two objectives. First, the overall workflow is 
illustrated to clarify how machine learning is used to analyze 
and classify encrypted network traffic. And second, perform a 
literature review of the most sophisticated approaches to traffic 
analysis. This research attempts to shed light on contemporary 
practices and give directions for future works in the realm of 
encrypted traffic analysis, and especially, in the field of 
machine learning. 

III. PROPOSED METHODS 

Our proposed methods use deep learning and specifically a 
deep recurrent neural network (RNN) architecture for intrusion 
detection in network traffic. As highlighted in the introduction, 
one of the key challenges in this domain is the extraction of 
appropriate features for attack detection. Traditional methods 
rely on features extracted by an expert, which limits their 
ability to detect new and evolving attacks. Such models that 
rely on manual feature selection often face generalization 
problems and bear the risk of failing against zero-day attacks or 
attacks that slightly deviate from established patterns. Deep 
learning solves this issue by extracting features automatically 
from raw data. In this case, regular traffic patterns and attacks 
are provided as input to a deep learning model so that it can 
learn on its own. Among deep neural network architectures, 
recurrent neural networks (RNNs) are particularly effective for 
sequence-based learning, making them well-suited for 
analyzing network traffic, which consists of sequential packet 
flows. RNNs can process network flows as sequential data, 
allowing them to extract long-term dependencies within the 
traffic. 

We designed and evaluated three different approaches 
based on recurrent neural networks, each of which is explored 
in detail: 

1) Anomaly detection using a recurrent self-encryptor: In 

this approach, a recurrent self-encryptor neural network model 

is trained on normal network traffic data. In case new data is 

provided to the system and the reconstruction error exceeds a 

certain threshold, the data will be classified as an attack. 

2) Anomaly detection using an RNN: In this approach, 

both normal and attack traffic are incorporated into an RNN 

for training. The model is trained as a classifier to differentiate 

between normal and attack traffic based on the learned 

patterns. 

3) Anomaly detection using multiple learning (Hybrid): 

This approach considers the above methods in tandem. A 

recurrent self-encryptor network is first trained, and the output 

of the cryptographic part of the self-encryptor network is then 

fed into a classifier neural network, which learns to classify 

normal and attack traffic. These two networks are connected 

and trained simultaneously, leveraging both anomaly detection 

and classification techniques for enhanced accuracy. 

The novelty of this work lies in integrating a self-
encrypting autoencoder with a supervised RNN classifier in a 
hybrid architecture. Unlike conventional deep learning 
methods that treat anomaly detection and classification 
separately, this dual-task framework allows simultaneous 
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feature learning for both unsupervised anomaly detection and 
supervised classification, optimizing performance for 
encrypted traffic scenarios. 

In the subsequent sections, we will examine each of the 
proposed methods and discuss their implementation and 
effectiveness in network intrusion detection. 

A. Anomaly Detection by Recursive Self-Encryptor 

In this method, the objective is to train a recurrent self-
encryptor for anomaly detection. As explained in Chapter One, 
anomaly detection involves training a model on normal 
network data so that it learns to extract key features of normal 
traffic. Any data that deviates significantly from this learned 
pattern is classified as an anomaly. One way to achieve this is 
by using a self-encryptor, which is trained to reconstruct 
normal data. Once trained, if the network encounters abnormal 
data, its reconstruction error will be significantly higher 
compared to normal traffic. By defining a threshold, data with 
a reconstruction error above this limit is identified as an 
anomaly. 

Intrusion detection in networks can be effectively modeled 
as an anomaly detection problem. Given that recurrent neural 
networks (RNNs) are particularly suited for processing 
sequential data, we implemented a self-encrypting network 
composed of LSTM layers. The general architecture of this 
recurrent self-encrypting network is shown in Fig. 1. 

 
Fig. 1. General model of recursive self-encryption. 

The designed neural network consists of two primary 
components: the encryption part and the decryption part. The 
encryption section is responsible for compressing the input 
data, while the decryption section reconstructs the original 
data. The encryption part begins with two LSTM layers, which 
extract long-term dependencies from the network stream. The 
output of these LSTM layers is then passed through a 
smoothing layer, preparing the data for input into fully 
connected layers. The two fully connected layers further reduce 
data dimensionality and extract higher-level abstract features. 

Once the encryption process is completed, the decryption 
phase begins, where the model reconstructs the original data. 
The decryption section has a structure mirroring the encryption 
part, starting with two fully connected layers, followed by two 
LSTM layers that reconstruct long-term dependencies and 
restore the original traffic data. If the network can successfully 

reconstruct normal network data, it can serve as a robust 
anomaly detection system. To prevent overfitting between the 
fully connected layers, we incorporate random dropout layers. 
The full details of this implemented model for intrusion 
detection will be discussed in the following sections. 

B. Intrusion Detection by a Recurrent Neural Network 

Our second proposed solution is to train a recurrent neural 
network for classification. This network utilizes multiple 
recurrent layers of the LSTM type, where sequence return is 
active, meaning that each LSTM cell produces an output that is 
aggregated and passed as input to the next layer. Following the 
LSTM layers, the network includes a series of fully connected 
layers, and finally, two neurons with a smooth maximum 
activation function, with each neuron representing either 
normal or attack traffic label. The network learns to extract 
features from the sequence of packets in a flow, gradually 
refining these features into more complex features, to 
distinguish between normal and attack traffic. The structure of 
this approach is illustrated in Fig. 2. 

 
Fig. 2. Attack detection by a recurrent neural network. 

The designed network begins with two LSTM layers, 
which extract long-term dependencies from the neural network 
input. The output of these layers is then processed by a 
smoothing layer before being passed through four fully 
connected layers, which refine the extracted features by 
extracting more abstract features and enhance the model’s 
ability to classify traffic. The final output is processed through 
a smooth maximum function with two neurons, each 
corresponding to normal or attack traffic. To prevent 
overfitting between the fully connected layers, we incorporate 
random dropout layers. Further details on the implementation 
and evaluation of this model for intrusion detection are 
discussed in Section V. 

C. Intrusion Detection by Multiple Learning 

In the third approach, a deep self-encrypting recurrent 
neural network is first built, followed by the integration of a 
fully connected network into its middle layer. This additional 
network is designed to classify traffic into attack or normal 
categories. 
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Both networks are trained simultaneously with their errors 
propagating through the system to refine their predictions. This 
multi-task learning approach allows the recurrent neural 
network to extract generalized features that can both 
reconstruct network traffic and distinguish between normal and 
malicious activity at the same time. The high-dimensional 
nature of byte-level packet sequences and the temporal 
dependencies inherent in traffic flows necessitate deeper 
architectures. Multiple LSTM layers are essential to capture 
long-range patterns in encrypted traffic, while dense layers 
refine the latent representations for more accurate 
classification. Simpler models lack the capacity to extract such 
hierarchical features. 

Solving these two tasks together enhances the performance 
of both. The auto-encrypting network learns comprehensive 
traffic features, while the classification network guides feature 
extraction toward detecting anomalies. These two combined 
are more comprehensive, as they capture more complete flow 
information, allowing them to reconstruct network traffic while 
also identifying attacks. As a result, this model performs more 
effectively in real-world scenarios, adapting better to new types 
of traffic and emerging attacks. An overview of this approach 
is illustrated in Fig. 3. 

 
Fig. 3. Attack detection by multiple learning. 

Like the first approach, this neural network consists of an 
auto-encrypting component that processes network flows. The 
input flows are first passed through two LSTM layers, which 
extract long-term dependencies from the sequence data. The 
processed data is then flattened and passed through three fully 
connected layers that reduce dimensionality while preserving 
meaningful patterns. The output of this section is then fed into 
two separate neural networks. One of these networks serves as 
a decoder, which mirrors the structure of the encrypting 
network. It consists of two fully connected layers, whose 
output is fed into two LSTM layers that are responsible for 
generating long-term dependencies and reconstructing the 
original data.  Meanwhile, the second network is responsible 

for classification. This network consists of three fully 
connected layers, whose output is fed into a maximum 
smoothing layer with two neurons, each representing either the 
normal traffic or attack classes. To prevent overfitting between 
the fully connected layers, we apply random dropout layers. By 
combining self-encrypting and classification in this 
architecture, the model can both learn meaningful traffic 
representations and effectively detect anomalies in encrypted 
and unencrypted network traffic. 

A major advantage of this approach is its adaptability. If the 
model misclassifies normal traffic as an attack or vice versa, 
the misclassified samples can be added to the training set, and 
the network can be retrained over several epochs. This self-
improving mechanism ensures that the model continuously 
adapts to new traffic patterns and emerging threats, enhancing 
its ability to detect previously unseen attacks. 

IV. RESULTS 

This section highlights the procedures carried out for data 
preprocessing and preparing the dataset for training and 
evaluation. Afterwards, three proposed methods will be 
discussed, followed by an examination of the outputs from the 
methods and the evaluation of the methods’ effectiveness. 

A. Preprocessing 

As mentioned in the previous section, this study uses the 
ISCX IDS 2012 dataset, which contains PCAP files with both 
normal and attack network traffic [21]. The preprocessing step 
was important to clean and structure the dataset for training and 
evaluation, resulting in a consistent form to be presented as 
input to the neural network. 

The first stage involved capturing network flows from the 
PCAP files. This was done by determining the source and 
destination IP address pairs and their relative port numbers. 
After extraction, the corresponding flows were tagged as 
normal or attack traffic based on the information available in 
the ISCX Laboratory’s metadata. 

Then, each packet within a flow was processed at the byte 
level, with each byte serving as an input feature for the neural 
network. 

While flow-level modeling provides contextual information 
across an entire session, we adopt a packet-level approach to 
focus on fine-grained byte-level patterns. In encrypted traffic, 
metadata and payload features are heavily obfuscated, making 
it critical to extract local-level byte transitions. Future work 
may explore combining both packet and flow-level models to 
balance context and granularity. 

The base-10 value of each byte was computed and 
normalized by dividing it by 255, ensuring that feature values 
were scaled between 0 and 1. Additionally, the time interval 
between each packet and its preceding packet was calculated 
and incorporated into the feature vector. 

Since neural networks require fixed-size inputs, but 
network traffic varies in length, standardizing stream and 
packet lengths was necessary. As shown in Fig. 4, each stream 
was decided to be set to a fixed length of 100 packets. If a 
stream contained more than 100 packets, the excess packets 
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were removed, whereas if it contained fewer, zero-padding was 
applied to ensure uniformity. 

Similarly, each packet was limited to 200 bytes, consistent 
with prior research [5], which shows that most informative 
features in encrypted traffic, including TLS handshake and 
early payload indicators, are embedded within the first 200 
bytes. Fig. 5 illustrates the length of the packets within the 
streams. Any packets exceeding this length were truncated, 
while shorter packets were zero-padded to maintain 
consistency. Choosing other packet sizes (e.g., 1,500 bytes) 
would significantly increase memory overhead and training 
time without measurable gains in accuracy. 

 
Fig. 4. Graph of the number of packets within each flow. 

 
Fig. 5. Packet size diagram. 

Deep neural networks are capable of learning highly 
complex features, but this can sometimes lead to overfitting on 
non-informative attributes. To prevent the model from 
extracting misleading patterns, non-relevant fields such as IP 
addresses and checksums were zeroed out. These fields do not 
contribute meaningfully to intrusion detection and could 
introduce unwanted biases into the model. 

After completing these preprocessing steps, each network 
stream was stored as a separate file, with each line representing 
the details of a single packet within that stream. This structured 
format ensures that the neural network processes sequential 
packet data efficiently, preserving the temporal relationships 
within each stream. By following these steps, the dataset was 
standardized and optimized, allowing the deep learning model 
to effectively detect patterns in both normal and attack traffic. 

To ensure robust evaluation, the ISCX IDS 2012 dataset 
was partitioned into three distinct subsets: 70% for training, 
15% for validation, and 15% for testing. The splitting was done 
at the flow level to prevent data leakage across sets. The model 
was trained using the training set, hyperparameters were tuned 
using the validation set, and final performance was measured 
on the unseen test set. This approach ensures generalization 
and prevents overfitting to specific traffic patterns. 

B. Anomaly Detection by Self-Encrypting Network 

As discussed in the previous section, if a self-encrypting 
network that is trained on normal network data learns to 
accurately reconstruct normal traffic patterns, when presented 
with a new stream, if the reconstruction error exceeds a 
predefined threshold, the stream is identified as an anomaly. To 
implement this approach, we designed a recurrent self-
encrypting network, the architecture of which is shown in 
Fig. 6. 

 
Fig. 6. Self-encrypting network architecture. 

Each self-encrypting neural network consists of two main 
components: the encryptor and the decryptor. As illustrated in 
Fig. 6, the network begins with two LSTM layers responsible 
for extracting long-term dependencies from the input stream. 
The extracted features are then passed through a smoothing 
layer, followed by three fully connected layers with 2,500, 
1,250, and 650 neurons, which reduce dimensionality and 
extract meaningful features for data reconstruction. The 
decryption network follows an inverse structure of the 
encryption network. It starts with two fully connected layers 
(1,250 and 2,500 neurons), after which the data is processed 
through two LSTM layers that reconstruct the original traffic 
patterns by capturing long-term dependencies between packets. 
To mitigate overfitting, random dropout layers were applied 
between the fully connected layers. Given the large volume of 
normal network data required for training, we randomly 
selected a subset from each protocol, totaling 30,000 samples, 
always keeping a 20% reserved for validation. Additionally, 
10,000 samples (including both attack and normal traffic) were 
used for testing. The reduction in reconstruction error during 
training is depicted in Fig. 7. 

Upon evaluating the model with test data, we calculated 
reconstruction errors, as shown in Fig. 8, for both normal and 
attack traffic. However, as seen in Fig. 8, the reconstruction 
error distributions for attack and normal traffic are too close, 
making them difficult to separate with a fixed threshold. The 
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optimal threshold determined for this dataset was 975, based 
on which the test data was classified. 

The results, presented in Table I, indicate that this approach 
did not achieve high accuracy. The primary limitation was the 
insufficient volume of normal network data for training. Due to 
hardware constraints, we were only able to train the model on 
30,000 normal flows, which impacted its performance. Future 
improvements should focus on scaling the dataset and 
enhancing feature extraction techniques to improve detection 
accuracy. 

 
Fig. 7. Reduction of reconstruction error during training. 

 
Fig. 8. Test data reconstruction error. 

TABLE I.  TEST DATA CLASSIFICATION RESULTS WITH SELF-
ENCRYPTING NEURAL NETWORK 

Class Precision Recall F1-Score 

Normal 0.74 0.61 0.58 

Attack 0.52 0.95 0.67 

Total 0.74 0.61 0.58 

C. Intrusion Detection by a Recurrent Neural Network 

In this method, we aim to train a classifier to distinguish 
between attack and normal traffic. To achieve this, we 
developed a recurrent neural network (RNN) with LSTM 
layers and trained it using all available attack data along with 
20,000 normal flows, ensuring coverage of all protocols 
present in the dataset. Fig. 9 shows the network architecture. 
As depicted in this figure, this network architecture consists of 
nine layers designed to effectively capture sequential patterns 
in network traffic and improve classification accuracy. 

 
Fig. 9. Recurrent neural network structure. 

First, the data is fed into two LSTM layers, which consist 
of 100 and 50 neurons, respectively. These are responsible for 
extracting long-term dependencies from the data. The output of 
the above layers goes to the smoothing layer and is then fed as 
input into four fully connected layers consisting of 1250, 512, 
256, 64 neurons to extract abstract features from it. Then, the 
output of the fully connected layers is fed into a smooth 
maximum with two neurons, which are responsible for 
detecting normal versus attack traffic. Random dropout layers 
are placed between the fully connected layers with a 
probability of 25% to prevent overfitting. Fig. 10 depicts the 
chart of the reduction of the classification error of the training 
data. In general, the best way to find the most suitable neural 
network for training data is to perform a complete search on 
the parameters of the neural network, such as the number of 
neurons in the layers and the number of layers, etc. However, 
since our neural network is of the recurrent type and has a large 
size, training this network takes a lot of time, and it was not 
feasible to perform a comprehensive search on its parameters. 
Through experimentation with logically structured 
architectures based on prior research in this field, we developed 
a neural network design that demonstrated strong practical 
performance. After training the model, we evaluated its 
effectiveness using test data, with the corresponding evaluation 
metrics presented in Table II. 

 
Fig. 10. Reduction of classification error during training. 
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TABLE II.  RESULTS OF CLASSIFICATION OF TEST DATA BY THE NEURAL 

NETWORK 

F1-Score Recall Precision Class 

0.99 1.0 0.98 Normal 

0.99 0.97 1.0 Attack 

0.99 0.99 0.99 Total 

As shown in Table II, the classifier demonstrated high 
accuracy. To enhance processing speed, we optimized the 
network by reducing its size, resulting in a more efficient 
architecture, as illustrated in Fig. 11. This modification 
significantly improved the training and inference speed 
compared to the original model. 

This change, as shown in Table III, however, led to a 
decrease in accuracy. The trade-off between speed and 
accuracy highlights the need for further optimizations to 
balance efficiency and detection accuracy. 

 
Fig. 11. Reduction of classification error during training. 

TABLE III.  RESULTS OF CLASSIFICATION OF TEST DATA IN THE REDUCED 

CLASSIFIER NEURAL NETWORK 

Class Precision Recall F1-Score 

Normal 0.95 0.94 0.95 

Attack 0.93 0.95 0.94 

Total 0.94 0.94 0.94 

D. Evaluation 

As demonstrated in the previous section, the proposed 
methods achieved high accuracy in detecting attacks using the 
ISCX IDS 2012 dataset. To further evaluate their performance, 
we simulated 390,000 attack flows across HTTPS, HTTP, 
DNS, and FTP protocols using the 111-Spirent device. From 
these, 7,000 attack flows were randomly selected and added to 
the training set, while another 40,000 flows were randomly 
selected from the remaining flows to assess the multi-layer 
neural network model. 

The evaluation results showed an attack detection accuracy 
of 0.99, confirming the model's effectiveness. However, one 
limitation is processing speed, as the neural network requires 
0.039 seconds per flow. While this speed is sufficient for 
certain applications, real-world intrusion detection systems 
demand faster processing, making computational efficiency an 
area for further optimization. 

Unlike prior approaches relying solely on handcrafted 
features or static classifiers, our method combines both 
reconstruction-based and classification-based techniques 
within a hybrid deep learning architecture. This dual-model 
approach demonstrated F1 scores of 0.99, showing significant 
improvement over baseline RNNs and self-encoder models in 
similar datasets. Table IV shows the results of the evaluation. 

TABLE IV.  RESULTS OF CLASSIFICATION OF TEST DATA IN MULTIPLE 

NEURAL NETWORKS 

Class Precision Recall F1-Score 

Normal 0.99 0.99 0.99 

Attack 0.99 0.99 0.99 

Total 0.99 0.99 0.99 

E. Implementation Tools 

We utilized the dpkt library in Python for network data 
processing. All neural networks and deep learning models were 
implemented using the Keras library [6], which operates on 
TensorFlow [22]. To evaluate the performance of our 
classifiers, we employed the scikit-learn machine learning 
library [23]. 

For hardware acceleration during model training, we used 
an NVIDIA GeForce GTX 1080 GPU with 8GB of memory, 
significantly improving computational efficiency. 

V. CONCLUSION 

This study addresses the issue of applying deep learning in 
anomaly detection. First, we reviewed the literature on the 
subject and the research conducted on each of the parameters 
discussed in this area. Our analysis of existing research 
identified both key focus areas and underexplored domains 
with the potential for innovative solutions. One such area is 
automatic feature extraction from both the header and payload 
of network packets, including encrypted traffic such as 
HTTPS. Building on this, we proposed three deep learning-
based approaches for intrusion detection in computer networks, 
all of which automatically extract features from packet headers 
and payloads. In this study, we utilized the latest available 
dataset and further enhanced it by incorporating additional 
attack samples to improve its diversity and robustness. The 
proposed methods were then rigorously evaluated using 
established performance metrics. 

Looking ahead, we plan to pursue the following research 
directions: 

A. Optimizing Data Reduction Methods 

Our first goal is to enhance the data reduction process. 
Currently, flows are categorized based on their protocol, and a 
subset of packets is randomly selected from each protocol. 
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While this is a straightforward approach, it can be improved 
with a more intelligent selection strategy. For instance, we can 
extract handcrafted features from network flows, cluster the 
data based on these features, and eliminate clusters that are 
least relevant to attack detection. 

B. Developing a Standardized Dataset 

One of the most impactful contributions in this field would 
be the creation of a comprehensive, standardized dataset. 

While ISCX IDS 2012 is dated, it remains widely used due 
to its balance of normal and attack traffic, packet-level 
granularity, and availability of labels. Its consistent structure 
allows comparative benchmarking, but it has several 
limitations: 

• Limited protocol diversity, requiring an expansion to 
reflect real-world traffic more accurately. 

• Insufficient attack variety, with attack traffic 
constituting only a small fraction of the dataset, 
necessitating better balance between normal and 
malicious traffic. 

• High redundancy, as the dataset contains a large number 
of repetitive flows that could be filtered out to retain 
only the most informative samples. 

• As ISCX IDS 2012 was collected over a decade ago, it 
is less representative of modern network traffic patterns 
and attack techniques. 

Given these limitations, we plan to develop a new 
standardized dataset with greater protocol diversity, an 
improved balance of normal and attack traffic, and a reduced 
volume of redundant data, ensuring its effectiveness for future 
research in intrusion detection. 

Future work will validate the model across multiple 
datasets (e.g., CIC-IDS2017, TON_IoT) to assess 
generalizability and adaptability to modern encrypted traffic 
beyond ISCX. 

C. Enhancing Detection of Multi-Stream Attacks (DDoS 

Detection) 

As outlined in previous sections, our current approach 
processes individual network streams, making it ineffective in 
detecting attacks that involve multiple concurrent streams, such 
as Distributed Denial-of-Service (DDoS) attacks. Since DDoS 
attacks are a significant category of cyber threats, developing a 
detection mechanism for them is a key focus of our future 
work. 

One possible approach is to aggregate traffic directed to a 
specific host within a predefined time window and use this as 
input data. By analyzing traffic patterns over time, we aim to 
design a solution that can effectively identify DDoS attacks 
and other multi-stream-based intrusions. 

D. Leveraging Generative Models for Attack and Normal 

Traffic Simulation 

Another promising research direction is the development of 
a generative model for both attack traffic and normal network 

data. Such a model would learn the probability distribution of 
real-world network traffic and be capable of generating 
synthetic attack flow samples and normal traffic patterns. 

This approach offers several advantages: 

• Enhances dataset diversity by generating realistic attack 
scenarios, improving model robustness. 

• Facilitates zero-day attack detection, as the generative 
model can create unseen attack variations, allowing the 
intrusion detection system to generalize better. 

• Reduces data collection limitations, enabling continuous 
updates to training data without relying solely on real-
world attack logs. 

By pursuing these advancements, we aim to develop a 
highly adaptive intrusion detection system capable of 
automatically extracting attack features and effectively 
detecting zero-day attacks in real-world network environments. 
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