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Abstract—Breast cancer has been listed as one of the leading
causes of death amongst women all over the world, and the current
diagnostic techniques, which are founded on the manual
examination of mammograms or individual clinical presentations,
are often subjective, neither being consistent nor generalizable.
The existing computer-aided diagnosis (CAD) systems are also
characterized by significant weaknesses related to poor
multimodal integration, no interpretability, and vulnerability to
class imbalance. In order to address the inadequacy, the present
study introduces an advanced multimodal deep learning
framework named Hybrid Graph-Generative Transformer
(HGGT), designed to integrate high-resolution mammeographic
images with the clinical, demographic, proteomic, and histological
data pertinent to the patient. The HGGT network is a hierar chical
Swin Transformer and CNN-based feature extraction, a Graph
Attention Network (GAT) (to identify clinical variable
interaction), and a contrastive cross-modal generative fusion
system (to match the different modalities). The diagnostic head
employs a Bayesian uncertainty-aware classifier to ensure more
reliability in the prediction of malignancy. It is trained on 5-fold
cross-validation, AdamW, and a cosine annealing scheduler,
which is seton Python 3.10. Itis demonstrated by the performance
of the CBIS-DDSM mammography dataset and a corresponding
clinical dataset consisting of over 400 patients that HGGT is much
superior with 98.2% accuracy, 98.7% precision, 98.5% recall,
99.2% F1-score, and 99.1% AUC-ROC, having a significant
advantage over the established models of ResNet50, EfficientNet-
B0 and GAN-enhanced CNN classifier. Overall, the HGGT
framework is delivering a scalable, interpretable, and highly
accurate diagnosis solution that was a huge improvement over the
existing unimodal and poorly integrated CAD system in the
detection of breast cancer.

Keywords—Breast cancer diagnosis; multimodal deep learning;
Graph Attention Network; Bayesian uncertainty estimation;
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I.  INTRODUCTION

Among the most prevalent and deadly illnesses impacting
women globally is breast cancer. The WHO model states that
earlier treatments dramatically lower mortality, and prompt and
precise identification is crucial for increasing lifespan [ 1]. Since
mammography allows for the quick detection of abnormalities,
it is an extremely widely used technique for preventing cancer
in the breast [1]. Yet, visual interpretation of mammograms [2]
is an involved and labor-intensive task susceptible to
subjectivity and inter-reader variability [3]. Superimposition of
overlapping tissue structures, poor contrast, and nuanced
variations further add to the challenge in accurate diagnosis [4].
Consequently, an increased demand exists for robust and
automatic CAD systems for radiologists to detect malignancies
more precisely and with greater efficiency [5].

Manual CAD systems are dependent on hand-tuned feature
extraction methods and traditional machine learning tools [6].
Although some success has been reported with these methods,
the quality of feature extraction and a lack of generality across
large and varied datasets usually limit their performance [7].
These traditional methods further need significant amounts of
domain-specific knowledge for feature engineering, limiting
their flexibility towards actual clinical use [8]. The latest
improvements in deep learning, specifically CNNs, have
transformed medical image analysisto a great extent, with the
capability for automatic feature learming and state-of-the-art
accuracy in classification problems [9]. Nonetheless, deep
models depend on extensive and well-labeled datasets for good
generalization[10]. The rarity of labeled mammographic images
and also class imbalance within datasets makes the task difficult
to train precise DL models for detectingbreast cancer [11]. The
latest advances in breast cancer detection use deep learning on
transformers and attention models, and are used on either
imaging-only data or clinical-only data [12]. The study
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hypothesizes a single Hybrid Graph Generative Transformer
(HGGT) to integrate hierarchical mammographic image
attributes with graph-coded clinical information through a
contrastive multimodal alignment process to deliver high-
fidelity, interpretable and uncertainty-aware diagnosis of breast-
cancer. Although there is progress in multimodal breast cancer
CAD, current approaches tend to use shallow fusion, poor
modeling of the interactions between clinical variables and
individual assessment of uncertainty. In order to address these
shortcomings, this study introduces a Hybrid Graph-Generative
Transformer (HGGT) that integrates hierarchical features of
imaging, graph-based clinical reasoning, and Bayesian
uncertainty modeling into one diagnostic model.

A. Research Motivation

Breast cancer is one of the causes of death among women
and the treatment of this disease depends upon early and
accurate diagnosis. Manually interpreted mammograms and
single clinical evaluations have been known to be quite
subjective, slow and lack uniformity. Even though higher
diagnostic potentialis possible with the multimodal combination
of imaging and clinical data, there is still a problem of poor
generalization, dataimbalance, and limited interpretability in the
current Al-based systems. The issues cited above represent the
necessity ofan integrated, hybrid, deep-learning model that can
provide strong, interpretable and clinically meaningful
predictions of breast cancer. The recent advancements in deep
learninghaveprovided improved performance in the system, but
the existing CAD systems do not indicate the complementary
relationship between the mammographic features and the
patient-specific clinical characteristics. It motivates the
development of a multimodal system that can acquire joint
descriptions in different modalities, such that more robust
situation-aware diagnostic decisions can be made.

B. Problem Statement

Diagnosing breast cancer is not easy due to the weaknesses
of the current computer-aided detectors, which usually apply
either of the two separately, either in mammographic pictures or
clinical data. Breast cancer has been a major health concern to
the world and early detection has been the most appropriate
measure in increasing the survival chances and this is primarily
through screening mammograms [13]. Even though the recent
advances in deep leaming (DL) have considerably enhanced the
diagnosis of breast cancer, most of the existing systems employ
either clinical or imaging data, as compared to their potential to
provide the entire diagnostic image [14]. Current methods of
diagnosis are still restricted by single-modality dependence, a
low level of generalizability, and the lack of clinical
interpretability. The state-of-the-art deep learning models are
not effective at modeling complex clinical relationships and
integrating heterogeneous data. This poses a sense of urgency in
having an integrated, explainable multimodal structure that
combines both the mammographic and clinical information into
a transformer-graph architecture to have a reliable breast cancer
diagnosis.

C. Research Significance

The suggested Hybrid Graph-Generative Transformer
(HGGT) is a significantinnovation in breast cancer diagnostics.
It combines theuse of generativemodeling, graph-based clinical
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encoding, and transformer-based multimodal feature fusion into
a single deep learning pipeline. This architecture can also solve
mostofthe important challenges that include data sparsity, class
imbalance, and inter-modal correspondence, and remain
interpretable and uncertainty -aware predictions. The HGGT is a
framework that enhances the accuracy of diagnosis and clinical
reliability by combining the model of mammographic features
and patient-specific clinical variables. Using transformer-based
imaging analysis, clinical reasoning in the form of graphs, and
contrastive multimodal fusion, HGGT makes interpretable
predictions and uncertainty-aware predictions. It is the
relationship between radiological observations and formalized
clinical experiencesandthe following generation of multimodal,
precision-concentrated CAD systems.

D. Research Question and Hypothesis

Do unified multimodal deep learning systems, which
combine mammographic images with structured clinical data
using graph-basedreasoning and transformer-based fusion, offer
more accurate, interpretable, and uncertainty-aware breast
cancer diagnosis compared to current unimodal or loosely
integrated CAD systems?

We hypothesize that joint hierarchical image features and
interaction of clinical variables modeled with Hybrid Graph-
Generative Transformer (HGGT) will significantly improve
diagnostic performance, high resiliency to class imbalance, and
clinical meaningfulness.

E. Key Contributions

e Proposes a common framework of HGGT that gives
precedence to a mammographic image and organized
clinical information in the diagnosis of breast cancer.

e Introduces graph-guided transformer fusion to explicitly
model clinical biomarker interactions beyond
conventional feature concatenation or shallow
multimodal fusion.

e Derives a fusion strategy based on contrastive pyramid
fusion that matches the representation of imaging at
multiple levels with clinical aspects to enhance the
resilience of class imbalance.

e Integrates Bayesian uncertainty estimation and dual-
modality explainability to  support reliable,
interpretable, and clinically meaningful diagnostic
decision-making.

The rest of the study is structured in the following manner:
Section Il includes a thorough literature review of the literature
concerning the topic of breast cancer diagnosis and multimodal
deep learning. Section Il gives the research problem and
outlines the proposed Hybrid Graph-Generative Transformer
(HGGT) methodology step-by-step. Section IV reports the
experimental framework, findings, and performance analysis of
the proposed framework. Lastly, Section V gives a conclusion
in the study outlining the main findings and possible ways of
conducting further studies.

II. LITERATURE REVIEW

Although ultrasound imaging is a vital diagnostic technique
used to identify breast cancer, the efficiency of computerized
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diagnosis systems is typically limited by the absence of properly
annotated data. Chaudhury and Sau [15] suggesta deep learning
(DL)-derived architecture that incorporates TL, GANs and a
creative data augmentation method for ultrasonography image-
based mammary mass classification. Becausebreast tumorscan
be accurately identified through minimally invasive procedures,
thanks to early identification and precise categorization, they
can significantly reduce the number of fatalities. Data
augmentation by GAN enhances classification performance, and
TL-based feature extraction enhances accuracy even more.
Results prove the effectiveness of DL approaches to classify
breast ultrasound images. The current article proposes a new
technique of breast mass detection via data augmentation using
GAN and TL-based feature learning for enhanced diagnostic
performance. Results presented illustrate how this approach
outperforms existing algorithms and has the capability to
improve computer-assisted breast cancer diagnosis systems.

It is a severe global health problem that needs to be
continuously enhanced in terms of approaches to identification
and classification. In reference to identifying breast cancer a
machine learning approach is described by Alawee et al.[16] as
a resultof distinguishing benign and malignant mammography.
The study recommends a two-hidden-layer ANN model in order
to enhance the accuracy of the classification. Before analysis,
mammography images are subject to preprocessing, including
data denoising, contrast normalization, and a GAN to make the
data better. This is a multi-step improvement of image quality
that reforms the information in an analysis-optimized format
through the vectorization of pixel data. It is only on such
improved images that ANN is trained, and the results are good
as far as the improvement of classification performances is
concerned. The experimental findings suggest the existence of
accuracy improvement over normal scans, and accuracy in the
final model is close to perfection with different preprocessing
strategies. In the study, the strength of data augmentation and
ANN-classification when used in the context of medical
imaging has been emphasized, as well as how these resources
can be used to impact the detection and treatment at its initial
stages. This powerful platform of detection is a valuable
contribution to biotechnology and an area where new Al-based
applications of medical diagnosis are justified.

Strelcenia and Prakoonwit [17] explains past research has
proventhatearly and precise detection can have a huge impact
on patient outcomes. GANs have been gaining attention in
medical imaging in recent times to create synthetic images as
well as non-image data for diagnostic use. Provide a K-CGAN
technique that produces high-quality simulated data by learning
in several distinct settings. Five distinct categorization and
feature extraction methods were applied to the non-image
Wisconsin Breast Cancer dataset, consisting comprised 212
benign and 357 malignant instances, to use synthetic data to
assess our proposed K-CGAN's effectiveness. Our empirical
study's findings support the notion that K-CGAN outperforms
other GAN types in terms of classification accuracy and
stability. Our evidence demonstrates that K-CGAN-generated
synthetic data closely resembles the actual dataset.

Swiderski et al. [18] present the Autoencoder-GAN
(AGAN) model, which was used in the evaluation of
mammograms as a data augmentation method to generate
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additional mammogram images. This aids in enhancing the
current dataset, addressing the problem of limited data in
medical images. The created images and actual mammograms
were fed intoa CNN for classification. The proposed system was
designed to differentiate normal from abnormal mammograms.
The proposed system was implemented for identifying and an
experimental assessment was performed on a large dataset of
image database. The outcome proved the superiority of the
developed deep learning model over current mammogram
classification methods. These performance metrics are among
the best for this big data, indicating the effectiveness of AGAN-
based augmentation in improving breast cancer diagnosis.

Sharma et al. [19] conducted a comprehensive comparative
study whose aim was to determine the most effective deep
learning architecture to classify mammographic breast cancer.
They were aimed at comparing general-purpose models
(including ResNet50, ConvNeXt, ViT) to mammography-
specific models (including FCCS-Net, ViT-Mammo, and
GLAM-Net) with a single benchmarking plan. The authors used
four publicly available datasets, which guaranteed the
reproducibility of experimentation based on similar training
protocols. Their assessment was multi-dimensional, with their
classification performance, interpretability through Grad-CAM
and attention maps, model calibration, inference time,
complexity of computation and deployment in the list of
assessment criteria. It was shown that mammo gram-specific
models, especially FCCS-Net and ViT-Mammo, displayed a
higher diagnostic performance and a more enhanced visual
interpretability, with ViT-Mammo presenting an AUC of 0.961.
EfficientNetBO and DenseNetl21 were lightweight
architectures that were well-suited to deployment on the edge.
Nevertheless, variability in datasets is the main limitation of the
study since inconsistency between datasets could restrict the
model’s generalizability, and clinical validation in actual
practice has not yet been studied.

Zhanget al. [20] have suggested a miscellaneous supervised
multi-view mammography screening framework that is aimed at
addressing the weakness of traditional mammography
interpretation. Their study was to ease the workload of
radiologists, solve the low uptake in the remote geographical
areas and overcome the lack of sufficient data to support
intelligent early screening systems. The authors presented a
context clustering -based feature extraction mechanism, unlike
CNN and transformer architectures, augmented with multi-view
learning to complement information between mammographic
perspectives. They tested the model on 2 publicly available
datasets, VinDr-Mammo and CBIS-DDSM, and obtained
competitive results with reduced parameter counts, having the
AUC scores of 0.828 and 0.805, respectively. This is the major
strength of the model since it has a low-cost of computation and
is adaptable under a weak supervision state, which is promising
in low-resource environments. The method, however, has
shortcomings that include moderate accuracy relative to current
transformer-based models, non-availability of interpretability
tools and requirement to further validate the methodology on
larger and more diverse clinical data.

Fatima et al. [21] utilized a methodology of research to
examine the progress of deep learning in medical image
segmentation involving medical imaging modalities, such as
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MRI, CT, ultrasound, dermoscopy, and histopathology. Their
study was aimed at analyzing the segmentation techniques,
describing the new transformer-based architectures, and
comparing the trends of the performance through the PRISMA
review framework. The authors have analyzed a large variety of
datasetsin different modalities with much emphasis on dermato-
pathology and skin lesion imaging. Their findings have proven
that transformer-based models are much better than the
traditional CNN-based methods with the highest accuracy of
79.95 per centin multitask cancer detection or 93.4 per cent in
liver lesion segmentation. Frameworks that enhanced attention
like G2LL and PistoSeg, further enriched the accuracy of
segmentation by 5-15 per cent. Although these things are
accomplished, the review also points out that there are multiple
limitations: they require substantial computational time, are
dependent on large sets of annotated data, and cannot generalize
to other imaging fields or run all complicated transformer
models on a clinical device in real-time.

Breast cancer has to be managed and treated early in time.
Prodan et al. [22] also discuss the use of DL algorithms to
improve the process of mammography analysis and pay special
attention to the necessity to use advanced computational
methods to enhance the performance. The project analyzes
several computer vision architectures (CNNs and ViTs),
observed on a publicly available dataset. Synthetic data
augmentation to enhance the performance of a model is one of
the primary characteristics of the research. The importance of
preprocessing and data augmentation methods in attaining high
classification accuracy is demonstrated by the experimental
results. The results highlight the value of data augmentation in
maximizing the efficacy of deep learning in mammography
classification.

Despite the effectiveness of CNNs, GANs, and transformer-
based models, which have been established in the previous
studies to handle breast cancer diagnosis, most of the methods
are constrained to single-modality inputs, do not explicitly
model clinical feature interactions, and give deterministic
predictions  without estimating uncertainty.  Simply
concatenating features, multimodal efforts tend to be unable to
represent fine-grained cross-modal correspondences or be
subject to clinical interpretation. Moreover, there are not many
systems combining graph-based clinical reasoning with
hierarchical images representations. Such deficiencies
encourage the construction of the proposed HGGT framework,
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integrating the multimodal fusion, graph attention, contrastive
learning, and Bayesian uncertainty modeling within a single and
interpretable architecture.

III. MULTIMODAL TRANSFORMER-GAT BREAST DIAGNOSIS
FRAMEWORK

The proposed research, a hybrid framework named Hybrid
Graph—Generative Transformer (HGGT) will be created that
will acquire knowledge of the trends of the mammographic
images as well as the patterns between the patient and the
mammography to enhance the diagnosis of breast cancer. The
HGGT integrates hierarchical visualization with graphical
clinical reasoning because mammograms cause structure
pattemnswhich haveprovenessential in identifyingbreastcancer
and relation dependencies between clinical variables including
hormone receptor status, histological type, and the disease stage.
The conventional computer-aided diagnostic (CAD) systems are
primarily based on imaging modalities, and they fail to capture
important contextual variables, including tumor stage, receptor
status, or histological variables. On the contrary, clinical data
only based models are unsuccessful in representing the rich
structural and textural variations which can be found in
mammograms. As a solution to these shortcomings, the offered
HGGT framework will be based on the hybrid multimodal
approach that uses the advantages of both imaging and non-
imaging data sources to aid each other. Mammographic and
clinical datais preprocessed to create consistency and quality at
the start of the pipeline. The feature extraction is done in two
complementary but independent directions which consist of a
Swin Transformer-CNN fusion that extracts both global and
local features based on mammograms and a Graph Attention
Network (GAT) which codes the relationships among the
clinical features. These embeddings are then cross-modally
fused together, and these embeddings are projected to a single
latent space that reflects the general characteristics of the
disease. Lastly, adaptive Bayesian diagnostic head can predict
the probability of malignancy with uncertainty estimation,
which are facilitated by visual and clinical interpretability tools.
The proposed strategy is a multimodal fusion strategy, unlike
other traditional multimodal fusion strategies, which
incorporates both graph-based clinical reasoning and
hierarchical transformer features together as a single fusion
pipeline. Fig. 1 shows the entire process of the proposed
methodology.

\ [ \
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Figl. Proposed framework for breast cancer detection.
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A. Data Collection

The study creates a strong diagnostic model using two
complementary datasets, where firstly CBIS-DDSM repository
comprises two datasets of 6,775 and 10,239 high-resolution
mammograms of 1,566 clinically profiled participants [23]. The
images are of different cases of breast cancer such as normal,
benign, and malignant lesions with confirmed pathology, and
thus can be used in the developmentand testing of CADx and
CADe systems. Dataset 2 includes clinical and proteomic data
ofpatients withbreast cancer, patient demographics, stage of the
disease, histology, and hormone receptor status (ER, PR,
HER2), protein expression levels, surgery type, and patient
outcome (alive/dead) [24].

Fig2. Multiview structural mammary radiograph set.

Fig. 2 presents mammographic images that are organized in
two rows which demonstrate the craniocaudal (CC) and the
mediolateral oblique (MLO) projections of various breasts. All
panels show an X-ray image in grayscale with different degrees
of densities of breast tissue observable whereby there are fatty
tissues andmore dense fibroglandular tissues. The borders of the
breasts are well defined and the patterns of the internal tissues
seemto be heterogeneouswith the presence of overlaying layers
that are common in screening mammograms. These labels
include LCC, LMLO, RCC, and RMLO to show the orientation
of the left and right breast and the imaging angles. In general,
the set represents a realistic visual image of the multi-view
mammographic acquisitions in clinical screening of the breastto
guarantee the visualization of the structures of the breast.

B. Data Pre-Processing

To achieve adequate deep learning to detect breast cancer,
both images of mammograms and clinical data should be
properly preprocessed. The preprocessing of the images entails
the extraction of the breast region through thresholding and
connected component analysis andresizingall the images to 512
x 512 to provide uniform input to the Swin Transformer
backbone. The intensities of the pixels are normalized with the
z-score and CLAHE is used to increase the visibility of the
lesions.

(xy)—
Zy(xy) =2 (1)
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In Eq. (1), Z(x, y) is the original pixel intensity and feature
value, p is the mean intensity, o is the standard deviation, and
Z,(x,y) is the normalized pixel value.

@-1

legCe) = SEEE RO @)

In Eq. (2), L is intensity level number, M and N are image
size, h(i) is countofhistogramintensity i, 4 (x, ) is improved
image intensity.

C. Feature Extraction via Hybrid Fusion

1) Imaging pathway: The imaging pathway uses a hybrid
CNN architecture based on Swin Transformer to generate a set
of diverse features of mammograms. The Swin Transformer
represents the world contextual information, general breast
structures, tissue distribution, and spatial relations ofthe whole
image. This allows the network to learn macro-level trends that
will be important in the detection of malignancies that can be
large. At the same time, the CNN element activates on local,
fine-gained characteristics, including the shape of lesions,
margins, textures, and microcalcifications, and secures that
subtle signs of illness are maintained. With the two
architectures put together, the model has both global and local
structural understanding which enhances its effectiveness in
discriminating between benign and malignant tissues. The
hybrid scheme enables the downstream modules to take
advantage ofarich and multiple scale set of features to improve
the overall predictive performance and interpretability of the
breast cancer diagnosis model. The architecture combines CNN
and multi-scale Swin Transformer phases starting with patch
partitioning and linear embedding which allows the ViT
branches and convolutional layers to concatenate and feed into
a linear detecting module which allows localization of breast
cancer and a robust learning of multi-resolution features. The
visual representation is shown in Fig. 3.

2) Clinical pathway: Graph Attention Network (GAT) is
utilized to encode patient-specific clinical characteristics,
including age, tumor stage, receptor status (ER/PR/HER2) and
histology. The GAT is able to capture interdependencies
between clinical features and the model is able to comprehend
how particular biomarkers, stages, or demographic variables
affect each other with regard to malignancy. Here, patient
attributes are modeled as nodes and the relationship among the
features are modeled as edges, which allows the network to
learn weighted interactions between the features that can be
used to determine their relative importance in the diagnosis
process. The attention mechanism of GAT assigns learnable
attention coefficients @;; to the edges between nodes, computed
as shown in Eq. (3):

_ exp (LeakyReLU(aT[Whi| [Wh;]))
Y Treni) exp (LeakyReLU (aT [Wy,| Wi, 1))

3)

where, h; and h; are node feature vectors, W is a learnable
weight matrix, a is the attention vector, and N;represents the
neighbors of node i. The final noderepresentation is obtained,
as shown in Eq. (4):
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Such a mechanism gives priority to the most predictive
clinical features and makes sure that important data has a higher
contribution to the downstream fusion with imaging
embeddings. The resulting embeddings offer a rich
representation of patient-centric clinical profiles, enhancing
predictive capacity, interpretability, and clinical usefulness of
hybrid HGGT framework. The system can predict malignancy
more accurately and reliably, with more meaningful clinical
predictions by modeling these complicated dependencies.

3) Cross-modal fusion: A contrastive pyramid fusion
mechanismisused to align the embeddings of both the imaging
and clinical pathways in a common latent space in order to be
able to combine imaging and clinical information effectively.
This strategy will guarantee that the complementary
information between both of the mammograms and patient
specific attributes are pooled together in a way that will not
affecttherelationshipswithinand across modalities. The fusion
mechanism is mainly concemed with regional-level fusion, in
which imaging characteristics of certain quadrants of the breast
are correlated with certain clinical variables, including tumor
stage or histology of the region. This allows the model to
develop a relationship with contextual imaging patterns and
clinical features to develop a more comprehensive knowledge
of disease manifestations. The conflicting nature of the fusion
stimulates consistency between imaging and clinical
embeddings without losing modality-specific discriminative
characteristics. Consequently, the unified representation has
complete spatial and clinical information that enhances the

Swin Transformer: CNN architecture for breast cancer detection.

system to distinguish between benign and malignant
conditions. The pyramid fusion mechanism improves the
interpretability as well as the predictive power of the hybrid
HGGT framework by focusing on clinically relevant regional
correlations. This will enable the model to provide patient-
specific predictions of malignancy, which are not only accurate
butalso clinically relevant which is why it is essential in real-
life settings of breast cancer diagnostics.

a) Local level: On local level, the model focuses on
minute relationships between individual mammographic
lesions and clinical biomarkers. Characteristics of the lesion
(shape, size, margin and texture) used as indicators of
malignancy are correlated with patient specific characteristics
(ER/PR/HER?2 status and histopathological outcomes). Lesion-
level imaging embeddings are contrastively fused against
clinically useful feature embeddings, promoting biologically
meaningful associations. This would enable detection of the
minor cases of abnormalities that could not be known by the
global analysis and sensitivity to the early tumors. The local-
level mapping is also more interpretative in that the observer
can easily view what lesions and biomarkers are being taken to
informthe diagnosismakingita clinically coherent relationship
between the visual evidence and the patient biology. It is
expressed in Eq. (5):

(%)

Ly, ..o measures the correspondence between the data of
individual lesion imaging and the related biological biomarkers,
supporting fine grained associations. It enhances the early

exp (sim(z;z.)/T)
Ligyear = —l0g (ZN o )

k=1 XD (sim(z;,zy)/T)
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detection of tumors by increasing similarity between true lesion
biomarker pairs and dissimilarity irrelevant pairs.

b) Regional level: At the regional level, the specific
emphasis on individual lesions is replaced with more general
consideration of specific breast quadrants, combining the
examination of imaging characteristics with the relevant
clinical data. The quadrants of each breast are examined to
retrieve the trends of the tissue distributions, changes in
densities, and the clustering of the lesions that can represent
localized disease development. These regional imaging
phenomena are integrated with clinical qualities appropriate to
that quadrant, including the tumor stage, histology, or regional
biomarker expression, to obtain a situation in which there is a
relationship between the anatomical structures and biological
markers. The pyramid fusion of contrastive coupling combines
imaging embeddings z; and clinical z, paths on the regional
level, with paired embeddings being dragged towards each
other and unrelated ones being drawn away. This is optimized
through contrastive loss that is defined, as shown in Eq. (6):

Lcon _ —log = exp (sim(z;,z0)/T) (6)

=1 exp (sim(z;2x)/T)

where, sim (-) is the cosine similarity function, T is the
temperature parameter, and N is the number of samples in batch

[see Eq. (7)].

exp (sim(z;,z.)/T)

R=1 €XP (sim (2.2} /7)

) @

L,-egi0nae OPtimizes contrastive fusion between quadrant-
level imaging patterns and region-specific clinical attributes. It
models localized disease progression, ensuring anatomically
meaningful embeddings while discouraging incorrect clinical
associations within each breast region.

Lregiom# == lOg (Z

With its focus on the connection with the clinical data and
the quadrant-level imaging pattemns, the model consequently
reveals the subtle interactions, including the effect of tumor
stagingon the morphology oflesions or a group oflesions within
a quadrant. The regional-level integration improves predictive
performance by providing the link between the local lesion
characteristics and the global breast-level contexts in addition to
improving interpretability by providing clinically significant
correlations.

¢) Global level: The cross- modal fusion mechanism of
global level will integrate the whole breast imaging features
with the whole clinical history of the patient to acquire macro-
level patterns that can be usedin diagnosing. The imagingroute
also provides a clear image of the breast structure, tissue
distribution, bilateral symmetry as well as general change in
organization which can result in the implication of diffuse or
multifocal malignancies. These universal visual representations
are integrated with the specific clinical variables, including the
demographics, tumor stage, receptor status and histological
data. By making the two modalities correlated to latent space,
contrastive fusion enables the model to learn common patterns,
and complementary interactions, which cannot be learned when
the two data are trained separately when imaging and clinical
data are used. The integration will assist HGGT to place local
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and regional abnormalities within the broader context of the
physiological, and clinical history of the patient. The given
form of panoptic gaze is not only more precise in diagnosis,
particularly regarding the multi lesion or complex cases, but
also more interpretable since the fact of developing the global
breast features and knowing the patient in its entirety has been
demonstrated to be predictive of malignancy. It is expressed in

Eq. (8):
[’gat’olraf = |fimg (Xbreast) — Jfeiin (Cpatient)lg (8)

Ly 40440 minimizes the L2 distance between whole-breast
imaging representation fin,; (Xpyeqse)and complete clinical
profile embedding £, (Cpgtient)> €nabling holistic multimodal
alignment that captures global diagnostic trends.

D. Adaptive Diagnostic Head

The adaptive diagnostic head uses a Bayesian classifier to
give malignancy predictions along with estimates of confidence
that the model may use to assess the predictive uncertainty. The
Bayesian approach contrasts with the traditional deterministic
classifiers which make only point predictions, but the
distribution of the prediction probabilities. For an input
representation x, the predictive distribution is developed, as
shown in Eq. (9):

p(y|x,D) = [p(y|x,w)p(w|D)dw )

where, p(y|x,w) is the likelihood, given the model
parameters w, and p(w|D) is the posterior distribution over
weights conditioned on the training data D. Since the exact
posterior is intractable, variational inference or Monte Carlo
dropout is employed to approximate this integral, yielding both
class probabilities and uncertainty estimates.

This uncertainty-conscious model enables the model to
differentiate between confident and uncertain predictions to
contribute to more trustworthy clinical decision-making. Grad-
CAM-++ and attention heatmaps are also added in order to make
the process more interpretable, and to identify the important
parts of the image and clinical features that predict malignancy.
Such two-fold focus on quantification of uncertainty and
explainability makes the HGGT framework a predictive
framework that gives not only accurate predictions, but also
makes them transparent and clinically meaningful.

E. Training Objective

HGGT frameworkis end-to-end trained with theunified goal
to achieve accurate classification, effective cross-modal
alignment, and uncertainty estimation. In general, the loss is
determined, as shown in Eq. (10):

Ltotal = ﬁLcls + chon + aLunc (10)

Here, LL . is the classification loss, which is represented
with cross-entropy and guarantees the similarity of the predicted
malignancy outcome with the actual diagnostic results. L, is
the contrastive loss, which aims at aligning mammogram
embeddings Swin-CNN with those of clinical embeddings of the
GAT and enhances shared feature space representation. L,
represents the uncertainty-sensitive loss, which also applies a
penalty to incorrect judgments which are overconfident and
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promotes better model calibration of Bayesian inference ideas.
The coefficients 8, y and, § are weighting factors to equal the
contribution ofeachtermofloss. Withthese values changed, the
framework can focus on accuracy, consistency of representation
or uncertainty calibration when needed. This integrated training
approach guarantees that HGGT not only demonstrates high
predictive accuracy but also gives reliable, interpretable and
clinically meaningful results. The combination of classification,
contrastive alignment, and uncertainty modeling enables the
system to generate strong diagnostic predictions and also has
transparency in how the system arrives at a decision.

Algorithm 1: HGGT Framework for Breast Cancer
Detection
Input:
Medical Images (X)
Clinical Data (C)
Labels (Y)
Output:
Predicted Diagnosis (Y)
Data Preprocessing

Normalize images (min-max scaling)

Clean & normalize clinical data
normalization)

Split into training, validation, and test sets

(z-score

Feature Extraction
Imaging Pathway: Swin Transformer for global
structures + CNN for fine-grained lesion features.
Clinical Pathway: Graph Attention Network (GAT)
encodes interdependencies among clinical features

hi= J(Z a,Wh)
JeN;
Cross-Modal Fusion

Contrastive pyramid fusion aligns imaging and
clinical embeddings.

Regional-level fusion applied with contrastive loss:
exp (sim(z,2,)/7)

Yi-1exp (sim(z;,2,) /7)

Adaptive Diagnostic Head

Bayesian classifier predicts
uncertainty:

p(ylx,D) = f Py w)p(w|D)dw

Grad-CAM++ and attention heatmaps provide
interpretability.
Training Objective
Unified loss:
Liotar = BLas +VLcon + OLync

Lcon = —log

malignancy with

Return

Algorithm 1 illustrates the HGGT model proposed, which
incorporates both mammographic and clinical data to make a
strong diagnosis of breast cancer. The preprocessing stage starts
with the extraction of breast regions, resizing mammograms to

Vol. 17, No. 1, 2026

less than 512x512 , z-score normalization, and z-score CLAHE.
Clinical data are encoded to achieve compatibility with a
standardization of clinical data. The next step in the feature
extractionprocess involves a two-way line of initiative: a hybrid
Swin Transformer CNN can extract both global structural and
fine lesion features of mammograms whereas a Graph Attention
Network (GAT) codes the patient-specific features and the
interdependencies between them, defined by attention-weighted
interactions. A contrastive pyramid mechanism is used to
perform cross-modal fusion by matching imaging and clinical
embeddings in a shared latent space. Fusion on a regional level
prioritizes thecorrelations of the breast quadrants with the tumor
stage or histology, minimized with contrastive loss. The
adaptive diagnostic head uses a Bayesian classifier to provide
predictions of malignancy with uncertainty calibration and
Grad-CAM++ to provide interpretability.

IV. RESULTS AND DISCUSSION

The Experimental analysis of the proposed HGGT
framework indicates that it is effective in reliability and it is
better than the traditional deep learning models in the diagnostic
performance. The model is well balanced and strongly classified
with accuracy, precision, recall and F1-scoreeven in a case of
class imbalance. The comparisons with HGGT show that it
outperforms CNN, VGG16, ResNet50, EfficientNet-B0 and
GAN-assisted CNN models on all metrics, which indicates that
ithas a good multimodal fusion capacity. The ablationstudy also
confirms the fact that each individual aspect of the study
including the attention mechanisms, CycleGAN augmentation
as well as Swin-CNN-GAT integration contribute significantly
to the performance increment. Grad-CAM++ visualizations
reveal that the framework is effective at localizing malignant
regions, as GAT attention maps show the importance of clinical
biomarkers such as tumor size, ER as well as PR status. All in
all,theresults prove HGGT to be a fit,understandable, and valid
model in the diagnosis of breast cancer.

TABLEI. SIMULATION PARAMETERS

Parameter Value

Dataset CBIS-DDSM

Image Resolution 512 x 512 pixels

Swin Transformer + CNN, Graph Attention

Methods used Network,

Batch Size 16

Initial Learning Rate | 1e-4 with cosine annealing scheduler

Optimizer AdamW

Epochs 150 (with early stopping)
Dropout Rate 0.3

Weight Decay Se-5

Cross-validation 5-fold cross-validation

Accuracy, Sensitivity, Specificity, F1-score,

Evaluation Metrics AUC-ROC

Software Python 3.10

Table I illustrates the HGGT framework simulation
parameters are designed to give strong and yielding prediction
of'breast cancer. The dataused in the analysis are CBIS-DDSM
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in which the mammogram images have already been
preprocessed to 512 512-pixels resolution. The model includes
Swin Transformer + CNN with images and Graph Attention
Network (GATT) with clinical data. AdamW optimizer is
applied to train and initial learning rate is 1e-4 in the form of
cosine annealing with a batch of 16 and 150 epochs total with
early stopping. Regularization dropoutrate 0.3 weight decay Se-
5. The 5-fold cross-validation was considered as evaluation
methods and such metrics like accuracy, sensitivity, specificity,
Fl-score, and AUC-ROC were used.

Benign

Malignant

Benign Benign

Malignant Benign

Fig4. Breast image classification.

Fig. 4 showsa collection of mammogramimages grouped as
benign and malignant cases. The dataset grid has nine samples
distributed across three rowsandthree columns, highlighting the
variability in tissue patterns and tumor appearances. The benign
images generally consist of localized or well-delineated areas
with comparatively uniform density, while the malignant images
exhibit irregularly dense structures with poorly defined borders,
which are indicative of invasive growth.

BENIGN_WITHOUT_CALLBACK

BENIGN

MALIGNANT

Fig5. Class distribution.
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Fig. 5 shows the division ofthe medical imaging results into
three diagnostic types: Malignant, Benign, and Benign without
Callback. Malignant conditions form the highest percentage at
48.3%, showing a high prevalence of confirmed malignancies.
Benign conditions cover 43.8%, showing a significant
percentage of non-cancerous findings. The lowest category,
Benign without Callback, occupies merely 7.9%, showing the
cases in which no follow-up was needed.

Patient Age Distribution Across Cancer Stages

80

==
T =

L

. :
Stage | Stage Il

: .
Stage Il Stage IV

Fig6. Patient age distribution across cancer stages.

Fig. 6 displays the distribution of the age of the patients in
various stages of breast cancer. There is a separate box, denoted
by each stage, Stage I, Stage II, Stage IIl, and Stage IV, which
shows the median, interquartile range (IQR), and the minimum
and maximum ages. In Stage [, the median age is less, at around
49 years, with a broader range of between 42 and 60 years,
signifying thatthere is more variability in younger patients. The
median ages are increasingly higher in Stage Il and III at about
60 and 69 years, respectively, with smaller age ranges. The
median age of patients in stage [V is the largest in 77 years,
implying that later stages have more representation in older
cohorts.

. —— Group A
Receptor Status Across Patient Subgroups ___ G:zsz B
= Group C
ER
HER2
Fig7. Receptor status across patient subgroups.
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Fig. 7 depicts the receptor status (ER, PR, HER2) in three
groups of patients in: Group A, Group B, and Group C. The axis
depicts the value of each receptor type, and therometers are 0-
0.8, which is the extent of receptor expression. Group A has the
highest ER expression and Group C indicates the highest PR
expression. HER2 expression is relatively low in all the groups,
with a slight increment in Group C than Group A and B. The
filled areas show differences in receptor patterns, with a
particularemphasis onthe factthateach subgrouphasa different
molecular profile.

Tumor Size vs. Patient Age by Malignancy Class

@ Benign
@® Malignant

941 @ L e

8 &

[ ]
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L

Tumor Size

w
¢
$
[ ]
(]

T T T T T T
30 40 50 60 70 80
Patient Age

Fig8. Tumor size vs. Patient age by malignancy class.

Fig. 8 can be used to show the correlation between the age
of patients and the size of the tumor, according to the
classification of malignancy. The points are the representatives
of individual patients, and green markers are the indicator of
benign tumors, whereas red markers denote the malignant
tumors. The sizes of tumorsare 1 to 9, whereas the ages of the
patients do not exceed 30 to 80 years. The plot exposes that
malignant tumors develop in a vast age bracket and are
frequently larger in size, but there are also small malignant
tumors. Benign tumoris evenly spread in terms of size and age.

040 Attention Weights of Clinical Features (GAT)
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Fig9. Attention weights of clinical features.

Fig. 9 depicts weights of attention of clinical features
obtained using GAT model, and their significance in relation to
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their role in diagnosis prediction. Among the characteristics, the
most important contribution is made by Tumor_Size, which
suggests that it has a dominant contribution to clinical decision-
making. ER and PR comes next with a medium level of
importance as they play a great role in diagnostic interpretation.
The smaller weight is supported by age, which implies a less
direct but also relevant influence, whereas the contribution of
HER?2 is the lowest, indicating the lack of significance in this
respect. In general, the image highlights that the size of tumor,
and features of their receptors are the greatest clinical drivers
that the model uses to make effective medical predictions.

A. Performance Evaluation

Standard metrics are used to assess the categorization
model's accuracy, while confusion matrix evaluation is used to
measure false positives and misleading negatives.

1) Accuracy: Accuracy is a measure of the model's overall
accuracy in prediction and is given in Eq. (11):
tp+tn

Accuracy = ——
tp+tn+fp+fn

an

where, tp is Rightly labeled malignant cases, tn Rightly
labeled benign cases, fp is Wrongly labeled benign cases as
malignant, fn: Wrongly labeled malignant cases as benign.

2) Precision: Precision calculates the ratio of malignant
cases correctly identified out of all cases that are predicted to
be malignant in Eq. (12):

Precision =

(12)

A high precision value means fewer false positives, and this
is particularly important in medical diagnosis to prevent
unnecessary biopsies.

tp+fp

3) Recall: Recall is the proportion of valid malignant cases
that were properly identified in Eq. (13):

tp
tp+fn (13)

Recall =

It will have less false negatives and a high recall, which is
important in breast cancer screening to limit missed diagnosis.

4) Fl-score: The Fl-score is a balance between Precision
and Recall, hence it is more appropriate for imbalanced sets in
Eq.(14):

PrecisionxRecall

F1—Score =2 X—————— (14)

Precision+Recall

High Fl1-score indicates that the model is maintaining
precision and recall in equilibrium.

TABLE II. PERFORMANCE METRICS
Metrics Value%
Accuracy 98.2
Precision 98.7
Recall 98.5
F1-Score 99.2

Fig. 10 and Table II show the performance measures of the
model, and it is effective in the four important measures. The
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model has an accuracy of 98.2 % and demonstrates how well it
performs on the predictions in general. The accuracy is 98.7 %,
which shows that the model has a high capability of reducing
false positives. The recall is also a bit lower (98.5 %), which
indicates the ability of the model to report the important
instances without recording the false negatives. Single accuracy
of the F1-score, which combines both the precision and recall,
has the highest value 0f 99.2 %, which is consistent and strong.
Altogether, thesemeasurements provethe greatreliability of the
model, harmonized predictive power, and its ability to be
applicable in practice when performing medical diagnostic
tasks.

Model Performance Metrics
99.5

99.2%
99.0
98.7%

98.5%
98.5 4
98.2%

98.0

97.5

97.0

Percentage (%)

96.5

96.0

95.5

95.0 T T T T
Accuracy Precision Recall F1-5core

Fig 10. Performance metrics.

B. Comparison Metrics

Table Il and Fig. 11 introduce a comparison analysis of the
performance of different deep learning models used in the
diagnosis of breast cancer. The performance indicators like
accuracy, precision, recall, F1 score, and AUC ROC of standard
architectures, such as CNN, VGGI16, ResNet50, and
EfficientNet B0, show increasing improvement regarding all
these metrics, which signifies improved feature extraction and
classification performance. The hybrid of GAN and CNN is
another way of improving the performance of predictive, and
symbolizes the power of generative augmentation. It is worth
noting that the proposed model has the best scores in accuracy,
98.2 %, precision, 98.5 %, recall, 99.2 % and F1 score, 99.1 %
AUC ROC, indicating its superior diagnostic ability. These
findings show that the hybrid method proposed is effective in
detecting breast cancer using multimodal data.

TABLE III. PERFORMANCE COMPARISON
Accuracy Precision Recall Fl- AUC-
Model %) %) %) Score ROC
’ ’ ’ (%) (%)

CNN [25] 91.5 89.6 90.2 89.9 93.0
VGG16 [26] 94.2 93.5 94.0 93.7 95.6
ResNet50
27] 95.0 94.1 95.5 94.8 96.5
EfficientNet-
B0 [28] 95.6 95.0 95.7 953 97.2
ﬁ‘;? TENN | 960 954 96.8 96.1 | 97.8
Proposed
Model 98.2 98.7 98.5 99.2 99.1
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Fig11. Performance metrics comparison.

TABLEIV. ABLATION STUDY
. Accuracy | Precision Recall F1-Score
Model Variant (%) (%) %) (%)
Swin Transformer 948 94.0 951 04.5
Only
Swin + Attention | g¢ | 95.5 96.8 96.1
Mechanisms
Swin + CycleGAN | ¢ ¢ 96.2 975 96.8
Synthetic Images
Swin Transformer-
CNN + GAT 98.2 98.7 98.5 99.2

Table IV reflects the performance comparison of various
model variants that are developed on Swin Transformer in the
diagnosis of breast cancer. The Swin Transformer with thebasic
architecture has a high baseline accuracy of 94.8 %. This
addition of the mechanisms of attention enhances the model,
leadingto 96.1 % accuracy and an increase in precision, recall,
and F1 score, whichunderscores the positive effects of accurate
weighting of features. The use of CycleGAN-generated
synthetic images further increases the accuracy to 96.8 % by
increasing the training data. These results are the most
significant when Swin Transformer-CNN is combined with
GAT, as the accuracy is 98.2 %, the precision is 98.7 %, the
recall is 98.5 %, and the F1 score is 99.2 %, which underlines
the effectiveness of the multimodal fusion and further graph-
based learning in enhancing the accuracy of the diagnosis.

C. Discussion

The effectiveness of the HGGT framework can be explained
by the fact that it is capable of modeling hierarchical
mammographic representations and structured clinical
relationships jointly, allowing to make more diagnostic
reasoning than unimodal deep learning methods. The HGGT
model is an important leap towards the multimodal detection of
breast cancer because it is fast to integrate both mammographic
images and clinical biomarkers into one diagnostic model.
Unlike other traditional CNN-based networks, the HGGT is a
hybrid Swin Transformer-CNN block that focuses on the visual
characteristicsto capturethe global imagesofthe breast and fine
details of a lesion. Meanwhile, Graph Attention Network
forecasts malignancy in biologic details by learning intricate
clinical interactions between biomarkers, such as ER, PR,
HER?2, and tumor stage. The mechanism of contrastive pyramid
fusion proves efficient in matching the imaging and clinical
embeddings that increase the diagnostic consistency and
interpretability. Local and regional fusionalso servesto improve
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the detection in the early stages by means of the linkage of
quadrant-specific images to histopathological features. It has
added a Bayesian diagnostic head to provide the estimates of
uncertainties, which is an important feature ofhigh-risk clinical
decision-making. HGGT, with the help of interpretability agents
of which Grad-CAM++ is a part, bridges the gap between Al
predictions and clinician reasoning and constitutes a reliable,
explainable, and clinically meaningful diagnostic model.

V. CONCLUSION AND FUTURE WORKS

The research illustrates that successful diagnosis of breast
cancer demands a coherent rationale of imaging and clinical
modalities as opposed to solitary or superficial integration
measures. It is demonstrated in the proposed Hybrid Graph-
Generative Transformer (HGGT) that hierarchical multimodal
fusion based on clinical relationships can enhance the reliability
of diagnostic information, interpretability, and uncertainty

awareness in computer-aided diagnosis systems. The
framework, which integrates the representation of
mammographies and clinically significant biomarker

interactions, fills the gap between clinically relevant biomarker
interactions and data-driven predictions, which help in making
choices more transparent and reliable in obtaining trustful and
clinician-focused decision support.

Although it has effective performances, this study has its
limitations. It uses one retrospective dataset, and this might not
be representative of other institutions and imaging platforms.
Moreover, the framework can limit the real-time
implementation to resource-constrained clinical environments
because of its computational complexity. The areas of future
work will be large-scale multi-institutional validation,
computational optimization, and the combination of
longitudinal, genomic, and radiomic data. Federated learning
with privacy concerns and integration with clinical workflow are
also major steps towards practical implementation.

REFERENCES

[1] S. Guan and M. Loew, “Using generative adversarial networks and
transfer learning for breast cancer detection by convolutional neural
networks,” in MedicalImaging2019: Imaging Informatics for Healthcare,
Research, and Applications, SPIE, 2019, pp. 306-318.

[2] C. Singla, P. K. Sarangi, A. K. Sahoo, and P. K. Singh, “Deep learning
enhancementon mammogram images forbreast cancerdetection,” Mater.
Today Proc., vol 49, pp. 3098-3104, Jan. 2022, doi:
10.1016/j.matpr.2020.10.951.

[3] M. Behzadpour, B. L. Ortiz, E. Azizi, and K. Wu, “Breast tumor
classification using efficientnet deep learning model,” ArXiv Prepr.
ArXiv241117870,2024.

[4] Y. Jiménez-Gaona, D. Carrion-Figueroa, V. Lakshminarayanan, and M.
J. Rodriguez-Alvarez, “Gan-based data augmentation to improve breast
ultrasound and mammography mass classification,” Biomed. Signal
Process. Control, vol. 94, p. 106255, 2024.

[5] R.B.Eshun, A. K. Islam, and M. Bikdash, “A deep convolutionalneural
network for the classification of imbalanced breast cancer dataset,”
Healthc. Anal., p. 100330,2024.

[6] M.S. A. Khan, A. Husen, S. Nisar, H. Ahmed, S. S. Muhammad, and S.
Aftab, “Offloading the computational complexity of transfer learning with
generic features,” Peer] Comput. Sci., vol. 10, p.e1938,2024.

[71 Y. Jiménez-Gaona, M. J. Rodriguez-Alvarez, L. Escudero, C. Sandoval,
and V. Lakshminarayanan, “Ultrasound breast images denoising using
generative adversarialnetworks (GANs),” Intell. Data Anal., vol. 28, no.
6, pp. 1661-1678,2024.

(8]
(0]

[10]

[14

[}

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

126

[}

[27]

[28]

Vol. 17, No. 1, 2026

R. Dijkstra, “The Effects of Data Augmentation and Synthetic Data in
Breast Cancer Detection,” 2024.

L. L. Scientific, “LEVERAGING EXPLAINABLE AI TO IMPROVE
BREAST CANCER DETECTION RATE USING TRANSFER
LEARNING WITH DEEP RECURRENT CONVOLUTIONAL
NEURAL NETWORKS,” J. Theor. Appl. Inf. Technol., vol. 103, no. 1,
2025.

J. Ellis, K. Appiah, E. Amankwaa-Frempong, and S. C. Kwok,
“Classification of 2d ultrasound breast cancer images with deep learning,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2024, pp. 5167-5173.

P. U. HEPSA, S. A. OZEL, and A. YAZICI, “Transfer Learning with
Fuzzy for Breast Cancer,” J. Inf. Sci. Eng., vol. 40, pp. 919-939, 2024.

S. A. Qureshi et al, “Breast Cancer Detection Using Mammography:
Image Processing to Deep Leaming,” IEEE Access, vol. 13, pp. 60776—
60801,2025, doi: 10.1109/ACCESS.2024.3523745.

Y. E. Almalki, T. A. Soomro, M. Irfan, S. K. Alduraibi, and A. Ali,
“Impact of Image Enhancement Module for Analysis of Mammogram
Images for Diagnostics of Breast Cancer,” Sensors, vol. 22, no. 5, Art. no.
5,Jan. 2022, doi: 10.3390/s22051868.

Z. Jafari and E. Karami, “Breast Cancer Detection in Mammography
Images: A CNN-Based Approach with Feature Selection,” Information,
vol. 14,no. 7, Art. no. 7, July 2023, doi: 10.3390/info14070410.

S. Chaudhury and K. Sau, “Classification of Breast Masses Using
Ultrasound Images by Approaching GAN, Transfer Learning, and Deep
Leaming Techniques,” J. Artif. Intell. Technol., vol. 3, no. 4, pp. 142—
153,2023.

W. H. Alawee, L. A. Al-Haddad, A. Basem, and A. A. Al-Haddad, “A
data augmentation approach to enhance breast cancer detection using
generative adversarialand artificialneural networks,” Open Eng., vol. 14,
no. 1, p. 20240052,2024.

E. Strelcenia and S. Prakoonwit, “Improving cancer detection
classification performance using GANs in breast cancer data,” IEEE
Access, 2023.

B. Swiderski, L. Gielata, P. Olszewski, S. Osowski, and M. Kotodziej,
“Deep neural system for supporting tumor recognition of mammograms
using modified GAN,” Expert Syst. Appl.,, vol. 164, p. 113968,2021.

S. Sharma, Y. Singh, and T. Choudhury, “Advanced deep leaming
architectures for enhanced mammography classification: a comparative
study of CNNs and ViT,” Discov. Artif. Intell,, vol. 5,no. 1, p. 187,2025.
S. Yanget al, “Mammo-Clustering: A Weakly Supervised Multi-view
Global-Local Context Clustering Network for Detection and
Classification in Mammography,” ArXiv Prepr. ArXiv240914876,2024.
S. Fatima, M. U. Akram, S. Mohammad, and S. B. Ahmed, “Deep
learning in dermatopathology: applications forskin disease diagnosis and
classification,” Discov. Appl. Sci.,, vol. 7, no. 9, pp. 1-26, 2025.

M. Prodan, E. Paraschiv, and A. Stanciu, “Applying deep leaming
methods for mammography analysis and breast cancer detection,” Appl
Sci., vol. 13,no0.7,p.4272,2023.

Awsaf, “CBIS-DDSM: Breast Cancer Image Dataset,” 2021, doi: 2021.

“RealBreast CancerData.” Accessed: Aug.20,2025.[Online]. Available:
https://www.kaggle.com/datasets/amandam1/breastcancerdataset

M. A. Yakoubi, N. Khiari, A. Khiari, and A. Melouah, “Deep Neural
Network-Based Model for Breast Cancer Lesion Diagnosis in
MammographyImages,” Acta Inform. Pragensia, vol. 13, no. 2, pp. 213—
233,2024.

A. Bechar, R. Medjoudj, Y. Elmir, Y. Himeur, and A. Amira, “Federated
and transfer learning for cancer detection based on image analysis,”
Neural Comput. Appl., pp. 1-46,2025.

G. Ayana,K.Dese, A. M. Abagaro,K. C. Jeong, S.-D. Yoon,and S. Choe,
“Multistage transferleaming for medicalimages,” Artif. Intell. Rev., vol.
57,n0.9,p.232,2024.

H. Avciand J. Karakaya, “Anovelmedicalimage enhancementalgorithm
for breast cancer detection on mammography images using machie
learing,” Diagnostics, vol. 13, no. 3, p.348,2023.

278 |Page

www.ijacsa.thesai.org



