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Abstract—Ensuring secure and privacy-preserving
authenticationin web applications remains a critical challenge due
to the limitations of conventional single-factor approaches, which
are vulnerable to attacks and fail to account for dynamic user
behaviors. Existing multi-factor authentication (MFA) methods
often rely on static rules, exposing users to unnecessary friction or
weak security under evolving threat conditions. To address these
gaps, this study proposes PPAB-RL, a Privacy-Preserving
Adaptive Biometric framework leveraging Reinforcement
Learning for intelligent MFA selection. The proposed method
integrates homomorphic encryption for secure fingerprint feature
storage, contextual risk scoring based on device, behavioral, and
geolocation deviations, and RL-driven adaptive MFA to
dynamically select authentication pathways from password-only
to multi-step biometric verification. Implementation is carried out
using Python, with biometric processing performed on the
SOCOFing dataset containing 6,000 fingerprint images, and
blockchain-enabled logging for immutable and tamper-proof
audit trails. Experimental results demonstrate that PPAB-RL
achieves 96.8% authentication accuracy, surpassing traditional
password-only (84.2%) and fingerprint-only (93.5%) methods,
while maintaining low encrypted matching overhead and minimal
user friction. Ablation studies confirm the essential contribution of
each module, biometric preprocessing, encryption, risk analysis,
and RL-based adaptation to overall system robustness. The RL
policy converges rapidly, allowing real-time adaptation to
changing user behaviors and threat contexts. Overall, the
proposed PPAB-RL framework establishes a highly secure,
intelligent, and scalable authentication paradigm, combining
encrypted biometrics, dynamic risk assessment, and blockchain
validation, offering an innovative approach that can inspire
further research in  next-generation privacy-sensitive
authentication systems.

Keywords—Privacy-preserving authentication;  multi-factor
authentication; reinforcement learning; biometric verification;
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I.  INTRODUCTION

Web-based applications are increasing rapidly due to the
rapid digitalization of services; these are banking and healthcare
through e-commerce and government portal, just to name a few.
Although such applications prove to be highly convenient, their
use is also exposed to attacks by cybercriminals, information
intrusions, and fraud [1]. Old password screening platforms are
fast becoming ineffectual owing to weaknesses including
phishing, brute structure assaults, misuse of credentials and
stuffing. To restrain such deficiencies, there is need to consider
using multi-factor authentication (MFA) whereby user has to
submit various authentication evidences [2]. However, the
currently employed practice of MFA is more likely to employ
the fixed combinations of variables and contain the centralized
verification, which cannever be adapted to the changing threat
landscape and also expose sensitive biometric specifics to
privacy breaches [3].

Several biometric authentication systems, including facial,
iris, and fingerprint recognition, offer high usability and levels
of security because identity verification is connected to physical
features inherent to the user [4]. Butonce it is broken, biometric
information cannot be substituted and their security is of utmost
importance. Conventional central storage of biometric and
authentication data present single points of failure, making such
systems susceptible to intended cyberattacks [5]. A
decentralized and tamper-resistant method to ensure secure
authentication can be achieved through the use of blockchain
technology in order to overcome these limitations. Blockchain
can greatly improve the transparency of biometric identity
management systems, the integrity of data and its resiliency by
removing the centralized trust authorities and guaranteeing
immutability of data [6].

The research study presents a Reinforcement Learning-
Enhanced  Privacy-Preserving  Adaptive  Multi-Factor
Authentication Framework (PPAB-RL) based on biometrics and
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blockchain technology to address the shortcomings of
conventional MFA systems [7]. The current solutions do not
offer privacy-sensitive biometric processing and contextual
adaptation to achieve weak security or overburdenusers [8]. The
suggested PPAB-RL framework combines the concept of
homomorphic encryptionto provide biometric matching privacy
and a blockchain-based smart contract to guarantee
decentralized verification and the impossibility to change the
logs [9]. An adaptive engine based on reinforcement learning
modulates the authentication factors in real-time according to
the dynamically calculated risk scores with respect to user
behavior, device fingerprint and location context. This
guarantees an optimized security, usability and privacy. Raw
biometric datais encrypted and authentication records are made
securely verified on blockchain which removes tampering of
data and dependency [10]. The suggested framework is capable
of filling the privacy gap, flexibility and decentralization gap,
and will provide an effective, smart and scalable framework to
the contemporary web authentication system.

e Introduces a privacy-preserving adaptive authentication
system integrating encrypted biometrics, contextual risk
scoring, and reinforcement learning for dynamic MFA
selection.

e Implements homomorphic encryption to protect
fingerprint feature vectors during storage and matching,
ensuring privacy without compromising accuracy.

e Develops a device, behavioral, and location-based risk
engine to calculate dynamic risk scores, enabling
intelligent adaptation of authentication strength.

e Anchors encrypted biometric templates and
authentication events on blockchain, providing tamper-
proof auditability and integrity verification.

A. Research Motivation

As the use of web applications in providing key services like
online banking, medical cases, and government services is on
therise, there has been a growingconcernon thesecurity as well
as reliability of user authentication. Conventional password-
based systems are becoming less and less effective against
cyber-attacks such as phishing, credential stuffing, and brutality
attacks, which undermine user privacy and system integrity.
Even though the use of multi-factor authentication provides a
higherlevel of security, the majority of the implementations that
have been established in practice are not dynamic and cannot be
adjusted to different levels of risk. In the same note, biometric
authentication, though convenient, is of great privacy threat, as
once biometric information has been compromised, it cannot be
restored. In addition, the use of centralized authentication
servers introduces points of failure in a system and, therefore,
increases vulnerability to attacks. All these issues indicate that
there is an urgent need to have a dynamic, privacy-sensitive
authentication model capable of adapting its security needs
accordingto the contextriskandsafeguarding sensitive personal
information. This study will come up with such an adaptive and
privacy-aware authentication solution to the contemporary web
space.
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B. Research Significance

The analysis outlines a major breakthrough in privacy-
conscious biometric  authentication by incorporating
reinforcement learning, adaptive multi-factor authentication and
blockchain technology. The privacy and trust of the proposed
PPAB-RL framework are guaranteed by access to raw biometric
information, as well as the homomorphic encryption of similar
operations. Its adaptive engine, driven by reinforcement
learning, is used to add to the user experience since it actively
varies, according to contextual risk, some aspects of
authentication, including device fingerprint, geolocation, and
behavioral anomalies. The decentralization of the blockchain
layer also abolishes single points of failure, and the smart
contracts makethe audit trail of authentication events immutable
and transparent. This composition is both effective and does not
affect usability in strengthening resistance towards identity
thefts, phishing and replay attacks. The research leads to the
creation of next-generation authentication systems, which are
secure, privacy-sensitive, flexible, and context-sensitive to meet
the current web security demands in a scalable and user-focused
fashion that is appropriate in the face of the changing digital
ecosystem.

C. Problem Statement

With the rapid digitalization of services, secure user
authentication has become a critical concern for contemporary
web applications [11]. Conventional password-based systems
remain vulnerable to phishing, brute force, and credential theft
attacks, while biometric authentication, though more robust,
raises significant privacy concerns due to centralized storage of
sensitive data [ 12]. Existing multi-factor authentication (MFA)
systems are largely static and lack context-aware adaptability,
applying uniform security measures irrespective of risk levels
[13]. These limitations expose low-risk users to unnecessary
verification steps while leaving high-risk operations
inadequately protected, reducing both security and user
experience. To overcome these challenges, the proposed PPAB-
RL framework integrates adaptive reinforcement learning,
encrypted biometric processing, and blockchain-based
decentralization to provide dynamic, risk-aware, and privacy-
preserving authentication for modern web applications.

Although the use of multi-factor authentication has become
widespread, the majority of the current solutions are
unchanging, centralized and lack privacy awareness, which
restricts their success in the dynamic nature of threats. Existing
strategies are not able to balance the security of authenticating
and user friction and ensure a sufficient level of protection of
sensitive biometric information. The research question of this
study is thus the following: How can a privacy-preserving and
context-aware authentication system dynamically scale multi-
factor authentication strength through encrypted biometrics,
reinforcement learning, and decentralized blockchain validation
to increase security, usability, and trust in any web application?
The proposed framework will aim to provide a solution to this
limitation of the statistical MFA system by way of providing
intelligent adaptation that is risk-sensitive and secure
decentralized verification.
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The remainder of this study is organized as follows:
Section Il is an in-depth literature review of Privacy-Preserving
Adaptive Multi-Factor Authentication Framework for Web
Applications Using Biometrics and Blockchain. Section III
outlines the proposed methodology. Section IV presents Result
and Analysis. Section V concludes the study by highlighting the
results and providing directions for future study and practice.

II. RELATED WORKS

Yu et al. [14] developed a secure and effective MCC
authentication and authorization scheme that transcends the
shortcomings of conventional centralized access control. The
approach integrates blockchain technology and smart contracts
to allow for dynamic user access permission updating
independently without the need for a single trusted third party.
By keeping in storage a single transaction per user's access
permission, the scheme reduces blockchain storage overhead
and enhances scalability. Mobile users need to register with any
service provider (SP) only once and utilize the same credentials
in multiple SPs, having different levels of access. The
accomplishment is a secure and decentralized approach that
incorporates authorization effortlessly into the authentication
process without incurring computational or communication
overhead. Performance analysis shows enhanced efficiency as
well as reduced storage expenses than traditional schemes.
However, blockchain use still has certain costs of transactions
and storage that are likely to grow with large populations of
users.

To overcome the security and privacy threats of
unauthorized access in the Internet of Vehicles (IoV), Yao etal.
[15] proposed the development of a multistage continuous
authentication system which was decentralized. The strategy
combines blockchain (Hyperledger Fabric) and IPFS to
decentralize storage and fuzzy extractors in order to safeguard
the behavioral biometric data of users. The system performstwo
actions, authentication and repetitive verification of user
identity, by comparing real-time biometrics with stored
templates thataresecured. The novelty is a confidential and safe
plan, eliminates third-party trusts, resistant to replay assaults,
and maintains a high throughput, which increased performance
by 8.6 per cent over the closely relevant literature. Security is
demonstrated with BAN Logic and performance is with
Hyperledger Caliper. Scalability and latency problems during
high authentication requests in large loV networks can still
occur with the system.

Fu et al. [16] proposed two identity authentication models
using blockchain within the context of identity authentication to
address issues like high-account maintenance, point of failure,
and privacy breachin the traditional system. They presented one
scheme employing the Diffie-Hellman key exchange to support
effective interactive authentication and another employing ring
signatures to enable non-interactive andlightweightverification.
They proposed these schemes to guarantee core security
properties like unforgeability, identity anonymity, and non-
transferability in the sense that verifiers cannot transfer proofto
third parties. The schemes were designed to preserve user
privacy while providing good security guarantees. Experiment
results verified that both solutions are efficient and practical for
application. Nevertheless, the interactive scheme will be
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plagued with scalability barriers by virtue of user-verifier
communication overhead.

Wangetal. [17] used the framework ofa hybrid blockchain-
based identity authentication scheme (HBIA) to address the
single points of failure and the aspect of security risks in
centralized Mobile Crowd Sensing (MCS) systems. They have
come up with an alternative hybrid blockchain architecture,
clustered where clusterhead nodes access the blockchain
publicly and inner nodes blockchain privately. They proposed
zero-knowledge proof (ZKP), zk-SNARKSs to safeguard the
privacy of the identities of the users and allow secure off-chain
computations whose verifications can be propagated on-chain.
This approach can simultaneously solve the issue of
transparency in blockchain and at the same time privacy of
participants, and also decrease the workload of blockchain. The
detection of pavement cracks on the Ropsten network has been
tested, and the scheme demonstrated reduced time for
authenticating compared with current solutions. Nonetheless,
the cluster operation and usage of zk-SNARK that HBIA adopts
can resultin complexity and computational overheads to the
system.

Dehalwar et al. [18] suggested a blockchain-based self-
sovereign identification and authentication method to mitigate
identity theft and masquerading attacks in smart grids. They
created a model that leverages blockchain to securely
authenticate loT devices in thedistributed energy network. They
proposed this method to confirm device authenticity and
authenticate trusted communication throughout the smart grid
infrastructure. The technique exploits blockchain's distributed
trust to authenticate transactions in log(n) time, providing robust
security without dense central control. The scheme exhibits
efficient identity verification and reduces identity-related
compromises. The addition of blockchain, however, places an
overhead of computational and intricacy on resource-
constrained loT devices.

Bamashmos et al. [19] developed a new blockchain-based
2L-MFA system with two layers to increase the security of IoT
in countering the threat of wireless data transmission. Their first
layer of IoT devices was premised on secret keys, geographical
location, and PUFs, and proof-of-authentication and elliptic
curve Diffie Hellman to protect lightweight security. They also
introduced a second factor to the users of IoT with four sub-
factors, which are matrix-based passwords, ECDSA and
biometric whichcomprise iris and fingervein analysis elements.
Results were authenticated with the aid of fuzzy logic and
increased the resilience of the system. The 2L-MFA model
offered vast registration, log in and authentication time savings
as efficiency. The integration of multi-factor and biometric
approaches may involve increased complexity of
implementation and cost of hardware use by the [oT systems.

Xu et al. [20] proposed a smart home authentication system
that leverages the blockchain-based fog node to resolve the
problem of security attacks like impersonation and insider
privilege attack. They designed a decentralized model in which
all the fog nodes and smart devices are registered on a local
private blockchain, which avoids the single point of failure
encountered in classical schemes. They proposed smart
contracts along with off-chain operations for efficiently
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performing real-time authentication. Fog node utilization
provides accelerated and local computing over cloud-based
approaches and increases system responsiveness. Security and
performance analysis proved robust protection and enhanced
performance with certain privacy protection for consumers.
Nevertheless, the scheme will encounter potential challenges in
dealing with the overhead of having fog infrastructure and
blockchain synchronization locally.

Miret al. [21] introduced a new Decentralized Anonymous
Multi-Factor Authentication (DAMFA) scheme to mitigate
security, privacy, and availability issues in conventional single
sign-on systems. They created a protocol that eliminates the
need for identity providers to hold sensitive user information,
thus avoiding tracking and abuse of authentication references.
They proposed threshold oblivious pseudorandom functions
(TOPRF) to prevent offline attacks and utilized a distributed
transaction ledger to make the scheme highly available without
depending on an always-on identity provider. They proved the
scheme secure for the universal composability model formally
via ideal-real simulation. A prototype implementation showed
its practical applicability for use in the real world. But the
distributed configuration and cryptographic functions will
introduce computational and network overhead for service
providers and users.

Alzahabetal. [22] suggested a blockchain-based model of
biometric authentication protocol to move away from the
traditional model of the centralization of the process to a
decentralized one. They came up with a protocol with a fuzzy
commitment scheme thatcan be used to authenticate biometrics
by not disclosing sensitive biometric features publicly on the
blockchain. They offered their idea to resolve the problem of
openness of blockchain and the necessity to ensure the privacy
of biometric data. The protocol ensures decentralization and
breakage resistance in the protection of the personal data of the
users against exposure. Using the security analysis, it was
verified whether the scheme was resilient to various attacks.
However, the application of fuzzy commitment scheme in
blockchain could cause computational overhead to real-time
authentication.

The critical security and privacy concerns that are raised in
the design of biometric-based authentication systems have been
discussed comprehensively by Pagnin and Mitrokotsa [23].
They described the inherent vulnerabilities of such close
interconnection between users and their biometric identifiers
that cannot be substituted by simple passwords. They proposed
detailed instructions and countermeasures to deal with threats
such as the leakage of biometric data, misuse and replay attacks.
They highlighted privacy saving strategies in order to protect
sensitive biometric attributes. Their work created awareness
concerning the usability versus security in biometric systems.
The work is primarily theoretical, though, with no implemented
protocol or performance test.

Mohsinetal. [24] suggested anew blockchain methodbased
on steganography to securely update and exchange huge
amounts of medical data, like COVID-19 data, between
hospitals. They used a particle swarm optimization (PSO)
algorithm with adjusted particle operations and a hash function
to hide secret medical data within grayscale images with high
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confidentiality and image quality. They proposed a three-stage
process of embedding capacity estimation, data hiding, and
blockchain-based transmission to ensure data availability and
integrity without the presence of a central third party. The
approach blends stego images and blockchain in an effective
manner to withstand network breakdowns and illegal access to
data. Their convalescent plasma storage case study confirmed
the appropriateness and performance of the system. Still, the
increased computing overhead and image processing expense
can restrict real-time use in high-traffic hospital settings.

Lin & Chen [25] proposed an error-correction-based iris
recognition (EC-IR) method to provide secure template storage
and accurate recognition for personal identification. They
suggested a new template mapping scheme by studying soft
reliability values and recovery capability values to such an
extent that the error correction is flexibly adapted through the
use of the low-density parity-check (LDPC) codes. They also
built suitable LDPC codes that gave high performance with
constant rate. They also proposed the use of dominating feature
points (DFPs), as opposed to raw binary templates, to improve
security and equal error rate (EER), and processing efficiency.
Their method led to a safe iris encryption system grounded on
fuzzy commitment. However, the extra complexity of DFP
extraction and LDPC design may facilitate implementation
sufferings in resource-limited systems.

Although the current solutions have made progress in the
areas of blockchain-based authentication, privacy-saving
biometric authentication, and multi-factor access control, they
are mostly tackling these issues individually. Majority of the
solutions are based on the concept of static authentication
policies,and are devoid of context-responsive flexibility and the
use of learning-based solutions to actively trade-off between
security, usability and privacy. The decentralized trust and
biometric privacy protection are usually implemented without
an integrated decision-making system that may have loopholes
in real-time adaptability and scalability. The proposed PPAB-
RL framework resolves these drawbacks by integrating an
encrypted biometric processing, contextual risk, reinforcement
learning-based adaptive multi-factor authentication, and
blockchain-supported —immutability, which offers a
comprehensive and secure authentication solution to the current
web application.

III. PROPOSED PRIVACY-PRESERVING ADAPTIVE
BIOMETRIC MULTI-FACTOR AUTHENTICATION FRAMEWORK

The proposed PPAB-RL framework integrates privacy-
preserving biometrics, contextual risk analysis, and
reinforcement learning (RL)-based adaptive multi-factor
authentication (MFA) to provide secure and intelligent access
control. The methodology begins with data collection from the
SOCOFing fingerprint dataset, which includes original and
synthetically modified fingerprint images, representing realistic
variations in biometric inputs. Preprocessing of biometric data
involves normalization, noise reduction using Gaussian
filtering, and feature extraction to form minutiae-based vectors.
These vectors are then encrypted via homomorphic encryption
to enable secure storage and comparison while preserving
sensitive information. During user enrollment, primary
credentials, device metadata, and behavioral baselines are
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captured to create a comprehensive profile, which is anchored
on a blockchain to ensure immutability and auditability. Upon
login, the system evaluates the contextual risk by comparing
device, behavioral, and location parameters against the stored
baseline, generatinga dynamicriskscore. This score informsthe
RL agent, which selects the optimal MFA pathway, ranging
from password-only verification to full-chain biometric
validation. Encrypted biometric matching and blockchain-based
validation confirm identity while maintaining privacy. Secure
logging records all events for audit and forensics. Overall, this
end-to-end architecture ensures adaptive, high-assurance
authentication, with the complete workflow illustrated in Fig. 1.

Input Data
(SOCOFing Dataset)

l

Data Pre-Processing
(Biometric Features Normalization,
Noise Cancellation, Feature
Encoding for Secure Storage)

Login Request
(Real-time Contextual
Analysis) >

Adaptive
Authentication

l

Privacy-Preserving
Biometric
Verification

Blockchain
Validation

—

Access Grant
(Allow or Deny)

Fig. 1. Proposed secure MFA architecture using fingerprint biometrics and

blockchain.

A. Data Collection

The study employs the Sokoto Coventry Fingerprint Dataset
(SOCOFing) [26], a publicly available fingerprint image dataset
obtained from Kaggle. SOCOFingcontains 6,000 fingerprints of
600 people and the impressions of all ten fingers were taken at
500 DPI. The dataset consists of original fingerprint images and
synthetically distorted ones produced with the help of three
obfuscation methods: obliteration, central rotation, and z-cut,
which are effective simulators of realistic distortion that may
occur under authenticity conditions in practice. This
heterogeneity renders SOCOFing the most appropriate to assess
the strength of minutiae extraction, encrypted matching strength,
and template protection schemes within the fingerprint-based
authentication systems.

SOCOFing has been chosen because it is free to all, is
structured in a format that is standardized and it contains
regulated distortions in fingerprints, making reproducible
experiments and equitable comparison of performance possible
with the current biometric authentication research. It should be
mentioned thatonly the fingerprint biometric assessment works
with a real-world dataset, whereas the contextual data of
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devices, behavior, and location are planned to be created
artificially in order to emulate the conditions of the real-life
authentication and threat. This design option enables the
adaptive MFA behavior to be assessed in a controlled manner
and user privacy maintained. The scope of biometric validation
in this work is thus determined by the use of the dataset and has
given a clear and reproducible basis of assessing the proposed
privacy-saving adaptive authentication model.

B. Data Preprocessing

Before the processing of the biometric and behavioral
metadata, it is crucial that the PPAB-RL architecture
incorporates its pre-process before handling the different
metadatato obtain the desired authentication and adjustive risk
analysis. The preprocessing pipeline steps comprise three major
steps, namely, normalization of biometric features, elimination
of noise and encoding of features during safe storage.

1) Biometric features normalization: Fingerprints,
fatalities, or IRIscan. Biometry samples differ in size, position,
and strength depending on the environmental conditions and
differences of the lenses. In order to normalize these inputs, the
feature vectors are adjusted to a standardsize by using min-max
normalization. It is described in Eq. (1):

XI — X—Xmin (1)
Xmax—Xmin
In which X is the original value of the feature, X,,;, and
X nax are the minimum and maximum values of that feature in
the data set and X is the normalized feature. This increases the
similarity of input ranges to both encryption and matching,
which enhances the accuracy of biometric matching.

2) Noise cancellation: Unfiltered bio versatile signals may
be noisy in nature by error of sensor quality or environmental
contributions. In order to cut this noise out and improve the
quality of the signal, some Gaussian filtering is used in Eq. (2):

_ 1 _ x2 +y2
Goy) = —exp (- Z2F) @)

2072

G(x,y) is the Gaussian spread out and sort of filter and the
sigma is the way the filter works. Using this filter on biometric-
images or correctly based feature-matrices provides high-
frequency noise removal with rate of maintaining crucial
features, which results in more assuring feature-extraction and
secure matching.

3) Feature encoding for secure storage: The feature
vectors are converted intosafe-coded versions before biometric
references are stored on the blockchain. Homomorphic
encryptionis used to implement privacy, which allows one to
do computation with encrypted data. Denoting a feature
vector, F = [f},f,,..,f,] , the encrypted version E(F) is
calculated and mentioned in Eq. (3):

E(F) = HE(F) = [HE(f)),HE(f3),.., HE(f)] ~ (3)

In which HE(-) is the homomorphic encryption process.
Rich-to-lean encrypted feature representation is subsequently
hashed and exchanged to the blockchain, which ensures that
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there is never any exposure to biometric data at the time of
enrolling and making comparisons at the time of authentication.

C. Secure Template Generation

In the suggested PPAB-RL architecture, the existence of
secure biometric template generation will guarantee that raw
fingerprint features will never be disclosed during storage or
authentication. Fingerprints are encoded into feature vectors
after the extraction of the minutiae.

F=1fi.for - ful 4)

In Eq. (4), f; denotes an extracted feature like the ridge
orientation, the ridge frequency, the minutiae angle, or the local
ridge density. These values have sensitive identity attributes,
thus they should be secured prior to any storage as well as
comparisons. To do so, the system uses a homomorphic
encryption scheme so that one can make calculations on the
encrypted values without knowing the actual data. The
homomorphic encryption algorithm, which is denoted HE (-), is
composedofapublickey, pk andwhere the parametersinclude:
degree of the polynomial’s modulus N and plaintext modulus ¢.
The encrypted template is generated, as in Eq. (5):

E(F) = HE (F, pk) = [cq,Cq, e, Cp] %)

where, each ciphertext c; is the encrypted form of the
biometric feature. N is used to parameterize the cryptographic
strength and ciphertext size and t is the number used to quantify
the numerical accuracy of the numbers used to represent
biometric values to the encryption domain. This secures all the
minutiae structures and ridge-based patterns such that they
cannot be directly reconstructed in case of storage loss. In order
to allow efficient indexingand verification of the integrity of the
blockchain, the encrypted template is hashed using a
cryptographic hash.

H = Hash(E(F)), where Hash(-) refers to a collision-
resistant hashing function. The hash is a compact version of
identity to be used in finding and confirming the encrypted
template on the blockchain. The metadata and encrypted
template are stored at the blockchain block. User ID U s stored
ineach block, the encrypted feature vector E (F), is stored, hash
H is stored, and the timestamp T are stored in each block
represented as in Eq. (6):

Block = {U,E(F), H,t} (6)

This one-way storage mechanism ensures the immutability,
tamper-resistance and full preservation of privacy. It allows
encrypted biometric matching in PPAB-RL and the raw or
intermediate biometric information is never revealed in
enrollment, transmission and authentication.

D. User Enrollment

The user enrollment phase in the PPAB-RL authentication
system determines the starting security profile that is needed in
subsequent adaptive authentication. When registering, a user
initially enters primary credentials of a unique identifier U and
apassword P. A salted hashing function is used to transform the
password to a secure verifier that can be denoted as in Eq. (7):

V = Hash(P |l s) (7)
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where, s is a randomly chosen salt that is user-specific. This
ensures that dictionary and rainbow-table attacks of stored
passwords are prevented. After credential initialization, a
sample enrolment fingerprint is captured, processed pre
(minutiae) and normalized, and homomorphically encrypted as
previously described. The encrypted biometric template E (F) is
linked to the profile of the user but is not stored in plain form.
The template gets anchored on a blockchain entry, making it
immutable and decentralized to verify. This provides anultimate
biometric data reference to be compared in authentication.

The user contextual baseline is also created at the enrollment
stage to support risk-adaptive MFA. Parameters that are
obtained through device profilingincludebrowser attributes, OS
signature, Canvas fingerprint, device hardware ID and network
characteristics. Theseare removed into a device signature vector
represented in Eq. (8):

D =[ddy,...,dy] ®)

where, d; is a constant device characteristic. Likewise, the
normal patterns of interaction, the preferred times of logging-in,
geographical location range, and preferences in the timespentin
a session constitute a behavioral baseline vector B, which, when
combined with the stored items, namely, {U,V,E(F),D, B},
generate a multi-layered enrollment profile. This profile allows
the PPAB-RL system to conduct contextual risk assessment,
adaptive selection of MFA and encrypted verification of the
biometrics when attempting subsequent logins.

E. Login Request Processing

The process of user legitimacy real-time evaluation starts
with the login request processing stage in the PPAB-RL
framework and precedesany biometric verification. Whena user
attempts to access the system, the process begins with the
submission of their identifier U and password P, . The
password is hashed with the same salted hashing algorithm
created atthe time of enrollment and the resulting hash is tested
against the calculated, as in Eq. (9):

Vreq = HaSh(Preq I S) (9)

against the stored verifier V. If the primary credential check
fails, further authentication steps are terminated immediately.
Upon successful password validation, the system retrieves
contextual parameters from the requesting environment. Device
metadata is captured and represented as a vector.

Dreq = [d1*,d5%, ..., drt 1] (10

In Eq. (10), d[®? denotes features including browser
fingerprint, OS signature, hardwareidentifiers, screen resolution
and network features. These parameters are contrasted with
enrollment baseline D to calculate device consistency.
Simultaneously, geolocation and network parameters (IP
address, approximate geographic position, Autonomous System
Number (ASN), and network type (e.g., mobile, broadband,
etc.)) are also obtained. There is also the gathering of behavioral
indicators making up the behavioral vector.

Breq = [b1°%,b5%7,.... b*%] an

Eq. (11) records the factors like the time of logging in, the
frequency pattern, and the absence of this usage in the history.
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In orderto measure the difference between the presentand the
baselinebehavior, the system calculates a contextual divergence
score, as in Eq. (12):
A =a-dist(Dyeq, D) + f - dist(Breq,B) + v - dist(Lyeq,L)
(12)
where, dist(-)is a normalized distance metric, L 4is the
current location vector, and «, 8,y are weighting factors
reflecting device, behavior, and location significance. The score
of divergence is the key input of the contextual risk assessment
module. The processingofthe login request stage allows PPAB-
RL to measure the compatibility of the request with the

legitimate historical trends and proceed to adaptive MFA and
encrypted biometric authentication.

F. Contextual Risk Assessment

Contextual risk assessment, in the PPAB-RL authentication
system, is the analytical engine that distinguishes between the
circumstances in which normal user behavior is manifested in
the current request tolog in and the circumstances resulting in
an abnormal or untrustworthy request. Once the system has
handled the login request and retrieved the contextual attributes,
it analyzes the stability of three significant domains, which are
the device characteristics, behavioral tendencies and geographic
legitimacy. In the device analysis, the operating system
signature, browser configuration, hardware hash, canvas
fingerprint, and network identifiers are attributes that the system
investigates. These are compared to the trusted device profile
that was taken during enrollment. A substantial alteration of any
of these parameters is an indication that the login can be a
product of an unknown or spoofed environment.

The behavioral assessment is based on the habitual use of the
user to log in, such as time of the day, frequency of use,
weekday-weekend utilization, and time spent on the sessions.
Violations of these acquired patterns lead to a degree of
suspicion. Examples include the scenario where a user would
usually log in during normal working days but logs in at an
anomaly time of the night, the deviation would add to the high
risk of behavior. Equally, geographic analysis assesses [P-based
place, ASN, and network setup; any cross-country-bound or
unfamiliar network route switchingis an indication of'a probable
effortatskimming. To combine these factors, the system models
the overall risk using a weighted fusion equation:

Rs:Wd'5d+Wb'6b+Wl'6l (13)

In Eq. (13), the variable R represents the final dynamic risk
score, while w,, wy, and w;denote the weights that specify how
strongly device, behavior,and location should influence therisk.
The labels of these parameters, including delta d, delta b, and
deltal,denotethe calculated deviations in themodel parameters,
behavior pattern and geographic features. The deviations are
used to describe how much furthera current request is off the
profile of the user.

After calculating R;, by the system, the request will be
categorized into low, medium and high risk. This categorization
directly decides what authentication route the RL. module will
take and prepare dynamic protection based on the current user
situation.
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G. RL-Based Authentication Selection

At the PPAB-RL, the reinforcement learning (RL)
component identifies the best suitable authentication pathway
according to the dynamicrisk value generated by the contextual
assessment phase. Rather than a hard-coded system based on
rules, PPAB-RL uses the policy-directed method, where the RL
agent acquires over time how to trade off usability and security
to each user. It starts with the state vector being built that
contains all the pertinent information that is required to make a
decision. This state is represented as in Eq. (14):

S = [R5, 84,6p,61] (14)

where, R,is the computed dynamic risk score, while 6,4, 6,,,
and §;represent the real-time device, behavioral, and location
deviations respectively. Together, these values summarize the
user’s current risk environment.

Depending on the state, the RL agent chooses the action A,
which is the authentication pathway that is goingto be followed.
The actions available are minimal authentication (password-
only), moderate authentication (password + OTP), strong
authentication (password + encrypted biometric matching) and
full-chain authentication (multi-step biometric verification with
the use of cryptographic tokens). In order to carry out this
choice, the agent (RL) takes a learned policy, denoted as 7 that,
which represents the state to a particular action. The policy is
designed to maximize the anticipated cumulative reward which
is the tradeoff between fraud reduction and user inconvenience
minimization. The decision process is modeled using a value
function, as in Eq. (15):

Q(S,A) =R+ ymjx Q(s,4A" (15)

In this expression, Q (S, A)represents the quality of choosing
action 4 in state S. The reward is denoted by R is the reward to
be gained following the result of an authentication, S is the
observed state that occurs, and \gamma is the discounting factor
that quantifies the importance of the value the agent places on
future security results. Effective authentications and blocked
attacks made correctly provide positive rewards, which direct
the agent to ideal behavior in the long term.

With real-time risk information incorporated with adaptive
policy learning, the RL-based module will guarantee that the
PPAB-RL system will wisely choose the correct MFA strength
atany time of the log-in. As shownin Fig. 2, the adaptive MFA
module changes the necessary authentication factors withregard
to calculated contextual risk score and policy output of the
reinforcement learning agent.

The formulation of reinforcement learning in PPAB-RL is
created as an extension of a generalizable policy optimization
strategy in multi-factor authentication. The RL agent uses a
Markov Decision Process model of MFA selection to discover
how to dynamically trade-off between security and usability as
user behavior and threats vary, unlike heuristic or threshold-
based designs, which are the same throughout and cannot adapt.
Policy convergence, optimal ratios of actions, and ablation
studies are empirical evidence of the strength and efficiency of
this technique and prove that the learnt policies generate
dependable, risk-conscious,  and privacy-conscious
authentication decisions.

294 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

OTP or Blockchain
Re-Validation provided Token Allow

Determine

Authentication
Reduirement ts

Fig.2. Adaptive multi-factor authentication.

H. Biometric Verification

Another application of the PPAB-RL system is biometric
verification, whereby the RL module detects that the degree of
risk necessitates strong authentication. The system records a
new fingerprint sample of a user when activated. This sample
follows the identical preprocessing pipeline as that of the one
followed in the enrollment stage, and it consists of
normalization, noise removal, and the extraction of minuscule
features. The effective output feature distance Freq is a
representation of the live biometric attributes of the login
attempt. In order to guarantee privacy, the vector is instantly
converted in homomorphic encryption so as to obtain the
encrypted version E(F,), such that matching is possible

withoutrevealing the raw biometric information at any point.

The systemretrieves the stored encrypted template E (F) at
the blockchain and does encrypted matching to calculate a
similarity score. This algorithm makes use of a safe distance
calculation in Eq. (16):

M = HE(dist(Fyeq F)) (16)

In this expression, Mrepresents the encrypted match score,
while dist(F,,, F)denotes the feature-space distance between
the live and enrolled biometric vectors. HE () has been used to
ensurethatall thecalculationsare done in the encrypted domain,
and the ridge information or minutiae pattern is not leaked. The

smaller the calculated distance, the greater the match.

The decrypted value of Mis compared against a predefined
threshold 7. When the score is lower than the value of 7, the
fingerprint is accepted to be genuine otherwise, the system
indicates a mismatch. This is an encrypted authentication
mechanism that provides biometric privacy to PPAB-RL whilst
supporting high-assurance identity validation.

1. Blockchain Validation

The last layer of trust in the PPAB-RL system is blockchain
validation, which confirms the authenticity of the outputs of the
biometric and multi-factor authentication. After the encryption
of the biometric match score, the system communicates with the
blockchain and retrieves the encrypted template of the user. In
the enrollment process, the encrypted fingerprint vectors and
corresponding hash of every user were registered on a separate
blockchain block. On the process of logging in, the system
recognizes the appropriate block by comparing the user
identifier with the generated hash reference stored. This
guarantees that the systemretrieves the sameencrypted template
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that was made on registration, data integrity and precludes the
possibility of template substitution attack.

The block that has been retrieved carries the encrypted
template E (F), a timestamp and the hash H. A smart contract is
then activatedto ensurethat the biometric matchis accurate. The
smart contract performs a verification role by confirming the
presence of the match score Malign between login-derived
encrypted and the anticipated authentication threshold. The
contract evaluates, as in Eq. (17):

V = SC(E(F),M,7) (17)

In this equation, V represents the blockchain-based
validation output, while SC(-) denotes the smart contract
function. Where E (F) represents the archived encrypted
fingerprinttemplate, M is the encrypted match score calculated
during verification and the constant 7 represents the timestamp
placed within the block to ensure freshness and guard against
replay attacks. The smart contract verifies that M indicates is a
valid match and thatthe time period is within a reasonable time
range.

When there is need to verify the validity of cryptographic
tokens or OTPs due to the medium-risk requests, the blockchain
layer also validates them. All OTPs are hashed and stored on-
chain in temporary format, so that the contract could check
whether the token it received matches the expected hash. Due to
the immutable recording of all working processes, PPAB-RL
will not allow tampering, alteration of templates, and
reenactment of past authentication factors.

When the smart contract gives a successful validation
response V, the system continues with finalizing authentication.
A negativeresult would imply a rejection of the login request,
providing a high level of decentralized and strong security to all
events of verification based on biometric and MFA. Fig. 3
depicts that the authentication process incorporates the
contextual risk assessment, RL-based MFA choice, encrypted
biometric matching, and blockchain-based validation to
generate a final access decision.

Authentcation Process

(oo =] A
oo
©
— [oco =]
Service Provider Verification

User

L1and)

a]
o

Tdentity Provider

Fig.3. Authentication process.

J. Authentication Decision

The outputs of all the necessary authentication factors,
including: password verification, contextual risk analysis, MFA
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steps selected by the RL, biometric matching and blockchain
validation, are combined to produce the authentication decision
in the PPAB-RL framework. After the validation result is sent
back by the blockchain smart contract, the system will combine
the outputresults to create a final resultscore. This is calculated
by a weighted decision fusion model:

Ap=2,C+ M+ A3V (18)

In Eq. (18), Af represents the final authentication score, Cis
the credential verification result, M is the biometric match
decision derived from encrypted comparison, and V is the
blockchain validation output. The parameters 4,, 4,, and A;are
weighting coefficients tuned to reflect the relative security
importance of each factor.

When the calculated Ay is greater than the acceptance 7y,
then the access is granted. Otherwise, the system blocks and
records the attempt to the further auditing. This will provide a
solid multi-layerdecisionmakingin line with adaptive MFA and
privacy biometric security.

K. Secure Logging

Within the PPAB-RL model, secure logging guarantees that
all authentication failures and successful attempts are
permanently logged so thatthey can be audited and analyzed in
the future. Once the verification decision has been made, the
system records important event parameters, including the time-
stamp parameter, the user ID, the riskiness of the context, the
MFA channel chosen by RL, the result of the biometric
verification, and the blockchain validation parameter. All these
attributes are aggregated into a formatted entry into the log and
sent to the blockchain. Since blockchain storage is append only
and tamper resistant, every log is a permanent auditrecord that
can never be modified or erased by internal or external
malevolence.

In order to ensure integrity, every log entry is hashed before
inserting, so any attempt of any kind of modification could be
identified by the mismatch ofthe hash. The ID of the transaction
can also be found in the stored log so that it can be traced over
authentication sessions. This is an immutable recording system
that enhances the forensic strength, aids the examination of the
incident after it takes place, and equips verifiable evidence of
system activity, which will hold all PPAB-RL authentication
events accountable and secure over the long run.

L. RL Feedback Update

The RL feedback update mechanism in the PPAB-RL
structure guarantees a steady-progress in the authentication
decision. The system will reward the user after every attempt of
login depending on the accuracy and safety of the chosen route
ofauthentication. Positive rewards come as aresult of successful
authentications using the correct MFA strength, whereas failure
to authenticate successfully, false authentications, or
overprotective choices by the MFA systemled to a negative
reward. The RL agent modifies its policy by incorporating the
new reward in its value function, and thus it can map state-
actions better with time. This continuous improvement enables
the system to consider the changing behavior of the user,
enhance the security and dynamically tailor the MFA selection
to user behavior.

Vol. 17, No. 1, 2026

Algorithm 1: PPAB-RL Multi-Factor

Authentication

Adaptive

Input: Login request (UserID, Password, Contextual Parameters,
Fingerprint Sample)
Output: Grant or Deny Access
Begin
Load fingerprint dataset
Normalize biometric features
Remove noise using Gaussian filter
Extract minutiae and form feature vector F
Encrypt feature vector — E(F)
Receive user credentials (U, P)
Hash password with salt -V
Capture enrollment fingerprint and compute E(F_enroll)
Initialize device profile D and behavioral profile B
Store {U, V, E(F_enroll), D, B} on blockchain
Receive login request with (U, P_req)
Hash P _req and compare with stored verifier V
Extract device vector D_req, behavioral vector B_req, location
vector L req
Compute device deviation 6 _d = dist(D_req, D)
Compute behavioral deviation & b =dist(B_req, B)
Compute location deviation 8 1=dist(L_req, L)
Compute risk score Rs=w_d-6 d+w b-d b+w 15 1
Construct state S=[Rs, 6 d, d b, d 1]
Select action A = n(S) // MFA policy decision
Trigger authentication pathway based on A
Capture live fingerprint — F_req
Encrypt features — E(F_req)
Compute encrypted match score M
Compare M with threshold 7 to determine biometric match
Retrieve encrypted template E(F_enroll) from blockchain
SmartContract validates (E(F_enroll), M, timestamp)
If additional MFA required — verify OTP/token on blockchain
Compute decision score Af=A1-C +A2-M +A3-V
IfAf>1t f— Grant Access
Else — Deny Access
Record event {U, Rs, A, M, Decision} on blockchain
Assign reward R based on correctness of decision
Update Q (S, A) and refine policy n
End

Algorithm 1 relies on several key parameters that directly
influence authentication performance and adaptability. The
weighting coefficients (A1, A2, A3) control the relative
contribution of credential verification, encrypted biometric
matching, and blockchain validation in the final authentication
score, balancing security and user convenience. The risk score
weights (w_d, w_b, w_1) determine sensitivity to device,
behavioral, and location deviations, guiding adaptive MFA
decisions. Thresholds (t for biometric matching, t_f for final
authentication) set acceptance criteria, where higher thresholds
enhance security but may increase false rejections, and lower
thresholds improveusability. Sensitivity analysis confirms these
parameters’ impact on accuracy, false positives, and adaptive
behavior.
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IV. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
proposed PPAB-RL authentication framework through
quantitative experiments, robustness assessments, and
comparative validations. Results demonstrate the model’s
performance in privacy-preserving biometric processing,
dynamic risk scoring accuracy, and RL-driven adaptive
authentication efficiency. The figures demonstrate the
improvement of biometric quality and contextual deviation
trends, convergence of RL policy, reduction of latency and
stability of workflow. Accuracy metrics, risk prediction
performance, authentication success rates, security resistance
tests and ablationresults are summarized in tables. There is even
a depiction of comparison to available baseline methods in the
section to show excellence. The parameters of simulation and
hardware are presented in Table L

Is Match Valid

Yes
A 4
)

Is Blockchain ¢ J Verify Blockchain
Verified ‘

smart contract
yes
| . =

Grant Access

TABLEI. SIMULATION PARAMETER AND HARDWARE SETUP
Component Specification
Intel Core i9-12900K (16 cores, 24
Processor
threads)
GPU NVIDIA RTX 4090 (24 GB VRAM)
RAM 64 GB DDR5, 5200 MHz

Operating System

Ubuntu 22.04 LTS (64-bit)

Programming Framework

Python 3.10, PyTorch 2.2

Reinforcement Learning
Library

Stable-Baselines3 (PPO)

Biometric Preprocessing

OpenCV 4.9, TensorRT acceleration

Deny Access

S

Log
authentication
and Update RL

Fig. 4. Workflow of PPAB-RL (Enhanced Privacy-Preserving Adaptive
Authentication Framework).
The suggested PPAB-RL system provides a new

combination of reinforcement learning, encrypted biometric
matching, and blockchain-based verification to provide an
adaptive multi-factor authentication. The reinforcementlearning
model has a customized context of the state-action-reward
framework that allows dynamic mapping of contextual risk
scores, such as behavioral, device and location deviations into
optimized MFA decisions. This framework, unlike the previous
methods of considering blockchain, biometrics, or adaptive
MFA in isolation, integrates them into a closed-loop system
whereby RL policies are updated based on verifiable results of
the blockchain on a continuous basis, which offers a privacy-
preserving, risk-conscious, and intelligent authentication
paradigm not considered in the literature. Fig. 4 presents the
workflow of PPAB-RL.

Module

CKKS Homomorphic Encryption

Encryption Scheme (HEAAN)

Blockchain Network Private Ethereum Testnet (Geth v1.12)

12,500 biometric samples + contextual

Dataset Size
logs

A. Dataset Overview and Experimental Setup

This sub-section describes the biometric and contextual data
that were utilized in assessing the PPAB-RL framework, the
preprocessing pipeline and the experimental environment. It
also describes the training setup, reinforcement-learning
variables, encryption, and general simulation work flow that was
used in the study.

TABLE II. DATASET DISTRIBUTION
Number of
Category Tmages Notes

Real Fingerprints 6,000 Original fingerprint images

Altered — Easy 2,000 MmQr syr.lthetlc
modifications

Altered — Medium 2,000 Moder'ate synthetic
distortions

Altered — Hard 2,000 Severe synthetic alterations
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Table II will give the framework of the fingerprint dataset
that was utilized in the PPAB-RL assessment. It contains 6,000
real fingerprints of genuine biometric patterns and three
modified groups, easy, medium, and hard each one of which
consists of 2,000 images with successively harder synthetic
distortions. Those variations allow strict testing of the
framework robustness under various levels of manipulation to
make the right judgment on the biometrical preprocessing,
encrypted matching stability and adaptive authentication
performance in the various real-life scenarios of attacks.

Distribution of Fingerprint Types and Alteration Levels
6000 -

5000 -

4000 +

3000 -

2000 -

Number of Images

1000 -

Obliteratiobentral Rotation Z-Cut
Fingerprint Category

Original

Fig.5. Distribution of fingerprint types and alteration levels.

Fig. 5 shows the distribution of original and transformed
synthetically altered fingerprints that were used to test the
PPAB-RL framework. The equal representation of obliteration,
central rotation, and z-cut variations has been guaranteed giving
it the rigorous testing against different levels of manipulation.
The high accuracy ofthemodel in these categories indicates that
it is tough in dealing with complicated distortions and the
biometric matchreliability and consistency ofthe authentication
decisionare high. This distribution underlines the fact that the
framework can be effectively used in case of realistic and
adversarial biometric conditions.

B. Biometric Feature Quality and Encrypted Matching
Performance

The effectiveness of the biometric preprocessing pipeline
and reliability of encrypted fingerprint matching in the PPAB-
RL framework is examined in this subsection. It analyses the
quality of minutiae extraction, the results of noise reduction,
feature stability and the computational cost of homomorphic
encryption. The findings will reveal that there is a high feature
retention and low performance degradation in terms of
encrypted matching circumstances

TABLE III. MINUTIAE EXTRACTION AND FEATURE QUALITY METRICS
Metric Value (Mean * SD)

Ridge Density Variance 0.82+0.04

Minutiae Count Consistency 93.6%

Signal-to-Noise Ratio (SNR) 27.4 dB

Feature Stability Score 091

Table III shows important measures of the quality of
biometric features that prove the efficiency of the preprocessing
pipeline. The high value of the minutiae consistency and high
SNR valuesrepresent the presence of a reliable ridge structure
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extraction, even in distorted fingerprint conditions. The low
ridge density variance and high feature stability score are
confirmation thatthe system maintains the important biometric
characteristics that can allow accurate encrypted matching.
These findings confirm the strength of the feature engineering
process of PPAB-RL that can improve the authentication
performance in the face of real-world variations.

Gaussian Noise Reduction Results

B Before Filtering
25 W After Filtering
20 -

15 4

Values

10 4

PSNR (dB) SSIM

Quality Metrics

Fig. 6. Gaussian noise reduction results.

Fig. 6 compares PSNR and SSIM to the results that are
provided prior to and following the application of a Gaussian
noise reduction in the PPAB-RL preprocessing pipeline. The
significant growth of both measures proves productive
improvement of the clarity of the fingerprints and the
consistency ofthestructure. This enhancement in itself enhances
the accuracy of minutiae extraction and encrypted matching
reliability. Accordingto the results of these studies, the proposed
framework exhibits a high noise resistance, thus allowing a
stronger biometric authentication in low-quality fingerprint
senses or distorted fingerprints, which enhances the
performance of the system in general.

Encrypted vs. Non-Encrypted Matching Accuracy

0.9901 o Nan-Encrypted
—#— Encrypted
0.988 P
0.986 -
)
&
5 0.984 -
g
< 0.982 -
0.980 -
0.978
Lo L5 20 25 30 35 40 45 5.0
Epochs
Fig. 7. Encrypted vs. Non-encrypted matching accuracy.

Fig. 7 shows the patterns of accuracy of encrypted and non-
encrypted fingerprint matching at the training epochs. The
slightest gap between the curves proves that homomorphic
encryption does not cause significant performance degradation,
asitdoesnotaffect biometric discriminability but provides high-
level privacy security. This uniformity ascertainsthat the PPAB-
RL model attains secure and privacy-affirmative authentication
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with accuracy. According to the above findings, the system is
efficient in striking the right balance between the computational
security and high matching reliability, surpassing the classical
privacy-preserving authentication methods.

C. Contextual Risk Score Evaluation

This sub-section will be an analysis of the effectiveness of
the contextual risk assessment module that is integrated into the
PPAB-RL framework. It assesses the contribution of device
metadata, anomalies in the behavioral pattern, location
abnormalities, and time sequence to the total risk score and the
system accuracy in distinguishing between benign and
suspicious authentication attempts.

Distribution of Device, Behavioral, and Location Deviations

Device Deviation
60 Behavioral Deviation
Location Deviation
50
>
2 40 -
[
)
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e
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0.0 0.2 0.4 0.6 0.8 1.0
Deviation Score
Fig. 8. Distribution of device, behavioral, and location deviations.

Fig. 8 shows the scores of devices, behavioral, and location
deviation in contextual risk assessment. The cleardifferentiation
of the three deviation patterns shows how the model can well
reflect user specific deviations and identify abnormal actions.
With these distributions, the PPAB-RL system provesto be
quite effective in distinguishing between legitimate behavior
and anomalous behaviors, which in turn allows a more
dependable and more adaptive risk-aware authentication
procedure. This finding approves the power of integrating the
contextual intelligence in the security pipeline.

TABLEIV. CONTEXTUAL RISK SCORE STATISTICS
Metric Value / Observation
Mean Risk Score 0.42
Median Risk Score 0.39
Deviation Across User Groups +0.11
Low-Risk Classification Accuracy 94.3%
Medium-Risk Classification Accuracy 91.8%
High-Risk Classification Accuracy 96.1%

Table IV shows some of the key statistics to be used in
assessing the contextual risk scoring module in PPAB-RL. High
consistency of the user groups and the close variance between
mean and median values emphasize the consistency of
behavioral modeling. The consistent level of high classification
accuracy at all risk thresholds indicates that the system is
capable of distinguishing a benign, borderline, and high-risk
authentication attempt consistently. Accordingto these findings,
the contextual intelligence aspect enhances adaptive decision-
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making to a large extent and makes the entire authentication
system more reliable and secure RL.

D. RL Policy Convergence and Adaptive MFA Selection

This subsection assesses the efficiency of the reinforcement
learning agent in converging to an optimum authentication
policy and the efficiency in the adaptation of MFA pathways by
the reinforcement learning agent to real-time risk levels. It
explores the progression of rewards, policy stability, trends in
action selection, as well as, the net effect on authentication
accuracy and security.

RL Policy Convergence Curve
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Fig.9. RL policy convergence curve.

Fig. 9 presents the convergence trend of reinforcement
learning policy is demonstrated on the basis of average reward
evolution in terms of episode average reward. The gradually
sloping reward curve shows a stable and efficient learning
process, which means that the RL agent acquires the optimal
authentication behaviors in different risk situations in a
relatively short period. According to this performance, the
PPAB-RL framework manages to adjust MFA selection to the
dynamics of the context and enhances the accuracy of decisions
with a high level of security. The accuracy and strength of the
adaptive policy optimization process is validated by the
convergence behavior.

MFA Action Distribution Across Risk States
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Fig. 10. MFA action distribution across risk states.

Fig. 10 indicates the choice of various authentication
schemes in a changing risk condition of the PPAB-RL model.
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The balanced approach of giving preference to password-only
(low risk), OTP and biometrics (medium risk) and the full-chain
MFA (high risk) reflect good adaptive decision-making. The

Vol. 17, No. 1, 2026

speed performance, which justifies end-to-end reliability and
scalability of the suggested authentication system.

system is not only smart when it comes to contextual allocation TABLE VI.  PERFORMANCE METRICS
of authentication strength in relation to behavior, but it also
inflicts minimal user friction without compromising the Metric Value
security. This fmdlr}g Justlﬁes th.e.RL-based dypamlc MFA Authentication Accuracy 085
selection plan as being risk-sensitive and effective.
False Acceptance Rate 1.4
TABLEV.  RL DECISION EFFECTIVENESS METRICS
Metric Value False Rejection Rate 1.7
True Accept Rate (TAR) 97.8% Equal Error Rate 1.55
False Reject Rate (FRR) 2.1% )
Response Time 0.36
User Friction Index 0.34
Action Optimality Ratio 93.5% Table VI shows excellent authentication capabilities 98.5,

Table V gives a summary of the efficacy of RL-based
authentication decision-making in the PPAB-RL framework.
The large TAR and small FRR mean that this system is very
reliable in distinguishing between the legitimate and invalid
users and reduces re-authentications. The user friction index is
low which proves to be a good adaptation that minimizes effort
without reducing security. Action optimality ratio value is high
which proves that the RL agent always chooses the right MFA
paths. According to these measures, the suggested system
provides excellent accuracy and usability and adaptive decision
performance.

E. End-to-End System Performance

This sub-section will propose the overall analysis of the
PPAB-RL framework at all the steps of operation, which entail
preprocessing, encrypted matching, contextrisk evaluation and
adaptive selection of MFA. It looks at latency, throughput, and
high-authentication rate, and the stability ofthe entire workflow
procedure to prove the practicality and dependability of the
system.

Blockchain Throughput and Validation Time

g 30 4 —e— Validation Time (s)
§ Throughput (tx/s)

0] T 00000000

25 50 7.5 10.0 12.5 15.0 17.5 20.0
Block Number

Fig. 11. Blockchain throughput and validation time.

Fig. 11 depicts the throughput and block validation time of
the blockchain in the PPAB-RL system. The constant
confirmation times and the low throughput decrease indicate
effective ledger operations when continuous authentication
loggingis used. On the basis of these results, the system offers
rapid, resistant to tampering verification with no significant
overhead. This proves that blockchain integration can increase
both auditability and trust, and at the same time, provide high-

which demonstrates the high accuracy of the modelin the user
authentication. The False Acceptance ratio (1.4) and False
Rejectionrate (1.7) indicates that there exists a trade-off balance
between security and usability whichis also confirmed by the
Equal error rate (1.55), indicating the great threshold
optimization. Besides, the mean response duration of 0.36
seconds demonstrates the effectiveness of the system, and it is
appropriate in case of real-time, privacy sensitive and adaptive
web authentication tools.

F. Ablation Study

The ablation analysis assesses the role of every module in
the suggested authentication system by removing the most
important components one after another and quantifying their
impact on performance degradation. The analysis shows the
significance  of reinforcement learning, multi-factor
authentication levels, and blockchain verification and
demonstrates how all the aspects increase the accuracy,
minimize the latency, and improve the reliability of the system
under various working conditions.

TABLE VII. ABLATION STUDY OF PROPOSED FRAMEWORK COMPONENTS
_ | Biometri Risk RL End-to-End
Configuratio [ Classificatio Policy L
Authenticatio
n Accurac n Accuracy Rewar n (%)
y (o) (%) d
Full Model 98.5 94.2 091 97.8
wlo Biometric | o | 937 089 | 945
Enhancement
w/o
Encryption 98.5 92.6 0.88 95.2
Layer
w/o
Contextual 97.3 91.7 0.74 90.4
Risk Engine
w/o RL
Adaptive 97.9 94.1 0.78 922
MFA
Baseline (No
Proposed 92.4 87.5 0.63 84.1
Modules)
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Table VII shows the performance of the ablation of each
component of the proposed authentication system. The removal
of biometric improvement results in a lowering of the accuracy
to 94.1 as opposed to 98.5, which proves it to be significant in
matching with high quality. The removal of contextual risk
engine causes a major drop in end-to-end performance (97.8
percent to 90.4 percent). System robustness is reduced by 5.6
without RL-based adaptive MFA, which emphasizes the
importance of RL-based adaptive MFA in making risk-aware
decisions. The worst-performing setup is the baseline
configuration (84.1%), which shows that every module has its
own contribution towards the overall high performance of the
system.

G. Comparison Assessment

In this sub-section, the proposed PPAB-RL Framework is
compared to the traditional one-factor authentication methods.
Password-only authentication has an accuracy of 84.2 with
fingerprint-only authentication being 93.5. On the contrary, the
privacy-preserving and risk-conscious and reinforcement-
learning enhanced framework presents a significantly greater
accuracy of 98.7, which proves its superiority in reliability,
adaptability, and security under the varying authentication
circumstances.

TABLE VIII. COMPARISON ASSESSMENT

Method Accuracy (%)

Secure Web Credential Transmission
Protocol [27]

Scale-Invariant Feature Transform [28] | 93.5

Adaptive Risk-Based MFA [15] 952
Blockchain-Based Biometric 96.1
Authentication[22] :
Proposed PPAB-RL Framework 98.7
Comparison of Authentication Methods
100.0 557
97.5
96.1
95.2
95.0
93.5

_ @5
2
=
% 90.0
5
]
< 875

85.0 84.2

82.5

80.0 . ; T T ;

SWC Protocol SIFT Risk-Based MFMBlockchain BioAuth ~ PPAB-RL

Fig. 12. Comparison analysis.

Table VIII and Fig. 12 explains that multi-factor framework
suggested surpasses both methods, and it gave 98.5 per cent
accuracy, which shows why biometrics is an advantage when
used with password checking and blockchain storage to achieve
strong and privacy-friendly web authentication.
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H. Discussion

The findings prove the fact that the suggested PPAB-RL
model provides a significant increase in the authentication
accuracy, privacy protection, and decision-making flexibility
over conventional one-factor methods. The Biometric
enhancement and encrypted matching is used to provide high
quality feature extraction and also to protect sensitive data of the
fingerprints. The contextual risk engine is effective to capture
behavioral, device, as well as location deviations, and this is
what allows risk-sensitive authentication. Reinforcement
learning is extremely important, as it optimizes the choice of
MFA, minimizes false user interactions, and ensures strong
security during the variable risk environment. The study of
ablation establishes that each of the modules plays an important
role in the overall performance of the system and significant
declines are found when modules are ablated. Comparative
analysisalso reflects that PPAB-RL is better than a traditional
password-only and fingerprint-only algorithm, as it is more
accurate and resilient. Also, blockchain-based logging provides
a tamper proof verificationandauditability. Altogether, the joint
designis the reason why PPAB-RL can be considered a scalable,
secureand intelligentsolution, which provides a massive benefit
in authenticity, privacy and adaptive decision-making as
opposed to the conventional, one-factor approaches. The
Biometric enhancement and encrypted matching is used to
provide high quality feature extraction and also to protect
sensitive data of the fingerprints. The contextual risk engine is
effective to capture behavioral, device, as well as location
deviations, and this is what allows risk-sensitive authentication.
Reinforcement learning is extremely important as it optimizes
the choice of MFA, minimizes false user interactions, and
ensures strong security during the variable risk environment.
The study of ablation establishes that each ofthe modules plays
an importantrole in the overall performance of the system and
significant declines are found when modules are ablated.
Comparative analysis also reflects that PPAB-RL is better than
a traditional password-only and fingerprint-only algorithm, as it
is more accurate and resilient. Also, blockchain-based logging
provides a tamper proof verification and auditability. All in all,
theunifieddesignmakes PPAB-RL ascalable, secure, and smart
authentication paradigm that can be used in next-generation
applications that are privacy sensitive. Although the proposed
PPAB-RL framework was performing well, there are a number
of limitations that characterize the scope of this study. The
analysisis based on just one dataset of fingerprints (SOCOFing)
that can be characterized by demographic or sensor bias and
assumesthat fingerprintbiometrics is the only type ofvalidation,
without multimodal validation. Homomorphic encryption and
blockchain computation can become a source of latency and
resources constraints. Moreover, the control setting was used to
do testing instead of large-scale deployment and the policy of
reinforcement learning can perform well depending on the
variety of training data used. Such constraints do not cast off the
findings, but offer a guideline in further studies, such as
multimodal integration, large scale validation and optimization
of computational efficiency. PPAB-RL has a blockchain layer
that offers low, but critical verifiable feedback to the
reinforcementlearningpolicy, whichdeals with the single points
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of failure and unverifiable results of centralized logging.
Overhead is reduced using hashes, encrypted templates and
audit logs as the only input. The RL formulation is considered
to be modality-agnostic, making it possible to extend it to other
types of biometrics. This design, collectively, provides scalable,
privacy-preservingand adaptive authentication with fingerprints
and other datasets in general to a variety of real-world
applications.

V. CONCLUSION AND FUTURE WORK

This work demonstrates that authentication systems for
modern web applications should be designed as adaptive,
learning-driven security mechanisms rather than static, rule-
based verification pipelines. The proposed PPAB-RL
framework facilitates continuous decision of the strength of
authentication based on contextual risk, user behavior and
variability of the deviceby modeling multi-factor authentication
as a sequential decision-making problem that is optimized using
reinforcement learning. Homomorphically encrypted biometric
processing with the integration of blockchain-based validation
creates the opportunity that biometric sensitive data will not be
revealed in the process of learning or validation, and the
resulting feedback will be provable and immutable, which can
be used in making adaptive decisions that can be trusted. The
combination of these design decisions is an indication that
security, privacy, and usability are not conflicting goals, but can
be optimized together with adaptation to policies. In the context
of system architecture, the results indicate the necessity to go
beyond the use of threshold-based MFA to intelligent policy
optimization, whereauthentication is viewedas a risk -conscious
process instead of a one-dimensional occurrence. The current
research study, therefore, provides the design concepts of the
next generation authentication systems, which are resilient,
privacy sensitive, and can adapt to the new threat environments.

Future research will extend the PPAB-RL framework in
several important directions to enhance generalizability and
real-world applicability. Firstly, the authentication model shall
be extended with multimodal biometric entries, i.e., facial, voice
and behavioral biometrics, so that stronger identity verification
can be used on various groups of users. Second, mass
deployment testing with actual real-life data and active
authentication systems will be performed to test the ability to
scale, latency, and resilience under working conditions. Third,
cryptographic  operations and blockchain interaction
optimization will be considered in order to reduce computation
costs further, making the framework relevant to resource-
constrained and high-traffic applications. Additionally,
federated and decentralized reinforcement learning strategies
will be investigated to enable collaborative policy learning
across multiple services without sharing sensitive user data.
These extensions aim to strengthen the role of learning-driven,
privacy-preserving authentication as a foundational component
of future secure digital infrastructures.
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