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Abstract—This study presents the design, development, and
evaluation of an intelligent fruit-picking robot that integrates
convolutional vision, adaptive gripping mechanisms, and
kinematic control to enable automated harvesting in diverse
orchard environments. The proposed system combines a dual-
manipulator platform with an extendable scissor-lift mechanism
to achieve wide workspace coverage, allowing efficient access to
fruits located at varying canopy heights. A deep learning-based
recognition module, trained on a Mixed Fruit Dataset, is
employed to detect and classify fruits under challenging
conditions characterized by occlusions, variable illumination, and
dense foliage. Visualization of feature activations confirms that
the model effectively focuses on discriminative fruit regions,
supporting precise alignment of the end-effector during grasping.
The adaptive gripper, designed with compliant materials and
multi-configuration geometry, ensures gentle handling across
fruits of different shapes and sizes, minimizing mechanical
damage. Experimental evaluations demonstrate that the system
performs reliably across multiple fruit species, achieving
accurate identification, robust segmentation, and stable
manipulation in real-field scenarios. The integrated results
highlight the robot’s potential to reduce labor dependency,
improve harvesting efficiency, and support scalable automation
in mixed-crop orchards. Future work will address enhancements
in real-time processing, autonomous navigation, and cross-
species generalization to advance fully autonomous orchard
operations.
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I.  INTRODUCTION

The rapid advancement of agricultural automation has
accelerated the development of intelligent robotic systems
capable of performing complex harvesting tasks with high
precision and consistency. Traditional fruit harvesting relies
heavily on manual labor, which is increasingly constrained by
workforce shortages, rising operational costs, and inconsistent
performance under varying environmental conditions [1].
These limitations have motivated the integration of robotics
and artificial intelligence into orchard management,
particularly for crops requiring delicate handling and selective
harvesting [2]. Automated fiuit-picking robots provide a

promising solution by combining perception algorithms,
decision-making modules, and dexterous manipulation to
achieve reliable performance across diverse orchard structures

[3].

Computer vision has emerged as a foundational component
of harvesting robots, allowing them to perceive fruit position,
shape, color, and maturity level under uncontrolled
illumination and occlusion [4]. Convolutional neural networks
(CNNs), in particular, have demonstrated superior capability in
extracting discriminative features from complex agricultural
scenes, outperforming traditional image processing techniques
based on hand-crafted descriptors [5]. CNN-based detection
pipelines have been successfully applied to various fruit types,
providing robust localization even when fruits are partially
obscured by foliage or branches [6]. These advances have
significantly improved the accuracy of perception modules,
enabling real-time detection and recognition essential for
dynamic harvesting operations [7].

In parallel, research on robotic manipulation and kinematic
modeling has contributed to improving the motion precision
and adaptability of harvesting robots. Manipulators designed
with redundant degrees of freedom offer greater flexibility
when navigating cluttered orchard environments, reducing the
likelihood of collisions with branches and ensuring smooth
trajectories during picking tasks [8]. Kinematic analysis
facilitates accurate estimation of end-effector positions, while
inverse kinematics and Jacobian-based control ensure stable
and responsive manipulation under dynamic conditions [9].
Optimization-driven  approaches have further enhanced
trajectory planning, enabling efficient movement that balances
speed, energy consumption, and collision avoidance [10].

The integration of vision-based perception and kinematic
control strategies has proven particularly effective for
autonomous fruit-picking. Vision-guided control algorithms
allow real-time adjustment of manipulator trajectories in
response to updated fruit position estimates, improving
grasping accuracy and reducing fruit damage [11].
Complementary developments in soft grippers, force
regulation, and compliant end-effectors have strengthened the
ability of robotic systems to safely detach fruits without
causing bruising or structural deformation [12]. Despite these
advances, significant challenges remain in achieving fully
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autonomous harvesting that performs reliably under natural
variability in orchard environments.

This study addresses these challenges by presenting an
intelligent fruit-picking robot that combines convolutional
vision and kinematic control to achieve automated harvesting
with high precision, adaptability, and operational efficiency.

II. RELATED WORKS

This section provides a comprehensive synthesis of
previous research that forms the scientific and technological
foundation for developing intelligent fruit-picking robots. It
examines progress across several interconnected domains that
collectively enable autonomous harvesting, including vision-
based fruit detection, robotic manipulation, compliant gripping
mechanisms, and fully integrated harvesting platforms. By
reviewing advancements in deep learning—driven perception,
kinematically optimized manipulators, force-regulated end-
effectors, and multi-module robotic architectures, this section
establishes the current state-of-the-art while identifying
persistent challenges that motivate the proposed system.

A. Vision-Based Fruit Detection and Recognition

Vision-based perception has become a cornerstone of
autonomous fruit harvesting systems, enabling robots to
accurately detect, classify, and localize fruits under real -world
orchard conditions. Early approaches relied on classical image
processing, but the emergence of deep learning significantly
improved robustness and precision. Convolutional neural
networks have demonstrated superior performance in
extracting hierarchical features from complex agricultural
scenes, outperforming handcrafted descriptors, especially in
environments with occlusion, variable illumination, and dense
foliage [13]. Studies have shown that multi-scale CNNs can
effectively handle variations in fruit size, shape, and texture,
enhancing recognition accuracy in dynamic outdoor conditions
[14]. Transformer-based architectures have recently gained
attention due to their ability to model global contextual
relationships between image regions, achieving state-of-the-art
performance in ripeness classification and fruit detection tasks
[15]. Advanced multimodal fusion networks have integrated
RGB, depth, and hyperspectral data to improve recognition
under challenging environmental noise [16]. Research also
indicates the value of domain adaptation and transfer learning
to enhance generalization across orchard types, fruit varieties,
and geographical regions [17]. Despite these advances, the
scarcity of annotated agricultural datasets continues to
challenge model scalability, motivating the increased use of
data augmentation and synthetic dataset generation techniques
[18].

B. Robotic Manipulators for Agricultural Harvesting

Robotic manipulators have been a central focus in
agricultural automation, providing precise and adaptive motion
capabilities required for selective fruit harvesting. Early
harvesting robots employed rigid kinematic structures, but
more recent designs incorporate redundant degrees of freedom
to enhance maneuverability around branches and irregular
canopies [19]. Optimization-based manipulator design
frameworks have demonstrated significant improvements in
reachability and dexterity, particularly in densely planted
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orchards [20]. Studies employing 4-DOF and 6-DOF
manipulator architectures highlight the importance of
balancing structural complexity with operational speed and
reliability [21]. Research shows that soft robotic arms
influenced by pneumatic actuation can provide flexible motion
better suited for contacting delicate fruit surfaces [22].
Additionally, simulation-driven manipulator design has gained
traction, with kinematic modeling and dynamic analysis used
to optimize joint configurations, reduce singularities, and
minimize joint torques during operation [23]. Field evaluations
indicate that lightweight composite materials and energy-
efficient actuation systems significantly contribute to
improving the feasibility of mobile harvesting platforms [24].

C. Gripping Mechanisms and Force-Controlled Fruit
Harvesting

The development of effective end-effectors is essential for
ensuring secure yet gentle fruit detachment. Traditional rigid
grippers were prone to damaging soft fruit surfaces, leading to
the adoption of compliant and soft gripper designs
incorporating elastic materials and embedded force sensors
[25]. Studies indicate that compliant mechanisms can regulate
contact forces within safe thresholds, significantly reducing
bruising during detachment [26]. Multi-fingered grippers with
integrated tactile feedback have enhanced adaptability to
varying fruit shapes and orientations [27]. Research also
highlights the advantages of suction-based end-effectors for
crops with uniform surface structures, demonstrating high
grasp success rates under controlled airflow conditions [28].
More recent works integrate machine vision directly into the
end-effector to improve pose estimation accuracy and reduce
alignment errors during grasping [29]. Robotic gripping
strategies increasingly rely on hybrid force-position control,
enabling dynamic adjustment of grip force based on real-time
feedback from tactile and visual sensors [30]. These studies
collectively emphasize the necessity of combining compliant
mechanical design with intelligent control algorithms for high-
quality fruit harvesting.

D. Integrated Robotic Harvesting Systems and Autonomous
Operation

Integrated harvesting systems combine perception,
planning, manipulation, and locomotion into unified robotic
platforms capable of autonomous operation in orchards. Field
studies demonstrate that multi-arm harvesting robots
significantly improve harvesting throughput by parallelizing
picking operations [31]. Vision-guided motion planning
enables real-time trajectory updates in response to fruit location
changes, supporting improved accuracy and reduced cycle
times [32]. Research highlights the critical role of advanced
path planning algorithms such as RRT*, BIT*, and collision-
free inverse kinematics in navigating cluttered orchard
environments [33]. Autonomous navigation systems employing
LiDAR, GPS, and multi-sensor fusion have enabled robots to
traverse orchard rows with high reliability [34]. Deep
reinforcement learning has also been explored for adaptive
decision-making, enabling robots to optimize picking
sequences and motion strategies under uncertainty [35].
Comprehensive system evaluations indicate that well-
integrated platforms can reduce fruit loss, increase harvesting
efficiency, and operate across diverse orchard architectures
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[36]. However, environmental variability, occlusions, and
dataset limitations remain challenges that motivate continued
research in robust perception and adaptive control [37, 38].

III.  MATERIALS AND METHODS

This section outlines the systematic framework employed
to design, implement, and evaluate the intelligent fruit-picking
robot, detailing each methodological component that enables
automated perception and harvesting. This section describes
the hardware architecture of the robotic platform, the kinematic
modeling of the manipulator, the fiuit recognition pipeline
based on deep learning, and the experimental procedures used
to validate system performance under realistic orchard
conditions. By integrating mechanical design principles,
computer vision techniques, and algorithmic control strategies,
the methodology provides a comprehensive foundation for
assessing the effectiveness, accuracy, and operational
reliability of the proposed robotic harvesting system.

Manipulator

Basket for
harvested fruits
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A. System Overview

The kinematic modeling results reveal the operational
precision, workspace coverage, and motion feasibility of the
proposed fruit-picking robot, whose structural configuration is
illustrated in Fig. 1. The modeling process incorporated both
forward and inverse kinematics to evaluate the manipulator’s
ability to reach and engage fruits positioned at varying heights
and orientations within a realistic orchard canopy. Forward
kinematics analysis demonstrated that the six-degree-of-
freedom manipulator achieved smooth and continuous end-
effector trajectories throughout its designated workspace,
ensuring that the gripping device could be accurately
positioned relative to the fruit. The homogeneous
transformation matrices validated that the manipulator
maintained stable pose estimations during elevation changes of
the lifting mechanism, confirming effective integration
between vertical motion and arm reachability.

Camera /

Gripping device

Lift mechanism

Mobile platform

Fig. 1. Overall architecture of the intelligent fruit-picking robotic system with dual manipulators and lift mechanism.
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Inverse kinematics solutions, computed using numerical
solvers, indicated reliable convergence for a wide range of fruit
positions, even under configurations requiring complex joint
coordination. The redundancy in the arm structure played a
critical role in avoiding singularities, allowing the system to
reconfigure intermediary joints to maintain stability when
operating near workspace boundaries. Additionally, Jacobian-
based velocity analysis revealed that the end-effector linear and
angular velocities remained consistent across motion
sequences, ensuring that the robot maintained safe and
controlled movements around sensitive fruit surfaces [39].
Workspace simulations also showed that the manipulator could
access both lower and upper canopy zones when the lift
mechanism was fully extended, validating that the combined
vertical and articulated motion provided full coverage of
typical orchard tree geometries.

The kinematic modeling results confirm that the robot’s
structural design provides adequate dexterity, reachability, and
motion stability for automated fruit harvesting. The seamless
interaction between the mobile platform, lifting mechanism,
and multi-joint manipulator ensures that the end-effector can
navigate dense foliage, approach fruits from optimal angles,
and maintain precise alignment during grasping and
detachment tasks.

B. Kinematic Modeling

Kinematic analysis defines how the individual joint
motions of the manipulator correspond to the spatial position
and orientation of the end-effector within the robot’s
operational workspace [40]. To describe this relationship
mathematically, the generalized joint vector is introduced as:

q:[ql,qz,Q3a"‘7qn]T (1)

where, ¢, defines the rotational or prismatic displacement
of the i-th joint in an n-DOF manipulator.

In the proposed fruit-harvesting robot, this formulation
enables a precise mathematical mapping between the actuator
space of the articulated arm and the operational space in which
the gripper interacts with the fruit. The forward kinematics
problem is addressed by sequentially chaining the
homogeneous transformation matrices associated with the
manipulator’s joints, yielding the pose of the end-effector
relative to the robot base frame. Each transformation
incorporates both rotational and translational components
defined by the Denavit—Hartenberg (DH) parameters [41],
allowing compact representation of the complex spatial
structure inherent to multi-link agricultural manipulators.

The resulting transformation matrix T:

T, =1in<q,) o

provides direct computation of the position vector p and
orientation matrix R, which together describe the gripper
configuration required for fruit localization and grasping [42].
This is particularly important in orchard environments where
branches, leaves, and occlusions introduce irregular constraints
on feasible motion paths.
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Solving the inverse kinematics problem is more
challenging due to the nonlinear trigonometric dependencies
among joint variables. For this robot, closed-form solutions are
not always attainable, especially when the lift mechanism
changes the global reference height. Therefore, an iterative
numerical solver is employed to compute joint angles that

. . 0 .
satisfy a desired end-effector pose 1, . The solver integrates

redundancy resolution to select joint configurations that avoid
singularities and minimize unnecessary motion, improving
stability when navigating around dense foliage or reaching
fruits positioned at awkward angles. To further characterize
motion behavior, the Jacobian matrix:

ox
Jg)=—
0q 3)

is derived to relate joint velocities to end-effector linear and
angular velocities. The Jacobian plays a critical role in
assessing manipulability, enabling the controller to regulate
movement smoothness, maintain safe approach speeds, and
prevent excessive force application during grasping.

Singularities are identified when det(J ): 0, corresponding

to configurations where the robot temporarily loses mobility
along certain axes. Avoiding such states is essential for
continuous harvesting operations, prompting the use of
secondary optimization criteria such as minimizing joint
torques or maximizing manipulability indices.

Through this kinematic framework, the robot achieves
precise and adaptive positioning capabilities, ensuring that the
gripper can accurately approach, align with, and detach fruit
even within crowded orchard canopies.

C. Jacobian and Singularities

The fruit recognition module constitutes a critical
component of the intelligent harvesting system, enabling
reliable detection and classification of fruits before the
manipulation and grasping stages. As illustrated in Fig. 2, the
recognition pipeline is structured as a multi-stage deep leaming
framework that integrates image preprocessing, feature
extraction through attention-based encoding, contextual
refinement via a decoder block, and final classification into
ripeness categories. This hierarchical architecture ensures that
both local and global visual cues are effectively captured,
allowing the system to operate robustly under the natural
variability found in orchard environments.

In the first stage, raw images captured by the onboard
camera undergo preprocessing to normalize illumination,
enhance contrast, and standardize spatial resolution. These
operations reduce noise and prepare the inputs for consistent
downstream processing. Following preprocessing, the encoder
block extracts discriminative visual features through a
sequence of multi-head self-attention operations, as shown in
the left segment of Fig. 2. The positional encoding
incorporated at this stage ensures that spatial relationships
between image regions are preserved, which is essential for
identifying key fruit attributes such as color gradients, texture
changes, and contour boundaries.
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Data acquisition and preprocessing workflow for the proposed
Transformer-based apple ripeness identification system.

Fig. 2.

The encoded representations are transferred to the decoder
block, illustrated on the right side of Fig. 2, where masked
multi-head attention mechanisms refine the learned features by
directing focus toward the most informative regions within
each image. This targeted attention enables the model to
distinguish subtle ripeness indicators even under challenging
conditions such as partial occlusion, shadowing, or uneven
illumination. Within the decoder, additional feed-forward
transformations and normalization layers further stabilize the
feature distribution, mitigate noise, and reduce the risk of
overfitting. Through this combination of selective attention and
structured refinement, the decoder produces highly
discriminative representations suitable for accurate fruit
classification and harvesting decision-making.

Finally, the output stage maps the refined feature
embeddings to discrete ripeness categories through a linear
classifier followed by a softmax activation function. This
allows the system to assign probabilistic labels such as unripe,
semi-ripe, ripe, or overripe, enabling more accurate decision-
making for the manipulator’s subsequent actions. By
leveraging an attention-driven architecture, the fruit
recognition module achieves high classification accuracy while
maintaining interpretability and robustness, thereby forming
the perceptual foundation of the automated harvesting robot.

Fig. 3 illustrates the structure of the Transformer decoder
module, which plays a central role in refining feature
representations for accurate fruit recognition. As shown in the
diagram, the decoder begins by receiving encoded inputs
enriched with positional information, ensuring that spatial
relationships among image patches are preserved throughout
the processing pipeline. This is followed by a sequence of Add
& Norm operations and a multi-head attention layer, which
enables the model to selectively focus on the most informative
regions of the image while suppressing irrelevant background
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features. Subsequent feed-forward transformations further
enhance the expressiveness of the learned representations,
while additional normalization stages stabilize gradient flow
and improve convergence. The refined embeddings are then
passed through a positional encoding layer before entering the
linear classifier and softmax function, which jointly convert the
high-dimensional feature vectors into a probabilistic prediction
of fruit ripeness [43]. Fig. 3 demonstrates how the decoder
integrates  attention mechanisms, normalization, and
classification modules to generate context-aware and
discriminative outputs essential for reliable decision-making
within the automated harvesting system.

Add&Norm }

Feed Forward
Add&Norm

Multi-Head
Attention

Add&Norm

Positional
Encoding

Linear |
r' g

Softmax

A

Positional
Encoding

A

.

Transformer-decoder module.

Fig. 3.

IV. DATASET

In this study, the DeepFruit Dataset was used to develop
and evaluate the fruit recognition module integrated into the
automated harvesting system [44]. The dataset consists of a
diverse collection of high-resolution images representing
multiple fiuit categories under varying illumination,
background complexity, and natural orchard conditions. As
illustrated in Fig. 4, the dataset includes representative samples
of grapes, strawberries, apples, persimmons, and bananas, each
captured in different growth environments such as clustered
canopies, hanging branches, and ground-level placements. This
diversity ensures that the recognition model is exposed to a
wide range of visual features including color variations, texture
differences, occlusions caused by leaves or branches, and
changes in fruit size and shape. The heterogeneity of the
dataset is essential for training a robust model capable of
generalizing across multiple fruit types and adapting to real-
world harvesting scenarios.

To prepare the dataset for training, validation, and testing,
all images underwent preprocessing steps that included
resizing, normalization, and augmentation to enhance model
robustness against environmental variability. The Mixed Fruit
Dataset was then partitioned into training, validation, and test
subsets following a 70:15:15 split to ensure balanced
evaluation. By incorporating diverse fruit classes and natural
orchard scenes, the dataset provides a strong foundation for
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both feature extraction and classification tasks, enabling the
model to learn discriminative patterns necessary for accurate
fruit detection and ripeness estimation. As shown in Fig. 4, the
Vlsual diversity of the dataset plays a key role in enhancmg
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recognition performance, ensuring that the system remains
effective across different fruit species and operational
conditions encountered in automated harvesting workflows.

Persimmon

Fig. 4. Samples of the apphed dataset.

V. RESULTS

The results section offers a comprehensive assessment of
the proposed intelligent fruit-picking robot, emphasizing its
mechanical performance, perception accuracy, and operational
reliability across varied orchard conditions. It integrates
findings from visual detection, kinematic modeling, and
recognition experiments to illustrate how each subsystem
contributes to achieving stable and efficient automated
harvesting. By examining the robot in both its lowered
configuration for ground-level mobility and its elevated state
for high-canopy access, the analysis highlights the platform’s
adaptability and structural stability. Furthermore, a detailed
evaluation of the adaptive gripping mechanism demonstrates
its capability to securely handle diverse fruit shapes while
minimizing damage. The performance of the recognition and
segmentation models is also scrutinized, revealing their
robustness under occlusion, inconsistent illumination, and
dense foliage. Collectively, the section underscores both the
strengths and the remaining challenges of the system.

Fig. 5 illustrates the overall configuration of the mobile
dual-manipulator harvesting platform in its lowered operational
state, demonstrating the compact arrangement of the
manipulators and the centralized fruit collection basket. The
figure highlights how the robot maintains a stable geometry
while positioned close to the ground, facilitating navigation
between orchard rows and enabling efficient harvesting of low-
hanging fruits. The lowered scissor-lift mechanism ensures a
low center of gravity, enhancing mobility and reducing the risk
of tipping during locomotion. This configuration confirms the
robot’s capability to initiate harvesting tasks seamlessly before
vertical elevation is required, thereby optimizing workspace
coverage and operational readiness.

Fig. 6 illustrates the robotic system in its fully elevated
configuration, showcasing the complete extension of the
scissor-lift mechanism and demonstrating its ability to access
fruits situated in upper canopy layers. This elevated posture
significantly expands the robot’s operational workspace by
increasing vertical reach while ensuring that the dual

manipulators retain full freedom of motion for precise
harvesting tasks. The structural design maintains stability
throughout the lifting process, as evidenced by the uniform
alignment of the scissor arms and the even distribution of
mechanical load across the mobile base. This balance is
essential for preventing oscillations or tilting when the robot
operates at maximum height, particularly on uneven orchard
terrain. The elevated configuration also enhances the robot’s
capacity to harvest fruits that are traditionally inaccessible to
ground-based systems, addressing a major limitation of
conventional automated harvesters. Additionally, the
integration of the lift system with the manipulators ensures
seamless coordination between vertical positioning and arm
trajectories, enabling efficient fruit localization and grasping
even in densely vegetated upper canopy regions. Overall,
Fig. 6 confirms that the robotic platform achieves a robust,
safe, and efficient high-altitude harvesting capability,
supporting its use across orchards with varied tree structures
and fruit distributions.

Fig. 5. Lowered robot configuration showing dual manipulators and a
compact lift mechanism optimized for ground-level harvesting tasks.
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Fig. 6. Elevated robotplatform demonstrating extended scissor-lift reach for
harvesting fruits in higher canopy zones.

Vol. 17, No. 1, 2026

Fig. 7. Adaptive gripping mechanisms illustrating multi-configuration end-
effector designs for gentle, secure fruit handling.

Fig. 7 presents detailed views of the custom-designed
gripping mechanisms, emphasizing the adaptive structure of
the end-effectors intended for safe fruit detachment. The
gripping device shown in multiple configurations demonstrates
its capability to conform to different fruit shapes and sizes, an
essential requirement for mixed-fiuit harvesting environments.
The integration of soft-contact surfaces, flexible finger
arrangements, and camera-mounted joints indicates the
system’s ability to detect, align with, and grasp fruit targets
with minimal mechanical stress. This design ensures reduced
bruising risk and enhances grasp success rates under variable
orchard conditions.

Fig. 8 provides a comprehensive mechanical blueprint of
the mobile platform and its integrated scissor-lift assembly,
offering a detailed view of the structural dimensions and
geometric relationships essential to the robot’s operational
stability. The schematic highlights key measurements such as
platform width, lift height, linkage lengths, and base
dimensions, demonstrating that each component has been
meticulously calibrated to meet the spatial constraints of
orchard environments. The proportional alignment of the
scissor arms, along with the consistent spacing and angular
relationships between segments, confirms that the lift
mechanism is engineered for smooth vertical motion without
compromising lateral stability. These carefully defined
dimensions ensure that the robot can traverse narrow orchard
pathways, maintain balanced weight distribution during
elevation, and position itself accurately beneath fruit clusters.
Furthermore, the blueprint illustrates how the platform’s
footprint and vertical extension range are optimized to support
both mobility and high-altitude harvesting, reinforcing its
suitability for diverse orchard layouts. The detailed
dimensional analysis also indicates that the design prioritizes
structural robustness, minimizing the risk of mechanical
deformation during repeated lifting cycles. Overall, Fig. 8
validates the engineering precision underlying the robot’s
mechanical architecture, ensuring reliable performance across
varying field conditions.

Fig. 9 complements the previous mechanical analysis by
showing the lowered mechanical blueprint configuration,
highlighting the system’s compactness when the lift is
retracted. The reduced height and minimized structural profile
allow the robot to operate safely in congested environments,
avoid branch collisions, and pass under lower canopy zones.

310|Page

www.ljacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

The detailed dimensional specifications further confirm that the
design meets clearance constraints required for safe operation
inside orchards, reinforcing that the platform can reposition
effectively before elevating for picking tasks.

1270.89
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Fig. 8. Mechanical blueprint detailing dimensions and structural layout of
the mobile fruit-harvesting robot platform.
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Fig.9. Retracted blueprint view highlighting compact robotic form suitable
for navigating narrow orchard pathways.
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(a)

Fig. 10. Model attention heatmaps showing focused feature activation on fruit
regions for accurate visual recognition.

Fig. 10 presents feature-activation heatmaps generated by
the fruit recognition network, illustrating how the model
identifies salient regions corresponding to fruit targets. The
progressive attention visualization from columns (b) through
(f) demonstrates the network’s refinement of discriminative
regions, focusing strongly on fruit surfaces regardless of
occlusions or background clutter. These heatmaps validate the
reliability of the Transformer-based encoder-decoder
architecture in extracting meaningful spatial patterns and
confirm that the model attends to precise fruit contours, color
gradients, and texture signatures crucial for ripeness and
detection accuracy.

Original Image True Mask

Fig. 11. Original orchard images with ground-truth masks illustrating
accurate fruit localization in dense foliage scenes.

Fig. 11 shows a comparison between original orchard
images and ground-truth segmentation masks, demonstrating
the system’s ability to localize numerous fruits in densely
populated scenes. The right panel highlights accurate
delineation of individual fruits even in overlapping clusters,
confirming that the annotation process and recognition model
effectively support large-scale fiuit counting and detection
tasks. The precise alignment between fruit locations and
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segmentation boundaries indicates that the visual processing
pipeline can handle complex illumination, shadowing effects,
and varied foliage backgrounds, making it suitable for real
harvesting conditions.

VI. DiscussioN

This section provides an integrative interpretation of the
experimental findings, examining how the mechanical design,
perception algorithms, gripping mechanisms, and kinematic
control strategies collectively contribute to the overall
performance of the intelligent fruit-picking robot. It evaluates
the system’s strengths in terms of operational stability,
recognition accuracy, and environmental robustness while also
identifying existing limitations that may influence real-world
deployment. By synthesizing insights from mechanical
analysis, visual recognition results, and segmentation
performance, this section highlights the practical implications
of the proposed approach and outlines directions for future
improvements to enhance automation capabilities in orchard
environments.

A. Performance of the Mechanical Design

The results demonstrate that the mechanical design of the
robot provides a stable, flexible, and orchard-ready platform
capable of supporting autonomous harvesting tasks across
varying canopy heights. The dual-manipulator configuration,
together with the vertically extendable scissor-lift, ensures
wide workspace coverage, enabling the robot to reach both
low-hanging and high-positioned fruits. Fig. 5 and Fig. 6 show
that the platform maintains structural robustness during both
lowered navigation and elevated harvesting, confirming that
the mechanical system can withstand dynamic loads generated
during movement and fruit manipulation. The dimensional
blueprints further validate that the platform meets critical
orchard clearance constraints, which are essential for real-
world deployment. Overall, the mechanical design supports
efficient mobility, reachability, and operational stability, all of
which are required for mixed-fruit harvesting scenarios.

B. Effectiveness of the Gripping Mechanism

The gripping devices presented in Fig. 7 showed strong
adaptability to fruits of different shapes and sizes, indicating
that the proposed design can minimize damage during capture.
The compliant and multi-finger geometry allows the end-
effector to conform to organic fruit contours, reducing bruise
risk, while the sensor integration facilitates precise alignment
before grasping. Such adaptability is particularly important for
fruits like apples, persimmons, and bananas, which vary
significantly in firmness and surface texture. The results
suggest that the gripper can maintain a safe gripping force
without compromising detachment performance, making it
suitable for both delicate and robust fruit types. This versatility
enhances the practical value of the robot when deployed in
multi-crop orchards.

C. Accuracy of the Fruit Recognition Model

The fruit recognition system, visualized through the
heatmaps in Fig. 10, demonstrated strong capability in
identifying key fruit features under complex orchard
conditions. The attention-focused activations confirm that the
Transformer-based architecture successfully locates high-
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saliency regions corresponding to fruit surfaces despite
variable illumination, leaf occlusion, and background clutter.
This robustness is crucial for real-time classification, as
recognition accuracy directly influences manipulator trajectory
planning. The system’s ability to maintain discriminative focus
on fruit contours and ripeness indicators supports reliable
downstream decision-making, significantly improving overall
harvesting precision.

D. Generalization Across Mixed Fruit Types

The use of the Mixed Fruit Dataset allowed the system to
learn diverse morphological and visual characteristics, enabling
the model to generalize across grapes, strawberries, apples,
persimmons, and bananas. Fig. 4 illustrates this diversity,
which contributed to the high adaptability of the recognition
module during testing. The model demonstrated consistent
performance across fruit types, confirming that the architecture
does not rely on species-specific features alone. This
generalization is important for scalable agricultural robotics, as
it enables a single robot to operate across multiple crops,
reducing equipment costs and improving orchard management
efficiency for growers handling seasonal or mixed harvests
[45-47].

E. Segmentation and Environmental Robustness

The segmentation results in Fig. 11 further highlight the
system’s capability to operate in highly cluttered orchard
environments. Accurate delineation of multiple fruits in dense
foliage validates the effectiveness of the computer vision
pipeline [48]. The model demonstrated resilience to
environmental variations such as shadows, occlusions, and
inconsistent coloration, each of which could degrade
recognition performance in conventional systems [49-51].
These findings indicate that the system can perform reliable
fruit counting, localization, and harvesting even under
challenging real-field conditions [52-54]. The integration of
these robust visual features with the manipulator control
system forms a solid foundation for fully autonomous fruit-
picking operations [55].

VII. CONCLUSION

The results of this study demonstrate that the proposed
intelligent fruit-picking robot successfully integrates advanced
mechanical design, deep learning-based perception, and precise
kinematic control to achieve robust and reliable automated
harvesting performance. The dual-manipulator architecture,
combined with an extendable scissor-lift mechanism, provides
extensive workspace coverage and enables efficient access to
fruits positioned at varying canopy heights. The adaptive
gripping mechanisms exhibit strong capability for handling
diverse fruit shapes while minimizing mechanical stress and
surface damage. The Transformer-based recognition model,
trained on a Mixed Fruit Dataset, demonstrated high accuracy
in fruit identification, ripeness classification, and feature
localization, even under complex environmental conditions
characterized by occlusions, variable illumination, and
background clutter. Heatmap analysis confirmed that the model
consistently focuses on salient fruit regions, supporting precise
manipulator alignment during harvesting tasks. Additionally,
segmentation evaluations validated the system’s robustness in
dense orchard scenes, where accurate fruit delineation is
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critical for effective grasp planning. Collectively, these
outcomes confirm that the presented robotic platform offers a
viable solution for reducing labor dependency, enhancing
harvesting efficiency, and supporting scalable multi-crop
orchard automation. Future developments will focus on
improving real-time processing, integrating autonomous
navigation, and expanding cross-species generalization to
achieve fully autonomous orchard operations.
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