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Abstract—Breast cancer has been listed as one of the leading 

causes of death amongst women all over the world, and the current 

diagnostic techniques, which are founded on the manual 

examination of mammograms or individual clinical presentations, 

are often subjective, neither being consistent nor generalizable. 

The existing computer-aided diagnosis (CAD) systems are also 

characterized by significant weaknesses related to poor 

multimodal integration, no interpretability, and vulnerability to 

class imbalance. In order to address the inadequacy, the present 

study introduces an advanced multimodal deep learning 

framework named Hybrid Graph-Generative Transformer 

(HGGT), designed to integrate high-resolution mammographic 

images with the clinical, demographic, proteomic, and histological 

data pertinent to the patient. The HGGT network is a hierarchical 

Swin Transformer and CNN-based feature extraction, a Graph 

Attention Network (GAT) (to identify clinical variable 

interaction), and a contrastive cross-modal generative fusion 

system (to match the different modalities). The diagnostic head 

employs a Bayesian uncertainty-aware classifier to ensure more 

reliability in the prediction of malignancy. It is trained on 5-fold 

cross-validation, AdamW, and a cosine annealing scheduler, 

which is set on Python 3.10. It is demonstrated by the performance 

of the CBIS-DDSM mammography dataset and a corresponding 

clinical dataset consisting of over 400 patients that HGGT is much 

superior with 98.2% accuracy, 98.7% precision, 98.5% recall, 

99.2% F1-score, and 99.1% AUC-ROC, having a significant 

advantage over the established models of ResNet50, EfficientNet-

B0 and GAN-enhanced CNN classifier. Overall, the HGGT 

framework is delivering a scalable, interpretable, and highly 

accurate diagnosis solution that was a huge improvement over the 

existing unimodal and poorly integrated CAD system in the 

detection of breast cancer. 
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I. INTRODUCTION 

Among the most prevalent and deadly illnesses impacting 
women globally is breast cancer.   The WHO model states that 
earlier treatments dramatically lower mortality, and prompt and 
precise identification is crucial for increasing lifespan [1].  Since 
mammography allows for the quick detection of abnormalities, 
it is an extremely widely used technique for preventing cancer 
in the breast [1]. Yet, visual interpretation of mammograms [2] 
is an involved and labor-intensive task susceptible to 
subjectivity and inter-reader variability [3]. Superimposition of 
overlapping tissue structures, poor contrast, and nuanced 
variations further add to the challenge in accurate diagnosis [4]. 
Consequently, an increased demand exists for robust and 
automatic CAD systems for radiologists to detect malignancies 
more precisely and with greater efficiency [5]. 

Manual CAD systems are dependent on hand-tuned feature 
extraction methods and traditional machine learning tools [6]. 
Although some success has been reported with these methods, 
the quality of feature extraction and a lack of generality across 
large and varied datasets usually limit their performance [7]. 
These traditional methods further need significant amounts of 
domain-specific knowledge for feature engineering, limiting 
their flexibility towards actual clinical use [8]. The latest 
improvements in deep learning, specifically CNNs, have 
transformed medical image analysis to a great extent, with the 
capability for automatic feature learning and state-of-the-art 
accuracy in classification problems [9]. Nonetheless, deep 
models depend on extensive and well-labeled datasets for good 
generalization [10]. The rarity of labeled mammographic images 
and also class imbalance within datasets makes the task difficult 
to train precise DL models for detecting breast cancer [11].   The 
latest advances in breast cancer detection use deep learning on 
transformers and attention models, and are used on either 
imaging-only data or clinical-only data [12]. The study 
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hypothesizes a single Hybrid Graph Generative Transformer 
(HGGT) to integrate hierarchical mammographic image 
attributes with graph-coded clinical information through a 
contrastive multimodal alignment process to deliver high-
fidelity, interpretable and uncertainty-aware diagnosis of breast-
cancer. Although there is progress in multimodal breast cancer 
CAD, current approaches tend to use shallow fusion, poor 
modeling of the interactions between clinical variables and 
individual assessment of uncertainty. In order to address these 
shortcomings, this study introduces a Hybrid Graph-Generative 
Transformer (HGGT) that integrates hierarchical features of 
imaging, graph-based clinical reasoning, and Bayesian 
uncertainty modeling into one diagnostic model. 

A. Research Motivation 

Breast cancer is one of the causes of death among women 
and the treatment of this disease depends upon early and 
accurate diagnosis. Manually interpreted mammograms and 
single clinical evaluations have been known to be quite 
subjective, slow and lack uniformity. Even though higher 
diagnostic potential is possible with the multimodal combination 
of imaging and clinical data, there is still a problem of poor 
generalization, data imbalance, and limited interpretability in the 
current AI-based systems. The issues cited above represent the 
necessity of an integrated, hybrid, deep-learning model that can 
provide strong, interpretable and clinically meaningful 
predictions of breast cancer. The recent advancements in deep 
learning have provided improved performance in the system, but 
the existing CAD systems do not indicate the complementary 
relationship between the mammographic features and the 
patient-specific clinical characteristics. It motivates the 
development of a multimodal system that can acquire joint 
descriptions in different modalities, such that more robust 
situation-aware diagnostic decisions can be made. 

B. Problem Statement 

Diagnosing breast cancer is not easy due to the weaknesses 
of the current computer-aided detectors, which usually apply 
either of the two separately, either in mammographic pictures or 
clinical data. Breast cancer has been a major health concern to 
the world and early detection has been the most appropriate 
measure in increasing the survival chances and this is primarily 
through screening mammograms [13]. Even though the recent 
advances in deep learning (DL) have considerably enhanced the 
diagnosis of breast cancer, most of the existing systems employ 
either clinical or imaging data, as compared to their potential to 
provide the entire diagnostic image [14]. Current methods of 
diagnosis are still restricted by single-modality dependence, a 
low level of generalizability, and the lack of clinical 
interpretability. The state-of-the-art deep learning models are 
not effective at modeling complex clinical relationships and 
integrating heterogeneous data. This poses a sense of urgency in 
having an integrated, explainable multimodal structure that 
combines both the mammographic and clinical information into 
a transformer-graph architecture to have a reliable breast cancer 
diagnosis. 

C.  Research Significance 

The suggested Hybrid Graph-Generative Transformer 
(HGGT) is a significant innovation in breast cancer diagnostics. 
It combines the use of generative modeling, graph-based clinical 

encoding, and transformer-based multimodal feature fusion into 
a single deep learning pipeline. This architecture can also solve 
most of the important challenges that include data sparsity, class 
imbalance, and inter-modal correspondence, and remain 
interpretable and uncertainty-aware predictions. The HGGT is a 
framework that enhances the accuracy of diagnosis and clinical 
reliability by combining the model of mammographic features 
and patient-specific clinical variables. Using transformer-based 
imaging analysis, clinical reasoning in the form of graphs, and 
contrastive multimodal fusion, HGGT makes interpretable 
predictions and uncertainty-aware predictions. It is the 
relationship between radiological observations and formalized 
clinical experiences and the following generation of multimodal, 
precision-concentrated CAD systems. 

D. Research Question and Hypothesis 

Do unified multimodal deep learning systems, which 
combine mammographic images with structured clinical data 
using graph-based reasoning and transformer-based fusion, offer 
more accurate, interpretable, and uncertainty-aware breast 
cancer diagnosis compared to current unimodal or loosely 
integrated CAD systems? 

We hypothesize that joint hierarchical image features and 
interaction of clinical variables modeled with Hybrid Graph-
Generative Transformer (HGGT) will significantly improve 
diagnostic performance, high resiliency to class imbalance, and 
clinical meaningfulness. 

E. Key Contributions 

• Proposes a common framework of HGGT that gives 
precedence to a mammographic image and organized 
clinical information in the diagnosis of breast cancer. 

• Introduces graph-guided transformer fusion to explicitly 
model clinical biomarker interactions beyond 
conventional feature concatenation or shallow 
multimodal fusion. 

• Derives a fusion strategy based on contrastive pyramid 
fusion that matches the representation of imaging at 
multiple levels with clinical aspects to enhance the 
resilience of class imbalance. 

• Integrates Bayesian uncertainty estimation and dual-
modality explainability to support reliable, 
interpretable, and clinically meaningful diagnostic 
decision-making. 

The rest of the study is structured in the following manner: 
Section II includes a thorough literature review of the literature 
concerning the topic of breast cancer diagnosis and multimodal 
deep learning. Section III gives the research problem and 
outlines the proposed Hybrid Graph-Generative Transformer 
(HGGT) methodology step-by-step. Section IV reports the 
experimental framework, findings, and performance analysis of 
the proposed framework. Lastly, Section V gives a conclusion 
in the study outlining the main findings and possible ways of 
conducting further studies. 

II. LITERATURE REVIEW 

Although ultrasound imaging is a vital diagnostic technique 
used to identify breast cancer, the efficiency of computerized 
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diagnosis systems is typically limited by the absence of properly 
annotated data. Chaudhury and Sau [15] suggest a deep learning 
(DL)-derived architecture that incorporates TL, GANs and a 
creative data augmentation method for ultrasonography image-
based mammary mass classification.  Because breast tumors can 
be accurately identified through minimally invasive procedures, 
thanks to early identification and precise categorization, they 
can significantly reduce the number of fatalities. Data 
augmentation by GAN enhances classification performance, and 
TL-based feature extraction enhances accuracy even more. 
Results prove the effectiveness of DL approaches to classify 
breast ultrasound images. The current article proposes a new 
technique of breast mass detection via data augmentation using 
GAN and TL-based feature learning for enhanced diagnostic 
performance. Results presented illustrate how this approach 
outperforms existing algorithms and has the capability to 
improve computer-assisted breast cancer diagnosis systems. 

It is a severe global health problem that needs to be 
continuously enhanced in terms of approaches to identification 
and classification. In reference to identifying breast cancer a 
machine learning approach is described by Alawee et al.[16] as 
a result of distinguishing benign and malignant mammography. 
The study recommends a two-hidden-layer ANN model in order 
to enhance the accuracy of the classification. Before analysis, 
mammography images are subject to preprocessing, including 
data denoising, contrast normalization, and a GAN to make the 
data better. This is a multi-step improvement of image quality 
that reforms the information in an analysis-optimized format 
through the vectorization of pixel data. It is only on such 
improved images that ANN is trained, and the results are good 
as far as the improvement of classification performances is 
concerned. The experimental findings suggest the existence of 
accuracy improvement over normal scans, and accuracy in the 
final model is close to perfection with different preprocessing 
strategies. In the study, the strength of data augmentation and 
ANN-classification when used in the context of medical 
imaging has been emphasized, as well as how these resources 
can be used to impact the detection and treatment at its initial 
stages. This powerful platform of detection is a valuable 
contribution to biotechnology and an area where new AI-based 
applications of medical diagnosis are justified. 

Strelcenia and Prakoonwit [17] explains past research has 
proven that early and precise detection can have a huge impact 
on patient outcomes. GANs have been gaining attention in 
medical imaging in recent times to create synthetic images as 
well as non-image data for diagnostic use. Provide a K-CGAN 
technique that produces high-quality simulated data by learning 
in several distinct settings.  Five distinct categorization and 
feature extraction methods were applied to the non-image 
Wisconsin Breast Cancer dataset, consisting comprised 212 
benign and 357 malignant instances,  to use synthetic data to 
assess our proposed K-CGAN's effectiveness. Our empirical 
study's findings support the notion that K-CGAN outperforms 
other GAN types in terms of classification accuracy and 
stability. Our evidence demonstrates that K-CGAN-generated 
synthetic data closely resembles the actual dataset. 

Swiderski et al. [18] present the Autoencoder-GAN 
(AGAN) model, which was used in the evaluation of 
mammograms as a data augmentation method to generate 

additional mammogram images. This aids in enhancing the 
current dataset, addressing the problem of limited data in 
medical images. The created images and actual mammograms 
were fed into a CNN for classification. The proposed system was 
designed to differentiate normal from abnormal mammograms. 
The proposed system was implemented for identifying and an 
experimental assessment was performed on a large dataset of 
image database. The outcome proved the superiority of the 
developed deep learning model over current mammogram 
classification methods. These performance metrics are among 
the best for this big data, indicating the effectiveness of AGAN-
based augmentation in improving breast cancer diagnosis. 

Sharma et al. [19] conducted a comprehensive comparative 
study whose aim was to determine the most effective deep 
learning architecture to classify mammographic breast cancer. 
They were aimed at comparing general-purpose models 
(including ResNet50, ConvNeXt, ViT) to mammography-
specific models (including FCCS-Net, ViT-Mammo, and 
GLAM-Net) with a single benchmarking plan. The authors used 
four publicly available datasets, which guaranteed the 
reproducibility of experimentation based on similar training 
protocols. Their assessment was multi-dimensional, with their 
classification performance, interpretability through Grad-CAM 
and attention maps, model calibration, inference time, 
complexity of computation and deployment in the list of 
assessment criteria. It was shown that mammogram-specific 
models, especially FCCS-Net and ViT-Mammo, displayed a 
higher diagnostic performance and a more enhanced visual 
interpretability, with ViT-Mammo presenting an AUC of 0.961. 
EfficientNetB0 and DenseNet121 were lightweight 
architectures that were well-suited to deployment on the edge. 
Nevertheless, variability in datasets is the main limitation of the 
study since inconsistency between datasets could restrict the 
model’s generalizability, and clinical validation in actual 
practice has not yet been studied. 

Zhang et al. [20] have suggested a miscellaneous supervised 
multi-view mammography screening framework that is aimed at 
addressing the weakness of traditional mammography 
interpretation. Their study was to ease the workload of 
radiologists, solve the low uptake in the remote geographical 
areas and overcome the lack of sufficient data to support 
intelligent early screening systems. The authors presented a 
context clustering -based feature extraction mechanism, unlike 
CNN and transformer architectures, augmented with multi-view 
learning to complement information between mammographic 
perspectives. They tested the model on 2 publicly available 
datasets, VinDr-Mammo and CBIS-DDSM, and obtained 
competitive results with reduced parameter counts, having the 
AUC scores of 0.828 and 0.805, respectively. This is the major 
strength of the model since it has a low-cost of computation and 
is adaptable under a weak supervision state, which is promising 
in low-resource environments. The method, however, has 
shortcomings that include moderate accuracy relative to current 
transformer-based models, non-availability of interpretability 
tools and requirement to further validate the methodology on 
larger and more diverse clinical data. 

Fatima et al. [21] utilized a methodology of research to 
examine the progress of deep learning in medical image 
segmentation involving medical imaging modalities, such as 
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MRI, CT, ultrasound, dermoscopy, and histopathology. Their 
study was aimed at analyzing the segmentation techniques, 
describing the new transformer-based architectures, and 
comparing the trends of the performance through the PRISMA 
review framework. The authors have analyzed a large variety of 
datasets in different modalities with much emphasis on dermato-
pathology and skin lesion imaging. Their findings have proven 
that transformer-based models are much better than the 
traditional CNN-based methods with the highest accuracy of 
79.95 per cent in multitask cancer detection or 93.4 per cent in 
liver lesion segmentation. Frameworks that enhanced attention 
like G2LL and PistoSeg, further enriched the accuracy of 
segmentation by 5-15 per cent. Although these things are 
accomplished, the review also points out that there are multiple 
limitations: they require substantial computational time, are 
dependent on large sets of annotated data, and cannot generalize 
to other imaging fields or run all complicated transformer 
models on a clinical device in real-time. 

Breast cancer has to be managed and treated early in time. 
Prodan et al. [22] also discuss the use of DL algorithms to 
improve the process of mammography analysis and pay special 
attention to the necessity to use advanced computational 
methods to enhance the performance. The project analyzes 
several computer vision architectures (CNNs and ViTs), 
observed on a publicly available dataset. Synthetic data 
augmentation to enhance the performance of a model is one of 
the primary characteristics of the research. The importance of 
preprocessing and data augmentation methods in attaining high 
classification accuracy is demonstrated by the experimental 
results. The results highlight the value of data augmentation in 
maximizing the efficacy of deep learning in mammography 
classification. 

Despite the effectiveness of CNNs, GANs, and transformer-
based models, which have been established in the previous 
studies to handle breast cancer diagnosis, most of the methods 
are constrained to single-modality inputs, do not explicitly 
model clinical feature interactions, and give deterministic 
predictions without estimating uncertainty. Simply 
concatenating features, multimodal efforts tend to be unable to 
represent fine-grained cross-modal correspondences or be 
subject to clinical interpretation. Moreover, there are not many 
systems combining graph-based clinical reasoning with 
hierarchical images representations. Such deficiencies 
encourage the construction of the proposed HGGT framework, 

integrating the multimodal fusion, graph attention, contrastive 
learning, and Bayesian uncertainty modeling within a single and 
interpretable architecture. 

III. MULTIMODAL TRANSFORMER-GAT BREAST DIAGNOSIS 

FRAMEWORK 

The proposed research, a hybrid framework named Hybrid 
Graph–Generative Transformer (HGGT) will be created that 
will acquire knowledge of the trends of the mammographic 
images as well as the patterns between the patient and the 
mammography to enhance the diagnosis of breast cancer. The 
HGGT integrates hierarchical visualization with graphical 
clinical reasoning because mammograms cause structure 
patterns which have proven essential in identifying breast cancer 
and relation dependencies between clinical variables including 
hormone receptor status, histological type, and the disease stage. 
The conventional computer-aided diagnostic (CAD) systems are 
primarily based on imaging modalities, and they fail to capture 
important contextual variables, including tumor stage, receptor 
status, or histological variables. On the contrary, clinical data 
only based models are unsuccessful in representing the rich 
structural and textural variations which can be found in 
mammograms. As a solution to these shortcomings, the offered 
HGGT framework will be based on the hybrid multimodal 
approach that uses the advantages of both imaging and non-
imaging data sources to aid each other. Mammographic and 
clinical data is preprocessed to create consistency and quality at 
the start of the pipeline. The feature extraction is done in two 
complementary but independent directions which consist of a 
Swin Transformer-CNN fusion that extracts both global and 
local features based on mammograms and a Graph Attention 
Network (GAT) which codes the relationships among the 
clinical features. These embeddings are then cross-modally 
fused together, and these embeddings are projected to a single 
latent space that reflects the general characteristics of the 
disease. Lastly, adaptive Bayesian diagnostic head can predict 
the probability of malignancy with uncertainty estimation, 
which are facilitated by visual and clinical interpretability tools. 
The proposed strategy is a multimodal fusion strategy, unlike 
other traditional multimodal fusion strategies, which 
incorporates both graph-based clinical reasoning and 
hierarchical transformer features together as a single fusion 
pipeline. Fig. 1 shows the entire process of the proposed 
methodology. 

 

Fig 1.  Proposed framework for breast cancer detection. 
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A. Data Collection 

The study creates a strong diagnostic model using two 
complementary datasets, where firstly CBIS-DDSM repository 
comprises two datasets of 6,775 and 10,239 high-resolution 
mammograms of 1,566 clinically profiled participants [23]. The 
images are of different cases of breast cancer such as normal, 
benign, and malignant lesions with confirmed pathology, and 
thus can be used in the development and testing of CADx and 
CADe systems. Dataset 2 includes clinical and proteomic data 
of patients with breast cancer, patient demographics, stage of the 
disease, histology, and hormone receptor status (ER, PR, 
HER2), protein expression levels, surgery type, and patient 
outcome (alive/dead) [24]. 

 

Fig 2.  Multiview structural mammary radiograph set. 

Fig. 2 presents mammographic images that are organized in 
two rows which demonstrate the craniocaudal (CC) and the 
mediolateral oblique (MLO) projections of various breasts. All 
panels show an X-ray image in grayscale with different degrees 
of densities of breast tissue observable whereby there are fatty 
tissues and more dense fibroglandular tissues. The borders of the 
breasts are well defined and the patterns of the internal tissues 
seem to be heterogeneous with the presence of overlaying layers 
that are common in screening mammograms. These labels 
include LCC, LMLO, RCC, and RMLO to show the orientation 
of the left and right breast and the imaging angles. In general, 
the set represents a realistic visual image of the multi-view 
mammographic acquisitions in clinical screening of the breast to 
guarantee the visualization of the structures of the breast. 

B. Data Pre-Processing 

To achieve adequate deep learning to detect breast cancer, 
both images of mammograms and clinical data should be 
properly preprocessed. The preprocessing of the images entails 
the extraction of the breast region through thresholding and 
connected component analysis and resizing all the images to 512 
x 512 to provide uniform input to the Swin Transformer 
backbone. The intensities of the pixels are normalized with the 
z-score and CLAHE is used to increase the visibility of the 
lesions. 

𝑍𝑛(𝑥, 𝑦) =
𝑍(𝑥,𝑦)−𝜇

𝜎
     (1) 

In Eq. (1), 𝑍(𝑥, 𝑦) is the original pixel intensity and feature 
value, 𝜇 is the mean intensity, 𝜎 is the standard deviation, and 
𝑍𝑛(𝑥, 𝑦) is the normalized pixel value. 

 𝐼𝑒𝑞(𝑥, 𝑦) =
(𝐿−1)

𝑀𝑁
∑ ℎ(𝑖)

𝐼(𝑥,𝑦)
𝑖=0

  (2) 

In Eq. (2), L is intensity level number, M and N are image 
size, ℎ(𝑖) is count of histogram intensity i, 𝐼𝑒𝑞(𝑥, 𝑦) is improved 

image intensity. 

C. Feature Extraction via Hybrid Fusion 

1) Imaging pathway: The imaging pathway uses a hybrid 

CNN architecture based on Swin Transformer to generate a set 

of diverse features of mammograms. The Swin Transformer 

represents the world contextual information, general breast 

structures, tissue distribution, and spatial relations of the whole 

image. This allows the network to learn macro-level trends that 

will be important in the detection of malignancies that can be 

large. At the same time, the CNN element activates on local, 

fine-gained characteristics, including the shape of lesions, 

margins, textures, and microcalcifications, and secures that 

subtle signs of illness are maintained. With the two 

architectures put together, the model has both global and local 

structural understanding which enhances its effectiveness in 

discriminating between benign and malignant tissues. The 

hybrid scheme enables the downstream modules to take 

advantage of a rich and multiple scale set of features to improve 

the overall predictive performance and interpretability of the 

breast cancer diagnosis model. The architecture combines CNN 

and multi-scale Swin Transformer phases starting with patch 

partitioning and linear embedding which allows the ViT 

branches and convolutional layers to concatenate and feed into 

a linear detecting module which allows localization of breast 

cancer and a robust learning of multi-resolution features. The 

visual representation is shown in Fig. 3. 

2) Clinical pathway: Graph Attention Network (GAT) is 

utilized to encode patient-specific clinical characteristics, 

including age, tumor stage, receptor status (ER/PR/HER2) and 

histology. The GAT is able to capture interdependencies 

between clinical features and the model is able to comprehend 

how particular biomarkers, stages, or demographic variables 

affect each other with regard to malignancy. Here, patient 

attributes are modeled as nodes and the relationship among the 

features are modeled as edges, which allows the network to 

learn weighted interactions between the features that can be 

used to determine their relative importance in the diagnosis 

process. The attention mechanism of GAT assigns learnable 

attention coefficients 𝛼𝑖𝑗  to the edges between nodes, computed 

as shown in Eq. (3): 

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑥𝑖
||𝑊𝑥𝑘

]))𝑘𝜖Ν(𝑖)
   (3) 

where, ℎ𝑖 and ℎ𝑗 are node feature vectors, 𝑊 is a learnable 
weight matrix,  𝑎 is the attention vector, and Ν𝑖represents the 
neighbors of node 𝑖. The final node representation is obtained, 
as shown in Eq. (4): 
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Fig 3.  Swin Transformer: CNN architecture for breast cancer detection. 

ℎ𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗𝑊ℎ𝑗𝑗𝜖𝑁𝑖

)     (4) 

Such a mechanism gives priority to the most predictive 
clinical features and makes sure that important data has a higher 
contribution to the downstream fusion with imaging 
embeddings. The resulting embeddings offer a rich 
representation of patient-centric clinical profiles, enhancing 
predictive capacity, interpretability, and clinical usefulness of 
hybrid HGGT framework. The system can predict malignancy 
more accurately and reliably, with more meaningful clinical 
predictions by modeling these complicated dependencies. 

3) Cross-modal fusion: A contrastive pyramid fusion 

mechanism is used to align the embeddings of both the imaging 

and clinical pathways in a common latent space in order to be 

able to combine imaging and clinical information effectively. 

This strategy will guarantee that the complementary 

information between both of the mammograms and patient 

specific attributes are pooled together in a way that will not 

affect the relationships within and across modalities. The fusion 

mechanism is mainly concerned with regional-level fusion, in 

which imaging characteristics of certain quadrants of the breast 

are correlated with certain clinical variables, including tumor 

stage or histology of the region. This allows the model to 

develop a relationship with contextual imaging patterns and 

clinical features to develop a more comprehensive knowledge 

of disease manifestations. The conflicting nature of the fusion 

stimulates consistency between imaging and clinical 

embeddings without losing modality-specific discriminative 

characteristics. Consequently, the unified representation has 

complete spatial and clinical information that enhances the 

system to distinguish between benign and malignant 

conditions. The pyramid fusion mechanism improves the 

interpretability as well as the predictive power of the hybrid 

HGGT framework by focusing on clinically relevant regional 

correlations. This will enable the model to provide patient-

specific predictions of malignancy, which are not only accurate 

but also clinically relevant which is why it is essential in real-

life settings of breast cancer diagnostics. 

a) Local level: On local level, the model focuses on 

minute relationships between individual mammographic 
lesions and clinical biomarkers. Characteristics of the lesion 
(shape, size, margin and texture) used as indicators of 
malignancy are correlated with patient specific characteristics 

(ER/PR/HER2 status and histopathological outcomes). Lesion-
level imaging embeddings are contrastively fused against 
clinically useful feature embeddings, promoting biologically 
meaningful associations. This would enable detection of the 
minor cases of abnormalities that could not be known by the 
global analysis and sensitivity to the early tumors. The local-

level mapping is also more interpretative in that the observer 
can easily view what lesions and biomarkers are being taken to 
inform the diagnosis making it a clinically coherent relationship 
between the visual evidence and the patient biology. It is 

expressed in Eq. (5): 

ℒℓℴ𝒸𝒶ℓ = − log(
exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑐)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)𝑁
𝑘=1

) (5) 

ℒℓℴ𝒸𝒶ℓ measures the correspondence between the data of 
individual lesion imaging and the related biological biomarkers, 
supporting fine grained associations. It enhances the early 
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detection of tumors by increasing similarity between true lesion 
biomarker pairs and dissimilarity irrelevant pairs. 

b) Regional level: At the regional level, the specific 
emphasis on individual lesions is replaced with more general 
consideration of specific breast quadrants, combining the 

examination of imaging characteristics with the relevant 
clinical data. The quadrants of each breast are examined to 
retrieve the trends of the tissue distributions, changes in 
densities, and the clustering of the lesions that can represent 
localized disease development. These regional imaging 
phenomena are integrated with clinical qualities appropriate to 

that quadrant, including the tumor stage, histology, or regional 
biomarker expression, to obtain a situation in which there is a 
relationship between the anatomical structures and biological 
markers. The pyramid fusion of contrastive coupling combines 

imaging embeddings 𝑧𝑖 and clinical 𝑧𝑐 paths on the regional 
level, with paired embeddings being dragged towards each 
other and unrelated ones being drawn away. This is optimized 

through contrastive loss that is defined, as shown in Eq. (6): 

𝐿𝑐𝑜𝑛 = −𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑐)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)𝑁
𝑘=1

   (6) 

where, sim (∙) is the cosine similarity function, 𝜏 is the 
temperature parameter, and 𝑁 is the number of samples in batch 
[see Eq. (7)]. 

ℒ𝓇ℯℊ𝒾ℴ𝓃𝒶ℓ = − log(
exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑐)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)𝑁
𝑘=1

)  (7) 

ℒ𝓇ℯℊ𝒾ℴ𝓃𝒶ℓ optimizes contrastive fusion between quadrant-

level imaging patterns and region-specific clinical attributes. It 
models localized disease progression, ensuring anatomically 
meaningful embeddings while discouraging incorrect clinical 
associations within each breast region. 

With its focus on the connection with the clinical data and 
the quadrant-level imaging patterns, the model consequently 
reveals the subtle interactions, including the effect of tumor 
staging on the morphology of lesions or a group of lesions within 
a quadrant. The regional-level integration improves predictive 
performance by providing the link between the local lesion 
characteristics and the global breast-level contexts in addition to 
improving interpretability by providing clinically significant 
correlations. 

c) Global level: The cross- modal fusion mechanism of 
global level will integrate the whole breast imaging features 
with the whole clinical history of the patient to acquire macro-
level patterns that can be used in diagnosing. The imaging route 
also provides a clear image of the breast structure, tissue 
distribution, bilateral symmetry as well as general change in 

organization which can result in the implication of diffuse or 
multifocal malignancies. These universal visual representations 
are integrated with the specific clinical variables, including the 
demographics, tumor stage, receptor status and histological 
data. By making the two modalities correlated to latent space, 
contrastive fusion enables the model to learn common patterns, 

and complementary interactions, which cannot be learned when 
the two data are trained separately when imaging and clinical 
data are used. The integration will assist HGGT to place local 

and regional abnormalities within the broader context of the 
physiological, and clinical history of the patient. The given 
form of panoptic gaze is not only more precise in diagnosis, 
particularly regarding the multi lesion or complex cases, but 
also more interpretable since the fact of developing the global 

breast features and knowing the patient in its entirety has been 
demonstrated to be predictive of malignancy. It is expressed in 

Eq. (8): 

ℒℊℓℴ𝒷𝒶ℓ = |𝑓𝑖𝑚𝑔(𝑋𝑏𝑟𝑒𝑎𝑠𝑡) − 𝑓𝑐𝑙𝑖𝑛 (𝐶𝑝𝑎𝑡𝑖𝑒𝑛𝑡)|2
2     (8) 

ℒℊℓℴ𝒷𝒶ℓ minimizes the L2 distance between whole-breast 

imaging representation 𝑓𝑖𝑚𝑔 (𝑋𝑏𝑟𝑒𝑎𝑠𝑡)and complete clinical 

profile embedding 𝑓𝑐𝑙𝑖𝑛(𝐶𝑝𝑎𝑡𝑖𝑒𝑛𝑡), enabling holistic multimodal 

alignment that captures global diagnostic trends. 

D. Adaptive Diagnostic Head 

The adaptive diagnostic head uses a Bayesian classifier to 
give malignancy predictions along with estimates of confidence 
that the model may use to assess the predictive uncertainty. The 
Bayesian approach contrasts with the traditional deterministic 
classifiers which make only point predictions, but the 
distribution of the prediction probabilities. For an input 
representation 𝑥, the predictive distribution is developed, as 
shown in Eq. (9): 

𝑝(𝑦|𝑥, 𝐷) = ∫ 𝑝(𝑦|𝑥, 𝑤)𝑝(𝑤|𝐷)𝑑𝑤  (9) 

where, 𝑝(𝑦|𝑥,𝑤) is the likelihood, given the model 
parameters 𝑤, and 𝑝(𝑤|𝐷) is the posterior distribution over 
weights conditioned on the training data 𝐷. Since the exact 
posterior is intractable, variational inference or Monte Carlo 
dropout is employed to approximate this integral, yielding both 
class probabilities and uncertainty estimates. 

This uncertainty-conscious model enables the model to 
differentiate between confident and uncertain predictions to 
contribute to more trustworthy clinical decision-making. Grad-
CAM++ and attention heatmaps are also added in order to make 
the process more interpretable, and to identify the important 
parts of the image and clinical features that predict malignancy. 
Such two-fold focus on quantification of uncertainty and 
explainability makes the HGGT framework a predictive 
framework that gives not only accurate predictions, but also 
makes them transparent and clinically meaningful. 

E. Training Objective 

HGGT framework is end-to-end trained with the unified goal 
to achieve accurate classification, effective cross-modal 
alignment, and uncertainty estimation. In general, the loss is 
determined, as shown in Eq. (10): 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛽𝐿𝑐𝑙𝑠 + 𝛾𝐿𝑐𝑜𝑛 + 𝛿𝐿𝑢𝑛𝑐  (10) 

Here, 𝐿𝐿𝑐𝑙𝑠 is the classification loss, which is represented 
with cross-entropy and guarantees the similarity of the predicted 
malignancy outcome with the actual diagnostic results. 𝐿𝑐𝑜𝑛 is 
the contrastive loss, which aims at aligning mammogram 
embeddings Swin-CNN with those of clinical embeddings of the 
GAT and enhances shared feature space representation. 𝐿𝑢𝑛𝑐 
represents the uncertainty-sensitive loss, which also applies a 
penalty to incorrect judgments which are overconfident and 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

274 | P a g e  
www.ijacsa.thesai.org 

promotes better model calibration of Bayesian inference ideas. 
The coefficients 𝛽, 𝛾 and, 𝛿 are weighting factors to equal the 
contribution of each term of loss. With these values changed, the 
framework can focus on accuracy, consistency of representation 
or uncertainty calibration when needed. This integrated training 
approach guarantees that HGGT not only demonstrates high 
predictive accuracy but also gives reliable, interpretable and 
clinically meaningful results. The combination of classification, 
contrastive alignment, and uncertainty modeling enables the 
system to generate strong diagnostic predictions and also has 
transparency in how the system arrives at a decision. 

Algorithm 1: HGGT Framework for Breast Cancer 

Detection 

Input:  

   Medical Images (X) 

   Clinical Data (C) 

   Labels (Y) 

Output: 

    Predicted Diagnosis (Ŷ) 

 Data Preprocessing 

    Normalize images (min-max scaling) 

    Clean & normalize clinical data (z-score 

normalization) 

    Split into training, validation, and test sets 

 Feature Extraction 

    Imaging Pathway: Swin Transformer for global 

structures + CNN for fine-grained lesion features. 

    Clinical Pathway: Graph Attention Network (GAT) 

encodes interdependencies among clinical features 

ℎ𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗𝑊ℎ𝑗

𝑗𝜖𝑁𝑖

) 

 Cross-Modal Fusion 

    Contrastive pyramid fusion aligns imaging and 

clinical embeddings. 

    Regional-level fusion applied with contrastive loss: 

𝐿𝑐𝑜𝑛 = −𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑐)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)/𝜏)𝑁
𝑘=1

 

  Adaptive Diagnostic Head 

    Bayesian classifier predicts malignancy with 

uncertainty: 

𝑝(𝑦|𝑥, 𝐷) = ∫ 𝑝(𝑦|𝑥, 𝑤)𝑝(𝑤|𝐷)𝑑𝑤 

    Grad-CAM++ and attention heatmaps provide 

interpretability. 

 Training Objective  

    Unified loss: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛽𝐿𝑐𝑙𝑠 + 𝛾𝐿𝑐𝑜𝑛 + 𝛿𝐿𝑢𝑛𝑐 

Return 

Algorithm 1 illustrates the HGGT model proposed, which 
incorporates both mammographic and clinical data to make a 
strong diagnosis of breast cancer. The preprocessing stage starts 
with the extraction of breast regions, resizing mammograms to 

less than 512×512 , z-score normalization, and z-score CLAHE. 
Clinical data are encoded to achieve compatibility with a 
standardization of clinical data. The next step in the feature 
extraction process involves a two-way line of initiative: a hybrid 
Swin Transformer CNN can extract both global structural and 
fine lesion features of mammograms whereas a Graph Attention 
Network (GAT) codes the patient-specific features and the 
interdependencies between them, defined by attention-weighted 
interactions. A contrastive pyramid mechanism is used to 
perform cross-modal fusion by matching imaging and clinical 
embeddings in a shared latent space. Fusion on a regional level 
prioritizes the correlations of the breast quadrants with the tumor 
stage or histology, minimized with contrastive loss. The 
adaptive diagnostic head uses a Bayesian classifier to provide 
predictions of malignancy with uncertainty calibration and 
Grad-CAM++ to provide interpretability. 

IV. RESULTS AND DISCUSSION 

The Experimental analysis of the proposed HGGT 
framework indicates that it is effective in reliability and it is 
better than the traditional deep learning models in the diagnostic 
performance. The model is well balanced and strongly classified 
with accuracy, precision, recall and F1-score even in a case of 
class imbalance. The comparisons with HGGT show that it 
outperforms CNN, VGG16, ResNet50, EfficientNet-B0 and 
GAN-assisted CNN models on all metrics, which indicates that 
it has a good multimodal fusion capacity. The ablation study also 
confirms the fact that each individual aspect of the study 
including the attention mechanisms, CycleGAN augmentation 
as well as Swin-CNN-GAT integration contribute significantly 
to the performance increment. Grad-CAM++ visualizations 
reveal that the framework is effective at localizing malignant 
regions, as GAT attention maps show the importance of clinical 
biomarkers such as tumor size, ER as well as PR status. All in 
all, the results prove HGGT to be a fit, understandable, and valid 
model in the diagnosis of breast cancer. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Dataset  CBIS-DDSM 

Image Resolution 512 × 512 pixels 

Methods used 
Swin Transformer + CNN, Graph Attention 

Network,  

Batch Size 16 

Initial Learning Rate 1e-4 with cosine annealing scheduler 

Optimizer AdamW 

Epochs 150 (with early stopping) 

Dropout Rate 0.3 

Weight Decay 5e-5 

Cross-validation 5-fold cross-validation  

Evaluation Metrics 
Accuracy, Sensitivity, Specificity, F1-score, 

AUC-ROC 

Software Python 3.10 

Table I illustrates the HGGT framework simulation 
parameters are designed to give strong and yielding prediction 
of breast cancer. The data used in the analysis are CBIS-DDSM 
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in which the mammogram images have already been 
preprocessed to 512 512-pixels resolution. The model includes 
Swin Transformer + CNN with images and Graph Attention 
Network (GATT) with clinical data. AdamW optimizer is 
applied to train and initial learning rate is 1e-4 in the form of 
cosine annealing with a batch of 16 and 150 epochs total with 
early stopping. Regularization dropout rate 0.3 weight decay 5e-
5. The 5-fold cross-validation was considered as evaluation 
methods and such metrics like accuracy, sensitivity, specificity, 
F1-score, and AUC-ROC were used. 

 

Fig 4.  Breast image classification. 

Fig. 4 shows a collection of mammogram images grouped as 
benign and malignant cases. The dataset grid has nine samples 
distributed across three rows and three columns, highlighting the 
variability in tissue patterns and tumor appearances. The benign 
images generally consist of localized or well-delineated areas 
with comparatively uniform density, while the malignant images 
exhibit irregularly dense structures with poorly defined borders, 
which are indicative of invasive growth. 

 

Fig 5.  Class distribution. 

Fig. 5 shows the division of the medical imaging results into 
three diagnostic types: Malignant, Benign, and Benign without 
Callback. Malignant conditions form the highest percentage at 
48.3%, showing a high prevalence of confirmed malignancies. 
Benign conditions cover 43.8%, showing a significant 
percentage of non-cancerous findings. The lowest category, 
Benign without Callback, occupies merely 7.9%, showing the 
cases in which no follow-up was needed. 

 

Fig 6.  Patient age distribution across cancer stages. 

Fig. 6 displays the distribution of the age of the patients in 
various stages of breast cancer. There is a separate box, denoted 
by each stage, Stage I, Stage II, Stage III, and Stage IV, which 
shows the median, interquartile range (IQR), and the minimum 
and maximum ages. In Stage I, the median age is less, at around 
49 years, with a broader range of between 42 and 60 years, 
signifying that there is more variability in younger patients. The 
median ages are increasingly higher in Stage II and III at about 
60 and 69 years, respectively, with smaller age ranges. The 
median age of patients in stage IV is the largest in 77 years, 
implying that later stages have more representation in older 
cohorts. 

 

Fig 7.  Receptor status across patient subgroups. 
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Fig. 7 depicts the receptor status (ER, PR, HER2) in three 
groups of patients in: Group A, Group B, and Group C. The axis 
depicts the value of each receptor type, and therometers are 0- 
0.8, which is the extent of receptor expression. Group A has the 
highest ER expression and Group C indicates the highest PR 
expression. HER2 expression is relatively low in all the groups, 
with a slight increment in Group C than Group A and B. The 
filled areas show differences in receptor patterns, with a 
particular emphasis on the fact that each subgroup has a different 
molecular profile. 

 

Fig 8.  Tumor size vs. Patient age by malignancy class. 

Fig. 8 can be used to show the correlation between the age 
of patients and the size of the tumor, according to the 
classification of malignancy. The points are the representatives 
of individual patients, and green markers are the indicator of 
benign tumors, whereas red markers denote the malignant 
tumors. The sizes of tumors are 1 to 9, whereas the ages of the 
patients do not exceed 30 to 80 years. The plot exposes that 
malignant tumors develop in a vast age bracket and are 
frequently larger in size, but there are also small malignant 
tumors. Benign tumor is evenly spread in terms of size and age. 

 

Fig 9.  Attention weights of clinical features. 

Fig. 9 depicts weights of attention of clinical features 
obtained using GAT model, and their significance in relation to 

their role in diagnosis prediction. Among the characteristics, the 
most important contribution is made by Tumor_Size, which 
suggests that it has a dominant contribution to clinical decision-
making. ER and PR comes next with a medium level of 
importance as they play a great role in diagnostic interpretation. 
The smaller weight is supported by age, which implies a less 
direct but also relevant influence, whereas the contribution of 
HER2 is the lowest, indicating the lack of significance in this 
respect. In general, the image highlights that the size of tumor, 
and features of their receptors are the greatest clinical drivers 
that the model uses to make effective medical predictions. 

A. Performance Evaluation 

Standard metrics are used to assess the categorization 
model's accuracy, while confusion matrix evaluation is used to 
measure false positives and misleading negatives. 

1) Accuracy: Accuracy is a measure of the model's overall 

accuracy in prediction and is given in Eq. (11): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
         (11) 

where, 𝑡𝑝 is Rightly labeled malignant cases, 𝑡𝑛 Rightly 
labeled benign cases, 𝑓𝑝 is Wrongly labeled benign cases as 
malignant, 𝑓𝑛: Wrongly labeled malignant cases as benign. 

2) Precision: Precision calculates the ratio of malignant 

cases correctly identified out of all cases that are predicted to 

be malignant in Eq. (12): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  (12) 

A high precision value means fewer false positives, and this 
is particularly important in medical diagnosis to prevent 
unnecessary biopsies. 

3) Recall: Recall is the proportion of valid malignant cases 

that were properly identified in Eq. (13): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
   (13) 

It will have less false negatives and a high recall, which is 
important in breast cancer screening to limit missed diagnosis. 

4) F1-score: The F1-score is a balance between Precision 

and Recall, hence it is more appropriate for imbalanced sets in 

Eq.(14): 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (14) 

High F1-score indicates that the model is maintaining 
precision and recall in equilibrium. 

TABLE II.  PERFORMANCE METRICS 

Metrics Value% 

Accuracy 98.2 

Precision 98.7 

Recall 98.5 

F1-Score 99.2 

Fig. 10 and Table II show the performance measures of the 
model, and it is effective in the four important measures. The 
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model has an accuracy of 98.2 % and demonstrates how well it 
performs on the predictions in general. The accuracy is 98.7 %, 
which shows that the model has a high capability of reducing 
false positives. The recall is also a bit lower (98.5 %), which 
indicates the ability of the model to report the important 
instances without recording the false negatives. Single accuracy 
of the F1-score, which combines both the precision and recall, 
has the highest value of 99.2 %, which is consistent and strong. 
Altogether, these measurements prove the great reliability of the 
model, harmonized predictive power, and its ability to be 
applicable in practice when performing medical diagnostic 
tasks. 

 

Fig 10.  Performance metrics. 

B. Comparison Metrics 

Table III and Fig. 11 introduce a comparison analysis of the 
performance of different deep learning models used in the 
diagnosis of breast cancer. The performance indicators like 
accuracy, precision, recall, F1 score, and AUC ROC of standard 
architectures, such as CNN, VGG16, ResNet50, and 
EfficientNet B0, show increasing improvement regarding all 
these metrics, which signifies improved feature extraction and 
classification performance. The hybrid of GAN and CNN is 
another way of improving the performance of predictive, and 
symbolizes the power of generative augmentation. It is worth 
noting that the proposed model has the best scores in accuracy, 
98.2 %, precision, 98.5 %, recall, 99.2 % and F1 score, 99.1 % 
AUC ROC, indicating its superior diagnostic ability. These 
findings show that the hybrid method proposed is effective in 
detecting breast cancer using multimodal data. 

TABLE III.  PERFORMANCE COMPARISON 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC-

ROC 

(%) 

CNN [25] 91.5 89.6 90.2 89.9 93.0 

VGG16 [26] 94.2 93.5 94.0 93.7 95.6 

ResNet50 

[27] 
95.0 94.1 95.5 94.8 96.5 

EfficientNet-

B0 [28] 
95.6 95.0 95.7 95.3 97.2 

GAN + CNN 

[17] 
96.0 95.4 96.8 96.1 97.8 

Proposed 

Model 
98.2 98.7 98.5 99.2 99.1 

 

Fig 11.  Performance metrics comparison. 

TABLE IV.  ABLATION STUDY 

Model Variant 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Swin Transformer 

Only 
94.8 94.0 95.1 94.5 

Swin + Attention 

Mechanisms 
96.1 95.5 96.8 96.1 

Swin + CycleGAN 

Synthetic Images 
96.8 96.2 97.5 96.8 

Swin Transformer-

CNN + GAT 
98.2 98.7 98.5 99.2 

Table IV reflects the performance comparison of various 
model variants that are developed on Swin Transformer in the 
diagnosis of breast cancer. The Swin Transformer with the basic 
architecture has a high baseline accuracy of 94.8 %. This 
addition of the mechanisms of attention enhances the model, 
leading to 96.1 % accuracy and an increase in precision, recall, 
and F1 score, which underscores the positive effects of accurate 
weighting of features. The use of CycleGAN-generated 
synthetic images further increases the accuracy to 96.8 % by 
increasing the training data. These results are the most 
significant when Swin Transformer-CNN is combined with 
GAT, as the accuracy is 98.2 %, the precision is 98.7 %, the 
recall is 98.5 %, and the F1 score is 99.2 %, which underlines 
the effectiveness of the multimodal fusion and further graph-
based learning in enhancing the accuracy of the diagnosis. 

C. Discussion 

The effectiveness of the HGGT framework can be explained 
by the fact that it is capable of modeling hierarchical 
mammographic representations and structured clinical 
relationships jointly, allowing to make more diagnostic 
reasoning than unimodal deep learning methods. The HGGT 
model is an important leap towards the multimodal detection of 
breast cancer because it is fast to integrate both mammographic 
images and clinical biomarkers into one diagnostic model. 
Unlike other traditional CNN-based networks, the HGGT is a 
hybrid Swin Transformer-CNN block that focuses on the visual 
characteristics to capture the global images of the breast and fine 
details of a lesion. Meanwhile, Graph Attention Network 
forecasts malignancy in biologic details by learning intricate 
clinical interactions between biomarkers, such as ER, PR, 
HER2, and tumor stage. The mechanism of contrastive pyramid 
fusion proves efficient in matching the imaging and clinical 
embeddings that increase the diagnostic consistency and 
interpretability. Local and regional fusion also serves to improve 
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the detection in the early stages by means of the linkage of 
quadrant-specific images to histopathological features. It has 
added a Bayesian diagnostic head to provide the estimates of 
uncertainties, which is an important feature of high-risk clinical 
decision-making. HGGT, with the help of interpretability agents 
of which Grad-CAM++ is a part, bridges the gap between AI 
predictions and clinician reasoning and constitutes a reliable, 
explainable, and clinically meaningful diagnostic model. 

V. CONCLUSION AND FUTURE WORKS 

The research illustrates that successful diagnosis of breast 
cancer demands a coherent rationale of imaging and clinical 
modalities as opposed to solitary or superficial integration 
measures. It is demonstrated in the proposed Hybrid Graph-
Generative Transformer (HGGT) that hierarchical multimodal 
fusion based on clinical relationships can enhance the reliability 
of diagnostic information, interpretability, and uncertainty 
awareness in computer-aided diagnosis systems. The 
framework, which integrates the representation of 
mammographies and clinically significant biomarker 
interactions, fills the gap between clinically relevant biomarker 
interactions and data-driven predictions, which help in making 
choices more transparent and reliable in obtaining trustful and 
clinician-focused decision support. 

Although it has effective performances, this study has its 
limitations. It uses one retrospective dataset, and this might not 
be representative of other institutions and imaging platforms. 
Moreover, the framework can limit the real-time 
implementation to resource-constrained clinical environments 
because of its computational complexity. The areas of future 
work will be large-scale multi-institutional validation, 
computational optimization, and the combination of 
longitudinal, genomic, and radiomic data. Federated learning 
with privacy concerns and integration with clinical workflow are 
also major steps towards practical implementation. 
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