(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

Advanced Multimodal Al for Resilient Healthcare:
Enhancing Early Risk Assessment in Critical Care

Shih-Wei Wu!, Chengcheng Li?, Te-Nien Chien’*, Yao-Yu Zhang?*
Department of Business Management, National Taipei University of Technology, Taipei, Taiwan !
College of Management, National Taipei University of Technology, Taipei, Taiwan? 3
Division of Cardiology-Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan*

Abstract—This study develops an advanced multimodal Al
framework to strengthen early risk assessment in critical care and
support resilient healthcare delivery. Utilizing the MIMIC-III
database, this research extracted structured variables and clinical
notes from26,829 adult patients. A text mining approachbasedon
the BERTopic model was employed to generate topic embeddings
from unstructured notes, which were subsequently integrated with
16 quantitative variables. Six machine learning models: Adaboost,
Gradient Boosting, Support Vector Classification (SVC), Bagging,
Logistic Regression, and MLP Classifier were trained to predict
short-term and long-term mortality outcomes. Model
performance was evaluated through AUROC, accuracy, recall,
precision, and Fl-score metrics. The results demonstrate that
integrating topic embeddings with structured data significantly
improved short-term risk prediction. The SVC model, in
particular, achieved an AUROC of 0.9137 for predicting 2-day
mortality. Critical predictors identified included the Glasgow
Coma Scale, White Blood Cell Count, and text-derived topics
related to cardiovascular and neurological conditions. The study
is based on a single-center dataset, limiting generalizability.
Additionally, only a subset of textual data sources was analyzed,
and improvements in long-term risk prediction were relatively
modest. These findings demonstrate how multimodal AI can
significantly improve early risk assessment and enhance resilience
in critical care decision-making. This research pioneers the
integration of BERTopic-based text mining with machine learning
models for clinical risk prediction, highlighting the value of
multimodal data fusion in improving predictive accuracy and
enriching medical informatics.
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I.  INTRODUCTION

Artificial Intelligence (AI) and healthcare big data are
revolutionizing clinical outcome prediction and decision-
making, particularly in critical care environments such as
Intensive Care Units (ICUs) [1]. AL, powered by sophisticated
machine leaming algorithms, processes extensive and complex
datasets to uncover intricate patterns and generate precise
predictions of patient outcomes. These advancements
significantly enhance clinical decision-making processes and
enable the delivery of highly personalized care. Within this
framework, Electronic Health Records (EHRs) play a pivotal
role as the foundation of healthcare big data. EHRs encompass
comprehensive digital records of patients’ health information,
including medical histories, diagnostic imaging, and treatment
details [2]. The digital transformation of health records not only
streamlines hospital management and service delivery but also
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provides researchers with vast datasets for developing and
validating predictive models [3]. These technological
advancements further enhance predictive analytics and play a
critical role in supporting resilient healthcare by enabling earlier
identification of clinical deterioration and improving system
responsiveness [4, 5].

In addition to numerical and structured data in EHRs, semi-
structured and unstructured data, such as clinical notes,
diagnostic reports, and patient discharge summaries, constitute
a valuable yet often underutilized source of information in
predictive modeling [6]. Text mining, a specialized area within
Al dedicated to extracting meaningful insights from
unstructured text, has gained significant recognition for its
abilityto process such data. By leveragingadvanced text mining
techniques, researchers can uncover critical insights from
clinical notes and reports, transforming free-text into structured
data that can seamlessly integrate with traditional numerical
datasets to enhance predictive modeling accuracy.

The integration of text mining with healthcare big data
comprising EHRs, diagnostic reports, and other patient-related
records provides a powerful foundation for developing
predictive models to support evidence-based clinical decision-
making [7]. This synergy holds considerable promise for
enhancing resource allocation, advancing patient care, and
minimizing healthcare expenditures, establishing it as a central
focus in contemporary medical informatics research. In ICU-
focused studies, leveraging EHR data for predictive tasks, such
as assessing patient mortality, estimating length of stay, and
diagnosing diseases, plays a pivotal role. Effectively utilizing
EHR data for clinical outcome prediction enables early
identification of high-risk patients, facilitates timely
interventions, and improves mortality risk assessment,
ultimately optimizing patient care and resource utilization [§].
Strengthening early risk prediction in the ICU is therefore
fundamental to resilient healthcare, as it supports timely
interventions, reduces avoidable deterioration, and enhances the
system’s capacity to respond effectively under clinical pressure
[9-11].

Accurate prediction of clinical outcomes for ICU patients,
given their diverse survival probabilities, plays a crucial role in
enhancing the quality of care within ICUs, facilitating cross-
institutional evaluations, and advancing related clinical research
[12]. Numerous predictive methods and scoring systems,
including APACHE, SAPS, and MPM, have been designed to
estimate clinical outcomes [ 13, 14]. While these models achieve
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reasonable accuracy in predicting ICU mortality rates, they often
require recalibration when applied to different ICU settings due
to disparities in patient demographics and clinical practices [15].
Despite these advancements, there remains a significant
knowledge gap in how advanced topic modeling like BER Topic
can be effectively integrated with structured ICU data to
improve predictive resilience. This study fills this gap by
providinga comparative analysisof multimodal Al frameworks.
Machine learning (ML) has emerged as a transformative tool for
data analysis, offering robust capabilities in feature extraction
and addressing the limitations of traditional statistical
approaches.ML techniques have been widely implemented in
various healthcare predictive tasks, such as employing Random
Forest algorithms to assess fetal maturity and adapt model
parameters across diverse temporal settings [16].

While EHR adoption expands, research remains
predominantly focused on structured quantitative data. Yet,
clinical narratives containing vital documentation of
physiological states and disease progression represent nearly
80% of EHR content [17, 18]. These semi-structured records
encode essential clinical knowledge, including diagnostic
assessments, treatment protocols, and care priorities, which are
critical for evidence-based decision-making [19]. Natural
language processing (NLP) has consequently become
indispensable for deriving insights from such textual data [20,
21], exemplified by its 90% accuracy in classifying peripheral
arterial disease through keyword extraction [22].

While NLP improves patient classification accuracy, it
simultaneously reveals challenges, including data sparsity and
high dimensionality. To address these limitations, we propose
the BERTopic model, which integrates BERT (Bidirectional
Encoder Representations from Transformers) embeddings with
c-TF-IDF to generate dense clusters and extract interpretable
topics. In contrast to conventional latent Dirichlet allocation
(LDA) approaches, BERTopic provides enhanced semantic
representations that resolve vocabulary mismatches while
capturing temporal dynamics in topic distributions [23, 24].
Unlike LDA, which relies on bag-of-words, BERTopic utilizes
contextual embeddings to maintain semantic coherence even in
short, noisy clinical notes. Furthermore, the model streamlines
hyperparameter optimization and incorporates dedicated noise
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topic handling, effectively reducing misclassification of
irrelevant documents and consequently improving overall topic
modeling accuracy [25, 26].

Integrating text mining methods like BERTopic with
machine learning provides a robust framework for enhancing
predictive accuracy in critical care. While conventional models
often overlook the rich clinical insights within semi-structured
data, such as nursing notes and diagnostic reports, this study
leverages the BERTopic model to extract and categorize
meaningful latent topics. By synthesizing these text-derived
features with numerical datasets, our approach enables a more
holistic understanding of patient conditions. This integration
transforms unstructured narratives into quantifiable predictors,
equippinghealthcare professionals with deeper insights formore
precise decision-making and ICU outcome forecasting. This
study advances the field by employing a transformer-enhanced
BERTopic model to automatically extract interpretable features
from complex clinical narratives. A key contribution of this
work is the comprehensive comparative analysis that provides
empirical evidence of the advantages modern topic modeling
holds overtraditional methods. As healthcare big data analytics
evolve, incorporating advanced text mining into predictive
frameworks promises to optimize resource allocation and
enhance the quality of patient care. Ultimately, this multimodal
Al framework reinforces early risk recognition, supporting
resilient healthcare by enabling more timely, adaptive, and
effective interventions in critical care settings.

II.  MATERIALS AND METHODS

The methodological framework ofthis study is illustrated in
Fig. 1. The dataset consists of structured EHR variables and
clinical notes, providing a comprehensive representation of
patient information. Data extraction, cleaning, and
preprocessing were performed to ensure analytical quality. The
processed dataset was then used to train five machine learning
models for mortality prediction. Model performance was
evaluated using five standard metrics to enable an objective
comparison. The following sections describe each
methodological component in detail.

fags . Model Performance
Quantitative Data Data Transformation : .
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Fig. 1. Research scheme.
225|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Data Composition and Source: MIMIC-111

This study utilized data from the Medical Information Mart
for Intensive Care III (MIMIC-III), a publicly available clinical
database that contains detailed records of intensive care unit
(ICU) patients admitted to the Beth Israel Deaconess Medical
Center (BIDMC) in Boston, Massachusetts. The dataset
encompasses patient encounters from 2001 to 2012, capturing a
wide range of clinical variables, including vital signs,
medication history, laboratory test results, and observational
notes [27]. MIMIC-III includes 49,785 hospital admissions,
representing 38,597 unique adult patients aged 16 years and
older, with a median age of 65.8 years and a male patient
proportion of 55.9%.

To ensure ethical compliance, access to the MIMIC-III
database required approval under certificate number 35628530,
which involved completing the National Institutes of Health
(NIH) onlinetraining, successfully passing the Human Research
Participant Protection Examination, and submitting a formal
data access request. Additionally, the study obtained
institutional review board (IRB) approval from both BIDMC
and the Massachusetts Institute of Technology (MIT). The
MIMIC-III dataset is curated by the MIT Laboratory for
Computational Physiology and is available for research
purposes through PhysioNet. This rigorous approval process
ensures adherence to ethical guidelines and data protection
regulations, enabling responsible use of de-identified patient
data for advancing critical care research.
(https://physionet.org/content/mimiciii/1.4/)

B. Data Preprocessing

1) Data extraction: To enhance the generalizability of the
findings, this study encompassed all ICU patients rather than
limitingthe analysis to specific disease groups. For consistency
with similarresearch, adult ICU patients aged over 16 years and
admitted to the ICU for the first time were included. The
analysis focused primarily on data recorded during the initial
24 hours of these patients' ICU stays [28, 29]. Table I
summarizes the demographic and clinical characteristics of the
patient cohort following data preprocessing. The final cohort
comprised 26,829 patients who met the inclusion criteria and
had associated clinical notes available for textual analysis,
including 2,322 (8.66%) who died in the hospital and 24,507
(91.34%) who survived. Admission Type refers to the
classification of the patient’s admission leading to the index
ICU stay. The median patientage was 63.06 years, with 56.85%
of the cohort being male. The majority of patients were
identified as white (71.20%), followed by black (7.70%) and
individuals from other ethnic groups. Emergency admissions
accounted for 82.29% of cases, with 37.15% of patients
admitted to Medical ICUs. The average length of stay in the
ICU was 4.15 days.

2) Variableselection: Toidentifythevariables foranalysis,
this study leveraged insights from prior research and selected
16 quantitative variables based on their clinical significance
[listed in Appendix A (Table VIII)] [30-32]. These variables
were extracted from multiple tables within the MIMIC-III
dataset, including admission records, chartevents, labevents,
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and outputevents. A structured three-stage data preprocessing
approach, adapted from Guo et al. [8] was implemented to
address missingvalues. Initially, patient records with more than
30% missing data were excluded. Next, predictors with over
40% missing values were removed. Finally, variables with a
missing rate exceeding 20% after applying the previous
filtering steps (i.e., exclusion of patient records with >30%
missing data and exclusion of predictors with >40% missing
values) were eliminated. For the remaining missing values,
mean imputation was performed. The significance of the
selected variables was evaluated using the Information Gain
Technique (Entropy) [33], retaining only those with a score of
0.01 or higher for further analysis. Among the identified
predictors, white blood cell count emerged as the most
influential, whereas gender ranked the lowest.In addition to
numerical variables, this study incorporated topic modeling-
derived features from the NOTEVENTS dataset, which
comprises clinical notes documented by various healthcare
professionals, including physicians, nurses, imaging specialists,
nutritionists, and physical therapists. Within the MIMIC-III
database, NOTEVENTS contains over 2 million entries, with
approximately 56% authored by doctors and nurses. An
additional 39% of the records consist of echocardiography,
electrocardiography, and radiology reports. By integrating
structured numerical data with unstructured textual
information, this study aimed to enhance predictive accuracy
and provide a more comprehensive assessment of ICU patient
outcomes. This multimodal approach enables a more robust
representation of clinical contexts that would otherwise be
overlooked when relying solely on structured data.

C. Mortality Prediction

This study examined the impact of integrating structured
data (e.g., vital signs and laboratory test results) with semi-
structured data (e.g., diagnostic details and clinical notes) on
predicting ICU patient mortality following admission. This
study aimed to predict ICU patient mortality at specific time
points following the initial ICU admission, using data collected
within the first 24 hours. We focused on four distinct prediction
targets:

1) Short-termmortality: Defined as patient death occurring
within 2 days or 3 days post-ICU admission.

2) Long-term mortality: Defined as patient death occurring
within 1 month or 1 year post-ICU admission.

The integration of these data types aimed to improve the
precision and reliability of mortality predictions across both
short-term and long-term timeframes.

D. BERTopic

BERTopic represents a cutting-edge approach to topic
modeling, harnessing the strengths of BERT (Bidirectional
Encoder Representations from Transformers) to uncover latent
themes within large textual datasets[34]. This method excels in
generating coherent topic representations by employing a
combination of BERT-based embeddings and a class-based
variation of TF-IDF (c-TF-IDF). The BERTopic algorithm
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consists of three key stages: document embedding,
dimensionality reduction using UMAP, and document
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clustering with HDBSCAN.

TABLEI. DEMOGRAPHIC CHARACTERISTICS OF SELECTED PATIENTS
Overall Dead at Hospital Alive at Hospital
General (%)
Number 26,829 (100%) 2,322 (8.66%) 24,507 (91.34%)
Age [Q1-Q3] 63.06 [51.32-77.82] 70.88 [61.43-83.32] 62.26 [50.51-76.97]

Gender (male)

15,248 (56.85%)

1,256 (8.24%)

13,992 (91.76%)

Race/Ethnicity (%)

Asian 656 (2.45%) 57 (2.45%) 599 (2.44%)
Black 2,067 (7.70%) 109 (4.69%) 1,958 (7.99%)
Hispanic 888 (3.31%) 47 (2.02%) 841 (3.43%)
White 19,105 (71.20%) 1,673 (72.05%) 17,432 (71.11%)
Other 4,113 (15.34%) 601 (25.88%) 3,512 (14.33%)

Admission Type (%)

Urgent 644 (2.40%) 74 (3.19%) 570 (2.33%)
Emergency 22,067 (82.29%) 2,199 (94.70%) 19,868 (81.07%)
Elective 4,118 (15.32%) 49 (2.11%) 4,069 (16.60%)
Site (%)

Medical Intensive Care Unit

9,966 (37.15%)

1,125 (48.45%)

8,841 (36.06%)

Surgical Intensive Care Unit

4,400 (16.40%)

463 (19.94%)

3,937 (16.06%)

Coronary Care Unit

4,180 (15.58%)

326 (14.04%)

3,854 (15.73%)

Cardiac Surgery Recovery Unit

4336 (16.16%)

121 (521%)

4215 (17.20%)

Trauma Surgical Intensive Care Unit

3,947 (14.71%)

287 (12.36%)

3,660 (14.93%)

Insurance

Government 819 (3.05%) 45 (1.94%) 774 (3.16%)
Medicaid 2,235 (8.33%) 144 (6.20%) 2,091 (8.53%)
Medicare 14,342 (53.46%) 1,621 (69.81%) 12,721 (51.91%)
Private 9,080 (33.84%) 459 (19.76%) 8,621 (35.18%)
Self-Pay 353 (1.32%) 53 (2.28%) 300 (1.22%)
Outcomes

Hospital LOS (days) [Q1-Q3] 8.95 [3.88-10.47]

9.27 [2.77-11.49] 8.92 [3.96-10.34]

ICULOS (days) [Q1-Q3] 4.15[1.26-4.17]

6.68 [2.08-8.12] 3.89 [1.22-3.89]

1) Bert embedding: In the first stage of the BERTopic
algorithm, BERT Embeddings are used to convert documents
into dense vector representations, capturing the semantic
relationships within the text. BERT (Bidirectional Encoder
Representations from Transformers), a transformer-based
model, is pre-trained on large corpora using masked language
modeling, allowing it to consider both the left and right context
of words in a sentence. Sentence-BERT (SBERT), a variation
of BERT, is employed to create sentence-level embeddings
optimized for semantic similarity. During this process, each
document is tokenized into subwords using BERT’s Word
Piece tokenizer, ensuring that rare or unseen words are broken
down into smaller, meaningful units. The tokenized sequence is
then passed through BERT’s multi-layer attention mechanism
to generate contextual embeddings for each token. These token
embeddings are aggregated, typically using the embedding of
the [CLS] token, which represents the entire document. The
final document embedding, D, can be expressed as:

D = fggpr(T) = h[CLS] (1)

where, T is the tokenized input sequence and hcrs) is the
hidden state corresponding to the [CLS] token, which
summarizes the semantic content of the entire document. The
document embedding process plays a critical role by allowing
the algorithm to place semantically similar documents in close
proximity within the vector space. This step establishes the
foundation for subsequent stages, including clustering and topic
extraction [34].

2) Uniform manifold approximation and projection
(UMAP): In the second stage of the BERTopic algorithm,
Uniform Manifold Approximation and Projection (UMAP) is
employed to reduce the dimensionality of the high-dimensional
document embeddings produced in the first stage. UMAP is a
well-established  non-linear  dimensionality  reduction
technique, particularly effective for handling high-dimensional
datasets like document embeddings. It preserves both local and
global data structures, thereby enabling improved clustering in
the subsequent phase.
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UMAP functions by constructing a weighted graph that
represents relationships between neighboring data points in the
high-dimensional space, using the following formula:

d(xl-,xj)—pi
U = exp (_ T
i

where, d (Xi, Xj ) is the distance between data points x; and x;
, piis the distance to the nearest neighbor of xi , ensuring that

each point has at least one strong connection, and o; scales the
neighborhood size.

(2)

Next, UMAP optimizes the low-dimensional layout by
minimizing a cross-entropy loss:

C=%izjuylog (V(%”yj)) (3)

where, v (yi,yj ) models the probability of connectivity in the
lower-dimensional space.

UMAP's capability to maintain the structural integrity of
high-dimensional data while reducing its complexity is critical
to the effectiveness of the BERTopic algorithm. By enabling
efficient clustering of semantically similar documents in a low-
dimensional space, UMAP ensures that the topics identified in
the final stage of BERTopic remain coherent and accurately
reflect the underlying structure of the document corpus.

3) Hierarchical density-based spatial clustering of
applications with noise (HDBSCAN): In the final stage of the
BERTopic algorithm, document embeddings, reduced in
dimensionality using UMAP, are clustered using Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN). As an enhancement of the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)
algorithm, HDBSCAN offers the ability to detect clusters with
varying densities while effectively managing noise. These
capabilities are particularly important for handling text data,
which often exhibits complex distributions. HDBSCAN is a
density-based clustering algorithm capable of adapting to
varying densities, enabling the detection of clusters without
needing to predefine their number. It determines the core
distance foreach data point, which is calculated as the distance
to its k-th nearest neighbor:

core_dist = d(X;, Xy_nearest) “4)

It then defines the mutual reachability distance between
point’s x; and x;:

mutual_reach_dist(xi, xj) =

max (core_dist(xi) ,core_dist(xj),d(xl-, x]-)) (%)

HDBSCAN constructs a minimum spanning tree and
extractsthemost stable clusters based on persistence, classifying
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outliers to reduce noise. This flexibility in handling varied
densities and outliers makes it ideal for detecting distinct topics
in BERTopic [34].

HDBSCAN is integral to the final stage of BERTopic, where
it clusters document embeddings into coherent groups
representing distinct topics. Its hierarchical and density-based
methodology, coupled with the ability to manage noise and
variable-density clusters, makes it particularly suited to the
complexities of textual data. By combining UMAP’s
dimensionality reduction with HDBSCAN’s clustering
functionality, BERTopic effectively extracts high-quality topics
from extensive document datasets.

E. Machine Learning

This study employed six well-established machine learning
classification algorithms to evaluate the impact of incorporating
textual data, such as clinical notes and pathology reports, in
predicting ICU patient mortality. These algorithms were
selected based on their demonstrated effectiveness in handling
heterogeneous data and addressing complex predictive tasks.
The subsequent sections present a detailed overview of the
methodologies utilized, including a brief description of each
algorithm along with its respective parameter configurations.
This comparative analysis aims to highlight the relative
strengths of different models in leveraging both structured and
unstructured clinical data for enhanced predictive performance.
Table II provides a comprehensive summary of the machine
learning algorithms employed in this study, detailing their
theoretical foundations, optimized parameter settings, including
ensemble sizes and kernel types, while maintaining default
values for all other parameters to ensure reproducibility.

F. Evaluation Criteria and Metrics

To comprehensively assess the impact of incorporating both
structured and semi-structured data on ICU patient mortality
prediction, this study employed five key evaluation metrics:
AUROC, specificity, sensitivity, precision, and F1-score. These
metrics were chosen to ensure a well-rounded assessment of
model performance. Table III illustrates the confusion matrix,
which forms the basis for calculating these evaluation measures.

Each metric offers distinct insights into model effectiveness.
AUROC serves as an indicator of overall classification
performance, providing a measure of the model’s ability to
distinguish between classes. Precision evaluates the correctness
ofpositivepredictions, ensuring that identified positive cases are
accurate. Sensitivity (recall) gauges the model's capability to
correctly detect true positive cases, while specificity determines
its effectiveness in identifying true negatives. The F1-score, a
harmonic mean of precision and recall, ensures a balanced
evaluation by considering both false positives and false
negatives. Together, these metrics providea rigorous framework
for comparing models that integrate numerical and text-based
clinical data in ICU patient outcome prediction.

228 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

TABLE II. SELECTED ALGORITHM AND PARAMETER SETTING
Algorithm Description Parameters
A boosting-based ensemble learning algorithm that enhances classification
performance by sequentially combining multiple weak learners. It dynamically n_estimators=50, learning_rate=1,
Adaboost . . . e ] - . =y .
adjusts the weights of misclassified instances to improve overall model accuracy base estimator=DecisionTreeClassifier(max_depth=1)
and robustness [35, 36].
A powerful ensemble method that constructs models in a sequential manner,
Gradient where each new model is trained to correct the errors of its predecessors. It n_estimators=100, learning_rate=1.0, max_depth=I,
Boosting (GB) leverages gradient descent optimization to minimize the loss function and refine loss='deviance'

predictive accuracy [37, 38].

Support Vector

A classification technique designed to identify the optimaldecision boundary that
maximizes class separation in high-dimensional feature spaces. This approach is

Classification R . . . . . kemel=1bf', C=1.0, gamma='auto’'
(SVC) particularly effective in capturing complex, non-linear relationships between
variables [39, 40].
A variance-reducing ensemble method that enhances model stability by training
Ba gein multiple classifiers on randomly sampled subsets of the dataset. The final base_estimator=DecisionTreeClassifier(),
sgmne prediction is obtained by aggregating individual model outputs, leading to n_estimators=500, max_samples=100
improved generalization [41,42].
Logistic A widely applied statistical model for binary classification tasks. It efficiently
Regression estimates the probability of class membership and is frequently utilized for risk solver='sag!, penalty="12', C=1.0
(LR) assessment due to its interpretability and computational efficiency [43, 44].
Multi-Layer e L
Perceptron A feedforward artificial neural ngtwork cqmpose.d of multlple mtercon‘nec-ted hidden_layer sizes=(13,13,13), max._iter=1000,
o layers. It employs backpropagation to adjust weights iteratively, allowing it to Lo T \ ;
Classifier capture complex, non-linear patterns within data [45, 46] activation=relu’, solver=adam
(MLPClassifier) ’ T
3) Fl-Score: Defined as the harmonic mean of precision
TABLEIIL.  CONFUSION MATRIX and recall, the F1-score balances the trade-off between these
Prediction two metrics, ensuring a comprehensive evaluation of
Positive Negative classification performance.
4) Accuracy: Expresses the proportion of correctly
Positive | True Positive (TP) (Flf;f)e Negative classified samples, encompassing both positive and negative
Actual cases, relative to the entire dataset. It provides an overall
Negative | False Positive (FP) True Negative assessment of the model’s classification performance.
) 5) AUROC (Area wunder the receiver operating
.. P characteristic curve). A metric that assesses the model’s
Precision = PPV = ——— o : .
TP+ FP 6) discriminatory power across varying classification thresholds.
The ROC curve plots the True Positive Rate (TPR) against the
TP False Positive Rate (FPR), where TPR measures the model’s
Recall =TPR = —TP T FN ability to detect actual positive cases, and FPR quantifies the
(7 proportion of false positives. AUROC valuesrange from0Oto 1,
. with higher scores indicating stronger overall classification
2 * Precision * Recall 06 i g
F —score= capability.
Precision + Recall (8)
II.  RESULTS
Accuracy = TP+TN A. Analysis of Textual Data

TP+FP+IN+FN (9

1) Precision: This metric quantifies the proportion of
correctly classified positive instances out of all instances
predicted as positive. It provides an indication of how reliable
the model is in making positive predictions.

2) Recall: Represents the fraction of actual positive cases
that the model successfully identifies. It serves as a measure of
the model's effectiveness in capturing true positives within the
dataset.

The NOTEEVENTS table in the MIMIC-III database
contains a vast collection of textual records documenting ICU
patient care throughout their hospital stays. In this study, which
focuses onmortality prediction, the NOTEEVENTS table was
the primary source of text-based information. By analyzing
discharge summaries, word clouds were generated to identify
key patient characteristics, providing clinical insights that
contribute to more effective condition monitoring and
management. To extract meaningful features from the clinical
text, BERTopic was employed to generate key topics, which
were subsequently incorporated as input variables in the
predictive models. The process of determining the optimal
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number of topics and refining the predictive model was guided
by methodologies proposed by Baird et al. and Abuzayed et al.
[47, 48]. Our findings indicate that ten topics resulted in the
highest predictive accuracy. As outlined in Table IV, and
visualized in Fig. 2, these ten topics were derived from the
processed textual data and linked to specific keywords
representing essential patient conditions and medical
interventions.

The process of topic generation also allowed for the
identification of hidden patterns within the clinical narratives,
which may notbe immediately apparent through structured data
alone. For example, the frequency distribution of clinical
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descriptors, such as acute symptoms, procedural terms, or
medication classes revealed clusters of patient conditions that
aligned with known ICU syndromes, thereby validating the
clinical relevance of the extracted topics. The identified topics
covered various clinical domains, including cardiovascular
health, head trauma management, abdominal disorders, and
medication prescriptions. The x-axis in each subplot represents
the magnitude of the class-based TF-IDF (c-TF-IDF) score,
indicating the importance of each word within its respective
topic. By leveraging these extracted topics, the model achieved
improved predictive performance, offering valuable support for
clinical decision-making and patient outcome forecasting.

TABLEIV. IDENTIFIED VARIABLE TOPICS AND ASSOCIATED KEYWORDS
No. Topic Keywords
. chest, aortic, cardiac, artery, ventricular, capsule, heart, coronary, glucose, mitral, allergies, pulmonary,
0 Cardiovascular Health edema, acute, systolic, aspirin, hypertension, wall
1 Head Trauma and Treatment head, hemorrhage, fracture, capsule, acute, allergies, seizure, bid, impression, stroke, artery, frontal, mm,
midline, surgical, glucose
5 Abdominal and Pancreatic Disorders abdominal, pancreatitis, biliary, fluid, bile, bowel, stent, acute, abdomen, pancreatic, glucose, surgery,
diet, liver, surgical, cholangitis, gallbladder, urine, tube
. renal, urology, urine, bladder, kidney, stone, tube, prostate, capsule, glucose, hydronephrosis, cancer,
3 Renaland Urinary System Health pod, foley, surgical, catheter, allergies, fluid
4 Esophageal and Chest Medical Topics tube, esophageal, esophagus, pod, chest, feeding, cancer, removed, feeds, site, gastric, swallow, incision,
phag P drain, glucose, invasive, diet, liquid, surgical
5 Medication Prescriptions and Medical bid, capsule, identifier, ec, qd, allergies, disposition, completed, facility, aspirin, tid, attending first,
Guidance extended, dictated, sodium, medquist, solution, docusate
. breast, flap, cancer, carcinoma, pod, squamous, tube, neck, site, cell, plastic, postoperative, metastatic,
6 Breast Cancer and Related Surgeries floor, surgery, surgical, bilateral, mouth, drain
7 Carotid Artery Narrowing and Medical carotid, stenosis, artery, ica, stent, stenting, internal, Plavix, qd, pressure, aspirin, angiography, intact,
Interventions cardiac, cad, chest, stroke, bruit, bilaterally, surgery
3 Hand and Fineer-Related Issues finger, hand, repair, ring, radial, injury, middle, capsule, plastic, forearm, wrist, distal, long, clinic,
g surgery, joint, postoperatively, saw, sensation, signs
. . gastric, diet, obesity, weight, bypass, surgery, medication, surgical, drainage, postoperative, advanced,
9 Gastric and Obesity Related Issues apnea, severe, abdominal, sleep, incisions, leak, ten

Additionally, the topic-word distributions help
demonstrate how certain clinical concepts frequently co-
occur, suggesting possible interactions between patient
comorbidities and acute ICU conditions. Such co-occurrence
pattemns play a crucial role in mortality prediction, as they
offer a richer representation of patient complexity compared
to isolated numerical features. The application of BERTopic
successfully extracted ten key topics from ICU patient data,
providing valuable insights into the diverse and complex
clinical conditions observed in intensive care settings. Each
identifiedtopic was associated witha specificset ofkeywords,
enabling the seamless integration of both structured and semi-
structured data into predictive modeling. This approach
underscored the efficacy of combining NLP with machine
learning to enhance clinical decision-making and optimize
patient care strategies.

Moreover, BERTopic’s ability to represent patients
through probabilistic topic distributions makes it particularly
well-suited for capturing subtle variations in disease severity

and clinical presentation. This probabilistic representation
allows the model to quantify the degree to which a patient
aligns with multiple clinical conditions simultaneously—a
feature that is especially important in the ICU, where patients
often present with multiple overlapping diagnoses. By
transforming semi-structured textual data into meaningful
topics and encoding them as probabilistic representations, this
study effectively leveraged the full spectrum of information
available within electronic health records (EHRs). This
methodology demonstrated a significant advancement over
traditional predictive models, which typically depend solely
on structured numerical data, thereby emphasizing the
potential of text-driven analytics in critical care research.
Taken together, these findings highlight that narrative clinical
documentation is not merely supplementary information but a
valuable and often underutilized component of ICU data.
Integrating NLP-derived insights into predictive modeling
enables a more holistic understanding of patient status,
supporting the development of more sensitive and context-
aware risk prediction tools.
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B. Prediction of the Mortality

To evaluate model performance, this study employed k-fold
cross-validation, a widely adopted technique that partitions the
dataset into k equal subsets and iteratively trains and validates
the model across all folds. By averaging the results across
multiple iterations, this method mitigates bias and enhances
predictive reliability. However, despite its advantages in
reducing overfitting and improving generalization, k-fold cross-
validation is computationally demanding [49, 50]. In this study,
a 10-fold cross-validationapproach was implemented to develop
mortality prediction models for 2 days, 3 days, 1 month, and 1
year post-ICU admission, utilizing structured and semi-
structured data collected within the first 24 hours of patient
admission.

This design allows the model to repeatedly learn from
different subsets of patients, improving its ability to generalize
across heterogeneous ICU populations where disease severity
and documentation patterns vary widely. By incorporating both
short-term and long-term mortality outcomes, the study provides
a comprehensive assessment of how early clinical information
contributes to risk stratification across different temporal
horizons.

To build the predictive models, we combined features
derived from both structured and unstructured data. The 16
selected quantitative variables, capturing physiological
measurements and demographic information, formed the
structured data component. For the unstructured data
component, the BERTopic model generated 10 distinct topics
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Topic word scores across identified medical themes in ICU patient data.

from the clinical notes (as detailed in Table IV). Each patient's
textual data was then represented by these topics, potentially
using the probability distribution across the 10 topics or a
categorical variable indicating the dominant topic. These topic-
derived features were then concatenated with the 16 quantitative
features to create a comprehensive feature vector for each
patient. This combined feature set was used as input for the six
machine learning classifiers described. This integration strategy
enables the model to capture complementary sources of
information: structured data reflect measurable physiological
conditions, while textual data provide implicit clinical reasoning
and contextual nuances recorded by healthcare providers.
Notably, topic distributions generated by BERTopic often
highlight symptom clusters, impressions of clinical instability,
or early differential diagnoses, all of which offer predictive
signals not present in numeric variables.

Crucially, to enable this comparative analysis evaluating the
impact of text features, the patient cohort included in the
modeling was necessarily limited to those individuals
possessing available and processable clinical notes within the
NOTEEVENTS dataset. Comorbidities are implicitly captured
within both the quantitative variables (e.g., lab results reflecting
organ function) and the clinical notes from which the topics were
derived. This also implies that the inclusion of text-based
features may reduce noise introduced by incomplete structured
data, as clinical notes frequently summarize underlying chronic
conditions that may not be fully captured in early laboratory
measurements.
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For model training and evaluation, the dataset was divided
into 80% training data and 20% testing data to ensure robust
performance assessment. A series of statistical analyses were
conducted to examine the impact of integrating structured EHR
data with textual features on ICU mortality prediction. The
evaluation framework incorporated five key performance
metrics: AUROC, accuracy, precision, recall, and F1-score,
providing a comprehensive assessment of predictive capability
and model robustness. Table V presents a summary of the
model's predictive performance across different time intervals,
demonstrating its effectiveness in capturing patient mortality

Vol. 17, No. 1, 2026

risk over various post-admission periods. Using multiple
performance metrics is essential because ICU mortality
prediction involves imbalanced outcomes where AUROC alone
may not fully reflectthe model’s clinical utility. Precision and
recall help reflect how well the model identifies high-risk
individualswhileavoidingfalsealarms, whichis crucial for ICU
resource allocation. The consistent improvements across several
metrics further indicate that textual features enhance not only
discrimination but also the stability and reliability of the
predictive models across different classifiers.

TABLE V. PERFORMANCE OF THE MODELS
AdaBoost Gradi.ent SvC Bagging Logist?c MLP

Boosting Regression Classifier
) 2-Days 0.8852 +0.0041 0.8823 +0.0048 08997 £0.0112 08851 +£0.0142 08955 +£0.0152 0.8457 £0.0304
Without ) 3-Days 08153 +0.0157 08129 +0.0214 08252 +0.0153 08113 £0.0179 08228 £0.0135 0.7998 +0.0063

E:Z::Toplc 1-Month 0.7834 £0.0038 0.785 £ 0.0057 07715 £0.0095 0.782 £ 0.0088 0.769 + 0.0081 0.7801 +£0.007

1-Year 0.7862 +0.0039 0.7859 +£0.0025 07711 £0.0053 0.7832 £0.0065 0.7667 +0.0033 07768 +£0.007
) 2-Days 0901 £0.0167 08995 £0.013 09137 £0.0054 09038 £0.0113 09097 +0.0049 0.8487 £0.0199
With ) 3-Days 0.8332 +0.0097 08314 +0.0057 0.8422 +0.0089 0.8372 £0.0065 0846 +0.0076 0.8063 +0.0136
BERTopic 1-Month 0.7927 +£0.0003 0.7935 +0.0022 0.7705 + 0.0032 0.7822 +0.0071 0.7682 +0.0002 0.7957 +0.0047
pata 1-Year 0.7874 £ 0.005 0.7909 +0.003 0.7697 + 0.0082 0.7799 +0.0074 0.7652 + 0.0069 0.7845 £0.0012
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The study results demonstrate that AUROC is a vital metric
for assessing a model's ability to differentiate between varying
risk levels, particularly for identifying high-risk ICU patients
who require timely intervention. Incorporating BERTopic data
significantly improved the AUROC for all models in short-term
predictions (2-day and 3-day). Notably, the AUROC of the SVC
model increased from 0.8997 to 0.9137, highlighting the
enhanced discriminatory power provided by BERTopic data for
identifying high-risk patients. As depicted in Fig. 3, a
comparison of machine learning model performance with and
without BERTopic data underscores these improvements.

Vol. 17, No. 1, 2026

These findings suggest that early clinical notes capture
subtle indicators of deterioration, such as mentions of
respiratory distress, mental status fluctuation, or clinician
concern that structured variables may not immediately reflect.
The added predictive value in short-term outcomes highlights
the importance of leveraging semi-structured data during the
earliest stages of ICU care, when timely risk detection can
meaningfully influence clinical decision-making and patient
outcomes.
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The overall AUROC for short-term predictions was higher
than that for long-term predictions, suggesting that the models
are more effective in distinguishing between high- and low-risk
patients over shorter timeframes. However, for long-term
predictions (1 month and 1 year), the impact of BERTopic data
was less pronounced, with only minor improvements observed
inmodel performance. For instance, the AUROC of the Gradient
Boosting model increased slightly from 0.785 to 0.7935,
indicating a modest enhancement. Fig. 4 illustrates AUROC
curves under different experimental conditions, further
corroborating these findings.

These results emphasize the potential of integrating
numerical and text-based data to significantly enhance short-
term prediction accuracy, particularly for early risk assessment
in ICU patients. This insight is invaluable for healthcare
professionals in optimizing resource allocation and intervention
strategies. However, the limited improvement in long-term
predictions indicates challenges in differentiating risk levels
over extended periods. Future research should focus on

Vol. 17, No. 1, 2026

incorporating additional data sources or exploring novel
techniques to enhance long-term prediction performance.

In this study, alongside AUROC, which measures the
model's ability to discriminate between classes, we evaluated its
practical applicability using four additional performance
metrics: Accuracy, Recall, Precision, and F1-score.
Collectively, these metrics deliver a comprehensive assessment
of the models' predictive performance, encompassing both
overall accuracy and their effectiveness in precisely identifying
high-risk patients. As shown in Table VI, the incorporation of
BERTopic data led to significant improvements in model
performance, particularly in short-term predictions (2-day and
3-day). For example, the Accuracy of the Gradient Boosting
model for 2-day predictions increased from 0.9339 to 0.9409,
highlighting the positive impact of integrating text data. Across
all models, Accuracy was generally higher for short-term
predictions compared to long-term ones, reflecting the models'
greater precision in shorter timeframes.

TABLE VI. COMPARISON OF MACHINE LEARNING MODEL PERFORMANCE: WITHOUT AND WITH BERTOPIC DATA
Time Gradient Logistic MLP
Pe;m Metrics AdaBoost Boosting sve Bagging Regression Classifier
Precision | 0.1155+0.0065 | 0.1257 +0.0055 0.0875+0.0057 | 0.081 =0.0056 | 0.0865%0.0052 | 0.0956+0.0193
). Recall 0.8433+0.0099 | 0.8295 +0.0099 0.9058+0.0238 | 0.883 +0.0305 | 0.8977+0.0339 | 0.7773+0.0722
Days |1 0.2032+0.0102 | 0.2183 £0.0081 0.1596+0.0099 | 0.1484+0.0098 | 0.1578+0.0092 | 0.1694 = 0.0301
‘y*cc‘“ac 0.9262+0.0045 | 0.9339 +£0.0009 0.8937+0.0012 | 0.8871+0.0019 | 0.8933+0.0032 | 0.9126+0.018
Precision | 0.1354=0.0105 | 0.1298  0.0082 0.1092+0.0045 | 0.1182+0.0092 | 0.1011+£0.0031 | 0.1122+0.0104
;. Recall 0.7335+0.0419 | 0.7335 +0.0497 0.7915+0.0387 | 0.7447+0.0465 | 0.8011+0.0317 | 0.7278+0.0337
Days |1 0228100133 | 02202 +0.0112 0.1918+0.0062 | 02037 £0.013 | 0.1795=0.0047 | 0.194 £0.0144
Without éccumc 0.8935+0.0099 | 0.8889 +0.0072 0.8574+0.0073 | 0.8751+0.0112 | 0.8436+0.004 | 0.8687+0.0225
gaEiT"p‘C Precision | 0.2729+0.0031 | 0.2689  0.0068 0.247+0.0023 | 02583 +0.01 0.2402+0.0032 | 0.233 £0.0067
. Recall 0.7441+0.0087 | 0.7532 +0.0083 0.7466+0.0252 | 0.7592+0.016 | 0.7501+0.0222 | 0.7941+0.0133
Month |FL 03994+ 0.0045 | 0.3963 £0.0086 03712+0.0055 | 0.3853=0.0126 | 0.3639=0.0056 | 0.3602 % 0.009
;*CC““‘C 0.8163+0.0031 | 0.8115+0.0037 0.7925+0.0038 | 0.8011+0.0052 | 0.7847+0.0038 | 0.7684+0.0035
Precision | 0.2778=0.0108 | 0.2761 +0.0121 025540012 | 02618+0.0135 | 0244600133 | 0247 +0.0415
Recall 0.7579+0.0122 | 0.7595£0.0141 0.7474+0.0158 | 0.7711+0.0145 | 0.7524+0.0076 | 0.789 £0.0571
1-Year | FI 04063 £0.01 0404700113 0.3805+0.0133 | 0.3908=0.0161 | 0.369+0.0155 | 0.3727£0.0411
ﬁccumc 0.8096+0.0041 | 0.8078 +0.0083 0.7908+0.0038 | 0.7932+0.0023 | 0.7786+0.0049 | 0.7666+0.0467
Precision | 0.1199+0.0046 | 0.1399 +0.0046 0.085 £0.0043 | 0.0833+0.0062 | 0.0867+0.0037 | 0.1007+0.0149
5 Recall 0.8727+0.0323 | 0.8571 +0.0268 0.9391+0.0144 | 0.9196+0.0284 | 0.9272+0.0144 | 0.7752+0.0475
Days  |_EL 0.2107+0.0072 | 0.2404 £ 0.0061 0.1558+0.0072 | 0.1527+0.0105 | 0.1586+0.0064 | 0.1776+0.0228
?““m 0.9287+0.0014 | 0.9409 +£0.0017 0.8888+0.0036 | 0.8883+0.0061 | 0.8925+0.0044 | 0.9206+0.0102
Precision | 0.1426+0.0068 | 0.1439 +0.0042 0.1127+0.0044 | 0.1238+0.0069 | 0.1078+0.0047 | 0.114+£0.015
;. Recall 0.7716+0.0185 | 0.7662 £0.0108 0.833+£0.0198 | 0.8034+0.0109 | 0.8518+0.0158 | 0.7479+0.0555
Days |F 0.2407+0.0106 | 0.2423 +0.0064 0.1986+0.0074 | 0.2144+0.0107 | 0.1914=0.0077 | 0.1969 +0.0202
With ?mm 0.8921+0.0015 | 0.8938 +0.0035 0.8511+0.0016 | 0.8694+0.0039 | 0.8405+0.0014 | 0.862 +0.0267
gaEt}ZT‘)p‘c Precision | 0.2799=0.0088 | 0.2789 +0.0098 0.2488+0.0023 | 0.2568%0.0005 | 0.2384=0.0044 | 0.2894=0.0079
. Recall 0.7613+0.0038 | 0.7646 +0.0103 0.7423+0.0032 | 0.7626+0.0109 | 0.7522+0.0039 | 0.7595+0.0169
Month |FL 0.4092+0.0092 | 0.4086 +0.0092 0.3726+0.0021 | 0.3842=0.0011 | 0.362 £0.0053 | 0.4189+0.0066
;*CC“”‘C 0.8188+0.0035 | 0.8176 £0.005 0.794+0.0052 | 0.7985+0.0042 | 0.7816+0.0034 | 0.826£0.0127
Precision | 0.2886+0.0005 | 0.2891 0.0027 0.2603+0.0077 | 0.2683+0.0084 | 0.2475+0.0061 | 0.2781+0.0051
Recall 0.7536+0.0155 | 0.7622 +0.0084 0.7427+0.0192 | 0.7594 £0.01 0.7498£0.0161 | 0.7585+0.0076
1-Year [ FI 04173£0.0019 | 04192 £0.0032 03855+ 0.0102 | 0.3964=0.0105 | 0.3722=0.0086 | 0.407 =0.0046
‘y*c"“rac 0.8152+0.0049 | 0.8145£0.0052 0.7921+0.0042 | 0.7969+0.0059 | 0.7779 +0.003 | 0.8059+0.0043
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Based on the data in Table VI, the Recall metric highlights
the models' ability to correctly identify actual positive cases,
such as ICU patient mortality. In healthcare, particularly in
critical care settings, Recall is crucial as it ensures the detection
of all high-risk patients, allowing for timely interventions. The
table shows thatadding BERTopic data substantially increased
Recall in short-term predictions. For example, the SVC model’s
Recall improved from 0.9058 to 0.9391 for 2-day predictions,
while Bagging's Recallrose from0.883 to 0.9196. However, the
improvements were less pronounced for longer timeframes, with
relatively stable performance for 1-month and 1-year
predictions. This suggests that while BERTopic data
significantly enhances short-term predictive performance, its
impact on long-term predictions is more limited.

C. Analysis of Variable Importance

A key advantage of the Gradient Boosting (GB) method is
its capability to assessthe relative contribution of input variables
in predictive modeling. This is achieved through the
computation of variable importance scores, which rank features
based on their influence on model performance. These scores
indicate how significantly each variable impacts decision-
making within the model, with higher importance assigned to
variables frequently utilized in decision tree splits.

In Gradient Boosting, the importance of a variable is
determined by evaluating the increase in the decision tree’s
value at a given split point, adjusted by the number of samples
at that node. Several established metrics, including the Gini
index, cross-entropy, and information gain, can be used to
measure decision tree value changes. This study employed the
Gini index to quantify variable significance, ensuring a
consistent and interpretable ranking approach. For a
comprehensive discussion on variable importance calculations
in GB models, readers may refer to Hastie et al. [S1]. Table VII
presents the importance scores derived from the optimal
Gradient Boosting model, which was trained using ICU patient
data collected within the first 24 hours post-admission.

Table VII highlightsthe key variables selected for predicting
both short-term and long-term mortality in ICU patients using
the GB method. The analysis reveals that different variables
contribute uniquely to mortality prediction across various
timeframes (2 days, 3 days, 1 month,and 1 year). For short-term
mortality (2 and 3 days), the Glasgow Coma Scale (X10)
consistently emerges as the most significant variable,
underscoring its critical role in assessing patient consciousness
and predicting immediate outcomes in ICU settings. Other
important indicators for short-term predictions include White
Blood Cell Count (X6) and Heart Rate (X2), which are essential
for evaluating acute physiological conditions, including
infections and potential cardiac issues. In contrast, long-term
mortality predictions (1 month and 1 year) are dominated by
heart-related factors such as Heart Rate (X2) and Systolic Blood
Pressure (X3), reflecting the sustained impact of cardiovascular
health on patient outcomes over extended periods. Additionally,
age (X1) and temperature (X4) gain prominence in long-term
predictions, as chronic health conditions and the regulation of
body temperature become increasingly relevant to survival.

Vol. 17, No. 1, 2026

TABLE VII. TEN VARIABLES IDENTIFIED FROM 24-HOUR DATASETS
Order of Short-Term Long-Term
Variable Mortality Mortality
Importance 2 Days 3 Days | 1 month | 1year
1 X10 X10 X2 X2
2 X6 X6 X6 X6
3 X2 X2 X10 X4
4 X4 X1 X5 X9
Without
5 X1 X3 X3 X10
BERTopic
6 X5 X9 X4 X1
Data
7 X3 X4 X7 X5
8 X8 X8 X1 X3
9 X7 X5 X9 X7
10 X9 X7 X8 X8
1 X10 X10 X10 X10
2 X6 X1 X2 X4
3 X1 X2 X4 X6
4 X4 X4 X1 X2
5 X3 X6 X6 X1
TOPIC
With 6 X2 X5 X9
1
BERTopic
TOPIC TOPIC
Data 7 X3 X5
1 2
TOPIC TOPIC
8 X9 X3
0 1
TOPIC TOPIC
9 X8 X7
0 1
10 X9 X3 X8 X8

The integration of topic modeling data (such as Topic 1 and
Topic 0) into the variable importance rankings underscores the
importance of textual clinical notes in enhancing model
performance, particularly for predicting long-term mortality.
These topics encompass critical health domains such as
cardiovascular health (Topic 0), head trauma (Topic 1), and
abdominal and pancreatic disorders (Topic 2). The emergence
of these text-derived topics as important predictors, particularly
demonstrating notable influence in long-term mortality
predictions (as seen for Topic 0 and Topic 1 in Table VII),
underscores their value in capturing complex patient narratives
and underlying conditions that evolve beyond immediate
physiological measurements. The GB method's variable
importance analysis underscores the relevance of immediate
physiological indicators like GCS and WBC in short-term
predictions, while long-term mortality is influenced by a
combination of age, cardiovascular health, and text-based
clinical information. This analysis provides valuable insights
into ICU patient care, allowing healthcare professionals to focus
on the most critical variables for improving predictive accuracy
across different time horizons.
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IV. DiscussION

A. Principal Findings

This study illustrates the transformative potential of
combining text mining techniques, such as BERTopic, with
machine learning models to predict ICU patient outcomes. The
key findings of the research are as follows.

1) Enhanced short-term predictions with BERTopic
integration: Incorporating BERTopic data into machine
learning models significantly improved short-term mortality
predictions (2-day and 3-day). For example, the AUROC of the
SVC model increased from 0.8997 to 0.9137, indicating an
enhanced ability to discriminate between high- and low-risk
patients. This enhancement stems from BERTopic's ability to
capture rich contextual information embedded within clinical
notes, such as clinician assessments of severity, nuanced
descriptions of patient status, and evolving treatment plans,
which often provide complementary insights beyond structured
physiological data. This is particularly crucial for short-term
outcomes where acute changes documented in free text are
highly indicative of immediate risk.

2) Superior predictive performance in short-term
predictions compared to long-term: Across all models, short-
term predictions consistently outperformed long-term
predictions (1-month and 1-year) in metrics such as AUROC,
accuracy,recall,and F1-score. The reduced predictive accuracy
over longer timeframes suggests that while models effectively
identify immediate risks, long-term mortality predictions
require additional variables or more refined methodologies to
enhance performance [52].

3) Significance of physiological variables in predictive
models: Analysis of variable importance using the Gradient
Boosting method revealed that physiological variables, such as
the Glasgow Coma Scale, White Blood Cell Count, Heart Rate,
and Temperature, are essential predictors of both short-term
and long-term ICU patient mortality [53]. The critical role of
these variables underscores the necessity of closely monitoring
vital signs in critical care environments.

4) Improved mortality prediction through text data
integration: Incorporating topic modeling data derived from
clinicalnotes, suchas those related to cardiovascular health and
head trauma, significantly enhanced mortality predictions [54].
This finding demonstrates the value of leveraging semi-
structured and unstructured data through text mining. By
converting free text into quantifiable topic features, our
approach unlocked clinical insights related to complex patient
conditions and care trajectories, often overlooked by traditional
models relying solely on numerical data [55].

By integrating text mining and machine learning, this
approach provides a deeper understanding of patient conditions,
enhancing predictive accuracy and supporting more effective
clinical decision-making. Leveraging both structured and
unstructured data improves the ability to capture critical
insights, facilitating personalized care and timely interventions
in the complex environment of critical care settings. These
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improvements directly contribute to resilient healthcare by
strengthening early risk recognition and enabling more adaptive
and timely responses in critical care settings.

B. Limitations

Despite the encouraging findings, this study has several
limitations that must be acknowledged. While the MIMIC-III
database is comprehensive, it originates from a single healthcare
system, which may limit the generalizability of the developed
models. Recalibration may be necessary when applying these
models to different ICU settings, where variations in patient
populations, clinical practices, and treatment protocols can
influence model performance in real-world applications [56].
Differences in patient demographics and resource availability
further highlightthe need for external validation. Furthermore,
the exclusion criteria based on missing data percentages (>30%
for patient records, >40% for predictors) might introduce
selection bias. A formal analysis comparing the characteristics
of the excluded patient population with the included cohort was
not performed in this study and represents a limitation.

Moreover, direct numerical comparison of performance
metrics (e.g., AUROC, Accuracy) with previously published
studies, including those also utilizing MIMIC-III, is often
challenging and potentially misleading. This difficulty arises
from inherent variations in specific patient cohort selection
criteria (especially regarding text availability), the precise
feature sets utilized, differing text processing techniques (e.g,,
alternative NLP models or embeddings), distinct prediction
target definitions, and varying evaluation protocols across
research efforts. Additionally, although the incorporation of text
data improved model accuracy, thisstudy analyzed only a subset
of the textual information available in the MIMIC-III database.
Key clinical data, such as imaging reports, physician progress
notes,anddetailed medication histories, were notincludedin the
analysis. Expanding the scope of semi-structured data could
enhancethe predictive accuracy of models, particularly for long-
term mortality predictions.

While short-term mortality predictions showed substantial
improvements, the performance gains for long-term predictions
(1-month and 1-year) were comparatively modest. Long-term
outcomes are inherently complex and likely require the
inclusion of additional variables, such as clinical, social, and
environmental factors, to enhance predictive accuracy [57, 58].
Furthermore, long-term trajectories are influenced by factors
extendingbeyond theinitial 24-hour ICU data and clinicalnotes,
such as progression of chronic conditions, intercurrent events,
post-discharge care, and socioeconomic factors not fully
captured in MIMIC-III. The predictive signal from initial text
data may also diminish over extended periods. These findings
underscore the necessity of investigating additional long-term
predictors to improve modeling in critical care contexts.

The integration of advanced text mining techniques, such as
BERTopic, with machine learningmodels introduces significant
computational challenges. Extracting topics from clinical notes
and incorporating them into predictive models requires
substantial processing power, which may hinder the real-time
application of these methods in clinical settings. While cross-
validation was employed to reduce the risk of overfitting,
concerns remain about the models' ability to generalize to new

237 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

patient populations, particularly due to the high dimensionality
of text data. Future research should focus on enhancing
generalizability by validating these models on larger and more
diverse datasets (e.g., multi-center data like MIMIC-IV or
elCU), as well as employing advanced regularization strategies
or transfer learning techniques. Overcoming these challenges
will be essential for developing predictive models that are both
accurate and robust, enabling their effective deployment in
critical care environments [59].

V. CONCLUSION

This study investigated the integration of advanced text
mining techniques, specifically the BERTopic model, with
machine learning algorithms to enhance the prediction of ICU
patient outcomes. By leveraging semi-structured data from
clinical notes alongside structured numerical data, the research
demonstrated that combining these data types significantly
improves the accuracy and robustness of predictive models,
especially for short-term mortality prediction. These findings
highlight several key conclusions:

The incorporation of BERTopic data significantly enhanced
short-term mortality prediction, particularly for 2-day and 3-day
outcomes. By integrating semi-structured clinical notes into
machinelearningmodels, the study achieved improved AUROC
and accuracy scores, underscoring the critical role of text data in
early ICU care. Often underutilized in predictive modeling,
semi-structured data provided essential clinical context that
improved the models’ ability to identify high-risk patients,
enabling more timely and effective interventions [60]. This
contextual information, capturing clinical reasoning and
nuances absent in structured data, served as a valuable
complement to traditional predictors. Additionally,
physiological variables such as the Glasgow Coma Scale, White
Blood Cell Count, and Heart Rate were identified as crucial
predictors for both short-term and long-term mortality. These
findings emphasize the importance of continuous monitoring of
these indicators to improve outcomes for ill patients. Although
the predictive improvements for long-term mortality (1-month
and 1-year) were relatively modest, the integration of text-based
clinical insights through topic modeling provided valuable
contributions to understanding patient conditions over extended
periods. These findings highlight the potential of natural
language processing techniques, such as BERTopic, to augment
structured data and improve long-term predictive accuracy.

This study also underscores the broader applications of Al
and bigdatain clinical decision-makingand resourceallocation,
offering healthcare providers advanced tools to enhance patient
outcomes and optimize ICU resource management [61]. By
improving early risk recognition and supporting more adaptive
clinical responses, these Al-driven predictive frameworks
contribute directly to resilient healthcare in ICU environments.
Looking ahead, future research should prioritize larger datasets,
cross-institutional validation, and the incorporation of additional
clinical variables and potentially longitudinal or richer textual
sources(e.g., full progress notesandradiology reports) to further
refine and generalize predictive models for ICU patient
outcomes [62]. The integration of structured numerical data and
semi-structured text, processed using advanced text mining
techniques such as BERTopic, represents a promising avenue
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for improving ICU outcome prediction and strengthening data-
driven clinical practice. As multimodal Al continues to evolve,
its capacity to strengthen resilience in critical care systems
through earlier detection, more precise triage, and timely
intervention will become increasingly central to improving
patient outcomes.

REFERENCES

[1] R. M.McAdams,R. Kaur, Y. Sun, H. Bindra, S. J. Cho, and H. Singh,
"Predicting clinical outcomes using artificial intelligence and machine
learning in neonatalintensive care units: a systematic review," Journal of
Perinatology, vol. 42, no. 12, pp. 1561-1575,2022.

[2] S. Lee et al, "Unlocking the potential of electronic health records for
health research," InternationalJournalof Population Data Science, vol. 5,
no. 1,2020.

[3] S. Aminizadeh et al, "Opportunities and challenges of artificial
intelligence and distributed systems to improve the quality of healthcare
service," Artificial Intelligence in Medicine, vol. 149, p. 102779,2024.

[4] A. Olalekan Kehinde, "Leveraging machine learmning for predictive
models in healthcare to enhance patient outcome management,”" Int Res J
Mod Eng Technol Sci, vol. 7,no. 1, p. 1465,2025.

[5] O. Abdolazimi, M. Salehi Esfandarani, M. Salehi, D. Shishebori, and M.
Shakhsi-Niaei, "Development of sustainable and resilient healthcare and
non-cold pharmaceutical distribution supply chain for COVID-19
pandemic: a case study," The International Journal of Logistics
Management, vol. 34, no. 2, pp. 363-389,2023.

[6] I.Lietal, "Neural natural language processing for unstructured data in
electronic health records: a review," Computer Science Review, vol. 46,
p.100511,2022.

[71 J. Roca, A. Tenyi, and I. Cano, "Paradigm changes for diagnosis: using
big data for prediction," Clinical Chemistry and Laboratory Medicine
(CCLM), vol. 57,n0. 3, pp.317-327,2019.

[8] C. H. Guo, M. L. Lu, and J. F. Chen, "An evaluation of time series
summary statistics as features forclinical prediction tasks," Bmc Medical
Informatics and Decision Making, vol. 20, no. 1, Mar 2020, Art no. 48,
doi: 10.1186/s12911-020-1063-x.

[91 S. G. Emami, V. Lorenzoni, and G. Turchetti, "Towards resilient
healthcare systems: a framework for crisis management," International
journalof environmentalresearch and public health,vol.21,no. 3, p. 286,
2024.

V. M. Chigboh, S. J. C. Zouo, and J. Olamijuwon, "Predictive analytics
in emergency healthcare systems: A conceptual framework for reducing
response times and improving patient care," World Journal of Advanced
Pharmaceutical and Medical Research, vol. 7, no. 2, pp. 119-127,2024.

[11] F. Goodarzian, P. Ghasemi, A. Gunasekaren, A. A. Taleizadeh, and A.
Abraham, "A sustainable-resilience healthcare network for handling
COVID-19 pandemic," Annals of operationsresearch,vol. 312, no.2, pp.
761-825,2022.

[12] B.J. Marafino, G. J. Escobar, M. T. Baiocchi, V. X. Liu, C. C. Plimier,
and A. Schuler, "Evaluation of an intervention targeted with predictive
analytics to prevent readmissions in an integrated health system:
observational study," bmj, vol. 374, 2021.

[10

=

[13] S. S. Siddiqui et al., "Evaluation and validation of four scoring systems:
the apache IV, saps III, MPMO II, and ICMM in critically ill cancer
patients," Indian Journal of Critical Care Medicine: Peer-reviewed,
Official Publication of Indian Society of Critical Care Medicine, vol. 24,
no.4,p. 263,2020.
A. Schoe, F. Bakhshi-Raiez, N. de Keizer, J. T. van Dissel, and E. de
Jonge, "Mortality prediction by SOFA score in ICU-patientsaftercardiac
surgery; comparison with traditional prognostic—-models," BMC
anesthesiology, vol. 20, pp. 1-8,2020.
[15] D. van de Sande, M. E. van Genderen, J. Huiskens, D. Gommers, and J.
van Bommel, "Moving from bytes to bedside: a systematic review on the

use of artificial intelligence in the intensive care unit," Intensive care
medicine, vol. 47, pp. 750-760,2021.

F. Tetschke, U. Schneider, E. Schleussner, O. W. Witte, and D. Hoyer,
"Assessment of fetal maturation age by heart rate variability measures

[14

=

[16

[}

238 |Page

www.ijacsa.thesai.org



[17]

(18]

(21]

[22

—

[23

—

(24]

[26]

[27]

(28]

[29

[}

[30]

[31]

[32]

[33]

[34]

[35]

(IJACSA) International Journal of Advanced Computer Science and Applications,

using random forest methodology," Comput. Biol. Med., vol. 70, pp. 157-
162,2016.

M. Hashir and R. Sawhney, "Towards unstructured mortality prediction
with free-text clinical notes," Journalof Biomedical Informatics, vol. 108,
Aug 2020, Art no. 103489, doi: 10.1016/j.jb1.2020.103489.

V. Ntinopoulos et al,, "Large language models for data extraction from
unstructured and semi-structured electronic health records: a multiple
modelperformance evaluation," BMJ Health & Care Informatics, vol. 32,
no.1,p.el01139,2025.

M. S. Tootooni, K. S. Pasupathy, H. A. Heaton,C. M. Clements, and M.
Y. Sir, "CCMapper: An adaptive NLP-based free-text chief complaint
mapping algorithm," Comput. Biol. Med., vol. 113, p. 103398,2019.

E. E. Uslu, E. Sezer, and Z. A. Guven, "NLP-Powered Insights: A
Comparative Analysis for Multi-Labeling Classification with MIMIC-
CXR Dataset," IEEE Access, 2024.

N. Zahra, H. Tanveer, and N. Batool, "Technological advancement in
COVID-19 rehabilitation: Therapists’ views," Int J Multidiscip Res
Growth Eval, 2025.

S. Sheikhalishahi, R. Miotto, J. T. Dudley, A. Lavelli, F. Rinaldi, and V.
Osmani, "Natural language processing of clinical notes on chronic
diseases: systematic review," JMIR Med. Inf., vol. 7, no. 2, p. 12239,
2019.

L. Ganet al, "Experimental comparison of three topic modeling methods
with LDA, Top2Vec and BERTopic," in International Symposium on
Artificial Intelligence and Robotics, 2023: Springer, pp. 376-391.

R. Raman, D. Pattnaik, L. Hughes, and P. Nedungadi, "Unveiling the
dynamics of Al applications: A review of reviews using scientometrics
and BERTopic modeling," Journal of Innovation & Knowledge, vol. 9,
no. 3, p. 100517,2024.

M. Bor¢in and J. M. Jose, "Optimizing bertopic: Analysis and
reproducibility study of parameter influences on topic modeling," in
European conference on information retrieval, 2024: Springer, pp. 147-
160.

N. Khodeir and F. Elghannam, "Efficient topic identification for urgent
MOOC Forum posts using BERTopic and traditional topic modeling
techniques," Education and Information Technologies, pp. 1-27,2024.

A. E. Johnson et al, "MIMIC-III, a freely accessible critical care
database," Sci Data, vol. 3, p. 160035, May 24 2016, doi
10.1038/sdata.2016.35.

T. Gangavarapu, A. Jayasimha, G. S. Krishnan, and S. S. Kamath,
"Predicting ICD-9 code groups with fuzzy similarity based supervised
multi-label classification of unstructured clinical nursing notes,"
Knowledge-Based Systems, vol. 190, Feb 2020, Art no. 105321, doi:
10.1016/j.knosys.2019.105321.

Y. Y. Tanget al, "Association of Systemic Immune-Inflammation Index
With Short-Term Mortality of Congestive Heart Failure: A Retrospective
Cohort Study," (in English), Front. Cardiovasc. Med., Atrticle vol. 8, p.
15,Nov 2021, Art no. 753133, doi: 10.3389/fcvm.2021.753133.

S. Davidson et al., "Day-to-day progression of vital-sign circadian
thythms in the intensive care unit," (in English), Crit. Care, Article vol.
25,no0. 1, p. 13, Apr 2021, Art no. 156, doi: 10.1186/s13054-021-03574-
w.

M. Sayed, D. Riano, and J. Villar, "Predicting Duration of Mechanical
Ventilation in Acute Respiratory Distress Syndrome Using Supervised
Machine Leaming," Journal of Clinical Medicine, vol. 10, no. 17, Sep
2021, Art no. 3824, doi: 10.3390/jcm10173824.

K. Alghatani, N. Ammar, A. Rezgui, and A. Shaban-Nejad, "Predicting
Intensive Care Unit Length of Stay and Mortality Using Patient Vital
Signs: Machine Leaming Model Development and Validation," JMIR
Med. Inf,, vol. 9, no. 5, May 2021, Art no. 21347, doi: 10.2196/21347.
J. T. Kent, "Information gain and a general measure of correlation,"
Biometrika, vol. 70, no. 1, pp. 163-173, 1983.

M. Grootendorst, "BERTopic: Neural topic modeling with a class-based
TF-IDF procedure," arXiv preprint arXiv:2203.05794,2022.

D. H. Kim, J. Y. Choi, and Y. M. Ro, "Region based stellate features
combined with variable selection using AdaBoost learning in

mammographic computer-aided detection,” Comput. Biol. Med., vol. 63,
pp. 238-250, Aug 2015, doi: 10.1016/j.compbiomed.2014.09.006.

[36]

[37]

[38]

(40]

(42]

[43]

(44]

(45]

[46]

[47]

(49]

[50]

[51]

[52]

[53]

Vol. 17, No. 1, 2026

Y. W. Lee, J. W. Choi, and E. H. Shin, "Machine learning model for
predicting malaria using clinical information," Comput. Biol. Med., vol.
129,Feb 2021, Art no. 104151, doi: 10.1016/j.compbiomed.2020.104151.

J. H. Friedman, "Greedy function approximation: A gradient boosting
machine," Ann. Stat., vol. 29, no. 5, pp. 1189-1232, Oct 2001, doi:
10.1214/a0s/1013203451.

S. B. Keser and K. Keskin, "A gradient boosting-based mortality
prediction model for COVID-19 patients," Neural Computing and
Applications, vol. 35, no. 33, pp. 23997-24013,2023.

S. Nanayakkara et al, "Characterising risk of in-hospital mortality
following cardiac arrest using machine learning: A retrospective
internationalregistry study," (in English), PLos Med., Article vol. 15,no.
11, p- 16, Nov 2018,  Art no. €1002709,  doi:
10.1371/journal.pmed.1002709.

G. Akbari et al., "Frailty Level Classification of the Community Elderly
Using Microsoft Kinect-Based Skeleton Pose: A Machine Leaming
Approach," (in English), Sensors, Article vol. 21, no. 12,p. 20,Jun 2021,
Art n0.4017, doi: 10.3390/521124017.

S. Ali, A. Majid, S. G. Javed,and M. Sattar, "Can-CSC-GBE: Developing
Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer
classification using protein amino acids and imbalanced data," (in
English), Comput. Biol. Med., Article vol. 73, pp. 38-46, Jun 2016, doi:
10.1016/j.compbiomed.2016.04.002.

C.K. Sarmah and S. Samarasinghe, "Microarray gene expression: A study
of between-platform association of Affymetrix and ¢cDNA arrays," (in
English), Comput. Biol. Med., Article vol. 41, no. 10, pp. 980-986, Oct
2011, doi: 10.1016/j.compbiomed.2011.08.007.

D. R. Cox, "The Regression Analysis of Binary Sequences," Journal of
the Royal Statistical Society. Series B (Methodological), vol. 20, no. 2,
pp.215-242,1958.

A. Lavrentieva, E. Kaimakamis, V. Voutsas, and M. Bitzani, "An
observationalstudy on factors associated with ICU mortality in Covid-19
patients and critical review of the literature," Scientific Reports, vol. 13,
no. 1,p. 7804,2023.

T. Windeatt, "Accuracy/Diversity and Ensemble MLP Classifier Design,"
IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1194-1211,
2006, doi: 10.1109/TNN.2006.875979.

A. Bokhare, A.Bhagat,and R. Bhalodia, "Multi-layer perceptron for heart
failure detection using SMOTE technique," SN Computer Science, vol. 4,
no.2,p. 182,2023.

Y. W. Lin, Y. Q. Zhou, F. Faghri, M. J. Shawl, and R. H. Campbell,
"Analysis and prediction of unplanned intensive care unit readmission
using recurrent neural networks with long shortterm memory," Plos One,
vol. 14, mno. 7, Jul 2019, Art no. 0218942, doi:
10.1371/journal.pone.0218942.

A. Abuzayed and H. Al-Khalifa, "BERT for Arabic Topic Modeling: An
Experimental Study on BERTopic Technique," in 5th Conference on Al
in Computational Linguistics (ACLing), Electr Network, Jun 04-052021,
vol. 189, in Procedia Computer Science, 2021, pp. 191-194, doi:
10.1016/j.procs.2021.05.096.  [Online]. Available: <Go to
ISI>://W0S:000684216300023

B. Liu, L. Fang, F. Liu, X. Wang, and K.-C. Chou, "IMiRNA-PseDPC:
microRNA precursor identification with a pseudo distance-pair
composition approach,”" Journalof Biomolecular Structure and Dynamics,
vol. 34, no. 1, pp. 223-235,2016.

B. Liu, L. Fang,F. Liu, X. Wang, J. Chen, and K.-C. Chou, "Identification
of real microRNA precursors with a pseudo structure status composition
approach," PloS one, vol. 10, no. 3, p. 0121501, 2015.

T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical
Leaming: Data Mining, Inference, and Prediction. Springer, New York,
NY," 2001.

F. Aziz et al., "Short-and long-term mortality prediction afteran acute ST-
elevation myocardial infarction (STEMI) in Asians: A machine learning
approach," PloS one, vol. 16, no. 8, p. €0254894,2021.

F. C. Bennis et al., "Improving prediction of favourable outcome after 6
months in patients with severe traumatic brain injury using physiological

cerebral parameters in a multivariable logistic regression model,"
Neurocritical care, vol. 33, pp. 542-551, 2020.

239|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

[54] K. H. Goh et al, "Artificial intelligence in sepsis early prediction and [58] P. Hanlon et al, "COVID-19—exploring the implications of long-term
diagnosis using unstructured data in healthcare," Nature communications, condition type and extent of multimorbidity on years of life lost: a
vol. 12,no. 1,p. 711,2021. modelling study," Wellcome Open Research, vol. 5,2020.

[55] D. Zhang,C. Yin, J. Zeng, X. Yuan,and P.Zhang, "Combining structured [59] L. L. Guo et al, "Evaluation of domain generalization and adaptation on
and unstructured data for predictive models: a deep learning approach,” improving model robustness to temporal dataset shift in clinical
BMC medical informatics and decision making, vol. 20, pp. 1-11,2020. medicine," Scientific reports, vol. 12, no. 1, p.2726,2022.

[56] A. Elmoheen et al., "External validation and recalibration of the CURB- [60] B. Eini-Porat, O. Amir, D. Eytan, and U. Shalit, "Tell me something
65 and PSI for predicting 30-day mortality and critical care intervention interesting: Clinical utility of machine learing prediction models in the
in multiethnic patients with COVID-19," International Journal of ICU," Journal of Biomedical Informatics, vol. 132, p. 104107,2022.
Infectious Diseases, vol. 111, pp. 108-116,2021. [61] D. Horner, C. Ambrose, C. Taylor, and L. Erinle, "Intensive Care Society

[57] A. S. Darwich et al., "Model-informed precision dosing: background, State of the Art (SOA) 2023 Congress Abstracts," Journalof the Intensive
requirements, validation, implementation, and forward trajectory of Care Society, vol. 24, no. 2 Supplement 1, p. 196,2023.
individualizing drug therapy," Annual review of pharmacology and [62] E. D’Hondt, T. J. Ashby, I. Chakroun, T. Koninckx, and R. Wuyts,
toxicology, vol. 61,no. 1, pp. 225-245,2021. "Identifying and evaluating barriers for the implementation of machine

learning in the intensive care unit," Communications Medicine, vol. 2,no.
1,p. 162,2022.
APPENDIX A
TABLE VIII. SELECTED QUANTITATIVE PREDICTORS WITH CORRESPONDING INFORMATION GAIN
Variable Feature Item Name Information Gain Item ID Table
X1 Age Age 0.1555 Admissions
211
X2 Heart Rate Heart Rate 0.3602 220045 Chartevents
X3 Systolic Blood Pressure Noninvasive Systolic Blood Pressure 0.2702 333179 Chartevents
678
Temperature Fahrenheit 223761
X4 Temperature Temperature Celsius 0.4681 676 Chartevents
223762
X5 Blood Urea Nitrogen Blood Urea Nitrogen 0.2172 51006 Labevents
X6 White Blood Cells Court White Blood Cells 04725 BASEN Labevents
X7 Potassium Level Potassi 0.2287 30971 Lab t
otassium Leve otassium . 50822 abevents
X8 Sodium Level Sodium 0.2486 50983 Labevents
X9 Serum Bicarbonate Level Bicarbonate 0.0954 50882 Labevents
GCS Verbal 223900
Verbal Response 723
GCS Motor 223901
X10 Glasgow Coma Scale Motor Response 0.4340 454 Chartevents
GCS Eyes 220739
Eye Opening 184
X11 Gender Gender 0.0104 Admissions
X12 Admission Type Admission Type 0.0184 Admissions
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