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Abstract—To address the challenges of low accuracy and high 

randomness in short-term hydroelectric load forecasting within 

Multi-energy Coupled Virtual Power Plants (MC-VPPs), this 

study proposes a hybrid model integrating Variational Mode 

Decomposition (VMD), Long Short-Term Memory (LSTM) 

networks, and an Improved Sparrow Search Algorithm (ISSA). 

Traditional methods, such as exponential smoothing and multiple 

linear regression, often fail to capture nonlinear dynamics and 

external disturbances. The proposed framework first decomposes 

raw load data into four intrinsic mode functions (IMFs) via VMD 

to extract multi-scale features, including long-term trends, 

seasonal cycles, and short-term fluctuations. LSTM networks are 

then applied to model the temporal dependencies of each IMF. 

To enhance optimization, ISSA introduces a bidirectional sine-

cosine search strategy, balancing global exploration and local 

exploitation to avoid premature convergence. Validated on 1,247 

daily load records from a hydropower station in southwestern 

China, the ISSA-VMD-LSTM model achieves a 30.2% 

improvement in R², with reductions of 47.2% in RMSE, 47.8% in 

MAE, and 63.3% in MAPE, outperforming benchmarks like 

PSO-LSTM and SSA-VMD-LSTM. This demonstrates its 

robustness in handling nonlinearity and stochasticity. The model 

enhances MC-VPPs’ operational efficiency by enabling 

intelligent scheduling and renewable energy integration, with 

future applications extending to real-time forecasting and other 

renewable energy systems. 

Keywords—Power plant; load forecasting; Mode 

Decomposition; Long Short-Term Memory; Sparrow Search 
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I. INTRODUCTION 

The Multi-energy Coupled Virtual Power Plant [1]-[4] 
plays an essential role in optimizing short-term load forecasting 
for hydroelectric power. It exemplifies the deepening 
integration of Energy Internet technology. By incorporating 
Long Short-Term Memory networks, MC-VPP significantly 
improves the accuracy of predicting power output from 
hydropower stations and load demand. This algorithmic 
ensemble not only captures the time-series characteristics of 
electricity loads but also effectively addresses the nonlinear 
impacts of hydro-meteorological factors, providing more 
accurate and reliable forecast results. As a core component of 
intelligent scheduling and optimized operation within MC-
VPPs, short-term load forecasting for hydroelectric power 
offers robust technical support to mitigate the intermittency and 

uncertainty associated with renewable energy. It enhances the 
flexibility and efficiency of power systems and introduces new 
methods for managing distributed energy resources with 
complex and diverse characteristics. This is significant for 
promoting the widespread adoption of clean energy and 
fostering the healthy development of power markets. 

Current research on short-term load forecasting for 
hydroelectric power has widely applied methods such as 
Exponential Smoothing, Combined Forecasting, and Grey 
Prediction [5]-[8]. However, these approaches are data-
dependent and constrained by underlying assumptions. As the 
aggregated resources within MC-VPPs expand, short-term 
hydroelectric load trends become increasingly complex. 
Techniques based on Multiple Linear Regression Models [9]-
[12] have gained prominence due to their computational 
efficiency and clear representation of relationships between 
independent and dependent variables. Nevertheless, these 
models assume a linear relationship between variables and are 
sensitive to outliers, making it challenging to directly address 
the dynamic characteristics [13] of time series and the 
influence of external events. When using multiple linear 
regression for load forecasting, it is necessary to combine other 
techniques to overcome these limitations. Exponential 
Smoothing assigns different weights to historical data, 
allowing predictions to quickly adapt to recent changes. This 
method is suitable for relatively stable load patterns but 
struggles with capturing long-term dependencies and complex 
nonlinear patterns, leading to a significant decrease in 
prediction accuracy during extreme weather conditions. In 
contrast, Combined Forecasting integrates several prediction 
models to leverage each one's strengths, improving the 
accuracy and robustness of forecasts. This method addresses 
the complexity and nonlinearity of hydroelectric load data [14-
17], but its construction is complex, requiring the 
establishment of sub-models and the determination of weights, 
which increases computational costs and model tuning 
challenges. 

The models used for optimizing short-term load forecasting 
in hydroelectric power all face issues like strict applicability 
conditions or an inability to handle complex nonlinear 
relationships, limiting their responsiveness to real-world 
forecasting scenarios. In [18], the authors addressed the low 
prediction accuracy and poor stability of LSTM neural 
networks by proposing a short-term power load forecasting 

*Corresponding author. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

242 | P a g e  
www.ijacsa.thesai.org 

model optimized using a multi-strategy improved Golden 
Jackal Algorithm [19]-[20]. This approach effectively enhances 
the training efficiency and performance of LSTM [21]-[24] 
models, avoiding overfitting risks and achieving higher 
prediction accuracy and stability compared to traditional 
LSTM models. 

In summary, existing studies on short-term load forecasting 
for hydroelectric power have been impacted by limited usage 
conditions and the inability to resolve complex relationships, 
affecting prediction accuracy. To enhance this, we propose a 
hybrid forecasting method based on Variational Mode 
Decomposition, an improved Sparrow Search Algorithm [25]-
[27], and Long Short-Term Memory networks. The proposed 
method begins by adaptively decomposing the original load 
data into multiple intrinsic mode functions using Variational 
Mode Decomposition. This process isolates distinct temporal 
features such as long-term trends, seasonal cycles, and short-
term fluctuations, effectively mitigating mode mixing and 
enhancing adaptability to nonlinear time-series data. Next, each 
IMF is modeled using Long Short-Term Memory networks, 
which leverage their gated mechanisms to capture complex 
temporal dependencies and address the vanishing gradient 
problem inherent in traditional recurrent neural networks. To 
optimize model performance, an Improved Sparrow Search 
Algorithm is employed to fine-tune LSTM hyperparameters. 
This enhanced algorithm incorporates a bidirectional sine-
cosine search strategy to balance global exploration and local 
exploitation, thereby avoiding premature convergence. The 
decomposition capability of VMD enables LSTM to focus on 
features at specific time scales, while ISSA further refines 
parameter adaptability. Together, these components form a 
cohesive framework of “decomposition-modeling-
optimization”, significantly enhancing prediction accuracy and 
stability. This approach effectively addresses the challenges of 
modeling nonlinearity, stochasticity, and multi-scale 
characteristics in multi-energy coupled environments. 

The key contributions of this study are as follows: 

• Combines Variational Mode Decomposition, Long 
Short-Term Memory networks, and an Improved 
Sparrow Search Algorithm, significantly enhancing the 
accuracy and stability of short-term hydroelectric load 
forecasting. 

• Introduces a bidirectional sine-cosine search strategy 
and a Good Lattice Points-based initialization strategy 
to strengthen global exploration, avoid premature 
convergence, and optimize LSTM hyperparameters. 

• Decomposes raw load data into intrinsic mode functions 
to isolate long-term trends, seasonal cycles, and short-
term fluctuations, improving the model’s adaptability to 
complex nonlinear time-series data. 

• Validated using real hydropower station data, the model 
achieves improvements of 30.2% in R², 47.2% in 
RMSE, 47.8% in MAE, and 63.3% in MAPE, 
outperforming benchmarks such as PSO-LSTM [28]-
[29] and SSA-VMD-LSTM [30]. 

• Supports intelligent scheduling and multi-energy 
coordination in MC-VPPs, enhancing flexibility for 
renewable energy integration and grid efficiency. 

II. HYDROELECTRIC TIME SERIES PREDICTION MODEL 

A. Working Principle of the Variational Mode Decomposition 

Algorithm 

To deeply investigate short-term load forecasting for 
hydroelectric power in a multi-energy coupled virtual power 
plant environment, it is essential to employ the Variational 
Mode Decomposition algorithm to decompose the raw data 
into multiple intrinsic mode functions with distinct central 
frequencies and limited bandwidths, thereby achieving modal 
separation of the data. The core principle of VMD lies in its 
adaptive signal decomposition framework that concurrently 
optimizes multiple intrinsic mode functions through a 
variational approach, effectively balancing modal bandwidth 
constraints and reconstruction accuracy. By constructing a 
constrained variational problem, VMD iteratively extracts 
compact IMFs with specific sparsity properties in the 
frequency domain, where each mode is designed to concentrate 
around a central frequency while maintaining minimal 
bandwidth. This process continuously updates the mode and 
center frequency until convergence, ensuring that the 
decomposed components exhibit orthogonality in both the time 
and frequency domains. The resulting IMFs demonstrate 
distinct spectral separation characteristics, enabling the 
isolation of underlying patterns such as seasonal variations, 
random fluctuations, and operational trends from the original 
hydropower load data. This decomposition mechanism 
significantly enhances subsequent forecasting models by 
mitigating mode mixing issues inherent in traditional signal 
processing methods, while preserving critical temporal  
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dependencies essential for accurate predictions in virtual power 
plant environments characterized by strong multi-energy 
coupling effects. 

The variational problem model of this method is subject to 
the following constraints: 

. . ( ) ( )
K

k

k

s t u t x t=                                 () 

In the formula,  1 2, , ,k ku u u u=   represents the intrinsic 

mode function,  1 2, , ,k kww w w=   represents the central 

frequency； ( )t  is the Dirac delta function, which is used in 

the computation of the Hilbert transform; K determining the 

number of decomposed IMF components; t addressing 

gradient dizziness; ( ) ( )k

j
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t
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 performing the Hilbert 

transform. 

Redefine the Intrinsic Mode Function with a stricter finite 
bandwidth constraint (BIMF) 

Defined as: 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

243 | P a g e  
www.ijacsa.thesai.org 

( ) ( )cos( ( ))k k ku t A t t=                     () 

The phase function ( )k t  is non-monotonically decreasing, 

which means ) 0'(k t  , and the amplitude ( ) 0kA t  ,with the 

instantaneous amplitude ( )kA t  and the instantaneous frequency
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considered as a harmonic signal with an amplitude of ( )kA t  and 

a frequency of ( )t t . 

The expression for the Hilbert transform is the result of 
convolving the original signal with a specific kernel. After 
applying the Hilbert transform to the signal, the positive 
frequency components are multiplied by -j, which means that 
under the condition of maintaining the same amplitude, the 

phase is shifted by
2


− . For the negative frequency 

components, the phase is shifted by
2


. 

Through spectral analysis, we validate the frequency 
separation characteristics of individual Intrinsic Mode 
Functions. Quantitative evaluation using statistical measures 
like sample entropy reveals distinct complexity patterns - lower 
entropy values indicate stable trend components while higher 
entropy corresponds to stochastic fluctuations. Temporal 
correlation analysis between IMFs and established physical 
mechanisms/external drivers enables identification of specific 
modal functions demonstrating significant associations with 
extreme weather events. The orthogonal validation further 
confirms the temporal-frequency independence among 
decomposed components, effectively preventing mode mixing. 
This rigorous decomposition process ensures both 
mathematical validity and physical interpretability, providing 
reliable inputs for subsequent LSTM modeling. 

B. LSTM Model 

LSTM is a variant of the Recurrent Neural Network (RNN) 
commonly used for handling tasks related to time series data. 
When training a typical neural network model, the computation 

is usually represented as ( )Ts f W X b= + , where W represents 

the weights, X is the input, and b is the bias term. A common 
LSTM structure is shown in Fig. 1. 

tx  represents the input data at each time step, th  is the 

output at each time step, and the intermediate tc  is the long-

term memory between cells. 

 

Fig. 1. LSTM structure diagram. 

An LSTM includes a forget gate, an input gate, and an 
output gate. Each gate requires a computation similar to the 
one mentioned above, in addition to calculating the current 
state. Compared to the structure of an RNN, an LSTM cell is 
more complex, incorporating fully connected layers with 
activation functions in its gate structures. These gates output 
values between 0 and 1, indicating the degree to which feature 
information should be retained (0 means retain, 1 means 
discard). This gated structure enables LSTMs to maintain a 
stable gradient flow across extended time horizons while 
adaptively managing sequential information retention and 

suppression. The output of the forget gate is defined as tf , the 

output of the input gate as ti , the candidate value for memory 

update as tc , and the output of the output gate as to . 

The forget gate tf  selects information from the previous 

cell state 1tc − : 

1( [ , ] )t f t t ff W h x b −=  +                        () 

The input gate determines how much of the current 

network input tx is to be saved in the cell state tc : 

1( [ , ] )t i t t ii W h x b −=  +                         () 

Input tc
: 

1tan ( [ , ] )t c t t ch W h xc b−=  +                     () 

The output gate controls how much of the cell state is 

output to the current LSTM output value th : 

0 1 0( [ , ] )t t tO W h x b −=  +                       () 

fW , iW
, cW

, 0W
 are weight matrices, and fb , ib

, cb
, 0b

 are 

bias terms. 1[ , ]t th x−  denotes the concatenation of the hidden 
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state 1th −  and the input state tx
 along the horizontal axis.   

represents the sigmoid function, and tanh represents the 
hyperbolic tangent function. 

The LSTM model updates its weights using the 
backpropagation algorithm to minimize prediction error. The 
backpropagation process for LSTM mainly includes the 
following steps: 

1) Definition of the loss function: Define a loss function 

based on the task type (e.g., classification or regression). 

Common loss functions include cross-entropy for 

classification tasks and mean squared error for regression 

tasks. This function measures the prediction error of the 

model. 

2) Backpropagation to compute gradients: Use the 

Backpropagation Through Time (BPTT) algorithm to 

propagate the error gradient backward from the last time step 

to the first. Each gate (forget gate, input gate, output gate) in 

the LSTM network participates in the error propagation, 

gradually computing the gradient for each parameter. BPTT is 

suitable for sequential data, and due to the gating structure of 

LSTM, the vanishing gradient problem is alleviated to some 

extent. 

3) Gradient clipping: Due to the potential for gradient 

explosion in long sequences, gradient clipping techniques 

limit the size of the gradients, ensuring they do not exceed a 

certain threshold. This prevents overly large gradients from 

causing unstable training. 

4) Weight update: LSTM uses gradient descent to update 

the weight matrices, optimizing the model parameters to 

reduce the value of the loss function. 

In practical applications, an LSTM learn effective patterns 
in sequence data through backpropagation and gradient 
updates. This training process enables LSTM to achieve good 
performance on various sequence prediction tasks, particularly 
excelling in handling long-term dependencies. By decoupling 
memory retention from hidden state updates, LSTMs achieve 
superior performance in learning complex temporal dynamics 
compared to conventional RNNs, particularly when handling 
intermittently sampled or irregularly spaced time series data 
common in multi-energy virtual power plant environments. 

C. Sparrow Search Algorithm 

The Improved Sparrow Search Algorithm introduces two 
main upgrades to the traditional SSA. First, it adopts a Good 
Lattice Points strategy for population initialization, replacing 
random placement to ensure sparrow positions are evenly 
distributed across the search space. This adjustment accelerates 
convergence and reduces the likelihood of solutions becoming 
trapped in local optima due to uneven initialization. Second, 
ISSA incorporates a Bidirectional Sine-Cosine Search Strategy 
to update discoverer positions. By alternating between forward 
and reverse search phases, the algorithm maintains a balance 
between broad exploration and refined exploitation. The 
forward phase steers individuals toward current optimal 
solutions, while the reverse phase drives exploration into 
uncharted regions, effectively curbing premature convergence. 

Together, these enhancements strengthen the algorithm’s 
ability to tackle complex nonlinear challenges in load 
forecasting, delivering higher optimization accuracy and 
adaptability. 

The Traditional Sparrow Search Algorithm initializes the 
sparrow population using a random distribution method, which 
results in randomness in the population distribution and can 
easily lead to SSA getting trapped in local optima. To address 
this issue, this study introduces an initialization strategy based 
on good lattice points for optimizing the initial positions of the 
sparrows, thereby improving the convergence accuracy and 
speed of the algorithm. The principle behind this approach is as 

follows: In the D-dimensional Euclidean space DG , where

Dr G , the good lattice point set

     ( )( ) ( ) ( )

1 2( ) , , ,n n n

n DP k r k r k r k=     for 1 k n  ,the 

discrepancy is 1( ) ( , )n C r n   − += , where ( , )C r   is a constant 

related to r  and  , ( )nP k  represents the set of good lattice 

points. Additionally, in this study, 
2

2
k
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p
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,1 k n  , 

where p  is the smallest prime number satisfying 
( 3)

2

p
D

−


.Therefore, the initialization strategy based on good lattice 
points can be expressed as follows: 

( )( ) { ( )}i j j n jx k up lp P k lp= −  +                     () 

The SSA is prone to premature convergence during the 
position update process, which can result in solutions getting 
trapped in local optima rather than finding the global optimum. 
To address this issue, a bidirectional sine cosine search strategy 
has been introduced. This strategy enhances exploration by 
defining both forward and reverse searches, thereby expanding 
the local search methods. In the forward search, the current 
individual is guided toward the current optimal individual, 
emphasizing the swarm's ability to autonomously approach the 
global optimum as iterations progress. Conversely, the reverse 
search encourages the swarm to explore regions beyond the 
current optimal area, demonstrating a stronger selectivity for 
uncharted territories. The initialization strategy based on Good 
Lattice Points ensures that the initial population is uniformly 
distributed in the high-dimensional search space, mitigating the 
risk of region omission caused by random initialization. This 
global coverage characteristic, combined with dynamic search 
direction adjustments, significantly reduces the algorithm’s 
sensitivity to local optima and enhances global optimization 
efficiency in complex nonlinear problems. The enhanced 
position update formula for the discoverer is defined as 
follows: 
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In this algorithm, 
,

t

i jx represents the position of the current 

generation sparrow, t

bestx while denotes the position of the best 

sparrow found so far at iteration t. 1 2, [0,1]R R  , where 2R  is 

the vigilance factor, and  0.5,1ST  is the safety threshold. Q 

is a random number following a normal distribution, and L is a 

unit vector with  1 3 0,2,r r   and  42, 0,r r  , which are used 

to determine the movement distance and search direction for 
the next generation of sparrows. The expressions 

1 2 (1 )x   = − + −  and 2 2x  = − +  define specific positions, 

where   is the golden ratio coefficient. The optimization of the 

safety threshold (ST) and vigilance factor is grounded in multi-
objective trade-offs and sensitivity analysis. The ST is 
determined through statistical analysis of historical 
experimental data, with its value balancing population 
convergence speed and escape capability: an excessively high 
ST would suppress the exploratory nature of reverse search, 
while an overly low ST may induce ineffective perturbations. 
The vigilance factor is configured based on problem 
dimensionality and solution space characteristics. Its dynamic 
range is adjusted through grid search and cross-validation to 
prioritize global exploration during early iterations and 
progressively strengthen local exploitation in later stages. The 
parameter optimization process integrates convergence 
validation and error sensitivity testing, ultimately yielding a 
parameter combination that ensures stable generalization 
capability across both training and validation sets. 

 

Fig. 2. Prediction process of the ISSA-VMD-LSTM model. 

D. Short-Term Load Forecasting Framework for Hydropower 

The forecasting framework proposed in this study aims to 
utilize historical hydropower data, achieving the goal of short-
term load forecasting by conducting a comprehensive analysis 
of the correlations within these data. Fig. 2 illustrates the 
overall implementation flowchart of the hybrid forecasting 
model in load forecasting. 

III. CASE STUDY ANALYSIS 

A. Case Study Setup 

The experiment was conducted on NVIDIA GeForce RTX 
4060 Laptop GPU and implemented with Python 3.8. Data 
spanning from January 1, 2021, to May 1, 2024, was selected 
for analysis, with a sampling interval of one day. After 
integrating and screening the data, a comprehensive dataset 
consisting of 1,247 data points was obtained. To address noise 
and outliers in raw data, a sliding window technique integrated 
with the 3 principles is implemented for anomaly 
identification. Data points deviating beyond the mean ±3 
standard deviations range are rectified using linear 
interpolation. 

 

Fig. 3. Original hydropower load data . 

Furthermore, consecutive data gaps resulting from 
equipment failures are systematically removed to ensure data 
integrity. Of these, 80% were allocated to the training set, 
while the remaining 20% were reserved for the test set to 
validate the final prediction outcomes of each model. In the 
VMD process, it is crucial to balance the number of 
decomposed modes to avoid excessive computational burden 
and time costs without compromising the signal's characteristic 
representation. Therefore, the number of modes, the K value, 

was set to 4. Additionally, the penalty factor   was 
configured to 2000, the frequency distribution initialization 
was set to 1, and the convergence tolerance was established at 
1e-7. Fig. 3 illustrates the plot of the original data. 

 

Fig. 4. Component of hydropower load decomposition of mode 1. 
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Fig. 5. Component of hydropower load decomposition of mode 2. 

Fig. 4 represents the primary waveform trend, which shows 
an initial increase followed by a decrease in the hydropower 
load from 2021 to 2023. For the period from January to May 
2024, the trend exhibits a growing pattern. Fig. 5 displays a 
more regular periodic variation, better reflecting the changes 
on a monthly and quarterly basis. The fluctuations in Fig. 6 are 
more intense, primarily capturing short-term variations. This 
mode reflects short-term demand changes or the impact of 
random events. The fluctuations in Fig. 7 are the most intense, 
capturing instantaneous changes. 

B. Case Study Metrics Description 

To comprehensively evaluate the performance of the 
proposed forecasting model, we utilize a combination of four 
metrics: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), and 
the Coefficient of Determination (R²). RMSE calculates the 
square root of the average of the squared differences between 
the predicted and actual values, which makes it sensitive to 
larger errors and provides a measure of error magnitude. MAE 
measures the average of the absolute differences between 
predictions and actual observations, offering a robust estimate 
of overall error without heavily penalizing large discrepancies. 
MAPE expresses the average of the absolute percentage errors, 
making it suitable for comparing datasets of different scales, 
although caution is needed due to its instability when actual 
values are close to zero. Finally, R² reflects the proportion of 
the variance in the dependent variable that is predictable from 
the independent variables, indicating how well the model fits 
the data compared to a simple mean prediction. These metrics 
together provide a thorough assessment of the model's 
accuracy and reliability.  

In the formulas, gy  denotes the actual value of the g-th 

observation, ˆ
gy  denotes the predicted value of the g-th 

observation, and G represents the total number of observations. 

 

Fig. 6. Component of hydropower load decomposition of mode 3. 

 

Fig. 7. Component of hydropower load decomposition of mode 4. 

C. Result Analysis 

Analysis of the data in Table I shows that the ISSA-VMD-
LSTM algorithm outperforms all other algorithms across all 
evaluation metrics, achieving the highest R² and the lowest 
RMSE, MAE, and MAPE. This indicates that the ISSA-VMD-
LSTM algorithm, as mentioned in this study, exhibits superior 
prediction performance with greater accuracy and stability 
compared to other algorithms. 

TABLE I.  PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS 
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LSTM 0.652 0.235 0.201 0.049 O(T*N2) 

PSO-LSTM 0.752 0.215 0.183 0.042 O(P*I*T*N2) 

PSO-VMD-

LSTM 
0.851 0.176 0.133 0.031 O(K*N2+P*I*T*N2) 

SSA-VMD-

LSTM 
0.802 0.183 0.142 0.035 O(K*N2+S*I*T*N2) 

ISSA-

VMD-

LSTM 

0.934 0.124 0.105 0.018 O(K*N2+S*I*T*N2+C) 
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Fig. 8. Fitness curve of algorithms. 

Table II lists the optimal parameters for each mode. 

TABLE II.  OPTIMAL PARAMETERS FOR MODES 
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N
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f M
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IMF1 47 22 54 53 43 0.0021 IMF1 

IMF2 20 12 46 67 87 0.0060 IMF2 

IMF3 46 43 65 84 47 0.0050 IMF3 

IMF4 14 56 77 63 79 0.0055 IMF4 

Comparing the individual algorithms, as shown in Fig. 8, it 
can be observed that the ISSA achieves the lowest final fitness 
value, indicating its superior optimization performance. In 
contrast, PSO has a relatively higher final fitness value, while 
SSA exhibits the highest final fitness value. Additionally, we 
note that ISSA converges at the fastest rate. Although PSO and 
SSA also exhibit rapid convergence in the early stages, their 
final fitness values are higher, suggesting that their 
optimization effectiveness is not as good as that of ISSA. The 
optimization process involves tuning a total of 24 parameters 
across four modes, including the number of iterations, batch 
size, the number of output neurons in the first LSTM layer, the 
number of output neurons in the second LSTM layer, the 
number of neurons in the fully connected layer, and the 
learning rate. The parameter optimization iteration process is 
illustrated in Fig. 9. 

To address potential instability in MAPE metrics when 
actual load values approach zero - a scenario that may cause 
abnormal error amplification and distort model performance 
evaluation - we implemented a threshold adjustment strategy. 
Specifically, observations with actual values below 1% of the 
dataset's average load are excluded from MAPE calculation. 
This approach maintains the metric's interpretability while 
eliminating outlier distortion caused by near-zero 
measurements. For enhanced robustness, we complement the 
evaluation with SMAPE (Symmetric Mean Absolute 
Percentage Error), which constrains results within a 0%-200% 
range through symmetrical error calculation, effectively 
mitigating sensitivity to low-value measurements. Cross-
validation confirmed consistent results from both metrics, 
ensuring reliable model performance assessment. 

The ISSA-VMD-LSTM model demonstrated strong 
predictive performance with a validated R² value of 0.934. To 
assess estimation stability, we conducted 1,000 bootstrap 
iterations, yielding a narrow 95% confidence interval of [0.921, 
0.943] for the R² metric. Furthermore, 5-fold cross-validation 
was implemented to evaluate model generalization, producing 
a mean R² of 0.927 ±0.006 - statistically consistent with the test 
set performance. These rigorous validation procedures confirm 
both the model's predictive accuracy and its robustness against 
overfitting risks. 

The ISSA-VMD-LSTM algorithm proposed in this study 
demonstrates significant improvements over the traditional 
LSTM algorithm, with an increase of 30.2% inR², a reduction 
of 47.2% in RMSE, a decrease of 47.8% in MAE, and a 
lowering of 63.3% in MAPE. In terms of optimization 
strategies, the ISSA introduces a bidirectional search 
mechanism and initialization improvements. Compared with 
traditional optimization algorithms like PSO and SSA, the 
proposed algorithm demonstrates enhanced balancing 
capability between global exploration and local exploitation, 
effectively avoiding local optima traps while accelerating 
convergence. When compared with Transformer models, our 
method exhibits superior performance in large-scale data 
scenarios and achieves high-precision prediction in small-scale 
data through decomposition and optimization strategies, 
making it more applicable to data-constrained environments. In 
contrast to lightweight GRU models, this approach reduces 
hyperparameter sensitivity through signal decomposition 
mechanisms and demonstrates stronger prediction stability in 
multi-energy coupled environments. The algorithm presented 
in this study substantially enhances all evaluation metrics, 
markedly improving model fit while further reducing errors 
and increasing prediction accuracy. 
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Fig. 9. Parameter optimization iteration process. 

IV. CONCLUSION 

This study introduces a short-term hydropower load 
forecasting method based on the ISSA-VMD-LSTM model. 
Given that hydropower load data typically exhibit complex 
nonlinear characteristics, VMD is employed to decompose the 
raw data into multiple intrinsic mode functions, effectively 
extracting features such as long-term trends and seasonal 
variations. This decomposition enhances the model's 
adaptability to intricate time-series data. To optimize the 
LSTM hyperparameters, an improved version of the Sparrow 
Search Algorithm is utilized, which incorporates a bidirectional 
cosine search strategy that combines forward and reverse 
searches. This approach expands the local search range, 
effectively preventing the traditional SSA from getting trapped 
in local optima, thereby significantly enhancing the 
optimization of LSTM hyperparameters. For the modal 
components obtained from VMD decomposition, the ISSA-
optimized LSTM model further refines prediction accuracy. 
Experimental results demonstrate that the ISSA-VMD-LSTM 
model surpasses traditional LSTM models and other hybrid 
models across all evaluation metrics, showcasing superior 
forecasting performance. 

While the proposed ISSA-VMD-LSTM model 
demonstrates significant advantages in short-term hydroelectric 
load forecasting, its practical application still faces limitations. 
First, the computational complexity of the VMD 
decomposition and ISSA optimization processes remains high, 
particularly in multi-modal data scenarios, which may prolong 
training and inference times, potentially hindering real-time 

requirements. Second, the model’s sensitivity to 
hyperparameters necessitates reliance on empirical expertise or 
iterative parameter tuning, increasing deployment costs. Future 
improvements could focus on simplifying the algorithm and 
enhancing efficiency. For instance, adopting parallel 
computing or streamlined decomposition strategies to reduce 
computational overhead. Exploring adaptive parameter 
optimization mechanisms or integrating edge computing 
frameworks could improve real-time processing capabilities. 
Incorporating incremental learning or transfer learning 
techniques may further enhance the model’s adaptability to 
dynamic multi-energy coupled environments, strengthening its 
generalization and practical utility. 

Looking ahead, Multi-Energy Coupled Virtual Power 
Plants are expected to play a crucial role in short-term 
hydropower load forecasting. MC-VPPs represent the deep 
integration of Energy Internet technology, combining various 
energy resources through intelligent optimization and 
scheduling. They provide more accurate and reliable 
forecasting outcomes, enhancing the flexibility and efficiency 
of power systems. Moreover, MC-VPPs effectively address the 
intermittency and uncertainty associated with renewable 
energy sources, promoting the widespread adoption of clean 
energy and supporting the healthy development of electricity 
markets. As technological advancements continue and practical 
applications deepen, MC-VPPs will drive the energy system 
toward greater intelligence and efficiency, ensuring a more 
stable and sustainable power supply. 
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