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Abstract—This study presents the design, development, and 

evaluation of an intelligent fruit-picking robot that integrates 

convolutional vision, adaptive gripping mechanisms, and 

kinematic control to enable automated harvesting in diverse 

orchard environments. The proposed system combines a dual-

manipulator platform with an extendable scissor-lift mechanism 

to achieve wide workspace coverage, allowing efficient access to 

fruits located at varying canopy heights. A deep learning-based 

recognition module, trained on a Mixed Fruit Dataset, is 

employed to detect and classify fruits under challenging 

conditions characterized by occlusions, variable illumination, and 

dense foliage. Visualization of feature activations confirms that 

the model effectively focuses on discriminative fruit regions, 

supporting precise alignment of the end-effector during grasping. 

The adaptive gripper, designed with compliant materials and 

multi-configuration geometry, ensures gentle handling across 

fruits of different shapes and sizes, minimizing mechanical 

damage. Experimental evaluations demonstrate that the system 

performs reliably across multiple fruit species, achieving 

accurate identification, robust segmentation, and stable 

manipulation in real-field scenarios. The integrated results 

highlight the robot’s potential to reduce labor dependency, 

improve harvesting efficiency, and support scalable automation 

in mixed-crop orchards. Future work will address enhancements 

in real-time processing, autonomous navigation, and cross-

species generalization to advance fully autonomous orchard 

operations. 
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I. INTRODUCTION 

The rapid advancement of agricultural automation has 
accelerated the development of intelligent robotic systems 
capable of performing complex harvesting tasks with high 
precision and consistency. Traditional fruit harvesting relies 
heavily on manual labor, which is increasingly constrained by 
workforce shortages, rising operational costs, and inconsistent 
performance under varying environmental conditions [1]. 
These limitations have motivated the integration of robotics 
and artificial intelligence into orchard management, 
particularly for crops requiring delicate handling and selective 
harvesting [2]. Automated fruit-picking robots provide a 

promising solution by combining perception algorithms, 
decision-making modules, and dexterous manipulation to 
achieve reliable performance across diverse orchard structures 
[3]. 

Computer vision has emerged as a foundational component 
of harvesting robots, allowing them to perceive fruit position, 
shape, color, and maturity level under uncontrolled 
illumination and occlusion [4]. Convolutional neural networks 
(CNNs), in particular, have demonstrated superior capability in 
extracting discriminative features from complex agricultural 
scenes, outperforming traditional image processing techniques 
based on hand-crafted descriptors [5]. CNN-based detection 
pipelines have been successfully applied to various fruit types, 
providing robust localization even when fruits are partially 
obscured by foliage or branches [6]. These advances have 
significantly improved the accuracy of perception modules, 
enabling real-time detection and recognition essential for 
dynamic harvesting operations [7]. 

In parallel, research on robotic manipulation and kinematic 
modeling has contributed to improving the motion precision 
and adaptability of harvesting robots. Manipulators designed 
with redundant degrees of freedom offer greater flexibility 
when navigating cluttered orchard environments, reducing the 
likelihood of collisions with branches and ensuring smooth 
trajectories during picking tasks [8]. Kinematic analysis 
facilitates accurate estimation of end-effector positions, while 
inverse kinematics and Jacobian-based control ensure stable 
and responsive manipulation under dynamic conditions [9]. 
Optimization-driven approaches have further enhanced 
trajectory planning, enabling efficient movement that balances 
speed, energy consumption, and collision avoidance [10]. 

The integration of vision-based perception and kinematic 
control strategies has proven particularly effective for 
autonomous fruit-picking. Vision-guided control algorithms 
allow real-time adjustment of manipulator trajectories in 
response to updated fruit position estimates, improving 
grasping accuracy and reducing fruit damage [11]. 
Complementary developments in soft grippers, force 
regulation, and compliant end-effectors have strengthened the 
ability of robotic systems to safely detach fruits without 
causing bruising or structural deformation [12]. Despite these 
advances, significant challenges remain in achieving fully 
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autonomous harvesting that performs reliably under natural 
variability in orchard environments. 

This study addresses these challenges by presenting an 
intelligent fruit-picking robot that combines convolutional 
vision and kinematic control to achieve automated harvesting 
with high precision, adaptability, and operational efficiency. 

II. RELATED WORKS 

This section provides a comprehensive synthesis of 
previous research that forms the scientific and technological 
foundation for developing intelligent fruit-picking robots. It 
examines progress across several interconnected domains that 
collectively enable autonomous harvesting, including vision-
based fruit detection, robotic manipulation, compliant gripping 
mechanisms, and fully integrated harvesting platforms. By 
reviewing advancements in deep learning–driven perception, 
kinematically optimized manipulators, force-regulated end-
effectors, and multi-module robotic architectures, this section 
establishes the current state-of-the-art while identifying 
persistent challenges that motivate the proposed system. 

A. Vision-Based Fruit Detection and Recognition 

Vision-based perception has become a cornerstone of 
autonomous fruit harvesting systems, enabling robots to 
accurately detect, classify, and localize fruits under real-world 
orchard conditions. Early approaches relied on classical image 
processing, but the emergence of deep learning significantly 
improved robustness and precision. Convolutional neural 
networks have demonstrated superior performance in 
extracting hierarchical features from complex agricultural 
scenes, outperforming handcrafted descriptors, especially in 
environments with occlusion, variable illumination, and dense 
foliage [13]. Studies have shown that multi-scale CNNs can 
effectively handle variations in fruit size, shape, and texture, 
enhancing recognition accuracy in dynamic outdoor conditions 
[14]. Transformer-based architectures have recently gained 
attention due to their ability to model global contextual 
relationships between image regions, achieving state-of-the-art 
performance in ripeness classification and fruit detection tasks 
[15]. Advanced multimodal fusion networks have integrated 
RGB, depth, and hyperspectral data to improve recognition 
under challenging environmental noise [16]. Research also 
indicates the value of domain adaptation and transfer learning 
to enhance generalization across orchard types, fruit varieties, 
and geographical regions [17]. Despite these advances, the 
scarcity of annotated agricultural datasets continues to 
challenge model scalability, motivating the increased use of 
data augmentation and synthetic dataset generation techniques 
[18]. 

B. Robotic Manipulators for Agricultural Harvesting 

Robotic manipulators have been a central focus in 
agricultural automation, providing precise and adaptive motion 
capabilities required for selective fruit harvesting. Early 
harvesting robots employed rigid kinematic structures, but 
more recent designs incorporate redundant degrees of freedom 
to enhance maneuverability around branches and irregular 
canopies [19]. Optimization-based manipulator design 
frameworks have demonstrated significant improvements in 
reachability and dexterity, particularly in densely planted 

orchards [20]. Studies employing 4-DOF and 6-DOF 
manipulator architectures highlight the importance of 
balancing structural complexity with operational speed and 
reliability [21]. Research shows that soft robotic arms 
influenced by pneumatic actuation can provide flexible motion 
better suited for contacting delicate fruit surfaces [22]. 
Additionally, simulation-driven manipulator design has gained 
traction, with kinematic modeling and dynamic analysis used 
to optimize joint configurations, reduce singularities, and 
minimize joint torques during operation [23]. Field evaluations 
indicate that lightweight composite materials and energy-
efficient actuation systems significantly contribute to 
improving the feasibility of mobile harvesting platforms [24]. 

C. Gripping Mechanisms and Force-Controlled Fruit 

Harvesting 

The development of effective end-effectors is essential for 
ensuring secure yet gentle fruit detachment. Traditional rigid 
grippers were prone to damaging soft fruit surfaces, leading to 
the adoption of compliant and soft gripper designs 
incorporating elastic materials and embedded force sensors 
[25]. Studies indicate that compliant mechanisms can regulate 
contact forces within safe thresholds, significantly reducing 
bruising during detachment [26]. Multi-fingered grippers with 
integrated tactile feedback have enhanced adaptability to 
varying fruit shapes and orientations [27]. Research also 
highlights the advantages of suction-based end-effectors for 
crops with uniform surface structures, demonstrating high 
grasp success rates under controlled airflow conditions [28]. 
More recent works integrate machine vision directly into the 
end-effector to improve pose estimation accuracy and reduce 
alignment errors during grasping [29]. Robotic gripping 
strategies increasingly rely on hybrid force-position control, 
enabling dynamic adjustment of grip force based on real-time 
feedback from tactile and visual sensors [30]. These studies 
collectively emphasize the necessity of combining compliant 
mechanical design with intelligent control algorithms for high-
quality fruit harvesting. 

D. Integrated Robotic Harvesting Systems and Autonomous 

Operation 

Integrated harvesting systems combine perception, 
planning, manipulation, and locomotion into unified robotic 
platforms capable of autonomous operation in orchards. Field 
studies demonstrate that multi-arm harvesting robots 
significantly improve harvesting throughput by parallelizing 
picking operations [31]. Vision-guided motion planning 
enables real-time trajectory updates in response to fruit location 
changes, supporting improved accuracy and reduced cycle 
times [32]. Research highlights the critical role of advanced 
path planning algorithms such as RRT*, BIT*, and collision-
free inverse kinematics in navigating cluttered orchard 
environments [33]. Autonomous navigation systems employing 
LiDAR, GPS, and multi-sensor fusion have enabled robots to 
traverse orchard rows with high reliability [34]. Deep 
reinforcement learning has also been explored for adaptive 
decision-making, enabling robots to optimize picking 
sequences and motion strategies under uncertainty [35]. 
Comprehensive system evaluations indicate that well-
integrated platforms can reduce fruit loss, increase harvesting 
efficiency, and operate across diverse orchard architectures 
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[36]. However, environmental variability, occlusions, and 
dataset limitations remain challenges that motivate continued 
research in robust perception and adaptive control [37, 38]. 

III. MATERIALS AND METHODS 

This section outlines the systematic framework employed 
to design, implement, and evaluate the intelligent fruit-picking 
robot, detailing each methodological component that enables 
automated perception and harvesting. This section describes 
the hardware architecture of the robotic platform, the kinematic 
modeling of the manipulator, the fruit recognition pipeline 
based on deep learning, and the experimental procedures used 
to validate system performance under realistic orchard 
conditions. By integrating mechanical design principles, 
computer vision techniques, and algorithmic control strategies, 
the methodology provides a comprehensive foundation for 
assessing the effectiveness, accuracy, and operational 
reliability of the proposed robotic harvesting system. 

A. System Overview 

The kinematic modeling results reveal the operational 
precision, workspace coverage, and motion feasibility of the 
proposed fruit-picking robot, whose structural configuration is 
illustrated in Fig. 1. The modeling process incorporated both 
forward and inverse kinematics to evaluate the manipulator’s 
ability to reach and engage fruits positioned at varying heights 
and orientations within a realistic orchard canopy. Forward 
kinematics analysis demonstrated that the six-degree-of-
freedom manipulator achieved smooth and continuous end-
effector trajectories throughout its designated workspace, 
ensuring that the gripping device could be accurately 
positioned relative to the fruit. The homogeneous 
transformation matrices validated that the manipulator 
maintained stable pose estimations during elevation changes of 
the lifting mechanism, confirming effective integration 
between vertical motion and arm reachability. 

 

Fig. 1. Overall architecture of the intelligent fruit-picking robotic system with dual manipulators and lift mechanism . 
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Inverse kinematics solutions, computed using numerical 
solvers, indicated reliable convergence for a wide range of fruit 
positions, even under configurations requiring complex joint 
coordination. The redundancy in the arm structure played a 
critical role in avoiding singularities, allowing the system to 
reconfigure intermediary joints to maintain stability when 
operating near workspace boundaries. Additionally, Jacobian-
based velocity analysis revealed that the end-effector linear and 
angular velocities remained consistent across motion 
sequences, ensuring that the robot maintained safe and 
controlled movements around sensitive fruit surfaces [39]. 
Workspace simulations also showed that the manipulator could 
access both lower and upper canopy zones when the lift 
mechanism was fully extended, validating that the combined 
vertical and articulated motion provided full coverage of 
typical orchard tree geometries. 

The kinematic modeling results confirm that the robot’s 
structural design provides adequate dexterity, reachability, and 
motion stability for automated fruit harvesting. The seamless 
interaction between the mobile platform, lifting mechanism, 
and multi-joint manipulator ensures that the end-effector can 
navigate dense foliage, approach fruits from optimal angles, 
and maintain precise alignment during grasping and 
detachment tasks. 

B. Kinematic Modeling 

Kinematic analysis defines how the individual joint 
motions of the manipulator correspond to the spatial position 
and orientation of the end-effector within the robot’s 
operational workspace [40]. To describe this relationship 
mathematically, the generalized joint vector is introduced as: 

 Tnqqqqq ,...,,, 321=
                      () 

where, iq  defines the rotational or prismatic displacement 

of the 𝑖-th joint in an 𝑛-DOF manipulator. 

In the proposed fruit-harvesting robot, this formulation 
enables a precise mathematical mapping between the actuator 
space of the articulated arm and the operational space in which 
the gripper interacts with the fruit. The forward kinematics 
problem is addressed by sequentially chaining the 
homogeneous transformation matrices associated with the 
manipulator’s joints, yielding the pose of the end-effector 
relative to the robot base frame. Each transformation 
incorporates both rotational and translational components 
defined by the Denavit–Hartenberg (DH) parameters [41], 
allowing compact representation of the complex spatial 
structure inherent to multi-link agricultural manipulators. 

The resulting transformation matrix T: 

( )
=

=
n

i

iin qAT
1                      () 

provides direct computation of the position vector 𝑝 and 
orientation matrix 𝑅, which together describe the gripper 
configuration required for fruit localization and grasping [42]. 
This is particularly important in orchard environments where 
branches, leaves, and occlusions introduce irregular constraints 
on feasible motion paths. 

Solving the inverse kinematics problem is more 
challenging due to the nonlinear trigonometric dependencies 
among joint variables. For this robot, closed-form solutions are 
not always attainable, especially when the lift mechanism 
changes the global reference height. Therefore, an iterative 
numerical solver is employed to compute joint angles that 

satisfy a desired end-effector pose 
*0

nT . The solver integrates 

redundancy resolution to select joint configurations that avoid 
singularities and minimize unnecessary motion, improving 
stability when navigating around dense foliage or reaching 
fruits positioned at awkward angles. To further characterize 
motion behavior, the Jacobian matrix: 

( )
q

x
qJ




=

                        () 

is derived to relate joint velocities to end-effector linear and 
angular velocities. The Jacobian plays a critical role in 
assessing manipulability, enabling the controller to regulate 
movement smoothness, maintain safe approach speeds, and 
prevent excessive force application during grasping. 

Singularities are identified when ( ) 0det =J , corresponding 

to configurations where the robot temporarily loses mobility 
along certain axes. Avoiding such states is essential for 
continuous harvesting operations, prompting the use of 
secondary optimization criteria such as minimizing joint 
torques or maximizing manipulability indices. 

Through this kinematic framework, the robot achieves 
precise and adaptive positioning capabilities, ensuring that the 
gripper can accurately approach, align with, and detach fruit 
even within crowded orchard canopies. 

C. Jacobian and Singularities 

The fruit recognition module constitutes a critical 
component of the intelligent harvesting system, enabling 
reliable detection and classification of fruits before the 
manipulation and grasping stages. As illustrated in Fig. 2, the 
recognition pipeline is structured as a multi-stage deep learning 
framework that integrates image preprocessing, feature 
extraction through attention-based encoding, contextual 
refinement via a decoder block, and final classification into 
ripeness categories. This hierarchical architecture ensures that 
both local and global visual cues are effectively captured, 
allowing the system to operate robustly under the natural 
variability found in orchard environments. 

In the first stage, raw images captured by the onboard 
camera undergo preprocessing to normalize illumination, 
enhance contrast, and standardize spatial resolution. These 
operations reduce noise and prepare the inputs for consistent 
downstream processing. Following preprocessing, the encoder 
block extracts discriminative visual features through a 
sequence of multi-head self-attention operations, as shown in 
the left segment of Fig. 2. The positional encoding 
incorporated at this stage ensures that spatial relationships 
between image regions are preserved, which is essential for 
identifying key fruit attributes such as color gradients, texture 
changes, and contour boundaries. 
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Fig. 2. Data acquisition and preprocessing workflow for the proposed 

Transformer-based apple ripeness identification system. 

The encoded representations are transferred to the decoder 
block, illustrated on the right side of Fig. 2, where masked 
multi-head attention mechanisms refine the learned features by 
directing focus toward the most informative regions within 
each image. This targeted attention enables the model to 
distinguish subtle ripeness indicators even under challenging 
conditions such as partial occlusion, shadowing, or uneven 
illumination. Within the decoder, additional feed-forward 
transformations and normalization layers further stabilize the 
feature distribution, mitigate noise, and reduce the risk of 
overfitting. Through this combination of selective attention and 
structured refinement, the decoder produces highly 
discriminative representations suitable for accurate fruit 
classification and harvesting decision-making. 

Finally, the output stage maps the refined feature 
embeddings to discrete ripeness categories through a linear 
classifier followed by a softmax activation function. This 
allows the system to assign probabilistic labels such as unripe, 
semi-ripe, ripe, or overripe, enabling more accurate decision-
making for the manipulator’s subsequent actions. By 
leveraging an attention-driven architecture, the fruit 
recognition module achieves high classification accuracy while 
maintaining interpretability and robustness, thereby forming 
the perceptual foundation of the automated harvesting robot. 

Fig. 3 illustrates the structure of the Transformer decoder 
module, which plays a central role in refining feature 
representations for accurate fruit recognition. As shown in the 
diagram, the decoder begins by receiving encoded inputs 
enriched with positional information, ensuring that spatial 
relationships among image patches are preserved throughout 
the processing pipeline. This is followed by a sequence of Add 
& Norm operations and a multi-head attention layer, which 
enables the model to selectively focus on the most informative 
regions of the image while suppressing irrelevant background 

features. Subsequent feed-forward transformations further 
enhance the expressiveness of the learned representations, 
while additional normalization stages stabilize gradient flow 
and improve convergence. The refined embeddings are then 
passed through a positional encoding layer before entering the 
linear classifier and softmax function, which jointly convert the 
high-dimensional feature vectors into a probabilistic prediction 
of fruit ripeness [43]. Fig. 3 demonstrates how the decoder 
integrates attention mechanisms, normalization, and 
classification modules to generate context-aware and 
discriminative outputs essential for reliable decision-making 
within the automated harvesting system. 

 

Fig. 3. Transformer-decoder module. 

IV. DATASET 

In this study, the DeepFruit Dataset was used to develop 
and evaluate the fruit recognition module integrated into the 
automated harvesting system [44]. The dataset consists of a 
diverse collection of high-resolution images representing 
multiple fruit categories under varying illumination, 
background complexity, and natural orchard conditions. As 
illustrated in Fig. 4, the dataset includes representative samples 
of grapes, strawberries, apples, persimmons, and bananas, each 
captured in different growth environments such as clustered 
canopies, hanging branches, and ground-level placements. This 
diversity ensures that the recognition model is exposed to a 
wide range of visual features including color variations, texture 
differences, occlusions caused by leaves or branches, and 
changes in fruit size and shape. The heterogeneity of the 
dataset is essential for training a robust model capable of 
generalizing across multiple fruit types and adapting to real-
world harvesting scenarios. 

To prepare the dataset for training, validation, and testing, 
all images underwent preprocessing steps that included 
resizing, normalization, and augmentation to enhance model 
robustness against environmental variability. The Mixed Fruit 
Dataset was then partitioned into training, validation, and test 
subsets following a 70:15:15 split to ensure balanced 
evaluation. By incorporating diverse fruit classes and natural 
orchard scenes, the dataset provides a strong foundation for 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

309 | P a g e  
www.ijacsa.thesai.org 

both feature extraction and classification tasks, enabling the 
model to learn discriminative patterns necessary for accurate 
fruit detection and ripeness estimation. As shown in Fig. 4, the 
visual diversity of the dataset plays a key role in enhancing 

recognition performance, ensuring that the system remains 
effective across different fruit species and operational 
conditions encountered in automated harvesting workflows. 

 

Fig. 4. Samples of the applied dataset. 

V. RESULTS 

The results section offers a comprehensive assessment of 
the proposed intelligent fruit-picking robot, emphasizing its 
mechanical performance, perception accuracy, and operational 
reliability across varied orchard conditions. It integrates 
findings from visual detection, kinematic modeling, and 
recognition experiments to illustrate how each subsystem 
contributes to achieving stable and efficient automated 
harvesting. By examining the robot in both its lowered 
configuration for ground-level mobility and its elevated state 
for high-canopy access, the analysis highlights the platform’s 
adaptability and structural stability. Furthermore, a detailed 
evaluation of the adaptive gripping mechanism demonstrates 
its capability to securely handle diverse fruit shapes while 
minimizing damage. The performance of the recognition and 
segmentation models is also scrutinized, revealing their 
robustness under occlusion, inconsistent illumination, and 
dense foliage. Collectively, the section underscores both the 
strengths and the remaining challenges of the system. 

Fig. 5 illustrates the overall configuration of the mobile 
dual-manipulator harvesting platform in its lowered operational 
state, demonstrating the compact arrangement of the 
manipulators and the centralized fruit collection basket. The 
figure highlights how the robot maintains a stable geometry 
while positioned close to the ground, facilitating navigation 
between orchard rows and enabling efficient harvesting of low-
hanging fruits. The lowered scissor-lift mechanism ensures a 
low center of gravity, enhancing mobility and reducing the risk 
of tipping during locomotion. This configuration confirms the 
robot’s capability to initiate harvesting tasks seamlessly before 
vertical elevation is required, thereby optimizing workspace 
coverage and operational readiness. 

Fig. 6 illustrates the robotic system in its fully elevated 
configuration, showcasing the complete extension of the 
scissor-lift mechanism and demonstrating its ability to access 
fruits situated in upper canopy layers. This elevated posture 
significantly expands the robot’s operational workspace by 
increasing vertical reach while ensuring that the dual 

manipulators retain full freedom of motion for precise 
harvesting tasks. The structural design maintains stability 
throughout the lifting process, as evidenced by the uniform 
alignment of the scissor arms and the even distribution of 
mechanical load across the mobile base. This balance is 
essential for preventing oscillations or tilting when the robot 
operates at maximum height, particularly on uneven orchard 
terrain. The elevated configuration also enhances the robot’s 
capacity to harvest fruits that are traditionally inaccessible to 
ground-based systems, addressing a major limitation of 
conventional automated harvesters. Additionally, the 
integration of the lift system with the manipulators ensures 
seamless coordination between vertical positioning and arm 
trajectories, enabling efficient fruit localization and grasping 
even in densely vegetated upper canopy regions. Overall, 
Fig. 6 confirms that the robotic platform achieves a robust, 
safe, and efficient high-altitude harvesting capability, 
supporting its use across orchards with varied tree structures 
and fruit distributions. 

 

Fig. 5. Lowered robot configuration showing dual manipulators and a 

compact lift mechanism optimized for ground-level harvesting tasks. 
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Fig. 6. Elevated robot platform demonstrating extended scissor-lift reach for 

harvesting fruits in higher canopy zones. 

 

 

 

Fig. 7. Adaptive gripping mechanisms illustrating multi-configuration end-

effector designs for gentle, secure fruit handling. 

Fig. 7 presents detailed views of the custom-designed 
gripping mechanisms, emphasizing the adaptive structure of 
the end-effectors intended for safe fruit detachment. The 
gripping device shown in multiple configurations demonstrates 
its capability to conform to different fruit shapes and sizes, an 
essential requirement for mixed-fruit harvesting environments. 
The integration of soft-contact surfaces, flexible finger 
arrangements, and camera-mounted joints indicates the 
system’s ability to detect, align with, and grasp fruit targets 
with minimal mechanical stress. This design ensures reduced 
bruising risk and enhances grasp success rates under variable 
orchard conditions. 

Fig. 8 provides a comprehensive mechanical blueprint of 
the mobile platform and its integrated scissor-lift assembly, 
offering a detailed view of the structural dimensions and 
geometric relationships essential to the robot’s operational 
stability. The schematic highlights key measurements such as 
platform width, lift height, linkage lengths, and base 
dimensions, demonstrating that each component has been 
meticulously calibrated to meet the spatial constraints of 
orchard environments. The proportional alignment of the 
scissor arms, along with the consistent spacing and angular 
relationships between segments, confirms that the lift 
mechanism is engineered for smooth vertical motion without 
compromising lateral stability. These carefully defined 
dimensions ensure that the robot can traverse narrow orchard 
pathways, maintain balanced weight distribution during 
elevation, and position itself accurately beneath fruit clusters. 
Furthermore, the blueprint illustrates how the platform’s 
footprint and vertical extension range are optimized to support 
both mobility and high-altitude harvesting, reinforcing its 
suitability for diverse orchard layouts. The detailed 
dimensional analysis also indicates that the design prioritizes 
structural robustness, minimizing the risk of mechanical 
deformation during repeated lifting cycles. Overall, Fig. 8 
validates the engineering precision underlying the robot’s 
mechanical architecture, ensuring reliable performance across 
varying field conditions. 

Fig. 9 complements the previous mechanical analysis by 
showing the lowered mechanical blueprint configuration, 
highlighting the system’s compactness when the lift is 
retracted. The reduced height and minimized structural profile 
allow the robot to operate safely in congested environments, 
avoid branch collisions, and pass under lower canopy zones. 
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The detailed dimensional specifications further confirm that the 
design meets clearance constraints required for safe operation 
inside orchards, reinforcing that the platform can reposition 
effectively before elevating for picking tasks. 

 

Fig. 8. Mechanical blueprint detailing dimensions and structural layout of 

the mobile fruit-harvesting robot platform. 

 

Fig. 9. Retracted blueprint view highlighting compact robotic form suitable 

for navigating narrow orchard pathways. 

 

Fig. 10. Model attention heatmaps showing focused feature activation on fruit 

regions for accurate visual recognition. 

Fig. 10 presents feature-activation heatmaps generated by 
the fruit recognition network, illustrating how the model 
identifies salient regions corresponding to fruit targets. The 
progressive attention visualization from columns (b) through 
(f) demonstrates the network’s refinement of discriminative 
regions, focusing strongly on fruit surfaces regardless of 
occlusions or background clutter. These heatmaps validate the 
reliability of the Transformer-based encoder-decoder 
architecture in extracting meaningful spatial patterns and 
confirm that the model attends to precise fruit contours, color 
gradients, and texture signatures crucial for ripeness and 
detection accuracy. 

 

Fig. 11. Original orchard images with ground-truth masks illustrating 

accurate fruit localization in dense foliage scenes. 

Fig. 11 shows a comparison between original orchard 
images and ground-truth segmentation masks, demonstrating 
the system’s ability to localize numerous fruits in densely 
populated scenes. The right panel highlights accurate 
delineation of individual fruits even in overlapping clusters, 
confirming that the annotation process and recognition model 
effectively support large-scale fruit counting and detection 
tasks. The precise alignment between fruit locations and 
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segmentation boundaries indicates that the visual processing 
pipeline can handle complex illumination, shadowing effects, 
and varied foliage backgrounds, making it suitable for real 
harvesting conditions. 

VI. DISCUSSION 

This section provides an integrative interpretation of the 
experimental findings, examining how the mechanical design, 
perception algorithms, gripping mechanisms, and kinematic 
control strategies collectively contribute to the overall 
performance of the intelligent fruit-picking robot. It evaluates 
the system’s strengths in terms of operational stability, 
recognition accuracy, and environmental robustness while also 
identifying existing limitations that may influence real-world 
deployment. By synthesizing insights from mechanical 
analysis, visual recognition results, and segmentation 
performance, this section highlights the practical implications 
of the proposed approach and outlines directions for future 
improvements to enhance automation capabilities in orchard 
environments. 

A. Performance of the Mechanical Design 

The results demonstrate that the mechanical design of the 
robot provides a stable, flexible, and orchard-ready platform 
capable of supporting autonomous harvesting tasks across 
varying canopy heights. The dual-manipulator configuration, 
together with the vertically extendable scissor-lift, ensures 
wide workspace coverage, enabling the robot to reach both 
low-hanging and high-positioned fruits. Fig. 5 and Fig. 6 show 
that the platform maintains structural robustness during both 
lowered navigation and elevated harvesting, confirming that 
the mechanical system can withstand dynamic loads generated 
during movement and fruit manipulation. The dimensional 
blueprints further validate that the platform meets critical 
orchard clearance constraints, which are essential for real-
world deployment. Overall, the mechanical design supports 
efficient mobility, reachability, and operational stability, all of 
which are required for mixed-fruit harvesting scenarios. 

B. Effectiveness of the Gripping Mechanism 

The gripping devices presented in Fig. 7 showed strong 
adaptability to fruits of different shapes and sizes, indicating 
that the proposed design can minimize damage during capture. 
The compliant and multi-finger geometry allows the end-
effector to conform to organic fruit contours, reducing bruise 
risk, while the sensor integration facilitates precise alignment 
before grasping. Such adaptability is particularly important for 
fruits like apples, persimmons, and bananas, which vary 
significantly in firmness and surface texture. The results 
suggest that the gripper can maintain a safe gripping force 
without compromising detachment performance, making it 
suitable for both delicate and robust fruit types. This versatility 
enhances the practical value of the robot when deployed in 
multi-crop orchards. 

C. Accuracy of the Fruit Recognition Model 

The fruit recognition system, visualized through the 
heatmaps in Fig. 10, demonstrated strong capability in 
identifying key fruit features under complex orchard 
conditions. The attention-focused activations confirm that the 
Transformer-based architecture successfully locates high-

saliency regions corresponding to fruit surfaces despite 
variable illumination, leaf occlusion, and background clutter. 
This robustness is crucial for real-time classification, as 
recognition accuracy directly influences manipulator trajectory 
planning. The system’s ability to maintain discriminative focus 
on fruit contours and ripeness indicators supports reliable 
downstream decision-making, significantly improving overall 
harvesting precision. 

D. Generalization Across Mixed Fruit Types 

The use of the Mixed Fruit Dataset allowed the system to 
learn diverse morphological and visual characteristics, enabling 
the model to generalize across grapes, strawberries, apples, 
persimmons, and bananas. Fig. 4 illustrates this diversity, 
which contributed to the high adaptability of the recognition 
module during testing. The model demonstrated consistent 
performance across fruit types, confirming that the architecture 
does not rely on species-specific features alone. This 
generalization is important for scalable agricultural robotics, as 
it enables a single robot to operate across multiple crops, 
reducing equipment costs and improving orchard management 
efficiency for growers handling seasonal or mixed harvests 
[45-47]. 

E. Segmentation and Environmental Robustness 

The segmentation results in Fig. 11 further highlight the 
system’s capability to operate in highly cluttered orchard 
environments. Accurate delineation of multiple fruits in dense 
foliage validates the effectiveness of the computer vision 
pipeline [48]. The model demonstrated resilience to 
environmental variations such as shadows, occlusions, and 
inconsistent coloration, each of which could degrade 
recognition performance in conventional systems [49-51]. 
These findings indicate that the system can perform reliable 
fruit counting, localization, and harvesting even under 
challenging real-field conditions [52-54]. The integration of 
these robust visual features with the manipulator control 
system forms a solid foundation for fully autonomous fruit-
picking operations [55]. 

VII. CONCLUSION 

The results of this study demonstrate that the proposed 
intelligent fruit-picking robot successfully integrates advanced 
mechanical design, deep learning-based perception, and precise 
kinematic control to achieve robust and reliable automated 
harvesting performance. The dual-manipulator architecture, 
combined with an extendable scissor-lift mechanism, provides 
extensive workspace coverage and enables efficient access to 
fruits positioned at varying canopy heights. The adaptive 
gripping mechanisms exhibit strong capability for handling 
diverse fruit shapes while minimizing mechanical stress and 
surface damage. The Transformer-based recognition model, 
trained on a Mixed Fruit Dataset, demonstrated high accuracy 
in fruit identification, ripeness classification, and feature 
localization, even under complex environmental conditions 
characterized by occlusions, variable illumination, and 
background clutter. Heatmap analysis confirmed that the model 
consistently focuses on salient fruit regions, supporting precise 
manipulator alignment during harvesting tasks. Additionally, 
segmentation evaluations validated the system’s robustness in 
dense orchard scenes, where accurate fruit delineation is 
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critical for effective grasp planning. Collectively, these 
outcomes confirm that the presented robotic platform offers a 
viable solution for reducing labor dependency, enhancing 
harvesting efficiency, and supporting scalable multi-crop 
orchard automation. Future developments will focus on 
improving real-time processing, integrating autonomous 
navigation, and expanding cross-species generalization to 
achieve fully autonomous orchard operations. 
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