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Abstract—To address the challenges of low accuracy and high
randomness in short-term hydroelectric load forecasting within
Multi-energy Coupled Virtual Power Plants (MC-VPPs), this
study proposes a hybrid model integrating Variational Mode
Decomposition (VMD), Long Short-Term Memory (LSTM)
networks, and an Improved Sparrow Search Algorithm (ISSA).
Traditional methods, such as exponential smoothing and multiple
linear regression, often fail to capture nonlinear dynamics and
external disturbances. The proposed framework first decomposes
raw load data into four intrinsic mode functions IMFs) via VMD
to extract multi-scale features, including long-term trends,
seasonal cycles, and short-term fluctuations. LSTM networks are
then applied to model the temporal dependencies of each IMF.
To enhance optimization, ISSA introduces a bidirectional sine-
cosine search strategy, balancing global exploration and local
exploitation to avoid premature convergence. Validated on 1,247
daily load records from a hydropower station in southwestern
China, the ISSA-VMD-LSTM model achieves a 30.2%
improvement in R?, with reductions of 47.2% in RMSE, 47.8% in
MAE, and 63.3% in MAPE, outperforming benchmarks like
PSO-LSTM and SSA-VMD-LSTM. This demonstrates its
robustness in handling nonlinearity and stochasticity. The model
enhances MC-VPPs’ operational efficiency by enabling
intelligent scheduling and renewable energy integration, with
future applications extending to real-time forecasting and other
renewable energy systems.

Keywords—Power  plant; load  forecasting; Mode
Decomposition; Long Short-Term Memory; Sparrow Search
Algorithm

I.  INTRODUCTION

The Multi-energy Coupled Virtual Power Plant [1]-[4]
plays an essential role in optimizing short-term load forecasting
for hydroelectric power. It exemplifies the deepening
integration of Energy Internet technology. By incorporating
Long Short-Term Memory networks, MC-VPP significantly
improves the accuracy of predicting power output from
hydropower stations and load demand. This algorithmic
ensemble not only captures the time-series characteristics of
electricity loads but also effectively addresses the nonlinear
impacts of hydro-meteorological factors, providing more
accurate and reliable forecast results. As a core component of
intelligent scheduling and optimized operation within MC-
VPPs, short-term load forecasting for hydroelectric power
offers robust technical support to mitigate the intermittency and
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uncertainty associated with renewable energy. It enhances the
flexibility and efficiency of power systems and introduces new
methods for managing distributed energy resources with
complex and diverse characteristics. This is significant for
promoting the widespread adoption of clean energy and
fostering the healthy development of power markets.

Current research on short-term load forecasting for
hydroelectric power has widely applied methods such as
Exponential Smoothing, Combined Forecasting, and Grey
Prediction [5]-[8]. However, these approaches are data-
dependent and constrained by underlying assumptions. As the
aggregated resources within MC-VPPs expand, short-term
hydroelectric load trends become increasingly complex.
Techniques based on Multiple Linear Regression Models [9]-
[12] have gained prominence due to their computational
efficiency and clear representation of relationships between
independent and dependent variables. Nevertheless, these
models assume a linear relationship between variables and are
sensitive to outliers, making it challenging to directly address
the dynamic characteristics [13] of time series and the
influence of external events. When using multiple linear
regression for load forecasting, it is necessary to combine other
techniques to overcome these limitations. Exponential
Smoothing assigns different weights to historical data,
allowing predictions to quickly adapt to recent changes. This
method is suitable for relatively stable load patterns but
struggles with capturing long-term dependencies and complex
nonlinear patterns, leading to a significant decrease in
prediction accuracy during extreme weather conditions. In
contrast, Combined Forecasting integrates several prediction
models to leverage each one's strengths, improving the
accuracy and robustness of forecasts. This method addresses
the complexity and nonlinearity of hydroelectric load data [14-
17], but its construction is complex, requiring the
establishment of sub-models and the determination of weights,
which increases computational costs and model tuning
challenges.

The models used for optimizing short-term load forecasting
in hydroelectric power all face issues like strict applicability
conditions or an inability to handle complex nonlinear
relationships, limiting their responsiveness to real-world
forecasting scenarios. In [18], the authors addressed the low
prediction accuracy and poor stability of LSTM neural
networks by proposing a short-term power load forecasting
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model optimized using a multi-strategy improved Golden
Jackal Algorithm [19]-[20]. This approach effectively enhances
the training efficiency and performance of LSTM [21]-24]
models, avoiding overfitting risks and achieving higher
prediction accuracy and stability compared to traditional
LSTM models.

In summary, existing studies on short-term load forecasting
for hydroelectric power have been impacted by limited usage
conditions and the inability to resolve complex relationships,
affecting prediction accuracy. To enhance this, we propose a
hybrid forecasting method based on Variational Mode
Decomposition, an improved Sparrow Search Algorithm [25]-
[27], and Long Short-Term Memory networks. The proposed
method begins by adaptively decomposing the original load
data into multiple intrinsic mode functions using Variational
Mode Decomposition. This process isolates distinct temporal
features such as long-term trends, seasonal cycles, and short-
term fluctuations, effectively mitigating mode mixing and
enhancing adaptability to nonlinear time-series data. Next, each
IMF is modeled using Long Short-Term Memory networks,
which leverage their gated mechanisms to capture complex
temporal dependencies and address the vanishing gradient
problem inherent in traditional recurrent neural networks. To
optimize model performance, an Improved Sparrow Search
Algorithm is employed to fine-tune LSTM hyperparameters.
This enhanced algorithm incorporates a bidirectional sine-
cosine search strategy to balance global exploration and local
exploitation, thereby avoiding premature convergence. The
decomposition capability of VMD enables LSTM to focus on
features at specific time scales, while ISSA further refines
parameter adaptability. Together, these components form a
cohesive framework of  “decomposition-modeling-
optimization”, significantly enhancing prediction accuracy and
stability. This approach effectively addresses the challenges of
modeling nonlinearity, stochasticity, and multi-scale
characteristics in multi-energy coupled environments.

The key contributions of this study are as follows:

e Combines Variational Mode Decomposition, Long
Short-Term Memory networks, and an Improved
Sparrow Search Algorithm, significantly enhancing the
accuracy and stability of short-term hydroelectric load
forecasting.

e Introduces a bidirectional sine-cosine search strategy
and a Good Lattice Points-based initialization strategy
to strengthen global exploration, avoid premature
convergence, and optimize LSTM hyperparameters.

e Decomposes raw load data into intrinsic mode functions
to isolate long-term trends, seasonal cycles, and short-
term fluctuations, improving the model’s adaptability to
complex nonlinear time-series data.

e Validated using real hydropower station data, the model
achieves improvements of 302% in R? 47.2% in
RMSE, 47.8% in MAE, and 633% in MAPE,
outperforming benchmarks such as PSO-LSTM [28]-
[29] and SSA-VMD-LSTM [30].
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e Supports intelligent scheduling and multi-energy
coordination in MC-VPPs, enhancing flexibility for
renewable energy integration and grid efficiency.

II. HYDROELECTRIC TIME SERIES PREDICTION MODEL

A. Working Principle of the Variational Mode Decomposition
Algorithm

To deeply investigate short-term load forecasting for
hydroelectric power in a multi-energy coupled virtual power
plant environment, it is essential to employ the Variational
Mode Decomposition algorithm to decompose the raw data
into multiple intrinsic mode functions with distinct central
frequencies and limited bandwidths, thereby achieving modal
separation of the data. The core principle of VMD lies in its
adaptive signal decomposition framework that concurrently
optimizes multiple intrinsic mode functions through a
variational approach, effectively balancing modal bandwidth
constraints and reconstruction accuracy. By constructing a
constrained variational problem, VMD iteratively extracts
compact IMFs with specific sparsity properties in the
frequency domain, where each mode is designed to concentrate
around a central frequency while maintaining minimal
bandwidth. This process continuously updates the mode and
center frequency until convergence, ensuring that the
decomposed components exhibit orthogonality in both the time
and frequency domains. The resulting IMFs demonstrate
distinct spectral separation characteristics, enabling the
isolation of underlying patterns such as seasonal variations,
random fluctuations, and operational trends from the original
hydropower load data. This decomposition mechanism
significantly enhances subsequent forecasting models by
mitigating mode mixing issues inherent in traditional signal
processing methods, while preserving critical temporal

min {25 19, |(6(0) +L)» wu®] et 12} (1)
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dependencies essential for accurate predictions in virtual power
plant environments characterized by strong multi-energy
coupling effects.

The variational problem model of this method is subject to
the following constraints:

s.t.iuk () =x(t) 2)

In the formula, u, ={u,u,,"--,u,} represents the intrinsic
mode function, w, ={w,w,,---,w,} represents the central
frequency; J(¢) is the Dirac delta function, which is used in

the computation of the Hilbert transform; K determining the
number of decomposed IMF components; J, addressing

gradient dizziness;(é(t)+itj*uk(t) performing the Hilbert
TTi

transform.

Redefine the Intrinsic Mode Function with a stricter finite
bandwidth constraint (BIMF)

Defined as:
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(1) = A (t)cos(4, (1)) 3)

The phase function ¢, (¢) is non-monotonically decreasing,
which means ¢, '(r)>0, and the amplitude 4, (f) >0 ,with the
instantaneous amplitude 4,(f) and the instantaneous frequency

w,(t):¢k'(t):% varying slowly relative to ¢, (¢) ,within
. 2
the interval [t—r,z+7] ,where r:m,uk(t) can be
k

considered as a harmonic signal with an amplitude of 4, (¥) and

a frequency of ,(¢) .

The expression for the Hilbert transform is the result of
convolving the original signal with a specific kernel. After
applying the Hilbert transform to the signal, the positive
frequency components are multiplied by -j, which means that
under the condition of maintaining the same amplitude, the

phase is shifted by —% . For the negative frequency

components, the phase is shifted by %

Through spectral analysis, we validate the frequency
separation characteristics of individual Intrinsic Mode
Functions. Quantitative evaluation using statistical measures
like sample entropy reveals distinct complexity patterns - lower
entropy values indicate stable trend components while higher
entropy corresponds to stochastic fluctuations. Temporal
correlation analysis between IMFs and established physical
mechanisms/external drivers enables identification of specific
modal functions demonstrating significant associations with
extreme weather events. The orthogonal validation further
confirms the temporal-frequency independence among
decomposed components, effectively preventing mode mixing.
This  rigorous decomposition process ensures both
mathematical validity and physical interpretability, providing
reliable inputs for subsequent LSTM modeling.

B. LSTM Model

LSTM is a variant of the Recurrent Neural Network (RNN)
commonly used for handling tasks related to time series data.
When training a typical neural network model, the computation

is usually represented ass= f(W'X +b), where W represents
the weights, X is the input, and b is the bias term. A common
LSTM structure is shown in Fig. 1.

x, represents the input data at each time step, 4, is the
output at each time step, and the intermediate ¢, is the long-
term memory between cells.
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Fig. 1. LSTM structure diagram.

An LSTM includes a forget gate, an input gate, and an
output gate. Fach gate requires a computation similar to the
one mentioned above, in addition to calculating the current
state. Compared to the structure of an RNN, an LSTM cell is
more complex, incorporating fully connected layers with
activation functions in its gate structures. These gates output
values between 0 and 1, indicating the degree to which feature
information should be retained (0 means retain, 1 means
discard). This gated structure enables LSTMs to maintain a
stable gradient flow across extended time horizons while
adaptively managing sequential information retention and
suppression. The output of the forget gate is defined as f,, the

output of the input gate as i, , the candidate value for memory

update as ¢, and the output of the output gate as o, .

The forget gate f, selects information from the previous

cell state ¢, ;:

Ji=oW, [h,x]1+b,) 4

The input gate determines how much of the current
network input x,is to be saved in the cell state c, :

i, =cW,[h_,x]+b) %)

Input G .
¢ =tanh(W, -[h,_,x,]+b,) (6)

The output gate controls how much of the cell state is
output to the current LSTM output value 4, :

0, =c(W,-[h_,x]+b,) (7)
,W,-,Wc ’Wo are weight matrices, and b, ’b[ ,bc ,bo are
[hz—l’xz]

I/V/.

bias terms. denotes the concatenation of the hidden
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state h, and the input state * along the horizontal axis. o

represents the sigmoid function, and tanh represents the
hyperbolic tangent function.

The LSTM model updates its weights using the
backpropagation algorithm to minimize prediction error. The
backpropagation process for LSTM mainly includes the
following steps:

1) Definition of the loss function: Define a loss function
based on the task type (e.g., classification or regression).
Common loss functions include cross-entropy for
classification tasks and mean squared error for regression
tasks. This function measures the prediction error of the
model.

2) Backpropagation to compute gradients: Use the
Backpropagation Through Time (BPTT) algorithm to
propagate the error gradient backward from the last time step
to the first. Each gate (forget gate, input gate, output gate) in
the LSTM network participates in the error propagation,
gradually computing the gradient for each parameter. BPTT is
suitable for sequential data, and due to the gating structure of
LSTM, the vanishing gradient problem is alleviated to some
extent.

3) Gradient clipping: Due to the potential for gradient
explosion in long sequences, gradient clipping techniques
limit the size of the gradients, ensuring they do not exceed a
certain threshold. This prevents overly large gradients from
causing unstable training.

4) Weight update: LSTM uses gradient descent to update
the weight matrices, optimizing the model parameters to
reduce the value of the loss function.

In practical applications, an LSTM learn effective patterns
in sequence data through backpropagation and gradient
updates. This training process enables LSTM to achieve good
performance on various sequence prediction tasks, particularly
excelling in handling long-term dependencies. By decoupling
memory retention from hidden state updates, LSTMs achieve
superior performance in leaming complex temporal dynamics
compared to conventional RNNs, particularly when handling
intermittently sampled or irregularly spaced time series data
common in multi-energy virtual power plant environments.

C. Sparrow Search Algorithm

The Improved Sparrow Search Algorithm introduces two
main upgrades to the traditional SSA. First, it adopts a Good
Lattice Points strategy for population initialization, replacing
random placement to ensure sparrow positions are evenly
distributed across the search space. This adjustment accelerates
convergence and reduces the likelihood of solutions becoming
trapped in local optima due to uneven initialization. Second,
ISSA incorporates a Bidirectional Sine-Cosine Search Strategy
to update discoverer positions. By alternating between forward
and reverse search phases, the algorithm maintains a balance
between broad exploration and refined exploitation. The
forward phase steers individuals toward current optimal
solutions, while the reverse phase drives exploration into
uncharted regions, effectively curbing premature convergence.
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Together, these enhancements strengthen the algorithm’s
ability to tackle complex nonlinear challenges in load
forecasting, delivering higher optimization accuracy and
adaptability.

The Traditional Sparrow Search Algorithm initializes the
sparrow population using a random distribution method, which
results in randomness in the population distribution and can
easily lead to SSA getting trapped in local optima. To address
this issue, this study introduces an initialization strategy based
on good lattice points for optimizing the initial positions of the
sparrows, thereby improving the convergence accuracy and
speed of the algorithm. The principle behind this approach is as

follows: In the D-dimensional Euclidean space G, , where
reG, , the lattice

good point set

Py = ({5 -k} {7k} - k}) - for

—l+e

1<k<n .the

discrepancy is ¢(n)=C(r,&)n"°, where C(r,£) is a constant

related to » and ¢ , P.(k) represents the set of good lattice

points. Additionally, in this study, = 2cos[2k—”j JA<k<n,
p

where p is the smallest prime number satisfying (1)—2_3) >D
.Therefore, the initialization strategy based on good lattice
points can be expressed as follows:

x,(k)=(up, Ip,)- (P, ()} +1Ip, (7)

The SSA is prone to premature convergence during the
position update process, which can result in solutions getting
trapped in local optima rather than finding the global optimum.
To address this issue, a bidirectional sine cosine search strategy
has been introduced. This strategy enhances exploration by
defining both forward and reverse searches, thereby expanding
the local search methods. In the forward search, the current
individual is guided toward the current optimal individual,
emphasizing the swarm's ability to autonomously approach the
global optimum as iterations progress. Conversely, the reverse
search encourages the swarm to explore regions beyond the
current optimal area, demonstrating a stronger selectivity for
uncharted territories. The initialization strategy based on Good
Lattice Points ensures that the initial population is uniformly
distributed in the high-dimensional search space, mitigating the
risk of region omission caused by random initialization. This
global coverage characteristic, combined with dynamic search
direction adjustments, significantly reduces the algorithm’s
sensitivity to local optima and enhances global optimization
efficiency in complex nonlinear problems. The enhanced
position update formula for the discoverer is defined as
follows:

X! [sing;|+ 7, -sing; -‘x‘ Xy — X, 4x,’_,‘
R, <ST,R 205
e ) . .
X5 = x,_,~‘cos;3‘—r4-cosr,4‘x\-xm,\_,—x:~x,‘/‘
\R,>ST,R >0.5
‘
X, +Q-L..R,>ST 9)
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In this algorithm, x; ; represents the position of the current
generation sparrow, x, , while denotes the position of the best
sparrow found so far at iteration t. R,R, €[0,1], where R, is

the vigilance factor, and ST €[0.5,1]is the safety threshold. Q
is a random number following a normal distribution, and L is a
unit vector with 7,7, €[0,27] and 7,7, €[0,z], which are used

to determine the movement distance and search direction for
the next generation of sparrows. The expressions
x,=—nm+27n(l-7) and x, =—7+27 define specific positions,
where 7 is the golden ratio coefficient. The optimization of the
safety threshold (ST) and vigilance factor is grounded in multi-
objective trade-offs and sensitivity analysis. The ST is
determined through statistical analysis of historical
experimental data, with its value balancing population
convergence speed and escape capability: an excessively high
ST would suppress the exploratory nature of reverse search,
while an overly low ST may induce ineffective perturbations.
The vigilance factor is configured based on problem
dimensionality and solution space characteristics. Its dynamic
range is adjusted through grid search and cross-validation to
prioritize global exploration during early iterations and
progressively strengthen local exploitation in later stages. The
parameter optimization process integrates convergence
validation and error sensitivity testing, ultimately yielding a
parameter combination that ensures stable generalization
capability across both training and validation sets.

Start
v

Initial hydropower
data information

L2
VMD
decomposition
|
v v L
IME(1) IMF(2) IMF(n)

v ! v
SSA-LSTM SSA-LSTM SSA-LSTM
model prediction model prediction model prediction
v ! v
Component Component Component
prediction Y1 prediction Y2 prediction Yn
Cumulative
prediction
Error analysis

results

Fig.2. Prediction process of the ISSA-VMD-LSTM model.
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D. Short-Term Load Forecasting Framework for Hydropower

The forecasting framework proposed in this study aims to
utilize historical hydropower data, achieving the goal of short-
term load forecasting by conducting a comprehensive analysis
of the correlations within these data. Fig. 2 illustrates the
overall implementation flowchart of the hybrid forecasting
model in load forecasting.

III.  CASE STUDY ANALYSIS

A. Case Study Setup

The experiment was conducted on NVIDIA GeForce RTX
4060 Laptop GPU and implemented with Python 3.8. Data
spanning from January 1, 2021, to May 1, 2024, was selected
for analysis, with a sampling interval of one day. After
integrating and screening the data, a comprehensive dataset
consisting of 1,247 data points was obtained. To address noise
and outliers in raw data, a sliding window technique integrated
with the 3 principles is implemented for anomaly
identification. Data points deviating beyond the mean +3
standard deviations range are rectified wusing linear
interpolation.

raw data

%0

@0

power generution (unit: MW)

F

2111 202211 20031/ 0211
Fig.3. Original hydropower load data.

Furthermore, consecutive data gaps resulting from
equipment failures are systematically removed to ensure data
integrity. Of these, 80% were allocated to the training set,
while the remaining 20% were reserved for the test set to
validate the final prediction outcomes of each model. In the
VMD process, it is crucial to balance the number of
decomposed modes to avoid excessive computational burden
and time costs without compromising the signal's characteristic
representation. Therefore, the number of modes, the K value,
was set to 4. Additionally, the penalty factor & was
configured to 2000, the frequency distribution initialization
was set to 1, and the convergence tolerance was established at
le-7. Fig. 3 illustrates the plot of the original data.

Mode 1

power generation (unit: MW)

mnn 211 2011 221/1

Fig. 4. Component of hydropower load decomposition of mode 1.
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Fig. 5. Component of hydropower load decomposition of mode 2.

Fig. 4 represents the primary waveform trend, which shows
an initial increase followed by a decrease in the hydropower
load from 2021 to 2023. For the period from January to May
2024, the trend exhibits a growing pattern. Fig. 5 displays a
more regular periodic variation, better reflecting the changes
on a monthly and quarterly basis. The fluctuations in Fig. 6 are
more intense, primarily capturing short-term variations. This
mode reflects short-term demand changes or the impact of
random events. The fluctuations in Fig. 7 are the most intense,
capturing instantaneous changes.

B. Case Study Metrics Description

To comprehensively evaluate the performance of the
proposed forecasting model, we utilize a combination of four
metrics: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and
the Coefficient of Determination (R?). RMSE calculates the
square root of the average of the squared differences between
the predicted and actual values, which makes it sensitive to
larger errors and provides a measure of error magnitude. MAE
measures the average of the absolute differences between
predictions and actual observations, offering a robust estimate
of overall error without heavily penalizing large discrepancies.
MAPE expresses the average of the absolute percentage errors,
making it suitable for comparing datasets of different scales,
although caution is needed due to its instability when actual
values are close to zero. Finally, R? reflects the proportion of
the variance in the dependent variable that is predictable from
the independent variables, indicating how well the model fits
the data compared to a simple mean prediction. These metrics
together provide a thorough assessment of the model's
accuracy and reliability.

In the formulas, y, denotes the actual value of the g-th
observation, y, denotes the predicted value of the g-th
observation, and G represents the total number of observations.
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Fig. 6. Component of hydropower load decomposition of mode 3.
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Fig. 7. Component of hydropower load decomposition of mode 4.

C. Result Analysis

Analysis of the data in Table I shows that the ISSA-VMD-
LSTM algorithm outperforms all other algorithms across all
evaluation metrics, achieving the highest R? and the lowest
RMSE, MAE, and MAPE. This indicates that the ISSA-VMD-
LSTM algorithm, as mentioned in this study, exhibits superior
prediction performance with greater accuracy and stability
compared to other algorithms.

TABLEL.  PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

. o

L] S =

= = |E | |E i:

s = = % ©

E 2
LSTM 0.652 | 0.235 0.201 | 0.049 O(T*N2)
PSO-LSTM | 0.752 | 0.215 0.183 | 0.042 O(P*I*T*N2)
PSO-VMD- % T
LSTM 0.851 | 0.176 0.133 | 0.031 O(K*N2+P*I[*T*N2)
SSA-VMD- N
LSTM 0.802 | 0.183 0.142 | 0.035 O(K*N2+S*T*T*N2)
ISSA-
VMD- 0.934 | 0.124 0.105 | 0.018 O(K*N2+S*I*T*N2+C)
LSTM
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Fig. 8. Fitness curve of algorithms.

Table II lists the optimal parameters for each mode.

TABLEII. OPTIMAL PARAMETERS FOR MODES

=7
2 z
g 2| & ¢ | £

= = =
g 2 E| 32| g2 & E g
= S g_ S - S N 1) = =
A < = = = = °
- = @ e g Sy ° o -
= @ 5 = Z< = 3 =2
5 © = [} = 2 s
=2 g Iy ] & o
g = 2 3 g

H
IMF1 47 22 54 53 43 0.0021 | IMF1
IMF2 20 12 46 67 87 0.0060 | IMF2
IMF3 46 43 65 84 47 0.0050 | IMF3
IMF4 14 56 77 63 79 0.0055 | IMF4

Comparing the individual algorithms, as shown in Fig. 8, it
can be observed that the ISSA achieves the lowest final fitness
value, indicating its superior optimization performance. In
contrast, PSO has a relatively higher final fitness value, while
SSA exhibits the highest final fitness value. Additionally, we
note that ISSA converges at the fastest rate. Although PSO and
SSA also exhibit rapid convergence in the early stages, their
final fitness values are higher, suggesting that their
optimization effectiveness is not as good as that of ISSA. The
optimization process involves tuning a total of 24 parameters
across four modes, including the number of iterations, batch
size, the number of output neurons in the first LSTM layer, the
number of output neurons in the second LSTM layer, the
number of neurons in the fully connected layer, and the
learning rate. The parameter optimization iteration process is
illustrated in Fig. 9.
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To address potential instability in MAPE metrics when
actual load values approach zero - a scenario that may cause
abnormal error amplification and distort model performance
evaluation - we implemented a threshold adjustment strategy.
Specifically, observations with actual values below 1% of the
dataset's average load are excluded from MAPE calculation.
This approach maintains the metric's interpretability while
eliminating outlier distortion caused by near-zero
measurements. For enhanced robustness, we complement the
evaluation with SMAPE (Symmetric Mean Absolute
Percentage Error), which constrains results within a 0%-200%
range through symmetrical error calculation, effectively
mitigating sensitivity to low-value measurements. Cross-
validation confirmed consistent results from both metrics,
ensuring reliable model performance assessment.

The ISSA-VMD-LSTM model demonstrated strong
predictive performance with a validated R? value of 0.934. To
assess estimation stability, we conducted 1,000 bootstrap
iterations, yielding a narrow 95% confidence interval of[0.921,
0.943] for the R? metric. Furthermore, 5-fold cross-validation
was implemented to evaluate model generalization, producing
a mean R? 0f 0.927 +0.006 - statistically consistent with the test
set performance. These rigorous validation procedures confirm
both the model's predictive accuracy and its robustness against
overfitting risks.

The ISSA-VMD-LSTM algorithm proposed in this study
demonstrates significant improvements over the traditional
LSTM algorithm, with an increase of 30.2% inR?, a reduction
of 472% in RMSE, a decrease of 47.8% in MAE, and a
lowering of 63.3% in MAPE. In terms of optimization
strategies, the ISSA introduces a bidirectional search
mechanism and initialization improvements. Compared with
traditional optimization algorithms like PSO and SSA, the
proposed algorithm demonstrates enhanced balancing
capability between global exploration and local exploitation,
effectively avoiding local optima traps while accelerating
convergence. When compared with Transformer models, our
method exhibits superior performance in large-scale data
scenarios and achieves high-precision prediction in small-scale
data through decomposition and optimization strategies,
making it more applicable to data-constrained environments. In
contrast to lightweight GRU models, this approach reduces
hyperparameter sensitivity through signal decomposition
mechanisms and demonstrates stronger prediction stability in
multi-energy coupled environments. The algorithm presented
in this study substantially enhances all evaluation metrics,
markedly improving model fit while further reducing errors
and increasing prediction accuracy.
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Fig. 9.

IV. CONCLUSION

This study introduces a short-term hydropower load
forecasting method based on the ISSA-VMD-LSTM model.
Given that hydropower load data typically exhibit complex
nonlinear characteristics, VMD is employed to decompose the
raw data into multiple intrinsic mode functions, effectively
extracting features such as long-term trends and seasonal
variations. This decomposition enhances the model's
adaptability to intricate time-series data. To optimize the
LSTM hyperparameters, an improved version of the Sparrow
Search Algorithm is utilized, which incorporates a bidirectional
cosine search strategy that combines forward and reverse
searches. This approach expands the local search range,
effectively preventing the traditional SSA from getting trapped
in local optima, thereby significantly enhancing the
optimization of LSTM hyperparameters. For the modal
components obtained from VMD decomposition, the ISSA-
optimized LSTM model further refines prediction accuracy.
Experimental results demonstrate that the ISSA-VMD-LSTM
model surpasses traditional LSTM models and other hybrid
models across all evaluation metrics, showcasing superior
forecasting performance.

While the proposed ISSA-VMD-LSTM  model
demonstrates significant advantages in short-term hydroelectric
load forecasting, its practical application still faces limitations.
First, the computational complexity of the VMD
decomposition and ISSA optimization processes remains high,
particularly in multi-modal data scenarios, which may prolong
training and inference times, potentially hindering real-time
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requirements.  Second, the model’s sensitivity to
hyperparameters necessitates reliance on empirical expertise or
iterative parameter tuning, increasing deployment costs. Future
improvements could focus on simplifying the algorithm and
enhancing efficiency. For instance, adopting parallel
computing or streamlined decomposition strategies to reduce
computational overhead. Exploring adaptive parameter
optimization mechanisms or integrating edge computing
frameworks could improve real-time processing capabilities.
Incorporating incremental leaming or transfer leaming
techniques may further enhance the model’s adaptability to
dynamic multi-energy coupled environments, strengthening its
generalization and practical utility.

Looking ahead, Multi-Energy Coupled Virtual Power
Plants are expected to play a crucial role in short-term
hydropower load forecasting. MC-VPPs represent the deep
integration of Energy Internet technology, combining various
energy resources through intelligent optimization and
scheduling. They provide more accurate and reliable
forecasting outcomes, enhancing the flexibility and efficiency
of power systems. Moreover, MC-VPPs effectively address the
intermittency and uncertainty associated with renewable
energy sources, promoting the widespread adoption of clean
energy and supporting the healthy development of electricity
markets. As technological advancements continue and practical
applications deepen, MC-VPPs will drive the energy system
toward greater intelligence and efficiency, ensuring a more
stable and sustainable power supply.
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