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Abstract—This study develops an advanced multimodal AI 

framework to strengthen early risk assessment in critical care and 

support resilient healthcare delivery. Utilizing the MIMIC-III 

database, this research extracted structured variables and clinical 

notes from 26,829 adult patients. A text mining approach based on 

the BERTopic model was employed to generate topic embeddings 

from unstructured notes, which were subsequently integrated with 

16 quantitative variables. Six machine learning models: Adaboost, 

Gradient Boosting, Support Vector Classification (SVC), Bagging, 

Logistic Regression, and MLP Classifier were trained to predict 

short-term and long-term mortality outcomes. Model 

performance was evaluated through AUROC, accuracy, recall, 

precision, and F1-score metrics. The results demonstrate that 

integrating topic embeddings with structured data significantly 

improved short-term risk prediction. The SVC model, in 

particular, achieved an AUROC of 0.9137 for predicting 2-day 

mortality. Critical predictors identified included the Glasgow 

Coma Scale, White Blood Cell Count, and text-derived topics 

related to cardiovascular and neurological conditions. The study 

is based on a single-center dataset, limiting generalizability. 

Additionally, only a subset of textual data sources was analyzed, 

and improvements in long-term risk prediction were relatively 

modest. These findings demonstrate how multimodal AI can 

significantly improve early risk assessment and enhance resilience 

in critical care decision-making. This research pioneers the 

integration of BERTopic-based text mining with machine learning 

models for clinical risk prediction, highlighting the value of 

multimodal data fusion in improving predictive accuracy and 

enriching medical informatics. 
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I. INTRODUCTION 

Artificial Intelligence (AI) and healthcare big data are 
revolutionizing clinical outcome prediction and decision-
making, particularly in critical care environments such as 
Intensive Care Units (ICUs) [1]. AI, powered by sophisticated 
machine learning algorithms, processes extensive and complex 
datasets to uncover intricate patterns and generate precise 
predictions of patient outcomes. These advancements 
significantly enhance clinical decision-making processes and 
enable the delivery of highly personalized care. Within this 
framework, Electronic Health Records (EHRs) play a pivotal 
role as the foundation of healthcare big data. EHRs encompass 
comprehensive digital records of patients’ health information, 
including medical histories, diagnostic imaging, and treatment 
details [2]. The digital transformation of health records not only 
streamlines hospital management and service delivery but also 

provides researchers with vast datasets for developing and 
validating predictive models [3]. These technological 
advancements further enhance predictive analytics and play a 
critical role in supporting resilient healthcare by enabling earlier 
identification of clinical deterioration and improving system 
responsiveness [4, 5]. 

In addition to numerical and structured data in EHRs, semi-
structured and unstructured data, such as clinical notes, 
diagnostic reports, and patient discharge summaries, constitute 
a valuable yet often underutilized source of information in 
predictive modeling [6]. Text mining, a specialized area within 
AI dedicated to extracting meaningful insights from 
unstructured text, has gained significant recognition for its 
ability to process such data. By leveraging advanced text mining 
techniques, researchers can uncover critical insights from 
clinical notes and reports, transforming free-text into structured 
data that can seamlessly integrate with traditional numerical 
datasets to enhance predictive modeling accuracy. 

The integration of text mining with healthcare big data 
comprising EHRs, diagnostic reports, and other patient-related 
records provides a powerful foundation for developing 
predictive models to support evidence-based clinical decision-
making [7]. This synergy holds considerable promise for 
enhancing resource allocation, advancing patient care, and 
minimizing healthcare expenditures, establishing it as a central 
focus in contemporary medical informatics research. In ICU-
focused studies, leveraging EHR data for predictive tasks, such 
as assessing patient mortality, estimating length of stay, and 
diagnosing diseases, plays a pivotal role. Effectively utilizing 
EHR data for clinical outcome prediction enables early 
identification of high-risk patients, facilitates timely 
interventions, and improves mortality risk assessment, 
ultimately optimizing patient care and resource utilization [8]. 
Strengthening early risk prediction in the ICU is therefore 
fundamental to resilient healthcare, as it supports timely 
interventions, reduces avoidable deterioration, and enhances the 
system’s capacity to respond effectively under clinical pressure 
[9-11]. 

Accurate prediction of clinical outcomes for ICU patients, 
given their diverse survival probabilities, plays a crucial role in 
enhancing the quality of care within ICUs, facilitating cross-
institutional evaluations, and advancing related clinical research 
[12]. Numerous predictive methods and scoring systems, 
including APACHE, SAPS, and MPM, have been designed to 
estimate clinical outcomes [13, 14]. While these models achieve 
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reasonable accuracy in predicting ICU mortality rates, they often 
require recalibration when applied to different ICU settings due 
to disparities in patient demographics and clinical practices [15]. 
Despite these advancements, there remains a significant 
knowledge gap in how advanced topic modeling like BERTopic 
can be effectively integrated with structured ICU data to 
improve predictive resilience. This study fills this gap by 
providing a comparative analysis of multimodal AI frameworks. 
Machine learning (ML) has emerged as a transformative tool for 
data analysis, offering robust capabilities in feature extraction 
and addressing the limitations of traditional statistical 
approaches.ML techniques have been widely implemented in 
various healthcare predictive tasks, such as employing Random 
Forest algorithms to assess fetal maturity and adapt model 
parameters across diverse temporal settings [16]. 

While EHR adoption expands, research remains 
predominantly focused on structured quantitative data. Yet, 
clinical narratives containing vital documentation of 
physiological states and disease progression represent nearly 
80% of EHR content [17, 18]. These semi-structured records 
encode essential clinical knowledge, including diagnostic 
assessments, treatment protocols, and care priorities, which are 
critical for evidence-based decision-making [19]. Natural 
language processing (NLP) has consequently become 
indispensable for deriving insights from such textual data [20, 
21], exemplified by its 90% accuracy in classifying peripheral 
arterial disease through keyword extraction [22]. 

While NLP improves patient classification accuracy, it 
simultaneously reveals challenges, including data sparsity and 
high dimensionality. To address these limitations, we propose 
the BERTopic model, which integrates BERT (Bidirectional 
Encoder Representations from Transformers) embeddings with 
c-TF-IDF to generate dense clusters and extract interpretable 
topics. In contrast to conventional latent Dirichlet allocation 
(LDA) approaches, BERTopic provides enhanced semantic 
representations that resolve vocabulary mismatches while 
capturing temporal dynamics in topic distributions [23, 24]. 
Unlike LDA, which relies on bag-of-words, BERTopic utilizes 
contextual embeddings to maintain semantic coherence even in 
short, noisy clinical notes. Furthermore, the model streamlines 
hyperparameter optimization and incorporates dedicated noise 

topic handling, effectively reducing misclassification of 
irrelevant documents and consequently improving overall topic 
modeling accuracy [25, 26]. 

Integrating text mining methods like BERTopic with 
machine learning provides a robust framework for enhancing 
predictive accuracy in critical care. While conventional models 
often overlook the rich clinical insights within semi-structured 
data, such as nursing notes and diagnostic reports, this study 
leverages the BERTopic model to extract and categorize 
meaningful latent topics. By synthesizing these text-derived 
features with numerical datasets, our approach enables a more 
holistic understanding of patient conditions. This integration 
transforms unstructured narratives into quantifiable predictors, 
equipping healthcare professionals with deeper insights for more 
precise decision-making and ICU outcome forecasting. This 
study advances the field by employing a transformer-enhanced 
BERTopic model to automatically extract interpretable features 
from complex clinical narratives. A key contribution of this 
work is the comprehensive comparative analysis that provides 
empirical evidence of the advantages modern topic modeling 
holds over traditional methods. As healthcare big data analytics 
evolve, incorporating advanced text mining into predictive 
frameworks promises to optimize resource allocation and 
enhance the quality of patient care. Ultimately, this multimodal 
AI framework reinforces early risk recognition, supporting 
resilient healthcare by enabling more timely, adaptive, and 
effective interventions in critical care settings. 

II. MATERIALS AND METHODS 

The methodological framework of this study is illustrated in 
Fig. 1. The dataset consists of structured EHR variables and 
clinical notes, providing a comprehensive representation of 
patient information. Data extraction, cleaning, and 
preprocessing were performed to ensure analytical quality. The 
processed dataset was then used to train five machine learning 
models for mortality prediction. Model performance was 
evaluated using five standard metrics to enable an objective 
comparison. The following sections describe each 
methodological component in detail. 

 

Fig. 1. Research scheme. 
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A. Data Composition and Source: MIMIC-III 

This study utilized data from the Medical Information Mart 
for Intensive Care III (MIMIC-III), a publicly available clinical 
database that contains detailed records of intensive care unit 
(ICU) patients admitted to the Beth Israel Deaconess Medical 
Center (BIDMC) in Boston, Massachusetts. The dataset 
encompasses patient encounters from 2001 to 2012, capturing a 
wide range of clinical variables, including vital signs, 
medication history, laboratory test results, and observational 
notes [27]. MIMIC-III includes 49,785 hospital admissions, 
representing 38,597 unique adult patients aged 16 years and 
older, with a median age of 65.8 years and a male patient 
proportion of 55.9%. 

To ensure ethical compliance, access to the MIMIC-III 
database required approval under certificate number 35628530, 
which involved completing the National Institutes of Health 
(NIH) online training, successfully passing the Human Research 
Participant Protection Examination, and submitting a formal 
data access request. Additionally, the study obtained 
institutional review board (IRB) approval from both BIDMC 
and the Massachusetts Institute of Technology (MIT). The 
MIMIC-III dataset is curated by the MIT Laboratory for 
Computational Physiology and is available for research 
purposes through PhysioNet. This rigorous approval process 
ensures adherence to ethical guidelines and data protection 
regulations, enabling responsible use of de-identified patient 
data for advancing critical care research. 
(https://physionet.org/content/mimiciii/1.4/) 

B. Data Preprocessing 

1) Data extraction: To enhance the generalizability of the 

findings, this study encompassed all ICU patients rather than 

limiting the analysis to specific disease groups. For consistency 

with similar research, adult ICU patients aged over 16 years and 

admitted to the ICU for the first time were included. The 

analysis focused primarily on data recorded during the initial 

24 hours of these patients' ICU stays  [28, 29]. Table I 

summarizes the demographic and clinical characteristics of the 

patient cohort following data preprocessing. The final cohort 

comprised 26,829 patients who met the inclusion criteria and 

had associated clinical notes available for textual analysis, 

including 2,322 (8.66%) who died in the hospital and 24,507 

(91.34%) who survived. Admission Type refers to the 

classification of the patient’s admission leading to the index 

ICU stay. The median patient age was 63.06 years, with 56.85% 

of the cohort being male. The majority of patients were 

identified as white (71.20%), followed by black (7.70%) and 

individuals from other ethnic groups. Emergency admissions 

accounted for 82.29% of cases, with 37.15% of patients 

admitted to Medical ICUs. The average length of stay in the 

ICU was 4.15 days. 

2) Variable selection: To identify the variables for analysis, 

this study leveraged insights from prior research and selected 

16 quantitative variables based on their clinical significance 

[listed in Appendix A (Table VIII)] [30-32]. These variables 

were extracted from multiple tables within the MIMIC-III 

dataset, including admission records, chartevents, labevents, 

and output events. A structured three-stage data preprocessing 

approach, adapted from Guo et al. [8] was implemented to 

address missing values. Initially, patient records with more than 

30% missing data were excluded. Next, predictors with over 

40% missing values were removed. Finally, variables with a 

missing rate exceeding 20% after applying the previous 

filtering steps (i.e., exclusion of patient records with >30% 

missing data and exclusion of predictors with >40% missing 

values) were eliminated. For the remaining missing values, 

mean imputation was performed. The significance of the 

selected variables was evaluated using the Information Gain 

Technique (Entropy) [33], retaining only those with a score of 

0.01 or higher for further analysis. Among the identified 

predictors, white blood cell count emerged as the most 

influential, whereas gender ranked the lowest.In addition to 

numerical variables, this study incorporated topic modeling-

derived features from the NOTEVENTS dataset, which 

comprises clinical notes documented by various healthcare 

professionals, including physicians, nurses, imaging specialists, 

nutritionists, and physical therapists. Within the MIMIC-III 

database, NOTEVENTS contains over 2 million entries, with 

approximately 56% authored by doctors and nurses. An 

additional 39% of the records consist of echocardiography, 

electrocardiography, and radiology reports. By integrating 

structured numerical data with unstructured textual 

information, this study aimed to enhance predictive accuracy 

and provide a more comprehensive assessment of ICU patient 

outcomes. This multimodal approach enables a more robust 

representation of clinical contexts that would otherwise be 

overlooked when relying solely on structured data. 

C. Mortality Prediction 

This study examined the impact of integrating structured 
data (e.g., vital signs and laboratory test results) with semi-
structured data (e.g., diagnostic details and clinical notes) on 
predicting ICU patient mortality following admission. This 
study aimed to predict ICU patient mortality at specific time 
points following the initial ICU admission, using data collected 
within the first 24 hours. We focused on four distinct prediction 
targets: 

1) Short-term mortality: Defined as patient death occurring 

within 2 days or 3 days post-ICU admission. 

2) Long-term mortality: Defined as patient death occurring 

within 1 month or 1 year post-ICU admission. 

The integration of these data types aimed to improve the 
precision and reliability of mortality predictions across both 
short-term and long-term timeframes. 

D. BERTopic 

BERTopic represents a cutting-edge approach to topic 
modeling, harnessing the strengths of BERT (Bidirectional 
Encoder Representations from Transformers) to uncover latent 
themes within large textual datasets[34]. This method excels in 
generating coherent topic representations by employing a 
combination of BERT-based embeddings and a class-based 
variation of TF-IDF (c-TF-IDF). The BERTopic algorithm 
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consists of three key stages: document embedding, 
dimensionality reduction using UMAP, and document 

clustering with HDBSCAN. 

TABLE I.  DEMOGRAPHIC CHARACTERISTICS OF SELECTED PATIENTS 

 Overall Dead at Hospital Alive at Hospital 

General (%)    

Number 26,829 (100%) 2,322 (8.66%) 24,507 (91.34%) 

Age [Q1–Q3] 63.06 [51.32–77.82] 70.88 [61.43–83.32] 62.26 [50.51–76.97] 

Gender (male) 15,248 (56.85%) 1,256 (8.24%) 13,992 (91.76%) 

Race/Ethnicity (%)     

Asian 656 (2.45%) 57 (2.45%) 599 (2.44%) 

Black 2,067 (7.70%) 109 (4.69%) 1,958 (7.99%) 

Hispanic 888 (3.31%) 47 (2.02%) 841 (3.43%) 

White 19,105 (71.20%) 1,673 (72.05%) 17,432 (71.11%) 

Other 4,113 (15.34%) 601 (25.88%) 3,512 (14.33%) 

Admission Type (%)     

Urgent 644 (2.40%) 74 (3.19%) 570 (2.33%) 

Emergency 22,067 (82.29%) 2,199 (94.70%) 19,868 (81.07%) 

Elective 4,118 (15.32%) 49 (2.11%) 4,069 (16.60%) 

Site (%)    

Medical Intensive Care Unit 9,966 (37.15%) 1,125 (48.45%) 8,841 (36.06%) 

Surgical Intensive Care Unit 4,400 (16.40%) 463 (19.94%) 3,937 (16.06%) 

Coronary Care Unit 4,180 (15.58%) 326 (14.04%) 3,854 (15.73%) 

Cardiac Surgery Recovery Unit 4,336 (16.16%) 121 (5.21%) 4,215 (17.20%) 

Trauma Surgical Intensive Care Unit 3,947 (14.71%) 287 (12.36%) 3,660 (14.93%) 

Insurance    

Government 819 (3.05%) 45 (1.94%) 774 (3.16%) 

Medicaid 2,235 (8.33%) 144 (6.20%) 2,091 (8.53%) 

Medicare 14,342 (53.46%) 1,621 (69.81%) 12,721 (51.91%) 

Private 9,080 (33.84%) 459 (19.76%) 8,621 (35.18%) 

Self-Pay 353 (1.32%) 53 (2.28%) 300 (1.22%) 

Outcomes     

Hospital LOS (days) [Q1–Q3]  8.95 [3.88–10.47] 9.27 [2.77–11.49] 8.92 [3.96–10.34] 

ICU LOS (days) [Q1–Q3]  4.15 [1.26–4.17] 6.68 [2.08–8.12] 3.89 [1.22–3.89] 

1) Bert embedding: In the first stage of the BERTopic 

algorithm, BERT Embeddings are used to convert documents 

into dense vector representations, capturing the semantic 

relationships within the text. BERT (Bidirectional Encoder 

Representations from Transformers), a transformer-based 

model, is pre-trained on large corpora using masked language 

modeling, allowing it to consider both the left and right context 

of words in a sentence. Sentence-BERT (SBERT), a variation 

of BERT, is employed to create sentence-level embeddings 

optimized for semantic similarity. During this process, each 

document is tokenized into subwords using BERT’s Word 

Piece tokenizer, ensuring that rare or unseen words are broken 

down into smaller, meaningful units. The tokenized sequence is 

then passed through BERT’s multi-layer attention mechanism 

to generate contextual embeddings for each token. These token 

embeddings are aggregated, typically using the embedding of 

the [CLS] token, which represents the entire document. The 

final document embedding, D, can be expressed as: 

𝐷 = 𝑓𝐵𝐸𝑅𝑇(𝑇) = ℎ[𝐶𝐿𝑆]  (1) 

where, T is the tokenized input sequence and h [CLS] is the 
hidden state corresponding to the [CLS] token, which 
summarizes the semantic content of the entire document. The 
document embedding process plays a critical role by allowing 
the algorithm to place semantically similar documents in close 
proximity within the vector space. This step establishes the 
foundation for subsequent stages, including clustering and topic 
extraction [34]. 

2) Uniform manifold approximation and projection 

(UMAP): In the second stage of the BERTopic algorithm, 

Uniform Manifold Approximation and Projection (UMAP) is 

employed to reduce the dimensionality of the high-dimensional 

document embeddings produced in the first stage. UMAP is a 

well-established non-linear dimensionality reduction 

technique, particularly effective for handling high-dimensional 

datasets like document embeddings. It preserves both local and 

global data structures, thereby enabling improved clustering in 

the subsequent phase. 
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UMAP functions by constructing a weighted graph that 
represents relationships between neighboring data points in the 
high-dimensional space, using the following formula: 

𝑢𝑖𝑗 = 𝑒𝑥𝑝 (−
𝑑(𝑥𝑖,𝑥𝑗)−𝑝𝑖

𝜎𝑖
)   (2) 

where, d (xi, xj ) is the distance between data points x i and xj 
, pi is the distance to the nearest neighbor of x i , ensuring that 
each point has at least one strong connection, and σi scales the 
neighborhood size. 

Next, UMAP optimizes the low-dimensional layout by 
minimizing a cross-entropy loss: 

𝐶 = ∑ 𝑢𝑖𝑗 𝑙𝑜𝑔 (
𝑢𝑖𝑗

𝜈(𝑦𝑖 ,𝑦𝑗)
)𝑖≠𝑗  (3) 

where, ν (yi, yj ) models the probability of connectivity in the 
lower-dimensional space. 

UMAP's capability to maintain the structural integrity of 
high-dimensional data while reducing its complexity is critical 
to the effectiveness of the BERTopic algorithm. By enabling 
efficient clustering of semantically similar documents in a low-
dimensional space, UMAP ensures that the topics identified in 
the final stage of BERTopic remain coherent and accurately 
reflect the underlying structure of the document corpus. 

3) Hierarchical density-based spatial clustering of 

applications with noise (HDBSCAN): In the final stage of the 

BERTopic algorithm, document embeddings, reduced in 

dimensionality using UMAP, are clustered using Hierarchical 

Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN). As an enhancement of the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) 

algorithm, HDBSCAN offers the ability to detect clusters with 

varying densities while effectively managing noise. These 

capabilities are particularly important for handling text data, 

which often exhibits complex distributions.HDBSCAN is a 

density-based clustering algorithm capable of adapting to 

varying densities, enabling the detection of clusters without 

needing to predefine their number. It determines the core 

distance for each data point, which is calculated as the distance 

to its k-th nearest neighbor: 

𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡 = 𝑑(𝑥𝑖, 𝑥𝑘−𝑛𝑒𝑎𝑟𝑒𝑠𝑡)  (4) 

It then defines the mutual reachability distance between 
point’s xi and xj: 

𝑚𝑢𝑡𝑢𝑎𝑙_𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡(𝑥𝑖,  𝑥𝑗) =

𝑚𝑎𝑥 (𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡(𝑥𝑖) ,𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡(𝑥𝑗),𝑑(𝑥𝑖, 𝑥𝑗)) (5) 

HDBSCAN constructs a minimum spanning tree and 
extracts the most stable clusters based on persistence, classifying 

outliers to reduce noise. This flexibility in handling varied 
densities and outliers makes it ideal for detecting distinct topics 
in BERTopic [34]. 

HDBSCAN is integral to the final stage of BERTopic, where 
it clusters document embeddings into coherent groups 
representing distinct topics. Its hierarchical and density-based 
methodology, coupled with the ability to manage noise and 
variable-density clusters, makes it particularly suited to the 
complexities of textual data. By combining UMAP’s 
dimensionality reduction with HDBSCAN’s clustering 
functionality, BERTopic effectively extracts high-quality topics 
from extensive document datasets. 

E. Machine Learning 

This study employed six well-established machine learning 
classification algorithms to evaluate the impact of incorporating 
textual data, such as clinical notes and pathology reports, in 
predicting ICU patient mortality. These algorithms were 
selected based on their demonstrated effectiveness in handling 
heterogeneous data and addressing complex predictive tasks. 
The subsequent sections present a detailed overview of the 
methodologies utilized, including a brief description of each 
algorithm along with its respective parameter configurations. 
This comparative analysis aims to highlight the relative 
strengths of different models in leveraging both structured and 
unstructured clinical data for enhanced predictive performance. 
Table II provides a comprehensive summary of the machine 
learning algorithms employed in this study, detailing their 
theoretical foundations, optimized parameter settings, including 
ensemble sizes and kernel types, while maintaining default 
values for all other parameters to ensure reproducibility. 

F. Evaluation Criteria and Metrics 

To comprehensively assess the impact of incorporating both 
structured and semi-structured data on ICU patient mortality 
prediction, this study employed five key evaluation metrics: 
AUROC, specificity, sensitivity, precision, and F1-score. These 
metrics were chosen to ensure a well-rounded assessment of 
model performance. Table III illustrates the confusion matrix, 
which forms the basis for calculating these evaluation measures. 

Each metric offers distinct insights into model effectiveness. 
AUROC serves as an indicator of overall classification 
performance, providing a measure of the model’s ability to 
distinguish between classes. Precision evaluates the correctness 
of positive predictions, ensuring that identified positive cases are 
accurate. Sensitivity (recall) gauges the model's capability to 
correctly detect true positive cases, while specificity determines 
its effectiveness in identifying true negatives. The F1-score, a 
harmonic mean of precision and recall, ensures a balanced 
evaluation by considering both false positives and false 
negatives. Together, these metrics provide a rigorous framework 
for comparing models that integrate numerical and text-based 
clinical data in ICU patient outcome prediction. 
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TABLE II.  SELECTED ALGORITHM AND PARAMETER SETTING 

Algorithm Description Parameters 

Adaboost 

A boosting-based ensemble learning algorithm that enhances classification 

performance by sequentially combining multiple weak learners. It dynamically 

adjusts the weights of misclassified instances to improve overall model accuracy 

and robustness [35, 36]. 

n_estimators=50, learning_rate=1, 

base_estimator=DecisionTreeClassifier(max_depth=1) 

Gradient 

Boosting (GB) 

A powerful ensemble method that constructs models in a sequential manner, 

where each new model is trained to correct the errors of its predecessors. It 

leverages gradient descent optimization to minimize the loss function and refine 

predictive accuracy [37, 38]. 

n_estimators=100, learning_rate=1.0, max_depth=1, 

loss='deviance' 

Support Vector 

Classification 

(SVC) 

A classification technique designed to identify the optimal decision boundary that 

maximizes class separation in high-dimensional feature spaces. This approach is 

particularly effective in capturing complex, non-linear relationships between 

variables [39, 40]. 

kernel='rbf', C=1.0, gamma='auto' 

Bagging 

A variance-reducing ensemble method that enhances model stability by training 

multiple classifiers on randomly sampled subsets of the dataset. The final 

prediction is obtained by aggregating individual model outputs, leading to 

improved generalization [41, 42]. 

base_estimator=DecisionTreeClassifier(), 

n_estimators=500, max_samples=100 

Logistic 

Regression 

(LR) 

A widely applied statistical model for binary classification tasks. It efficiently 

estimates the probability of class membership and is frequently utilized for risk 

assessment due to its interpretability and computational efficiency [43, 44]. 

solver='sag', penalty='l2', C=1.0 

Multi-Layer 

Perceptron 

Classifier 

(MLPClassifier) 

A feedforward artificial neural network composed of multiple interconnected 

layers. It employs backpropagation to adjust weights iteratively, allowing it to 

capture complex, non-linear patterns within data [45, 46]. 

hidden_layer_sizes=(13,13,13), max_iter=1000, 

activation='relu', solver='adam' 

TABLE III.  CONFUSION MATRIX 

 
Prediction 

Positive Negative 

Actual 

Positive True Positive (TP) 
False Negative 

(FN) 

Negative False Positive (FP) 
True Negative 

(TN) 

Precision P
TP

T P
P

F
V

P
==

+   (6) 

N
Recall TPR

TP

TP F
= =

+   (7) 

2  

 

Precision Recall
F score

Precision Recall



+
=


−

 (8) 

TP TN

TP FP TN FN
Accuracy

+ + +
=

+

 (9) 

1) Precision: This metric quantifies the proportion of 

correctly classified positive instances out of all instances 

predicted as positive. It provides an indication of how reliable 

the model is in making positive predictions. 

2) Recall: Represents the fraction of actual positive cases 

that the model successfully identifies. It serves as a measure of 

the model's effectiveness in capturing true positives within the 

dataset. 

3) F1-Score: Defined as the harmonic mean of precision 

and recall, the F1-score balances the trade-off between these 

two metrics, ensuring a comprehensive evaluation of 

classification performance. 

4) Accuracy: Expresses the proportion of correctly 

classified samples, encompassing both positive and negative 

cases, relative to the entire dataset. It provides an overall 

assessment of the model’s classification performance. 

5) AUROC (Area under the receiver operating 

characteristic curve): A metric that assesses the model’s 

discriminatory power across varying classification thresholds. 

The ROC curve plots the True Positive Rate (TPR) against the 

False Positive Rate (FPR), where TPR measures the model’s 

ability to detect actual positive cases, and FPR quantifies the 

proportion of false positives. AUROC values range from 0 to 1, 

with higher scores indicating stronger overall classification 

capability. 

III. RESULTS 

A. Analysis of Textual Data 

The NOTEEVENTS table in the MIMIC-III database 
contains a vast collection of textual records documenting ICU 
patient care throughout their hospital stays. In this study, which 
focuses on mortality prediction, the NOTEEVENTS table was 
the primary source of text-based information. By analyzing 
discharge summaries, word clouds were generated to identify 
key patient characteristics, providing clinical insights that 
contribute to more effective condition monitoring and 
management. To extract meaningful features from the clinical 
text, BERTopic was employed to generate key topics, which 
were subsequently incorporated as input variables in the 
predictive models. The process of determining the optimal 
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number of topics and refining the predictive model was guided 
by methodologies proposed by Baird et al. and Abuzayed et al. 
[47, 48]. Our findings indicate that ten topics resulted in the 
highest predictive accuracy. As outlined in Table IV, and 
visualized in Fig. 2, these ten topics were derived from the 
processed textual data and linked to specific keywords 
representing essential patient conditions and medical 
interventions. 

The process of topic generation also allowed for the 
identification of hidden patterns within the clinical narratives, 
which may not be immediately apparent through structured data 
alone. For example, the frequency distribution of clinical 

descriptors, such as acute symptoms, procedural terms, or 
medication classes revealed clusters of patient conditions that 
aligned with known ICU syndromes, thereby validating the 
clinical relevance of the extracted topics. The identified topics 
covered various clinical domains, including cardiovascular 
health, head trauma management, abdominal disorders, and 
medication prescriptions. The x-axis in each subplot represents 
the magnitude of the class-based TF-IDF (c-TF-IDF) score, 
indicating the importance of each word within its respective 
topic. By leveraging these extracted topics, the model achieved 
improved predictive performance, offering valuable support for 
clinical decision-making and patient outcome forecasting. 

TABLE IV.  IDENTIFIED VARIABLE TOPICS AND ASSOCIATED KEYWORDS 

No. Topic Keywords 

0 Cardiovascular Health 
chest, aortic, cardiac, artery, ventricular, capsule, heart, coronary, glucose, mitral, allergies, pulmonary, 

edema, acute, systolic, aspirin, hypertension, wall 

1 Head Trauma and Treatment 
head, hemorrhage, fracture, capsule, acute, allergies, seizure, bid, impression, stroke, artery, frontal, mm, 

midline, surgical, glucose 

2 Abdominal and Pancreatic Disorders 
abdominal, pancreatitis, biliary, fluid, bile, bowel, stent, acute, abdomen, pancreatic, glucose, surgery, 

diet, liver, surgical, cholangitis, gallbladder, urine, tube 

3 Renal and Urinary System Health 
renal, urology, urine, bladder, kidney, stone, tube, prostate, capsule, glucose, hydronephrosis, cancer, 

pod, foley, surgical, catheter, allergies, fluid 

4 Esophageal and Chest Medical Topics 
tube, esophageal, esophagus, pod, chest, feeding, cancer, removed, feeds, site, gastric, swallow, incision, 

drain, glucose, invasive, diet, liquid, surgical 

5 
Medication Prescriptions and Medical 

Guidance 

bid, capsule, identifier, ec, qd, allergies, disposition, completed, facility, aspirin, tid, attending first, 

extended, dictated, sodium, medquist, solution, docusate 

6 Breast Cancer and Related Surgeries 
breast, flap, cancer, carcinoma, pod, squamous, tube, neck, site, cell, plastic, postoperative, metastatic, 

floor, surgery, surgical, bilateral, mouth, drain 

7 
Carotid Artery Narrowing and Medical 

Interventions 

carotid, stenosis, artery, ica, stent, stenting, internal, Plavix, qd, pressure, aspirin, angiography, intact, 

cardiac, cad, chest, stroke, bruit, bilaterally, surgery 

8 Hand and Finger-Related Issues 
finger, hand, repair, ring, radial, injury, middle, capsule, plastic, forearm, wrist, distal, long, clinic, 

surgery, joint, postoperatively, saw, sensation, signs 

9 Gastric and Obesity-Related Issues 
gastric, diet, obesity, weight, bypass, surgery, medication, surgical, drainage, postoperative, advanced, 

apnea, severe, abdominal, sleep, incisions, leak, ten 

Additionally, the topic-word distributions help 
demonstrate how certain clinical concepts frequently co-
occur, suggesting possible interactions between patient 
comorbidities and acute ICU conditions. Such co-occurrence 
patterns play a crucial role in mortality prediction, as they 
offer a richer representation of patient complexity compared 
to isolated numerical features. The application of BERTopic 
successfully extracted ten key topics from ICU patient data, 
providing valuable insights into the diverse and complex 
clinical conditions observed in intensive care settings. Each 
identified topic was associated with a specific set of keywords, 
enabling the seamless integration of both structured and semi-
structured data into predictive modeling. This approach 
underscored the efficacy of combining NLP with machine 
learning to enhance clinical decision-making and optimize 
patient care strategies. 

Moreover, BERTopic’s ability to represent patients 
through probabilistic topic distributions makes it particularly 
well-suited for capturing subtle variations in disease severity 

and clinical presentation. This probabilistic representation 
allows the model to quantify the degree to which a patient 
aligns with multiple clinical conditions simultaneously—a 
feature that is especially important in the ICU, where patients 
often present with multiple overlapping diagnoses. By 
transforming semi-structured textual data into meaningful 
topics and encoding them as probabilistic representations, this 
study effectively leveraged the full spectrum of information 
available within electronic health records (EHRs). This 
methodology demonstrated a significant advancement over 
traditional predictive models, which typically depend solely 
on structured numerical data, thereby emphasizing the 
potential of text-driven analytics in critical care research. 
Taken together, these findings highlight that narrative clinical 
documentation is not merely supplementary information but a 
valuable and often underutilized component of ICU data. 
Integrating NLP-derived insights into predictive modeling 
enables a more holistic understanding of patient status, 
supporting the development of more sensitive and context-
aware risk prediction tools. 
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Fig. 2. Topic word scores across identified medical themes in ICU patient data. 

B. Prediction of the Mortality 

To evaluate model performance, this study employed k-fold 
cross-validation, a widely adopted technique that partitions the 
dataset into k equal subsets and iteratively trains and validates 
the model across all folds. By averaging the results across 
multiple iterations, this method mitigates bias and enhances 
predictive reliability. However, despite its advantages in 
reducing overfitting and improving generalization, k-fold cross-
validation is computationally demanding [49, 50]. In this study, 
a 10-fold cross-validation approach was implemented to develop 
mortality prediction models for 2 days, 3 days, 1 month, and 1 
year post-ICU admission, utilizing structured and semi-
structured data collected within the first 24 hours of patient 
admission. 

This design allows the model to repeatedly learn from 
different subsets of patients, improving its ability to generalize 
across heterogeneous ICU populations where disease severity 
and documentation patterns vary widely. By incorporating both 
short-term and long-term mortality outcomes, the study provides 
a comprehensive assessment of how early clinical information 
contributes to risk stratification across different temporal 
horizons. 

To build the predictive models, we combined features 
derived from both structured and unstructured data. The 16 
selected quantitative variables, capturing physiological 
measurements and demographic information, formed the 
structured data component. For the unstructured data 
component, the BERTopic model generated 10 distinct topics 

from the clinical notes (as detailed in Table IV). Each patient's 
textual data was then represented by these topics, potentially 
using the probability distribution across the 10 topics or a 
categorical variable indicating the dominant topic. These topic-
derived features were then concatenated with the 16 quantitative 
features to create a comprehensive feature vector for each 
patient. This combined feature set was used as input for the six 
machine learning classifiers described. This integration strategy 
enables the model to capture complementary sources of 
information: structured data reflect measurable physiological 
conditions, while textual data provide implicit clinical reasoning 
and contextual nuances recorded by healthcare providers. 
Notably, topic distributions generated by BERTopic often 
highlight symptom clusters, impressions of clinical instability, 
or early differential diagnoses, all of which offer predictive 
signals not present in numeric variables. 

Crucially, to enable this comparative analysis evaluating the 
impact of text features, the patient cohort included in the 
modeling was necessarily limited to those individuals 
possessing available and processable clinical notes within the 
NOTEEVENTS dataset. Comorbidities are implicitly captured 
within both the quantitative variables (e.g., lab results reflecting 
organ function) and the clinical notes from which the topics were 
derived. This also implies that the inclusion of text-based 
features may reduce noise introduced by incomplete structured 
data, as clinical notes frequently summarize underlying chronic 
conditions that may not be fully captured in early laboratory 
measurements. 
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For model training and evaluation, the dataset was divided 
into 80% training data and 20% testing data to ensure robust 
performance assessment. A series of statistical analyses were 
conducted to examine the impact of integrating structured EHR 
data with textual features on ICU mortality prediction. The 
evaluation framework incorporated five key performance 
metrics: AUROC, accuracy, precision, recall, and F1-score, 
providing a comprehensive assessment of predictive capability 
and model robustness. Table V presents a summary of the 
model's predictive performance across different time intervals, 
demonstrating its effectiveness in capturing patient mortality 

risk over various post-admission periods. Using multiple 
performance metrics is essential because ICU mortality 
prediction involves imbalanced outcomes where AUROC alone 
may not fully reflect the model’s clinical utility. Precision and 
recall help reflect how well the model identifies high-risk 
individuals while avoiding false alarms, which is crucial for ICU 
resource allocation. The consistent improvements across several 
metrics further indicate that textual features enhance not only 
discrimination but also the stability and reliability of the 
predictive models across different classifiers. 

TABLE V.  PERFORMANCE OF THE MODELS 

  AdaBoost 
Gradient 

Boosting 
SVC Bagging 

Logistic 

Regression 

MLP 

Classifier 

Without 

BERTopic 

Data  

2-Days 0.8852 ± 0.0041 0.8823 ± 0.0048 0.8997 ± 0.0112 0.8851 ± 0.0142 0.8955 ± 0.0152 0.8457 ± 0.0304 

3-Days 0.8153 ± 0.0157 0.8129 ± 0.0214 0.8252 ± 0.0153 0.8113 ± 0.0179 0.8228 ± 0.0135 0.7998 ± 0.0063 

1-Month 0.7834 ± 0.0038 0.785 ± 0.0057 0.7715 ± 0.0095 0.782 ± 0.0088 0.769 ± 0.0081 0.7801 ± 0.007 

1-Year 0.7862 ± 0.0039 0.7859 ± 0.0025 0.7711 ± 0.0053 0.7832 ± 0.0065 0.7667 ± 0.0033 0.7768 ± 0.007 

With  

BERTopic 

Data  

2-Days 0.901 ± 0.0167 0.8995 ± 0.013 0.9137 ± 0.0054 0.9038 ± 0.0113 0.9097 ± 0.0049 0.8487 ± 0.0199 

3-Days 0.8332 ± 0.0097 0.8314 ± 0.0057 0.8422 ± 0.0089 0.8372 ± 0.0065 0.846 ± 0.0076 0.8063 ± 0.0136 

1-Month 0.7927 ± 0.0003 0.7935 ± 0.0022 0.7705 ± 0.0032 0.7822 ± 0.0071 0.7682 ± 0.0002 0.7957 ± 0.0047 

1-Year 0.7874 ± 0.005 0.7909 ± 0.003 0.7697 ± 0.0082 0.7799 ± 0.0074 0.7652 ± 0.0069 0.7845 ± 0.0012 

  

  

  

Fig. 3. Bar chart of machine learning model performance: With and without BERTopic data . 
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The study results demonstrate that AUROC is a vital metric 
for assessing a model's ability to differentiate between varying 
risk levels, particularly for identifying high-risk ICU patients 
who require timely intervention. Incorporating BERTopic data 
significantly improved the AUROC for all models in short-term 
predictions (2-day and 3-day). Notably, the AUROC of the SVC 
model increased from 0.8997 to 0.9137, highlighting the 
enhanced discriminatory power provided by BERTopic data for 
identifying high-risk patients. As depicted in Fig. 3, a 
comparison of machine learning model performance with and 
without BERTopic data underscores these improvements. 

These findings suggest that early clinical notes capture 
subtle indicators of deterioration, such as mentions of 
respiratory distress, mental status fluctuation, or clinician 
concern that structured variables may not immediately reflect. 
The added predictive value in short-term outcomes highlights 
the importance of leveraging semi-structured data during the 
earliest stages of ICU care, when timely risk detection can 
meaningfully influence clinical decision-making and patient 
outcomes. 
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Fig. 4. AUROC curves for different experimental conditions. 
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The overall AUROC for short-term predictions was higher 
than that for long-term predictions, suggesting that the models 
are more effective in distinguishing between high- and low-risk 
patients over shorter timeframes. However, for long-term 
predictions (1 month and 1 year), the impact of BERTopic data 
was less pronounced, with only minor improvements observed 
in model performance. For instance, the AUROC of the Gradient 
Boosting model increased slightly from 0.785 to 0.7935, 
indicating a modest enhancement. Fig. 4 illustrates AUROC 
curves under different experimental conditions, further 
corroborating these findings. 

These results emphasize the potential of integrating 
numerical and text-based data to significantly enhance short-
term prediction accuracy, particularly for early risk assessment 
in ICU patients. This insight is invaluable for healthcare 
professionals in optimizing resource allocation and intervention 
strategies. However, the limited improvement in long-term 
predictions indicates challenges in differentiating risk levels 
over extended periods. Future research should focus on 

incorporating additional data sources or exploring novel 
techniques to enhance long-term prediction performance. 

In this study, alongside AUROC, which measures the 
model's ability to discriminate between classes, we evaluated its 
practical applicability using four additional performance 
metrics: Accuracy, Recall, Precision, and F1-score. 
Collectively, these metrics deliver a comprehensive assessment 
of the models' predictive performance, encompassing both 
overall accuracy and their effectiveness in precisely identifying 
high-risk patients. As shown in Table VI, the incorporation of 
BERTopic data led to significant improvements in model 
performance, particularly in short-term predictions (2-day and 
3-day). For example, the Accuracy of the Gradient Boosting 
model for 2-day predictions increased from 0.9339 to 0.9409, 
highlighting the positive impact of integrating text data. Across 
all models, Accuracy was generally higher for short-term 
predictions compared to long-term ones, reflecting the models' 
greater precision in shorter timeframes. 

TABLE VI.  COMPARISON OF MACHINE LEARNING MODEL PERFORMANCE: WITHOUT AND WITH BERTOPIC DATA 

 

Time 

Perio

d 

Metrics AdaBoost 
Gradient 

Boosting 
SVC Bagging 

Logistic 

Regression 

MLP 

Classifier 

Without 

BERTopic 

Data  

2-

Days 

Precision 0.1155 ± 0.0065 0.1257 ± 0.0055 0.0875 ± 0.0057 0.081 ± 0.0056 0.0865 ± 0.0052 0.0956 ± 0.0193 

Recall 0.8433 ± 0.0099 0.8295 ± 0.0099 0.9058 ± 0.0238 0.883 ± 0.0305 0.8977 ± 0.0339 0.7773 ± 0.0722 

F1 0.2032 ± 0.0102 0.2183 ± 0.0081 0.1596 ± 0.0099 0.1484 ± 0.0098 0.1578 ± 0.0092 0.1694 ± 0.0301 

Accurac

y 
0.9262 ± 0.0045 0.9339 ± 0.0009 0.8937 ± 0.0012 0.8871 ± 0.0019 0.8933 ± 0.0032 0.9126 ± 0.018 

3-

Days 

Precision 0.1354 ± 0.0105 0.1298 ± 0.0082 0.1092 ± 0.0045 0.1182 ± 0.0092 0.1011 ± 0.0031 0.1122 ± 0.0104 

Recall 0.7335 ± 0.0419 0.7335 ± 0.0497 0.7915 ± 0.0387 0.7447 ± 0.0465 0.8011 ± 0.0317 0.7278 ± 0.0337 

F1 0.2281 ± 0.0133 0.2202 ± 0.0112 0.1918 ± 0.0062 0.2037 ± 0.013 0.1795 ± 0.0047 0.194 ± 0.0144 

Accurac

y 
0.8935 ± 0.0099 0.8889 ± 0.0072 0.8574 ± 0.0073 0.8751 ± 0.0112 0.8436 ± 0.004 0.8687 ± 0.0225 

1-

Month 

Precision 0.2729 ± 0.0031 0.2689 ± 0.0068 0.247 ± 0.0023 0.2583 ± 0.01 0.2402 ± 0.0032 0.233 ± 0.0067 

Recall 0.7441 ± 0.0087 0.7532 ± 0.0083 0.7466 ± 0.0252 0.7592 ± 0.016 0.7501 ± 0.0222 0.7941 ± 0.0133 

F1 0.3994 ± 0.0045 0.3963 ± 0.0086 0.3712 ± 0.0055 0.3853 ± 0.0126 0.3639 ± 0.0056 0.3602 ± 0.009 

Accurac

y 
0.8163 ± 0.0031 0.8115 ± 0.0037 0.7925 ± 0.0038 0.8011 ± 0.0052 0.7847 ± 0.0038 0.7684 ± 0.0035 

1-Year 

Precision 0.2778 ± 0.0108 0.2761 ± 0.0121 0.2554 ± 0.012 0.2618 ± 0.0135 0.2446 ± 0.0133 0.247 ± 0.0415 

Recall 0.7579 ± 0.0122 0.7595 ± 0.0141 0.7474 ± 0.0158 0.7711 ± 0.0145 0.7524 ± 0.0076 0.789 ± 0.0571 

F1 0.4063 ± 0.01 0.4047 ± 0.0113 0.3805 ± 0.0133 0.3908 ± 0.0161 0.369 ± 0.0155 0.3727 ± 0.0411 

Accurac

y 
0.8096 ± 0.0041 0.8078 ± 0.0083 0.7908 ± 0.0038 0.7932 ± 0.0023 0.7786 ± 0.0049 0.7666 ± 0.0467 

With 

BERTopic 

Data  

2-

Days 

Precision 0.1199 ± 0.0046 0.1399 ± 0.0046 0.085 ± 0.0043 0.0833 ± 0.0062 0.0867 ± 0.0037 0.1007 ± 0.0149 

Recall 0.8727 ± 0.0323 0.8571 ± 0.0268 0.9391 ± 0.0144 0.9196 ± 0.0284 0.9272 ± 0.0144 0.7752 ± 0.0475 

F1 0.2107 ± 0.0072 0.2404 ± 0.0061 0.1558 ± 0.0072 0.1527 ± 0.0105 0.1586 ± 0.0064 0.1776 ± 0.0228 

Accurac

y 
0.9287 ± 0.0014 0.9409 ± 0.0017 0.8888 ± 0.0036 0.8883 ± 0.0061 0.8925 ± 0.0044 0.9206 ± 0.0102 

3-

Days 

Precision 0.1426 ± 0.0068 0.1439 ± 0.0042 0.1127 ± 0.0044 0.1238 ± 0.0069 0.1078 ± 0.0047 0.114 ± 0.015 

Recall 0.7716 ± 0.0185 0.7662 ± 0.0108 0.833 ± 0.0198 0.8034 ± 0.0109 0.8518 ± 0.0158 0.7479 ± 0.0555 

F1 0.2407 ± 0.0106 0.2423 ± 0.0064 0.1986 ± 0.0074 0.2144 ± 0.0107 0.1914 ± 0.0077 0.1969 ± 0.0202 

Accurac

y 
0.8921 ± 0.0015 0.8938 ± 0.0035 0.8511 ± 0.0016 0.8694 ± 0.0039 0.8405 ± 0.0014 0.862 ± 0.0267 

1-

Month 

Precision 0.2799 ± 0.0088 0.2789 ± 0.0098 0.2488 ± 0.0023 0.2568 ± 0.0005 0.2384 ± 0.0044 0.2894 ± 0.0079 

Recall 0.7613 ± 0.0038 0.7646 ± 0.0103 0.7423 ± 0.0032 0.7626 ± 0.0109 0.7522 ± 0.0039 0.7595 ± 0.0169 

F1 0.4092 ± 0.0092 0.4086 ± 0.0092 0.3726 ± 0.0021 0.3842 ± 0.0011 0.362 ± 0.0053 0.4189 ± 0.0066 

Accurac

y 
0.8188 ± 0.0035 0.8176 ± 0.005 0.794 ± 0.0052 0.7985 ± 0.0042 0.7816 ± 0.0034 0.826 ± 0.0127 

1-Year 

Precision 0.2886 ± 0.0005 0.2891 ± 0.0027 0.2603 ± 0.0077 0.2683 ± 0.0084 0.2475 ± 0.0061 0.2781 ± 0.0051 

Recall 0.7536 ± 0.0155 0.7622 ± 0.0084 0.7427 ± 0.0192 0.7594 ± 0.01 0.7498 ± 0.0161 0.7585 ± 0.0076 

F1 0.4173 ± 0.0019 0.4192 ± 0.0032 0.3855 ± 0.0102 0.3964 ± 0.0105 0.3722 ± 0.0086 0.407 ± 0.0046 

Accurac

y 
0.8152 ± 0.0049 0.8145 ± 0.0052 0.7921 ± 0.0042 0.7969 ± 0.0059 0.7779 ± 0.003 0.8059 ± 0.0043 
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Based on the data in Table VI, the Recall metric highlights 
the models' ability to correctly identify actual positive cases, 
such as ICU patient mortality. In healthcare, particularly in 
critical care settings, Recall is crucial as it ensures the detection 
of all high-risk patients, allowing for timely interventions. The 
table shows that adding BERTopic data substantially increased 
Recall in short-term predictions. For example, the SVC model’s 
Recall improved from 0.9058 to 0.9391 for 2-day predictions, 
while Bagging's Recall rose from 0.883 to 0.9196. However, the 
improvements were less pronounced for longer timeframes, with 
relatively stable performance for 1-month and 1-year 
predictions. This suggests that while BERTopic data 
significantly enhances short-term predictive performance, its 
impact on long-term predictions is more limited. 

C. Analysis of Variable Importance 

A key advantage of the Gradient Boosting (GB) method is 
its capability to assess the relative contribution of input variables 
in predictive modeling. This is achieved through the 
computation of variable importance scores, which rank features 
based on their influence on model performance. These scores 
indicate how significantly each variable impacts decision-
making within the model, with higher importance assigned to 
variables frequently utilized in decision tree splits. 

In Gradient Boosting, the importance of a variable is 
determined by evaluating the increase in the decision tree’s 
value at a given split point, adjusted by the number of samples 
at that node. Several established metrics, including the Gini 
index, cross-entropy, and information gain, can be used to 
measure decision tree value changes. This study employed the 
Gini index to quantify variable significance, ensuring a 
consistent and interpretable ranking approach. For a 
comprehensive discussion on variable importance calculations 
in GB models, readers may refer to Hastie et al. [51]. Table VII 
presents the importance scores derived from the optimal 
Gradient Boosting model, which was trained using ICU patient 
data collected within the first 24 hours post-admission.  

Table VII highlights the key variables selected for predicting 
both short-term and long-term mortality in ICU patients using 
the GB method. The analysis reveals that different variables 
contribute uniquely to mortality prediction across various 
timeframes (2 days, 3 days, 1 month, and 1 year). For short-term 
mortality (2 and 3 days), the Glasgow Coma Scale (X10) 
consistently emerges as the most significant variable, 
underscoring its critical role in assessing patient consciousness 
and predicting immediate outcomes in ICU settings. Other 
important indicators for short-term predictions include White 
Blood Cell Count (X6) and Heart Rate (X2), which are essential 
for evaluating acute physiological conditions, including 
infections and potential cardiac issues. In contrast, long-term 
mortality predictions (1 month and 1 year) are dominated by 
heart-related factors such as Heart Rate (X2) and Systolic Blood 
Pressure (X3), reflecting the sustained impact of cardiovascular 
health on patient outcomes over extended periods. Additionally, 
age (X1) and temperature (X4) gain prominence in long-term 
predictions, as chronic health conditions and the regulation of 
body temperature become increasingly relevant to survival. 

TABLE VII.  TEN VARIABLES IDENTIFIED FROM 24-HOUR DATASETS 

 

Order of 

Variable 

Importance 

Short-Term 

Mortality 

Long-Term 

Mortality 

2 Days 3 Days 1 month 1 year 

Without 

BERTopic 

Data 

1 X10 X10 X2 X2 

2 X6 X6 X6 X6 

3 X2 X2 X10 X4 

4 X4 X1 X5 X9 

5 X1 X3 X3 X10 

6 X5 X9 X4 X1 

7 X3 X4 X7 X5 

8 X8 X8 X1 X3 

9 X7 X5 X9 X7 

10 X9 X7 X8 X8 

With 

BERTopic 

Data 

1 X10 X10 X10 X10 

2 X6 X1 X2 X4 

3 X1 X2 X4 X6 

4 X4 X4 X1 X2 

5 X3 X6 X6 X1 

6 X2 
TOPIC 

1 
X5 X9 

7 
TOPIC 

1 

TOPIC 

2 
X3 X5 

8 
TOPIC 

0 
X9 

TOPIC 

1 
X3 

9 X8 X7 
TOPIC 

0 

TOPIC 

1 

10 X9 X3 X8 X8 

The integration of topic modeling data (such as Topic 1 and 
Topic 0) into the variable importance rankings underscores the 
importance of textual clinical notes in enhancing model 
performance, particularly for predicting long-term mortality. 
These topics encompass critical health domains such as 
cardiovascular health (Topic 0), head trauma (Topic 1), and 
abdominal and pancreatic disorders (Topic 2). The emergence 
of these text-derived topics as important predictors, particularly 
demonstrating notable influence in long-term mortality 
predictions (as seen for Topic 0 and Topic 1 in Table VII), 
underscores their value in capturing complex patient narratives 
and underlying conditions that evolve beyond immediate 
physiological measurements. The GB method's variable 
importance analysis underscores the relevance of immediate 
physiological indicators like GCS and WBC in short-term 
predictions, while long-term mortality is influenced by a 
combination of age, cardiovascular health, and text-based 
clinical information. This analysis provides valuable insights 
into ICU patient care, allowing healthcare professionals to focus 
on the most critical variables for improving predictive accuracy 
across different time horizons. 
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IV. DISCUSSION 

A. Principal Findings 

This study illustrates the transformative potential of 
combining text mining techniques, such as BERTopic, with 
machine learning models to predict ICU patient outcomes. The 
key findings of the research are as follows. 

1) Enhanced short-term predictions with BERTopic 

integration: Incorporating BERTopic data into machine 

learning models significantly improved short-term mortality 

predictions (2-day and 3-day). For example, the AUROC of the 

SVC model increased from 0.8997 to 0.9137, indicating an 

enhanced ability to discriminate between high- and low-risk 

patients. This enhancement stems from BERTopic's ability to 

capture rich contextual information embedded within clinical 

notes, such as clinician assessments of severity, nuanced 

descriptions of patient status, and evolving treatment plans, 

which often provide complementary insights beyond structured 

physiological data. This is particularly crucial for short-term 

outcomes where acute changes documented in free text are 

highly indicative of immediate risk. 

2) Superior predictive performance in short-term 

predictions compared to long-term: Across all models, short-

term predictions consistently outperformed long-term 

predictions (1-month and 1-year) in metrics such as AUROC, 

accuracy, recall, and F1-score. The reduced predictive accuracy 

over longer timeframes suggests that while models effectively 

identify immediate risks, long-term mortality predictions 

require additional variables or more refined methodologies to 

enhance performance [52]. 

3) Significance of physiological variables in predictive 

models: Analysis of variable importance using the Gradient 

Boosting method revealed that physiological variables, such as 

the Glasgow Coma Scale, White Blood Cell Count, Heart Rate, 

and Temperature, are essential predictors of both short-term 

and long-term ICU patient mortality [53]. The critical role of 

these variables underscores the necessity of closely monitoring 

vital signs in critical care environments. 

4) Improved mortality prediction through text data 

integration: Incorporating topic modeling data derived from 

clinical notes, such as those related to cardiovascular health and 

head trauma, significantly enhanced mortality predictions [54]. 

This finding demonstrates the value of leveraging semi-

structured and unstructured data through text mining. By 

converting free text into quantifiable topic features, our 

approach unlocked clinical insights related to complex patient 

conditions and care trajectories, often overlooked by traditional 

models relying solely on numerical data [55]. 

By integrating text mining and machine learning, this 
approach provides a deeper understanding of patient conditions, 
enhancing predictive accuracy and supporting more effective 
clinical decision-making. Leveraging both structured and 
unstructured data improves the ability to capture critical 
insights, facilitating personalized care and timely interventions 
in the complex environment of critical care settings. These 

improvements directly contribute to resilient healthcare by 
strengthening early risk recognition and enabling more adaptive 
and timely responses in critical care settings. 

B. Limitations 

Despite the encouraging findings, this study has several 
limitations that must be acknowledged. While the MIMIC-III 
database is comprehensive, it originates from a single healthcare 
system, which may limit the generalizability of the developed 
models. Recalibration may be necessary when applying these 
models to different ICU settings, where variations in patient 
populations, clinical practices, and treatment protocols can 
influence model performance in real-world applications [56]. 
Differences in patient demographics and resource availability 
further highlight the need for external validation. Furthermore, 
the exclusion criteria based on missing data percentages (>30% 
for patient records, >40% for predictors) might introduce 
selection bias. A formal analysis comparing the characteristics 
of the excluded patient population with the included cohort was 
not performed in this study and represents a limitation. 

Moreover, direct numerical comparison of performance 
metrics (e.g., AUROC, Accuracy) with previously published 
studies, including those also utilizing MIMIC-III, is often 
challenging and potentially misleading. This difficulty arises 
from inherent variations in specific patient cohort selection 
criteria (especially regarding text availability), the precise 
feature sets utilized, differing text processing techniques (e.g., 
alternative NLP models or embeddings), distinct prediction 
target definitions, and varying evaluation protocols across 
research efforts. Additionally, although the incorporation of text 
data improved model accuracy, this study analyzed only a subset 
of the textual information available in the MIMIC-III database. 
Key clinical data, such as imaging reports, physician progress 
notes, and detailed medication histories, were not included in the 
analysis. Expanding the scope of semi-structured data could 
enhance the predictive accuracy of models, particularly for long-
term mortality predictions. 

While short-term mortality predictions showed substantial 
improvements, the performance gains for long-term predictions 
(1-month and 1-year) were comparatively modest. Long-term 
outcomes are inherently complex and likely require the 
inclusion of additional variables, such as clinical, social, and 
environmental factors, to enhance predictive accuracy [57, 58]. 
Furthermore, long-term trajectories are influenced by factors 
extending beyond the initial 24-hour ICU data and clinical notes, 
such as progression of chronic conditions, intercurrent events, 
post-discharge care, and socioeconomic factors not fully 
captured in MIMIC-III. The predictive signal from initial text 
data may also diminish over extended periods. These findings 
underscore the necessity of investigating additional long-term 
predictors to improve modeling in critical care contexts. 

The integration of advanced text mining techniques, such as 
BERTopic, with machine learning models introduces significant 
computational challenges. Extracting topics from clinical notes 
and incorporating them into predictive models requires 
substantial processing power, which may hinder the real-time 
application of these methods in clinical settings. While cross-
validation was employed to reduce the risk of overfitting, 
concerns remain about the models' ability to generalize to new 
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patient populations, particularly due to the high dimensionality 
of text data. Future research should focus on enhancing 
generalizability by validating these models on larger and more 
diverse datasets (e.g., multi-center data like MIMIC-IV or 
eICU), as well as employing advanced regularization strategies 
or transfer learning techniques. Overcoming these challenges 
will be essential for developing predictive models that are both 
accurate and robust, enabling their effective deployment in 
critical care environments [59]. 

V. CONCLUSION 

This study investigated the integration of advanced text 
mining techniques, specifically the BERTopic model, with 
machine learning algorithms to enhance the prediction of ICU 
patient outcomes. By leveraging semi-structured data from 
clinical notes alongside structured numerical data, the research 
demonstrated that combining these data types significantly 
improves the accuracy and robustness of predictive models, 
especially for short-term mortality prediction. These findings 
highlight several key conclusions: 

The incorporation of BERTopic data significantly enhanced 
short-term mortality prediction, particularly for 2-day and 3-day 
outcomes. By integrating semi-structured clinical notes into 
machine learning models, the study achieved improved AUROC 
and accuracy scores, underscoring the critical role of text data in 
early ICU care. Often underutilized in predictive modeling, 
semi-structured data provided essential clinical context that 
improved the models’ ability to identify high-risk patients, 
enabling more timely and effective interventions [60]. This 
contextual information, capturing clinical reasoning and 
nuances absent in structured data, served as a valuable 
complement to traditional predictors. Additionally, 
physiological variables such as the Glasgow Coma Scale, White 
Blood Cell Count, and Heart Rate were identified as crucial 
predictors for both short-term and long-term mortality. These 
findings emphasize the importance of continuous monitoring of 
these indicators to improve outcomes for ill patients. Although 
the predictive improvements for long-term mortality (1-month 
and 1-year) were relatively modest, the integration of text-based 
clinical insights through topic modeling provided valuable 
contributions to understanding patient conditions over extended 
periods. These findings highlight the potential of natural 
language processing techniques, such as BERTopic, to augment 
structured data and improve long-term predictive accuracy. 

This study also underscores the broader applications of AI 
and big data in clinical decision-making and resource allocation, 
offering healthcare providers advanced tools to enhance patient 
outcomes and optimize ICU resource management [61]. By 
improving early risk recognition and supporting more adaptive 
clinical responses, these AI-driven predictive frameworks 
contribute directly to resilient healthcare in ICU environments. 
Looking ahead, future research should prioritize larger datasets, 
cross-institutional validation, and the incorporation of additional 
clinical variables and potentially longitudinal or richer textual 
sources (e.g., full progress notes and radiology reports) to further 
refine and generalize predictive models for ICU patient 
outcomes [62]. The integration of structured numerical data and 
semi-structured text, processed using advanced text mining 
techniques such as BERTopic, represents a promising avenue 

for improving ICU outcome prediction and strengthening data-
driven clinical practice. As multimodal AI continues to evolve, 
its capacity to strengthen resilience in critical care systems 
through earlier detection, more precise triage, and timely 
intervention will become increasingly central to improving 
patient outcomes. 
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APPENDIX A 

TABLE VIII.  SELECTED QUANTITATIVE PREDICTORS WITH CORRESPONDING INFORMATION GAIN 

Variable Feature Item Name Information Gain Item ID Table 

X1 Age Age 0.1555  Admissions 

X2 Heart Rate Heart Rate 0.3602 
211 

220045 
Chartevents 

X3 Systolic Blood Pressure Noninvasive Systolic Blood Pressure 0.2702 
455 

220179 
Chartevents 

X4 Temperature 
Temperature Fahrenheit 

Temperature Celsius 
0.4681 

678 

223761 

676 

223762 

Chartevents 

X5 Blood Urea Nitrogen Blood Urea Nitrogen 0.2172 51006 Labevents 

X6 White Blood Cells Court White Blood Cells 0.4725 
51301 

51300 
Labevents 

X7 Potassium Level Potassium 0.2287 
50971 

50822 
Labevents 

X8 Sodium Level Sodium 0.2486 50983 Labevents 

X9 Serum Bicarbonate Level Bicarbonate 0.0954 50882 Labevents 

X10 Glasgow Coma Scale 

GCS Verbal 

Verbal Response 

GCS Motor 

Motor Response 

GCS Eyes 

Eye Opening 

0.4340 

223900 

723 

223901 

454 

220739 

184 

Chartevents 

X11 Gender Gender 0.0104  Admissions 

X12 Admission Type Admission Type 0.0184  Admissions 

 


