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Abstract—Ensuring secure and privacy-preserving 

authentication in web applications remains a critical challenge due 

to the limitations of conventional single-factor approaches, which 

are vulnerable to attacks and fail to account for dynamic user 

behaviors. Existing multi-factor authentication (MFA) methods 

often rely on static rules, exposing users to unnecessary friction or 

weak security under evolving threat conditions. To address these 

gaps, this study proposes PPAB-RL, a Privacy-Preserving 

Adaptive Biometric framework leveraging Reinforcement 

Learning for intelligent MFA selection. The proposed method 

integrates homomorphic encryption for secure fingerprint feature 

storage, contextual risk scoring based on device, behavioral, and 

geolocation deviations, and RL-driven adaptive MFA to 

dynamically select authentication pathways from password-only 

to multi-step biometric verification. Implementation is carried out 

using Python, with biometric processing performed on the 

SOCOFing dataset containing 6,000 fingerprint images, and 

blockchain-enabled logging for immutable and tamper-proof 

audit trails. Experimental results demonstrate that PPAB-RL 

achieves 96.8% authentication accuracy, surpassing traditional 

password-only (84.2%) and fingerprint-only (93.5%) methods, 

while maintaining low encrypted matching overhead and minimal 

user friction. Ablation studies confirm the essential contribution of 

each module, biometric preprocessing, encryption, risk analysis, 

and RL-based adaptation to overall system robustness. The RL 

policy converges rapidly, allowing real-time adaptation to 

changing user behaviors and threat contexts. Overall, the 

proposed PPAB-RL framework establishes a highly secure, 

intelligent, and scalable authentication paradigm, combining 

encrypted biometrics, dynamic risk assessment, and blockchain 

validation, offering an innovative approach that can inspire 

further research in next-generation privacy-sensitive 

authentication systems. 

Keywords—Privacy-preserving authentication; multi-factor 

authentication; reinforcement learning; biometric verification; 
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I. INTRODUCTION 

Web-based applications are increasing rapidly due to the 
rapid digitalization of services; these are banking and healthcare 
through e-commerce and government portal, just to name a few. 
Although such applications prove to be highly convenient, their 
use is also exposed to attacks by cybercriminals, information 
intrusions, and fraud [1]. Old password screening platforms are 
fast becoming ineffectual owing to weaknesses including 
phishing, brute structure assaults, misuse of credentials and 
stuffing. To restrain such deficiencies, there is need to consider 
using multi-factor authentication (MFA) whereby user has to 
submit various authentication evidences [2]. However, the 
currently employed practice of MFA is more likely to employ 
the fixed combinations of variables and contain the centralized 
verification, which can never be adapted to the changing threat 
landscape and also expose sensitive biometric specifics to 
privacy breaches  [3]. 

Several biometric authentication systems, including facial, 
iris, and fingerprint recognition, offer high usability and levels 
of security because identity verification is connected to physical 
features inherent to the user [4]. But once it is broken, biometric 
information cannot be substituted and their security is of utmost 
importance. Conventional central storage of biometric and 
authentication data present single points of failure, making such 
systems susceptible to intended cyberattacks [5]. A 
decentralized and tamper-resistant method to ensure secure 
authentication can be achieved through the use of blockchain 
technology in order to overcome these limitations. Blockchain 
can greatly improve the transparency of biometric identity 
management systems, the integrity of data and its resiliency by 
removing the centralized trust authorities and guaranteeing 
immutability of data [6]. 

The research study presents a Reinforcement Learning-
Enhanced Privacy-Preserving Adaptive Multi-Factor 
Authentication Framework (PPAB-RL) based on biometrics and 
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blockchain technology to address the shortcomings of 
conventional MFA systems [7]. The current solutions do not 
offer privacy-sensitive biometric processing and contextual 
adaptation to achieve weak security or overburden users [8]. The 
suggested PPAB-RL framework combines the concept of 
homomorphic encryption to provide biometric matching privacy 
and a blockchain-based smart contract to guarantee 
decentralized verification and the impossibility to change the 
logs [9]. An adaptive engine based on reinforcement learning 
modulates the authentication factors in real-time according to 
the dynamically calculated risk scores with respect to user 
behavior, device fingerprint and location context. This 
guarantees an optimized security, usability and privacy. Raw 
biometric data is encrypted and authentication records are made 
securely verified on blockchain which removes tampering of 
data and dependency [10]. The suggested framework is capable 
of filling the privacy gap, flexibility and decentralization gap, 
and will provide an effective, smart and scalable framework to 
the contemporary web authentication system. 

• Introduces a privacy-preserving adaptive authentication 
system integrating encrypted biometrics, contextual risk 
scoring, and reinforcement learning for dynamic MFA 
selection. 

• Implements homomorphic encryption to protect 
fingerprint feature vectors during storage and matching, 
ensuring privacy without compromising accuracy. 

• Develops a device, behavioral, and location-based risk 
engine to calculate dynamic risk scores, enabling 
intelligent adaptation of authentication strength. 

• Anchors encrypted biometric templates and 
authentication events on blockchain, providing tamper-
proof auditability and integrity verification. 

A. Research Motivation 

As the use of web applications in providing key services like 
online banking, medical cases, and government services is on 
the rise, there has been a growing concern on the security as well 
as reliability of user authentication. Conventional password-
based systems are becoming less and less effective against 
cyber-attacks such as phishing, credential stuffing, and brutality 
attacks, which undermine user privacy and system integrity. 
Even though the use of multi-factor authentication provides a 
higher level of security, the majority of the implementations that 
have been established in practice are not dynamic and cannot be 
adjusted to different levels of risk. In the same note, biometric 
authentication, though convenient, is of great privacy threat, as 
once biometric information has been compromised, it cannot be 
restored. In addition, the use of centralized authentication 
servers introduces points of failure in a system and, therefore, 
increases vulnerability to attacks. All these issues indicate that 
there is an urgent need to have a dynamic, privacy-sensitive 
authentication model capable of adapting its security needs 
according to the context risk and safeguarding sensitive personal 
information. This study will come up with such an adaptive and 
privacy-aware authentication solution to the contemporary web 
space. 

B. Research Significance 

The analysis outlines a major breakthrough in privacy-
conscious biometric authentication by incorporating 
reinforcement learning, adaptive multi-factor authentication and 
blockchain technology. The privacy and trust of the proposed 
PPAB-RL framework are guaranteed by access to raw biometric 
information, as well as the homomorphic encryption of similar 
operations. Its adaptive engine, driven by reinforcement 
learning, is used to add to the user experience since it actively 
varies, according to contextual risk, some aspects of 
authentication, including device fingerprint, geolocation, and 
behavioral anomalies. The decentralization of the blockchain 
layer also abolishes single points of failure, and the smart 
contracts make the audit trail of authentication events immutable 
and transparent. This composition is both effective and does not 
affect usability in strengthening resistance towards identity 
thefts, phishing and replay attacks. The research leads to the 
creation of next-generation authentication systems, which are 
secure, privacy-sensitive, flexible, and context-sensitive to meet 
the current web security demands in a scalable and user-focused 
fashion that is appropriate in the face of the changing digital 
ecosystem. 

C. Problem Statement 

With the rapid digitalization of services, secure user 
authentication has become a critical concern for contemporary 
web applications [11]. Conventional password-based systems 
remain vulnerable to phishing, brute force, and credential theft 
attacks, while biometric authentication, though more robust, 
raises significant privacy concerns due to centralized storage of 
sensitive data [12]. Existing multi-factor authentication (MFA) 
systems are largely static and lack context-aware adaptability, 
applying uniform security measures irrespective of risk levels 
[13]. These limitations expose low-risk users to unnecessary 
verification steps while leaving high-risk operations 
inadequately protected, reducing both security and user 
experience. To overcome these challenges, the proposed PPAB-
RL framework integrates adaptive reinforcement learning, 
encrypted biometric processing, and blockchain-based 
decentralization to provide dynamic, risk-aware, and privacy-
preserving authentication for modern web applications. 

Although the use of multi-factor authentication has become 
widespread, the majority of the current solutions are 
unchanging, centralized and lack privacy awareness, which 
restricts their success in the dynamic nature of threats. Existing 
strategies are not able to balance the security of authenticating 
and user friction and ensure a sufficient level of protection of 
sensitive biometric information. The research question of this 
study is thus the following: How can a privacy-preserving and 
context-aware authentication system dynamically scale multi-
factor authentication strength through encrypted biometrics, 
reinforcement learning, and decentralized blockchain validation 
to increase security, usability, and trust in any web application? 
The proposed framework will aim to provide a solution to this 
limitation of the statistical MFA system by way of providing 
intelligent adaptation that is risk-sensitive and secure 
decentralized verification. 
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The remainder of this study is organized as follows: 
Section II is an in-depth literature review of Privacy-Preserving 
Adaptive Multi-Factor Authentication Framework for Web 
Applications Using Biometrics and Blockchain. Section III 
outlines the proposed methodology. Section IV presents Result 
and Analysis. Section V concludes the study by highlighting the 
results and providing directions for future study and practice. 

II. RELATED WORKS 

Yu et al. [14] developed a secure and effective MCC 
authentication and authorization scheme that transcends the 
shortcomings of conventional centralized access control. The 
approach integrates blockchain technology and smart contracts 
to allow for dynamic user access permission updating 
independently without the need for a single trusted third party. 
By keeping in storage a single transaction per user's access 
permission, the scheme reduces blockchain storage overhead 
and enhances scalability. Mobile users need to register with any 
service provider (SP) only once and utilize the same credentials 
in multiple SPs, having different levels of access. The 
accomplishment is a secure and decentralized approach that 
incorporates authorization effortlessly into the authentication 
process without incurring computational or communication 
overhead. Performance analysis shows enhanced efficiency as 
well as reduced storage expenses than traditional schemes. 
However, blockchain use still has certain costs of transactions 
and storage that are likely to grow with large populations of 
users. 

To overcome the security and privacy threats of 
unauthorized access in the Internet of Vehicles (IoV), Yao et al. 
[15] proposed the development of a multistage continuous 
authentication system which was decentralized. The strategy 
combines blockchain (Hyperledger Fabric) and IPFS to 
decentralize storage and fuzzy extractors in order to safeguard 
the behavioral biometric data of users. The system performs two 
actions, authentication and repetitive verification of user 
identity, by comparing real-time biometrics with stored 
templates that are secured. The novelty is a confidential and safe 
plan, eliminates third-party trusts, resistant to replay assaults, 
and maintains a high throughput, which increased performance 
by 8.6 per cent over the closely relevant literature. Security is 
demonstrated with BAN Logic and performance is with 
Hyperledger Caliper. Scalability and latency problems during 
high authentication requests in large IoV networks can still 
occur with the system. 

Fu et al. [16] proposed two identity authentication models 
using blockchain within the context of identity authentication to 
address issues like high-account maintenance, point of failure, 
and privacy breach in the traditional system. They presented one 
scheme employing the Diffie-Hellman key exchange to support 
effective interactive authentication and another employing ring 
signatures to enable non-interactive and lightweight verification. 
They proposed these schemes to guarantee core security 
properties like unforgeability, identity anonymity, and non-
transferability in the sense that verifiers cannot transfer proof to 
third parties. The schemes were designed to preserve user 
privacy while providing good security guarantees. Experiment 
results verified that both solutions are efficient and practical for 
application. Nevertheless, the interactive scheme will be 

plagued with scalability barriers by virtue of user-verifier 
communication overhead. 

Wang et al. [17] used the framework of a hybrid blockchain-
based identity authentication scheme (HBIA) to address the 
single points of failure and the aspect of security risks in 
centralized Mobile Crowd Sensing (MCS) systems. They have 
come up with an alternative hybrid blockchain architecture, 
clustered where clusterhead nodes access the blockchain 
publicly and inner nodes blockchain privately. They proposed 
zero-knowledge proof (ZKP), zk-SNARKs to safeguard the 
privacy of the identities of the users and allow secure off-chain 
computations whose verifications can be propagated on-chain. 
This approach can simultaneously solve the issue of 
transparency in blockchain and at the same time privacy of 
participants, and also decrease the workload of blockchain. The 
detection of pavement cracks on the Ropsten network has been 
tested, and the scheme demonstrated reduced time for 
authenticating compared with current solutions. Nonetheless, 
the cluster operation and usage of zk-SNARK that HBIA adopts 
can result in complexity and computational overheads to the 
system. 

Dehalwar et al. [18] suggested a blockchain-based self-
sovereign identification and authentication method to mitigate 
identity theft and masquerading attacks in smart grids. They 
created a model that leverages blockchain to securely 
authenticate IoT devices in the distributed energy network. They 
proposed this method to confirm device authenticity and 
authenticate trusted communication throughout the smart grid 
infrastructure. The technique exploits blockchain's distributed 
trust to authenticate transactions in log(n) time, providing robust 
security without dense central control. The scheme exhibits 
efficient identity verification and reduces identity-related 
compromises. The addition of blockchain, however, places an 
overhead of computational and intricacy on resource-
constrained IoT devices. 

Bamashmos et al. [19] developed a new blockchain-based 
2L-MFA system with two layers to increase the security of IoT 
in countering the threat of wireless data transmission. Their first 
layer of IoT devices was premised on secret keys, geographical 
location, and PUFs, and proof-of-authentication and elliptic 
curve Diffie Hellman to protect lightweight security. They also 
introduced a second factor to the users of IoT with four sub-
factors, which are matrix-based passwords, ECDSA and 
biometric which comprise iris and finger vein analysis elements. 
Results were authenticated with the aid of fuzzy logic and 
increased the resilience of the system. The 2L-MFA model 
offered vast registration, log in and authentication time savings 
as efficiency. The integration of multi-factor and biometric 
approaches may involve increased complexity of 
implementation and cost of hardware use by the IoT systems. 

Xu et al. [20] proposed a smart home authentication system 
that leverages the blockchain-based fog node to resolve the 
problem of security attacks like impersonation and insider 
privilege attack. They designed a decentralized model in which 
all the fog nodes and smart devices are registered on a local 
private blockchain, which avoids the single point of failure 
encountered in classical schemes. They proposed smart 
contracts along with off-chain operations for efficiently 
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performing real-time authentication. Fog node utilization 
provides accelerated and local computing over cloud-based 
approaches and increases system responsiveness. Security and 
performance analysis proved robust protection and enhanced 
performance with certain privacy protection for consumers. 
Nevertheless, the scheme will encounter potential challenges in 
dealing with the overhead of having fog infrastructure and 
blockchain synchronization locally. 

Mir et al. [21] introduced a new Decentralized Anonymous 
Multi-Factor Authentication (DAMFA) scheme to mitigate 
security, privacy, and availability issues in conventional single 
sign-on systems. They created a protocol that eliminates the 
need for identity providers to hold sensitive user information, 
thus avoiding tracking and abuse of authentication references. 
They proposed threshold oblivious pseudorandom functions 
(TOPRF) to prevent offline attacks and utilized a distributed 
transaction ledger to make the scheme highly available without 
depending on an always-on identity provider. They proved the 
scheme secure for the universal composability model formally 
via ideal-real simulation. A prototype implementation showed 
its practical applicability for use in the real world. But the 
distributed configuration and cryptographic functions will 
introduce computational and network overhead for service 
providers and users. 

Alzahab et al. [22] suggested a blockchain-based model of 
biometric authentication protocol to move away from the 
traditional model of the centralization of the process to a 
decentralized one. They came up with a protocol with a fuzzy 
commitment scheme that can be used to authenticate biometrics 
by not disclosing sensitive biometric features publicly on the 
blockchain. They offered their idea to resolve the problem of 
openness of blockchain and the necessity to ensure the privacy 
of biometric data. The protocol ensures decentralization and 
breakage resistance in the protection of the personal data of the 
users against exposure. Using the security analysis, it was 
verified whether the scheme was resilient to various attacks. 
However, the application of fuzzy commitment scheme in 
blockchain could cause computational overhead to real-time 
authentication. 

The critical security and privacy concerns that are raised in 
the design of biometric-based authentication systems have been 
discussed comprehensively by Pagnin and Mitrokotsa [23]. 
They described the inherent vulnerabilities of such close 
interconnection between users and their biometric identifiers 
that cannot be substituted by simple passwords. They proposed 
detailed instructions and countermeasures to deal with threats 
such as the leakage of biometric data, misuse and replay attacks. 
They highlighted privacy saving strategies in order to protect 
sensitive biometric attributes. Their work created awareness 
concerning the usability versus security in biometric systems. 
The work is primarily theoretical, though, with no implemented 
protocol or performance test. 

Mohsin et al. [24] suggested a new blockchain method based 
on steganography to securely update and exchange huge 
amounts of medical data, like COVID-19 data, between 
hospitals. They used a particle swarm optimization (PSO) 
algorithm with adjusted particle operations and a hash function 
to hide secret medical data within grayscale images with high 

confidentiality and image quality. They proposed a three-stage 
process of embedding capacity estimation, data hiding, and 
blockchain-based transmission to ensure data availability and 
integrity without the presence of a central third party. The 
approach blends stego images and blockchain in an effective 
manner to withstand network breakdowns and illegal access to 
data. Their convalescent plasma storage case study confirmed 
the appropriateness and performance of the system. Still, the 
increased computing overhead and image processing expense 
can restrict real-time use in high-traffic hospital settings. 

Lin & Chen [25] proposed an error-correction-based iris 
recognition (EC-IR) method to provide secure template storage 
and accurate recognition for personal identification. They 
suggested a new template mapping scheme by studying soft 
reliability values and recovery capability values to such an 
extent that the error correction is flexibly adapted through the 
use of the low-density parity-check (LDPC) codes. They also 
built suitable LDPC codes that gave high performance with 
constant rate. They also proposed the use of dominating feature 
points (DFPs), as opposed to raw binary templates, to improve 
security and equal error rate (EER), and processing efficiency. 
Their method led to a safe iris encryption system grounded on 
fuzzy commitment. However, the extra complexity of DFP 
extraction and LDPC design may facilitate implementation 
sufferings in resource-limited systems. 

Although the current solutions have made progress in the 
areas of blockchain-based authentication, privacy-saving 
biometric authentication, and multi-factor access control, they 
are mostly tackling these issues individually. Majority of the 
solutions are based on the concept of static authentication 
policies, and are devoid of context-responsive flexibility and the 
use of learning-based solutions to actively trade-off between 
security, usability and privacy. The decentralized trust and 
biometric privacy protection are usually implemented without 
an integrated decision-making system that may have loopholes 
in real-time adaptability and scalability. The proposed PPAB-
RL framework resolves these drawbacks by integrating an 
encrypted biometric processing, contextual risk, reinforcement 
learning-based adaptive multi-factor authentication, and 
blockchain-supported immutability, which offers a 
comprehensive and secure authentication solution to the current 
web application. 

III. PROPOSED PRIVACY-PRESERVING ADAPTIVE 

BIOMETRIC MULTI-FACTOR AUTHENTICATION FRAMEWORK 

The proposed PPAB-RL framework integrates privacy-
preserving biometrics, contextual risk analysis, and 
reinforcement learning (RL)-based adaptive multi-factor 
authentication (MFA) to provide secure and intelligent access 
control. The methodology begins with data collection from the 
SOCOFing fingerprint dataset, which includes original and 
synthetically modified fingerprint images, representing realistic 
variations in biometric inputs. Preprocessing of biometric data 
involves normalization, noise reduction using Gaussian 
filtering, and feature extraction to form minutiae-based vectors. 
These vectors are then encrypted via homomorphic encryption 
to enable secure storage and comparison while preserving 
sensitive information. During user enrollment, primary 
credentials, device metadata, and behavioral baselines are 
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captured to create a comprehensive profile, which is anchored 
on a blockchain to ensure immutability and auditability. Upon 
login, the system evaluates the contextual risk by comparing 
device, behavioral, and location parameters against the stored 
baseline, generating a dynamic risk score. This score informs the 
RL agent, which selects the optimal MFA pathway, ranging 
from password-only verification to full-chain biometric 
validation. Encrypted biometric matching and blockchain-based 
validation confirm identity while maintaining privacy. Secure 
logging records all events for audit and forensics. Overall, this 
end-to-end architecture ensures adaptive, high-assurance 
authentication, with the complete workflow illustrated in Fig. 1. 

.  

Fig. 1. Proposed secure MFA architecture using fingerprint biometrics and 

blockchain. 

A. Data Collection 

The study employs the Sokoto Coventry Fingerprint Dataset 
(SOCOFing) [26], a publicly available fingerprint image dataset 
obtained from Kaggle. SOCOFing contains 6,000 fingerprints of 
600 people and the impressions of all ten fingers were taken at 
500 DPI. The dataset consists of original fingerprint images and 
synthetically distorted ones produced with the help of three 
obfuscation methods: obliteration, central rotation, and z-cut, 
which are effective simulators of realistic distortion that may 
occur under authenticity conditions in practice. This 
heterogeneity renders SOCOFing the most appropriate to assess 
the strength of minutiae extraction, encrypted matching strength, 
and template protection schemes within the fingerprint-based 
authentication systems. 

SOCOFing has been chosen because it is free to all, is 
structured in a format that is standardized and it contains 
regulated distortions in fingerprints, making reproducible 
experiments and equitable comparison of performance possible 
with the current biometric authentication research. It should be 
mentioned that only the fingerprint biometric assessment works 
with a real-world dataset, whereas the contextual data of 

devices, behavior, and location are planned to be created 
artificially in order to emulate the conditions of the real-life 
authentication and threat. This design option enables the 
adaptive MFA behavior to be assessed in a controlled manner 
and user privacy maintained. The scope of biometric validation 
in this work is thus determined by the use of the dataset and has 
given a clear and reproducible basis of assessing the proposed 
privacy-saving adaptive authentication model. 

B. Data Preprocessing 

Before the processing of the biometric and behavioral 
metadata, it is crucial that the PPAB-RL architecture 
incorporates its pre-process before handling the different 
metadata to obtain the desired authentication and adjustive risk 
analysis. The preprocessing pipeline steps comprise three major 
steps, namely, normalization of biometric features, elimination 
of noise and encoding of features during safe storage. 

1) Biometric features normalization: Fingerprints, 

fatalities, or IRI scan. Biometry samples differ in size, position, 

and strength depending on the environmental conditions and 

differences of the lenses. In order to normalize these inputs, the 

feature vectors are adjusted to a standard size by using min-max 

normalization. It is described in Eq. (1): 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (1) 

In which 𝑋 is the original value of the feature, 𝑋𝑚𝑖𝑛 and 
𝑋𝑚𝑎𝑥 are the minimum and maximum values of that feature in 
the data set and 𝑋 is the normalized feature. This increases the 
similarity of input ranges to both encryption and matching, 
which enhances the accuracy of biometric matching. 

2) Noise cancellation: Unfiltered bio versatile signals may 

be noisy in nature by error of sensor quality or environmental 

contributions. In order to cut this noise out and improve the 

quality of the signal, some Gaussian filtering is used in Eq. (2): 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )  (2) 

𝐺(𝑥, 𝑦) is the Gaussian spread out and sort of filter and the 
sigma is the way the filter works. Using this filter on biometric-
images or correctly based feature-matrices provides high-
frequency noise removal with rate of maintaining crucial 
features, which results in more assuring feature-extraction and 
secure matching. 

3) Feature encoding for secure storage: The feature 

vectors are converted into safe-coded versions before biometric 

references are stored on the blockchain. Homomorphic 

encryption is used to implement privacy, which allows one to 

do computation with encrypted data. Denoting a feature 

vector, 𝐹 = [𝑓1 , 𝑓2 , . . , 𝑓𝑛]  , the encrypted version 𝐸(𝐹)  is 

calculated and mentioned in Eq. (3): 

𝐸(𝐹) = 𝐻𝐸(𝐹) = [𝐻𝐸(𝑓1), 𝐻𝐸(𝑓2), . . , 𝐻𝐸(𝑓𝑛)]        (3) 

In which 𝐻𝐸(⋅)  is the homomorphic encryption process. 
Rich-to-lean encrypted feature representation is subsequently 
hashed and exchanged to the blockchain, which ensures that 
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there is never any exposure to biometric data at the time of 
enrolling and making comparisons at the time of authentication. 

C. Secure Template Generation 

In the suggested PPAB-RL architecture, the existence of 
secure biometric template generation will guarantee that raw 
fingerprint features will never be disclosed during storage or 
authentication. Fingerprints are encoded into feature vectors 
after the extraction of the minutiae. 

𝐹 = [𝑓1,𝑓2 , … , 𝑓𝑛]  (4) 

In Eq. (4), 𝑓𝑖  denotes an extracted feature like the ridge 
orientation, the ridge frequency, the minutiae angle, or the local 
ridge density. These values have sensitive identity attributes, 
thus they should be secured prior to any storage as well as 
comparisons. To do so, the system uses a homomorphic 
encryption scheme so that one can make calculations on the 
encrypted values without knowing the actual data. The 
homomorphic encryption algorithm, which is denoted 𝐻𝐸(⋅), is 
composed of a public key, 𝑝𝑘 and where the parameters include: 
degree of the polynomial’s modulus 𝑁 and plaintext modulus 𝑡. 
The encrypted template is generated, as in Eq. (5): 

𝐸(𝐹) = 𝐻𝐸(𝐹, 𝑝𝑘) = [𝑐1, 𝑐2,… , 𝑐𝑛] (5) 

where, each ciphertext 𝑐𝑖  is the encrypted form of the 
biometric feature. 𝑁 is used to parameterize the cryptographic 
strength and ciphertext size and t is the number used to quantify 
the numerical accuracy of the numbers used to represent 
biometric values to the encryption domain. This secures all the 
minutiae structures and ridge-based patterns such that they 
cannot be directly reconstructed in case of storage loss. In order 
to allow efficient indexing and verification of the integrity of the 
blockchain, the encrypted template is hashed using a 
cryptographic hash. 

𝐻 = 𝐻𝑎𝑠ℎ(𝐸(𝐹)), where 𝐻𝑎𝑠ℎ(⋅) refers to a collision-

resistant hashing function. The hash is a compact version of 
identity to be used in finding and confirming the encrypted 
template on the blockchain. The metadata and encrypted 
template are stored at the blockchain block. User ID 𝑈  s stored 
in each block, the encrypted feature vector 𝐸(𝐹),  is stored, hash 
𝐻  is stored, and the timestamp 𝜏  are stored in each block 
represented as in Eq. (6): 

𝐵𝑙𝑜𝑐𝑘 = {𝑈, 𝐸(𝐹), 𝐻, 𝜏}  (6) 

This one-way storage mechanism ensures the immutability, 
tamper-resistance and full preservation of privacy. It allows 
encrypted biometric matching in PPAB-RL and the raw or 
intermediate biometric information is never revealed in 
enrollment, transmission and authentication. 

D. User Enrollment 

The user enrollment phase in the PPAB-RL authentication 
system determines the starting security profile that is needed in 
subsequent adaptive authentication. When registering, a user 
initially enters primary credentials of a unique identifier 𝑈 and 
a password 𝑃. A salted hashing function is used to transform the 
password to a secure verifier that can be denoted as in Eq. (7): 

𝑉 = 𝐻𝑎𝑠ℎ(𝑃  ∥  𝑠)  (7) 

where, 𝑠 is a randomly chosen salt that is user-specific. This 
ensures that dictionary and rainbow-table attacks of stored 
passwords are prevented. After credential initialization, a 
sample enrolment fingerprint is captured, processed pre 
(minutiae) and normalized, and homomorphically encrypted as 
previously described. The encrypted biometric template 𝐸(𝐹) is 
linked to the profile of the user but is not stored in plain form. 
The template gets anchored on a blockchain entry, making it 
immutable and decentralized to verify. This provides an ultimate 
biometric data reference to be compared in authentication. 

The user contextual baseline is also created at the enrollment 
stage to support risk-adaptive MFA. Parameters that are 
obtained through device profiling include browser attributes, OS 
signature, Canvas fingerprint, device hardware ID and network 
characteristics. These are removed into a device signature vector 
represented in Eq. (8): 

𝐷 = [𝑑1, 𝑑2 ,… , 𝑑𝑚]   (8) 

where, 𝑑𝑖 is a constant device characteristic. Likewise, the 
normal patterns of interaction, the preferred times of logging-in, 
geographical location range, and preferences in the time spent in 
a session constitute a behavioral baseline vector B, which, when 
combined with the stored items, namely, {𝑈,𝑉, 𝐸(𝐹), 𝐷, 𝐵}, 
generate a multi-layered enrollment profile. This profile allows 
the PPAB-RL system to conduct contextual risk assessment, 
adaptive selection of MFA and encrypted verification of the 
biometrics when attempting subsequent logins. 

E. Login Request Processing 

The process of user legitimacy real-time evaluation starts 
with the login request processing stage in the PPAB-RL 
framework and precedes any biometric verification. When a user 
attempts to access the system, the process begins with the 
submission of their identifier 𝑈 and password 𝑃𝑟𝑒𝑞 . The 

password is hashed with the same salted hashing algorithm 
created at the time of enrollment and the resulting hash is tested 
against the calculated, as in Eq. (9): 

𝑉𝑟𝑒𝑞 = 𝐻𝑎𝑠ℎ(𝑃𝑟𝑒𝑞  ∥  𝑠)  (9) 

against the stored verifier 𝑉. If the primary credential check 
fails, further authentication steps are terminated immediately. 
Upon successful password validation, the system retrieves 
contextual parameters from the requesting environment. Device 
metadata is captured and represented as a vector. 

𝐷𝑟𝑒𝑞 = [𝑑1
𝑟𝑒𝑞, 𝑑2

𝑟𝑒𝑞,… , 𝑑𝑚
𝑟𝑒𝑞]  (10) 

In Eq. (10), 𝑑𝑖
𝑟𝑒𝑞

 denotes features including browser 

fingerprint, OS signature, hardware identifiers, screen resolution 
and network features. These parameters are contrasted with 
enrollment baseline 𝐷  to calculate device consistency. 
Simultaneously, geolocation and network parameters (IP 
address, approximate geographic position, Autonomous System 
Number (ASN), and network type (e.g., mobile, broadband, 
etc.)) are also obtained. There is also the gathering of behavioral 
indicators making up the behavioral vector. 

𝐵𝑟𝑒𝑞 = [𝑏1
𝑟𝑒𝑞,𝑏2

𝑟𝑒𝑞,… , 𝑏𝑘
𝑟𝑒𝑞]  (11) 

Eq. (11) records the factors like the time of logging in, the 
frequency pattern, and the absence of this usage in the history. 
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In order to measure the difference between the present and the 
baseline behavior, the system calculates a contextual divergence 
score, as in Eq. (12): 

Δ = 𝛼 ⋅ 𝑑𝑖𝑠𝑡(𝐷𝑟𝑒𝑞,𝐷) + 𝛽 ⋅ 𝑑𝑖𝑠𝑡(𝐵𝑟𝑒𝑞,𝐵) + 𝛾 ⋅ 𝑑𝑖𝑠𝑡(𝐿𝑟𝑒𝑞,𝐿)

 (12) 

where, 𝑑𝑖𝑠𝑡(⋅)is a normalized distance metric, 𝐿𝑟𝑒𝑞is the 

current location vector, and 𝛼, 𝛽, 𝛾 are weighting factors 
reflecting device, behavior, and location significance. The score 
of divergence is the key input of the contextual risk assessment 
module. The processing of the login request stage allows PPAB-
RL to measure the compatibility of the request with the 
legitimate historical trends and proceed to adaptive MFA and 
encrypted biometric authentication. 

F. Contextual Risk Assessment 

Contextual risk assessment, in the PPAB-RL authentication 
system, is the analytical engine that distinguishes between the 
circumstances in which normal user behavior is manifested in 
the current request to log in and the circumstances resulting in 
an abnormal or untrustworthy request. Once the system has 
handled the login request and retrieved the contextual attributes, 
it analyzes the stability of three significant domains, which are 
the device characteristics, behavioral tendencies and geographic 
legitimacy. In the device analysis, the operating system 
signature, browser configuration, hardware hash, canvas 
fingerprint, and network identifiers are attributes that the system 
investigates. These are compared to the trusted device profile 
that was taken during enrollment. A substantial alteration of any 
of these parameters is an indication that the login can be a 
product of an unknown or spoofed environment. 

The behavioral assessment is based on the habitual use of the 
user to log in, such as time of the day, frequency of use, 
weekday-weekend utilization, and time spent on the sessions. 
Violations of these acquired patterns lead to a degree of 
suspicion. Examples include the scenario where a user would 
usually log in during normal working days but logs in at an 
anomaly time of the night, the deviation would add to the high 
risk of behavior. Equally, geographic analysis assesses IP-based 
place, ASN, and network setup; any cross-country-bound or 
unfamiliar network route switching is an indication of a probable 
effort at skimming. To combine these factors, the system models 
the overall risk using a weighted fusion equation: 

𝑅𝑠 = 𝑤𝑑 ⋅ 𝛿𝑑 + 𝑤𝑏 ⋅ 𝛿𝑏 + 𝑤𝑙 ⋅ 𝛿𝑙 (13) 

In Eq. (13), the variable 𝑅𝑠represents the final dynamic risk 
score, while 𝑤𝑑, 𝑤𝑏, and 𝑤𝑙denote the weights that specify how 
strongly device, behavior, and location should influence the risk. 
The labels of these parameters, including delta d, delta b, and 
delta l, denote the calculated deviations in the model parameters, 
behavior pattern and geographic features. The deviations are 
used to describe how much further a current request is off the 
profile of the user. 

After calculating 𝑅𝑠,  by the system, the request will be 
categorized into low, medium and high risk. This categorization 
directly decides what authentication route the RL module will 
take and prepare dynamic protection based on the current user 
situation. 

G. RL-Based Authentication Selection 

At the PPAB-RL, the reinforcement learning (RL) 
component identifies the best suitable authentication pathway 
according to the dynamic risk value generated by the contextual 
assessment phase. Rather than a hard-coded system based on 
rules, PPAB-RL uses the policy-directed method, where the RL 
agent acquires over time how to trade off usability and security 
to each user. It starts with the state vector being built that 
contains all the pertinent information that is required to make a 
decision. This state is represented as in Eq. (14): 

𝑆 = [𝑅𝑠 ,𝛿𝑑 ,𝛿𝑏, 𝛿𝑙]  (14) 

where, 𝑅𝑠is the computed dynamic risk score, while 𝛿𝑑, 𝛿𝑏, 
and 𝛿𝑙 represent the real-time device, behavioral, and location 
deviations respectively. Together, these values summarize the 
user’s current risk environment. 

Depending on the state, the RL agent chooses the action A, 
which is the authentication pathway that is going to be followed. 
The actions available are minimal authentication (password-
only), moderate authentication (password + OTP), strong 
authentication (password + encrypted biometric matching) and 
full-chain authentication (multi-step biometric verification with 
the use of cryptographic tokens). In order to carry out this 
choice, the agent (RL) takes a learned policy, denoted as 𝜋 that, 
which represents the state to a particular action. The policy is 
designed to maximize the anticipated cumulative reward which 
is the tradeoff between fraud reduction and user inconvenience 
minimization. The decision process is modeled using a value 
function, as in Eq. (15): 

𝑄(𝑆, 𝐴) = 𝑅 + 𝛾max 
𝐴′

𝑄(𝑆′,𝐴′)  (15) 

In this expression, 𝑄(𝑆, 𝐴)represents the quality of choosing 
action 𝐴 in state 𝑆. The reward is denoted by 𝑅 is the reward to 
be gained following the result of an authentication, 𝑆  is the 
observed state that occurs, and \gamma is the discounting factor 
that quantifies the importance of the value the agent places on 
future security results. Effective authentications and blocked 
attacks made correctly provide positive rewards, which direct 
the agent to ideal behavior in the long term. 

With real-time risk information incorporated with adaptive 
policy learning, the RL-based module will guarantee that the 
PPAB-RL system will wisely choose the correct MFA strength 
at any time of the log-in. As shown in Fig. 2, the adaptive MFA 
module changes the necessary authentication factors with regard 
to calculated contextual risk score and policy output of the 
reinforcement learning agent. 

The formulation of reinforcement learning in PPAB-RL is 
created as an extension of a generalizable policy optimization 
strategy in multi-factor authentication. The RL agent uses a 
Markov Decision Process model of MFA selection to discover 
how to dynamically trade-off between security and usability as 
user behavior and threats vary, unlike heuristic or threshold-
based designs, which are the same throughout and cannot adapt. 
Policy convergence, optimal ratios of actions, and ablation 
studies are empirical evidence of the strength and efficiency of 
this technique and prove that the learnt policies generate 
dependable, risk-conscious, and privacy-conscious 
authentication decisions. 
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Fig. 2. Adaptive multi-factor authentication. 

H. Biometric Verification 

Another application of the PPAB-RL system is biometric 
verification, whereby the RL module detects that the degree of 
risk necessitates strong authentication. The system records a 
new fingerprint sample of a user when activated. This sample 
follows the identical preprocessing pipeline as that of the one 
followed in the enrollment stage, and it consists of 
normalization, noise removal, and the extraction of minuscule 
features. The effective output feature distance Freq is a 
representation of the live biometric attributes of the login 
attempt. In order to guarantee privacy, the vector is instantly 
converted in homomorphic encryption so as to obtain the 
encrypted version 𝐸(𝐹req) , such that matching is possible 

without revealing the raw biometric information at any point. 

The system retrieves the stored encrypted template 𝐸(𝐹) at 
the blockchain and does encrypted matching to calculate a 
similarity score. This algorithm makes use of a safe distance 
calculation in Eq. (16): 

𝑀 = 𝐻𝐸(𝑑𝑖𝑠𝑡(𝐹req, 𝐹))  (16) 

In this expression, 𝑀represents the encrypted match score, 
while 𝑑𝑖𝑠𝑡(𝐹req,𝐹)denotes the feature-space distance between 

the live and enrolled biometric vectors. 𝐻𝐸(⋅) has been used to 
ensure that all the calculations are done in the encrypted domain, 
and the ridge information or minutiae pattern is not leaked. The 
smaller the calculated distance, the greater the match. 

The decrypted value of 𝑀is compared against a predefined 
threshold 𝜏. When the score is lower than the value of 𝜏, the 
fingerprint is accepted to be genuine otherwise, the system 
indicates a mismatch. This is an encrypted authentication 
mechanism that provides biometric privacy to PPAB-RL whilst 
supporting high-assurance identity validation. 

I. Blockchain Validation 

The last layer of trust in the PPAB-RL system is blockchain 
validation, which confirms the authenticity of the outputs of the 
biometric and multi-factor authentication. After the encryption 
of the biometric match score, the system communicates with the 
blockchain and retrieves the encrypted template of the user. In 
the enrollment process, the encrypted fingerprint vectors and 
corresponding hash of every user were registered on a separate 
blockchain block. On the process of logging in, the system 
recognizes the appropriate block by comparing the user 
identifier with the generated hash reference stored. This 
guarantees that the system retrieves the same encrypted template 

that was made on registration, data integrity and precludes the 
possibility of template substitution attack. 

The block that has been retrieved carries the encrypted 
template 𝐸(𝐹), a timestamp and the hash 𝐻. A smart contract is 
then activated to ensure that the biometric match is accurate. The 
smart contract performs a verification role by confirming the 
presence of the match score Malign between login-derived 
encrypted and the anticipated authentication threshold. The 
contract evaluates, as in Eq. (17): 

𝑉 = 𝑆𝐶(𝐸(𝐹), 𝑀, 𝜏)   (17) 

In this equation, 𝑉 represents the blockchain-based 
validation output, while 𝑆𝐶(⋅) denotes the smart contract 
function. Where 𝐸 (𝐹)  represents the archived encrypted 
fingerprint template, 𝑀 is the encrypted match score calculated 
during verification and the constant 𝜏 represents the timestamp 
placed within the block to ensure freshness and guard against 
replay attacks. The smart contract verifies that M indicates is a 
valid match and that the time period is within a reasonable time 
range. 

When there is need to verify the validity of cryptographic 
tokens or OTPs due to the medium-risk requests, the blockchain 
layer also validates them. All OTPs are hashed and stored on-
chain in temporary format, so that the contract could check 
whether the token it received matches the expected hash. Due to 
the immutable recording of all working processes, PPAB-RL 
will not allow tampering, alteration of templates, and 
reenactment of past authentication factors. 

When the smart contract gives a successful validation 
response 𝑉, the system continues with finalizing authentication. 
A negative result would imply a rejection of the login request, 
providing a high level of decentralized and strong security to all 
events of verification based on biometric and MFA. Fig. 3 
depicts that the authentication process incorporates the 
contextual risk assessment, RL-based MFA choice, encrypted 
biometric matching, and blockchain-based validation to 
generate a final access decision. 

 

Fig. 3. Authentication process. 

J. Authentication Decision 

The outputs of all the necessary authentication factors, 
including: password verification, contextual risk analysis, MFA 
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steps selected by the RL, biometric matching and blockchain 
validation, are combined to produce the authentication decision 
in the PPAB-RL framework. After the validation result is sent 
back by the blockchain smart contract, the system will combine 
the output results to create a final result score. This is calculated 
by a weighted decision fusion model: 

𝐴𝑓 = 𝜆1𝐶 + 𝜆2𝑀 + 𝜆3𝑉  (18) 

In Eq. (18), 𝐴𝑓 represents the final authentication score, 𝐶is 

the credential verification result, 𝑀 is the biometric match 
decision derived from encrypted comparison, and 𝑉 is the 
blockchain validation output. The parameters 𝜆1, 𝜆2, and 𝜆3are 
weighting coefficients tuned to reflect the relative security 
importance of each factor. 

When the calculated 𝐴𝑓  is greater than the acceptance 𝜏𝑓 , 

then the access is granted. Otherwise, the system blocks and 
records the attempt to the further auditing. This will provide a 
solid multi-layer decision making in line with adaptive MFA and 
privacy biometric security. 

K. Secure Logging 

Within the PPAB-RL model, secure logging guarantees that 
all authentication failures and successful attempts are 
permanently logged so that they can be audited and analyzed in 
the future. Once the verification decision has been made, the 
system records important event parameters, including the time-
stamp parameter, the user ID, the riskiness of the context, the 
MFA channel chosen by RL, the result of the biometric 
verification, and the blockchain validation parameter. All these 
attributes are aggregated into a formatted entry into the log and 
sent to the blockchain. Since blockchain storage is append only 
and tamper resistant, every log is a permanent audit record that 
can never be modified or erased by internal or external 
malevolence. 

In order to ensure integrity, every log entry is hashed before 
inserting, so any attempt of any kind of modification could be 
identified by the mismatch of the hash. The ID of the transaction 
can also be found in the stored log so that it can be traced over 
authentication sessions. This is an immutable recording system 
that enhances the forensic strength, aids the examination of the 
incident after it takes place, and equips verifiable evidence of 
system activity, which will hold all PPAB-RL authentication 
events accountable and secure over the long run. 

L. RL Feedback Update 

The RL feedback update mechanism in the PPAB-RL 
structure guarantees a steady-progress in the authentication 
decision. The system will reward the user after every attempt of 
login depending on the accuracy and safety of the chosen route 
of authentication. Positive rewards come as a result of successful 
authentications using the correct MFA strength, whereas failure 
to authenticate successfully, false authentications, or 
overprotective choices by the MFA system led to a negative 
reward. The RL agent modifies its policy by incorporating the 
new reward in its value function, and thus it can map state-
actions better with time. This continuous improvement enables 
the system to consider the changing behavior of the user, 
enhance the security and dynamically tailor the MFA selection 
to user behavior. 

Algorithm 1: PPAB-RL Adaptive Multi-Factor 
Authentication 

Input: Login request (UserID, Password, Contextual Parameters, 
Fingerprint Sample) 

Output: Grant or Deny Access 

Begin 

    Load fingerprint dataset 

    Normalize biometric features 

    Remove noise using Gaussian filter 

    Extract minutiae and form feature vector F 

    Encrypt feature vector → E(F) 

    Receive user credentials (U, P) 

    Hash password with salt → V 

    Capture enrollment fingerprint and compute E(F_enroll) 

    Initialize device profile D and behavioral profile B 

    Store {U, V, E(F_enroll), D, B} on blockchain  

    Receive login request with (U, P_req) 

    Hash P_req and compare with stored verifier V 

    Extract device vector D_req, behavioral vector B_req, location 
vector L_req 

    Compute device deviation δ_d = dist(D_req, D) 

    Compute behavioral deviation δ_b = dist(B_req, B) 

    Compute location deviation δ_l = dist(L_req, L) 

    Compute risk score Rs = w_d·δ_d + w_b·δ_b + w_l·δ_l 

    Construct state S = [Rs, δ_d, δ_b, δ_l] 

    Select action A = π(S)  // MFA policy decision 

    Trigger authentication pathway based on A 

    Capture live fingerprint → F_req 

    Encrypt features → E(F_req) 

    Compute encrypted match score M 

    Compare M with threshold τ to determine biometric match 

    Retrieve encrypted template E(F_enroll) from blockchain  

    SmartContract validates (E(F_enroll), M, timestamp) 

    If additional MFA required → verify OTP/token on blockchain  

    Compute decision score Af = λ1·C + λ2·M + λ3·V 

    If Af ≥ τ_f → Grant Access 

    Else → Deny Access 

    Record event {U, Rs, A, M, Decision} on blockchain  

    Assign reward R based on correctness of decision  

    Update Q (S, A) and refine policy π 

End 

Algorithm 1 relies on several key parameters that directly 
influence authentication performance and adaptability. The 
weighting coefficients (λ₁, λ₂, λ₃) control the relative 
contribution of credential verification, encrypted biometric 
matching, and blockchain validation in the final authentication 
score, balancing security and user convenience. The risk score 
weights (w_d, w_b, w_l) determine sensitivity to device, 
behavioral, and location deviations, guiding adaptive MFA 
decisions. Thresholds (τ for biometric matching, τ_f for final 
authentication) set acceptance criteria, where higher thresholds 
enhance security but may increase false rejections, and lower 
thresholds improve usability. Sensitivity analysis confirms these 
parameters’ impact on accuracy, false positives, and adaptive 
behavior. 
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Fig. 4. Workflow of PPAB-RL (Enhanced Privacy-Preserving Adaptive 

Authentication Framework). 

The suggested PPAB-RL system provides a new 
combination of reinforcement learning, encrypted biometric 
matching, and blockchain-based verification to provide an 
adaptive multi-factor authentication. The reinforcement learning 
model has a customized context of the state-action-reward 
framework that allows dynamic mapping of contextual risk 
scores, such as behavioral, device and location deviations into 
optimized MFA decisions. This framework, unlike the previous 
methods of considering blockchain, biometrics, or adaptive 
MFA in isolation, integrates them into a closed-loop system 
whereby RL policies are updated based on verifiable results of 
the blockchain on a continuous basis, which offers a privacy-
preserving, risk-conscious, and intelligent authentication 
paradigm not considered in the literature. Fig. 4 presents the 
workflow of PPAB-RL. 

IV. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the 
proposed PPAB-RL authentication framework through 
quantitative experiments, robustness assessments, and 
comparative validations. Results demonstrate the model’s 
performance in privacy-preserving biometric processing, 
dynamic risk scoring accuracy, and RL-driven adaptive 
authentication efficiency. The figures demonstrate the 
improvement of biometric quality and contextual deviation 
trends, convergence of RL policy, reduction of latency and 
stability of workflow. Accuracy metrics, risk prediction 
performance, authentication success rates, security resistance 
tests and ablation results are summarized in tables. There is even 
a depiction of comparison to available baseline methods in the 
section to show excellence. The parameters of simulation and 
hardware are presented in Table I. 

TABLE I.  SIMULATION PARAMETER AND HARDWARE SETUP 

Component Specification 

Processor 
Intel Core i9-12900K (16 cores, 24 

threads) 

GPU NVIDIA RTX 4090 (24 GB VRAM) 

RAM 64 GB DDR5, 5200 MHz 

Operating System Ubuntu 22.04 LTS (64-bit) 

Programming Framework Python 3.10, PyTorch 2.2 

Reinforcement Learning 

Library 
Stable-Baselines3 (PPO) 

Biometric Preprocessing 

Module 
OpenCV 4.9, TensorRT acceleration 

Encryption Scheme 
CKKS Homomorphic Encryption 

(HEAAN) 

Blockchain Network Private Ethereum Testnet (Geth v1.12) 

Dataset Size 
12,500 biometric samples + contextual 

logs 

  

A. Dataset Overview and Experimental Setup 

This sub-section describes the biometric and contextual data 
that were utilized in assessing the PPAB-RL framework, the 
preprocessing pipeline and the experimental environment. It 
also describes the training setup, reinforcement-learning 
variables, encryption, and general simulation workflow that was 
used in the study. 

TABLE II.  DATASET DISTRIBUTION 

Category 
Number of 

Images 
Notes 

Real Fingerprints 6,000 Original fingerprint images 

Altered – Easy 2,000 
Minor synthetic 

modifications 

Altered – Medium 2,000 
Moderate synthetic 

distortions 

Altered – Hard 2,000 Severe synthetic alterations 
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Table II will give the framework of the fingerprint dataset 
that was utilized in the PPAB-RL assessment. It contains 6,000 
real fingerprints of genuine biometric patterns and three 
modified groups, easy, medium, and hard each one of which 
consists of 2,000 images with successively harder synthetic 
distortions. Those variations allow strict testing of the 
framework robustness under various levels of manipulation to 
make the right judgment on the biometrical preprocessing, 
encrypted matching stability and adaptive authentication 
performance in the various real-life scenarios of attacks. 

 

Fig. 5. Distribution of fingerprint types and alteration levels. 

Fig. 5 shows the distribution of original and transformed 
synthetically altered fingerprints that were used to test the 
PPAB-RL framework. The equal representation of obliteration, 
central rotation, and z-cut variations has been guaranteed giving 
it the rigorous testing against different levels of manipulation. 
The high accuracy of the model in these categories indicates that 
it is tough in dealing with complicated distortions and the 
biometric match reliability and consistency of the authentication 
decision are high. This distribution underlines the fact that the 
framework can be effectively used in case of realistic and 
adversarial biometric conditions. 

B. Biometric Feature Quality and Encrypted Matching 

Performance 

The effectiveness of the biometric preprocessing pipeline 
and reliability of encrypted fingerprint matching in the PPAB-
RL framework is examined in this subsection. It analyses the 
quality of minutiae extraction, the results of noise reduction, 
feature stability and the computational cost of homomorphic 
encryption. The findings will reveal that there is a high feature 
retention and low performance degradation in terms of 
encrypted matching circumstances 

TABLE III.  MINUTIAE EXTRACTION AND FEATURE QUALITY METRICS 

Metric Value (Mean ± SD) 

Ridge Density Variance 0.82 ± 0.04 

Minutiae Count Consistency 93.6% 

Signal-to-Noise Ratio (SNR) 27.4 dB 

Feature Stability Score 0.91 

Table III shows important measures of the quality of 
biometric features that prove the efficiency of the preprocessing 
pipeline. The high value of the minutiae consistency and high 
SNR values represent the presence of a reliable ridge structure 

extraction, even in distorted fingerprint conditions. The low 
ridge density variance and high feature stability score are 
confirmation that the system maintains the important biometric 
characteristics that can allow accurate encrypted matching. 
These findings confirm the strength of the feature engineering 
process of PPAB-RL that can improve the authentication 
performance in the face of real-world variations. 

 

Fig. 6. Gaussian noise reduction results. 

Fig. 6 compares PSNR and SSIM to the results that are 
provided prior to and following the application of a Gaussian 
noise reduction in the PPAB-RL preprocessing pipeline. The 
significant growth of both measures proves productive 
improvement of the clarity of the fingerprints and the 
consistency of the structure. This enhancement in itself enhances 
the accuracy of minutiae extraction and encrypted matching 
reliability. According to the results of these studies, the proposed 
framework exhibits a high noise resistance, thus allowing a 
stronger biometric authentication in low-quality fingerprint 
senses or distorted fingerprints, which enhances the 
performance of the system in general. 

 

Fig. 7. Encrypted vs. Non-encrypted matching accuracy. 

Fig. 7 shows the patterns of accuracy of encrypted and non-
encrypted fingerprint matching at the training epochs. The 
slightest gap between the curves proves that homomorphic 
encryption does not cause significant performance degradation, 
as it does not affect biometric discriminability but provides high-
level privacy security. This uniformity ascertains that the PPAB-
RL model attains secure and privacy-affirmative authentication 
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with accuracy. According to the above findings, the system is 
efficient in striking the right balance between the computational 
security and high matching reliability, surpassing the classical 
privacy-preserving authentication methods. 

C. Contextual Risk Score Evaluation 

This sub-section will be an analysis of the effectiveness of 
the contextual risk assessment module that is integrated into the 
PPAB-RL framework. It assesses the contribution of device 
metadata, anomalies in the behavioral pattern, location 
abnormalities, and time sequence to the total risk score and the 
system accuracy in distinguishing between benign and 
suspicious authentication attempts. 

 

Fig. 8. Distribution of device, behavioral, and location deviations. 

Fig. 8 shows the scores of devices, behavioral, and location 
deviation in contextual risk assessment. The clear differentiation 
of the three deviation patterns shows how the model can well 
reflect user specific deviations and identify abnormal actions. 
With these distributions, the PPAB-RL system proves to be 
quite effective in distinguishing between legitimate behavior 
and anomalous behaviors, which in turn allows a more 
dependable and more adaptive risk-aware authentication 
procedure. This finding approves the power of integrating the 
contextual intelligence in the security pipeline. 

TABLE IV.  CONTEXTUAL RISK SCORE STATISTICS 

Metric Value / Observation 

Mean Risk Score 0.42 

Median Risk Score 0.39 

Deviation Across User Groups ±0.11 

Low-Risk Classification Accuracy 94.3% 

Medium-Risk Classification Accuracy 91.8% 

High-Risk Classification Accuracy 96.1% 

Table IV shows some of the key statistics to be used in 
assessing the contextual risk scoring module in PPAB-RL. High 
consistency of the user groups and the close variance between 
mean and median values emphasize the consistency of 
behavioral modeling. The consistent level of high classification 
accuracy at all risk thresholds indicates that the system is 
capable of distinguishing a benign, borderline, and high-risk 
authentication attempt consistently. According to these findings, 
the contextual intelligence aspect enhances adaptive decision-

making to a large extent and makes the entire authentication 
system more reliable and secure RL. 

D. RL Policy Convergence and Adaptive MFA Selection 

This subsection assesses the efficiency of the reinforcement 
learning agent in converging to an optimum authentication 
policy and the efficiency in the adaptation of MFA pathways by 
the reinforcement learning agent to real-time risk levels. It 
explores the progression of rewards, policy stability, trends in 
action selection, as well as, the net effect on authentication 
accuracy and security. 

 

Fig. 9. RL policy convergence curve. 

Fig. 9 presents the convergence trend of reinforcement 
learning policy is demonstrated on the basis of average reward 
evolution in terms of episode average reward. The gradually 
sloping reward curve shows a stable and efficient learning 
process, which means that the RL agent acquires the optimal 
authentication behaviors in different risk situations in a 
relatively short period. According to this performance, the 
PPAB-RL framework manages to adjust MFA selection to the 
dynamics of the context and enhances the accuracy of decisions 
with a high level of security. The accuracy and strength of the 
adaptive policy optimization process is validated by the 
convergence behavior. 

 

Fig. 10. MFA action distribution across risk states. 

Fig. 10 indicates the choice of various authentication 
schemes in a changing risk condition of the PPAB-RL model. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

300 | P a g e  
www.ijacsa.thesai.org 

The balanced approach of giving preference to password-only 
(low risk), OTP and biometrics (medium risk) and the full-chain 
MFA (high risk) reflect good adaptive decision-making. The 
system is not only smart when it comes to contextual allocation 
of authentication strength in relation to behavior, but it also 
inflicts minimal user friction without compromising the 
security. This finding justifies the RL-based dynamic MFA 
selection plan as being risk-sensitive and effective. 

TABLE V.  RL DECISION EFFECTIVENESS METRICS 

Metric Value 

True Accept Rate (TAR) 97.8% 

False Reject Rate (FRR) 2.1% 

User Friction Index 0.34 

Action Optimality Ratio 93.5% 

Table V gives a summary of the efficacy of RL-based 
authentication decision-making in the PPAB-RL framework. 
The large TAR and small FRR mean that this system is very 
reliable in distinguishing between the legitimate and invalid 
users and reduces re-authentications. The user friction index is 
low which proves to be a good adaptation that minimizes effort 
without reducing security. Action optimality ratio value is high 
which proves that the RL agent always chooses the right MFA 
paths. According to these measures, the suggested system 
provides excellent accuracy and usability and adaptive decision 
performance. 

E. End-to-End System Performance 

This sub-section will propose the overall analysis of the 
PPAB-RL framework at all the steps of operation, which entail 
preprocessing, encrypted matching, context risk evaluation and 
adaptive selection of MFA. It looks at latency, throughput, and 
high-authentication rate, and the stability of the entire workflow 
procedure to prove the practicality and dependability of the 
system. 

 

Fig. 11. Blockchain throughput and validation time. 

Fig. 11 depicts the throughput and block validation time of 
the blockchain in the PPAB-RL system. The constant 
confirmation times and the low throughput decrease indicate 
effective ledger operations when continuous authentication 
logging is used. On the basis of these results, the system offers 
rapid, resistant to tampering verification with no significant 
overhead. This proves that blockchain integration can increase 
both auditability and trust, and at the same time, provide high-

speed performance, which justifies end-to-end reliability and 
scalability of the suggested authentication system. 

TABLE VI.  PERFORMANCE METRICS 

Metric Value 

Authentication Accuracy 98.5 

False Acceptance Rate 1.4 

False Rejection Rate 1.7 

Equal Error Rate 1.55 

  Response Time 0.36 

Table VI shows excellent authentication capabilities 98.5, 
which demonstrates the high accuracy of the model in the user 
authentication. The False Acceptance ratio (1.4) and False 
Rejection rate (1.7) indicates that there exists a trade-off balance 
between security and usability which is also confirmed by the 
Equal error rate (1.55), indicating the great threshold 
optimization. Besides, the mean response duration of 0.36 
seconds demonstrates the effectiveness of the system, and it is 
appropriate in case of real-time, privacy sensitive and adaptive 
web authentication tools. 

F. Ablation Study 

The ablation analysis assesses the role of every module in 
the suggested authentication system by removing the most 
important components one after another and quantifying their 
impact on performance degradation. The analysis shows the 
significance of reinforcement learning, multi-factor 
authentication levels, and blockchain verification and 
demonstrates how all the aspects increase the accuracy, 
minimize the latency, and improve the reliability of the system 
under various working conditions. 

TABLE VII.  ABLATION STUDY OF PROPOSED FRAMEWORK COMPONENTS 

Configuratio

n 

Biometri

c 

Accurac

y (%) 

Risk 

Classificatio

n Accuracy 

(%) 

RL 

Policy 

Rewar

d 

End-to-End 

Authenticatio

n (%) 

Full Model  98.5 94.2 0.91 97.8 

w/o Biometric 

Enhancement 
94.1 93.7 0.89 94.5 

w/o 

Encryption 

Layer 

98.5 92.6 0.88 95.2 

w/o 

Contextual 

Risk Engine 

97.3 91.7 0.74 90.4 

w/o RL 

Adaptive 

MFA 

97.9 94.1 0.78 92.2 

Baseline (No 

Proposed 

Modules) 

92.4 87.5 0.63 84.1 
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Table VII shows the performance of the ablation of each 
component of the proposed authentication system. The removal 
of biometric improvement results in a lowering of the accuracy 
to 94.1 as opposed to 98.5, which proves it to be significant in 
matching with high quality. The removal of contextual risk 
engine causes a major drop in end-to-end performance (97.8 
percent to 90.4 percent). System robustness is reduced by 5.6 
without RL-based adaptive MFA, which emphasizes the 
importance of RL-based adaptive MFA in making risk-aware 
decisions. The worst-performing setup is the baseline 
configuration (84.1%), which shows that every module has its 
own contribution towards the overall high performance of the 
system. 

G. Comparison Assessment 

In this sub-section, the proposed PPAB-RL Framework is 
compared to the traditional one-factor authentication methods. 
Password-only authentication has an accuracy of 84.2 with 
fingerprint-only authentication being 93.5. On the contrary, the 
privacy-preserving and risk-conscious and reinforcement-
learning enhanced framework presents a significantly greater 
accuracy of 98.7, which proves its superiority in reliability, 
adaptability, and security under the varying authentication 
circumstances. 

TABLE VIII.  COMPARISON ASSESSMENT 

Method Accuracy (%) 

Secure Web Credential Transmission 

Protocol [27] 
84.2 

Scale-Invariant Feature Transform [28] 93.5 

Adaptive Risk-Based MFA [15] 95.2 

Blockchain-Based Biometric 

Authentication[22] 
96.1 

Proposed PPAB-RL  Framework 98.7 

 

Fig. 12. Comparison analysis. 

Table VIII and Fig. 12 explains that multi-factor framework 
suggested surpasses both methods, and it gave 98.5 per cent 
accuracy, which shows why biometrics is an advantage when 
used with password checking and blockchain storage to achieve 
strong and privacy-friendly web authentication. 

H. Discussion 

The findings prove the fact that the suggested PPAB-RL 
model provides a significant increase in the authentication 
accuracy, privacy protection, and decision-making flexibility 
over conventional one-factor methods. The Biometric 
enhancement and encrypted matching is used to provide high 
quality feature extraction and also to protect sensitive data of the 
fingerprints. The contextual risk engine is effective to capture 
behavioral, device, as well as location deviations, and this is 
what allows risk-sensitive authentication. Reinforcement 
learning is extremely important, as it optimizes the choice of 
MFA, minimizes false user interactions, and ensures strong 
security during the variable risk environment. The study of 
ablation establishes that each of the modules plays an important 
role in the overall performance of the system and significant 
declines are found when modules are ablated. Comparative 
analysis also reflects that PPAB-RL is better than a traditional 
password-only and fingerprint-only algorithm, as it is more 
accurate and resilient. Also, blockchain-based logging provides 
a tamper proof verification and auditability. Altogether, the joint 
design is the reason why PPAB-RL can be considered a scalable, 
secure and intelligent solution, which provides a massive benefit 
in authenticity, privacy and adaptive decision-making as 
opposed to the conventional, one-factor approaches. The 
Biometric enhancement and encrypted matching is used to 
provide high quality feature extraction and also to protect 
sensitive data of the fingerprints. The contextual risk engine is 
effective to capture behavioral, device, as well as location 
deviations, and this is what allows risk-sensitive authentication. 
Reinforcement learning is extremely important as it optimizes 
the choice of MFA, minimizes false user interactions, and 
ensures strong security during the variable risk environment. 
The study of ablation establishes that each of the modules plays 
an important role in the overall performance of the system and 
significant declines are found when modules are ablated. 
Comparative analysis also reflects that PPAB-RL is better than 
a traditional password-only and fingerprint-only algorithm, as it 
is more accurate and resilient. Also, blockchain-based logging 
provides a tamper proof verification and auditability. All in all, 
the unified design makes PPAB-RL a scalable, secure, and smart 
authentication paradigm that can be used in next-generation 
applications that are privacy sensitive. Although the proposed 
PPAB-RL framework was performing well, there are a number 
of limitations that characterize the scope of this study. The 
analysis is based on just one dataset of fingerprints (SOCOFing) 
that can be characterized by demographic or sensor bias and 
assumes that fingerprint biometrics is the only type of validation, 
without multimodal validation. Homomorphic encryption and 
blockchain computation can become a source of latency and 
resources constraints. Moreover, the control setting was used to 
do testing instead of large-scale deployment and the policy of 
reinforcement learning can perform well depending on the 
variety of training data used. Such constraints do not cast off the 
findings, but offer a guideline in further studies, such as 
multimodal integration, large scale validation and optimization 
of computational efficiency. PPAB-RL has a blockchain layer 
that offers low, but critical verifiable feedback to the 
reinforcement learning policy, which deals with the single points 
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of failure and unverifiable results of centralized logging. 
Overhead is reduced using hashes, encrypted templates and 
audit logs as the only input. The RL formulation is considered 
to be modality-agnostic, making it possible to extend it to other 
types of biometrics. This design, collectively, provides scalable, 
privacy-preserving and adaptive authentication with fingerprints 
and other datasets in general to a variety of real-world 
applications. 

V. CONCLUSION AND FUTURE WORK 

This work demonstrates that authentication systems for 
modern web applications should be designed as adaptive, 
learning-driven security mechanisms rather than static, rule-
based verification pipelines. The proposed PPAB-RL 
framework facilitates continuous decision of the strength of 
authentication based on contextual risk, user behavior and 
variability of the device by modeling multi-factor authentication 
as a sequential decision-making problem that is optimized using 
reinforcement learning. Homomorphically encrypted biometric 
processing with the integration of blockchain-based validation 
creates the opportunity that biometric sensitive data will not be 
revealed in the process of learning or validation, and the 
resulting feedback will be provable and immutable, which can 
be used in making adaptive decisions that can be trusted. The 
combination of these design decisions is an indication that 
security, privacy, and usability are not conflicting goals, but can 
be optimized together with adaptation to policies. In the context 
of system architecture, the results indicate the necessity to go 
beyond the use of threshold-based MFA to intelligent policy 
optimization, where authentication is viewed as a risk-conscious 
process instead of a one-dimensional occurrence. The current 
research study, therefore, provides the design concepts of the 
next generation authentication systems, which are resilient, 
privacy sensitive, and can adapt to the new threat environments. 

Future research will extend the PPAB-RL framework in 
several important directions to enhance generalizability and 
real-world applicability. Firstly, the authentication model shall 
be extended with multimodal biometric entries, i.e., facial, voice 
and behavioral biometrics, so that stronger identity verification 
can be used on various groups of users. Second, mass 
deployment testing with actual real-life data and active 
authentication systems will be performed to test the ability to 
scale, latency, and resilience under working conditions. Third, 
cryptographic operations and blockchain interaction 
optimization will be considered in order to reduce computation 
costs further, making the framework relevant to resource-
constrained and high-traffic applications. Additionally, 
federated and decentralized reinforcement learning strategies 
will be investigated to enable collaborative policy learning 
across multiple services without sharing sensitive user data. 
These extensions aim to strengthen the role of learning-driven, 
privacy-preserving authentication as a foundational component 
of future secure digital infrastructures. 
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