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Abstract—South Sumatra songket motifs present a challenging
fine-grained classification task due to high inter-class similarity
and substantial intra-class variability. This study proposes the
Ghost-Vanilla Feature Map, a novel hybrid architecture that
integrates low-cost ghost-generated features with the lightweight
structural stability of VanillaNet to enhance discriminative
feature learning while reducing computational burden. The
proposed architecture is designed to address the inefficiency of
conventional convolution-heavy networks in capturing subtle
motif variations. Experimental evaluationon a dataset comprising
20 songket motif classes demonstrates that a ghost ratio 2 achieves
the best trade-off, attaining an accuracy of 0.98 with more than
75% parameter reduction. Increasing the ghost ratio to 3
preserves high classification performance with an accuracy of
0.97, while ratios 4 and S further reduce model size at the expense
of marginal accuracy degradation. Comparative results indicate
that the Ghost-Vanilla Feature Map consistently outperforms
lightweight CNN baselines, including MobileNetV3-Small,
MobileNetV4-Conv-Small, EfficientNetV2-Small, and
ShuffleNetV2. The proposed architecture substantially surpasses
the Vanilla-only baseline, which achieves anaccuracy of only 0.860
despite requiring 30.19 million parameters, highlighting the
limitations of conventional convolution-dominant designs in fine-
grained textile classification. The hybrid configuration with a
ghost ratio 2 delivers superior accuracy while nearly halving the
parameter count and significantly reducing computational
overhead. Overall, the Ghost-Vanilla Feature Map provides an
efficient and highly discriminative solution for fine-grained
songket motif classification, achieving strong performance while
substantially reducing model complexity through a balanced
hybrid representation.
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I.  INTRODUCTION

South Sumatra songketis an intangible cultural heritage with
symbolic, aesthetic, and philosophical value that dates back to
the Sriwijaya eraand the Palembang Darussalam Sultanate. This
fabric functions not only as traditional attire but also as a marker
of social identity, status legitimacy, and a medium of cultural
expression in ceremonial contexts. The intricate geometric
pattems, floraland faunal ornaments, and symbolic details make
songket an artifact of remarkable visual complexity. This
complexity underscores the urgent need for accurate and
efficient digital documentation and classification systems for
songket motifs [1], [2].

With rapid technological advancements, deep learning
serves as one of the main strategies for motif classification.
Research on Lombok songket, for instance, has employed
ResNet50V2 with AdamW and adaptive transfer learning [3],
conventional CNNs [4], and comparative models such as
AlexNet and VGG19 [5]. Additional studies have explored
feature-based approaches for batik motifs [6], [7] and CNN-
drivenapproaches for Lombok songket, further illustrating the
breadth of computational techniques applied to traditional motif
recognition [8], [9], [10]. While these approaches achieved
promising accuracy, they remained computationally demanding
and inefficient for deployment on resource-limited devices. This
highlights the need for lightweight architectures that maintain
performance without imposing heavy computational costs in
traditional textile motif recognition.

A more targeted study on Palembang songket introduced
hierarchical Ghost feature maps with a pooling strategy,
successfully reducing parameter counts, model size, and
computation time [ 11]. Another study utilizedregularizationand
ResNet-based augmentation with dropout to mitigate overfitting
[12]. Although both approaches improved performance, they
were still restricted to conventional or slightly modified CNNs.
Asaresult, their featurerepresentations werenot fully optimized
to address the inherent visual complexity of songket motifs.

Songket motif recognition inherently aligns with the
characteristics of fine-grained image classification, where inter-
class differences are subtle and often localized within dense
geometric or ornamental structures. Such tasks demand feature
representations capable of capturing minute variations that
distinguish one motif from another, particularly when many
motif classes share similar macro-patterns. This fine-grained
nature further reinforces the need for architectures that balance
discriminative precision with computational efficiency [13].

Despite their promising results, existing approaches exhibit
specific limitations that hinder practical deployment.
ResNet50V2-based methods [3], while achievinghigh accuracy,
suffer from excessive parameter counts (>23M parameters) and
substantial computational overhead. AlexNet and VGG19 [5]
also impose high memory footprints (>138M and >528M
parameters, respectively). MobileNetV3 [14], though designed
for mobile efficiency through neural architecture search,
incorporates architectural complexity that complicates
interpretability and training. EfficientNetV2 [15] requires
careful scaling-coefficient tuning and remains computationally
intensive during training. ShuffleNetV2 [16], while achieving
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efficiency through its channel-split and channel-shuffle
operations, faces difficulty in capturing fine-grained textural
details due to its limited representational capacity and the
insufficient discriminative strength of its channel-shuffling
mechanism. Meanwhile, the hierarchical Ghost approach [11]
still relies on pooling strategies that may discard subtle
discriminative details, and ResNet-based augmentation [12]
focuses on reducing overfitting without addressing fundamental
architectural inefficiencies. Crucially, none of these methods
combine efficient feature generation witha minimalist backbone
design, resulting in either computational redundancy or
insufficient representational depth when dealing with the
intricate geometric structures of songket motifs.

This issue becomes particularly relevant given that the
songket dataset is relatively balanced. The main challenge is not
class imbalance but rather the motifs’ intrinsic complexity.
Subtle geometric similarities, ornamental variations, and fine-
grained textures lead to high inter-class similarity alongside
significant intra-class variability. These challenges necessitate
feature representations that are more discriminative, moving
beyond simply deepening networks or increasing parameter
counts. Therefore, new approaches are required that
simultaneously balance computational efficiency and
representational power.

Within the domain of lightweight architectures, two notable
methods hold strong potential: the Ghost Module and
VanillaNet. The Ghost Module generates additional feature
maps using inexpensive convolution operations, thereby
reducing computational complexity [17], [18]. Meanwhile,
VanillaNet embodies a minimalist design philosophy,
employing very few parameters while maintaining competitive
accuracy across multiple domains [19], [20], [21]. Both
approaches have shown effective performance in diverse
applications, including facial recognition [18], multimodal
medical image classification [22], road damage detection [20],
and underwater crack classification [21].

Hybrid studies further highlight the value of integrating
lightweight architectural principles. For instance, a Ghost-
convolution—enlightened Transformer improves grape leaf
disease diagnosis by combining Ghost efficiency with
transformer-level representation capacity [23], while Van-
DETR integrates VanillaNet with advanced feature fusion to
enhance real-time object detection [24]. Recent advancements
in re-parameterization for lightweight Vanilla-based Vision
Transformers also demonstrate how combining structural
simplicity with adaptive computations can improve accuracy
withoutincreasing complexity [25]. These findings suggest that
combining Ghost Modules with VanillaNet has strong potential
to yield architectures that are both lightweight and highly
discriminative, especially for complex textile motifs.

Ongoingdevelopments in Ghost-based architectures, suchas
GhostNet [17], GhostNetV2 [26], GhostNetV3 [27],
GhostFaceNets [18], GCNN [28], Ghost-YOLOV5 [29], and
Ghost-YOLOvV8 [30], continue to demonstrate the strength of
efficient feature generation. Their applicability has also been
demonstrated across a wide range of practical domains,
including lung nodule detection [31], guava fruit detection in
complex orchard environments [32], and optimized fruit
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classification using enhanced deep learning strategies [33]. In
agricultural contexts, improved lightweight YOLO-based
architectures have further demonstrated strong performance in
real-time detection of multi-stage apple fruit in complex
environments [34]. Concurrently, VanillaNet has proven
adaptable across domains such as prostate zone segmentation in
medical imaging [35] and hyperspectral image classification
[36]. This strengthens the rationale for integrating these two
concepts into a unified model that addresses limitations found in
MobileNetV3 [14], EfficientNetV2 [15], ShuffleNetV2 [16],
and prior Palembang songket studies [11], [12].

Complementary strategies such as transfer learning,
augmentation, and resampling have also shown effectiveness
[12], [37], but on a balanced dataset like songket, the most
significant improvements are expected to come from
architectural-level innovations rather than preprocessing
techniques. Consequently, this research prioritizes designing a
hybrid architecture capable of extracting highly representative
fine-grained features while maintaining computational
efficiency.

To address the main research problem of balancing
computational efficiency and discriminative capability in fine-
grained classification of South Sumatra songket motifs, this
study introduces the Ghost-Vanilla Feature Map. This hybrid
architecture is explicitly designedto overcome the limitations of
existing approaches that either rely on deep, high-complexity
networks or adopt lightweight models that fail to capture the
subtle geometric and ornamental variations inherent in songket
motifs. The Ghost Module is employed to generate additional
feature maps at low computational cost, thereby reducing
redundancy, while VanillaNet serves as a minimalist backbone
that preserves representational depth without introducing
structural complexity. This architectural combination providesa
clear and principled justification, as it directly targets the
intrinsic visual challenges of songket motifs, including high
inter-class similarity and significantintra-class variability. The
proposed approach offers domain-specific optimization that has
not been explicitly addressed by previous Ghost-VanillaNet
integrations and contributes to ongoing research on lightweight
deep learning architectures for fine-grained classification tasks.

A. Problem Identification

CNN-based models are widely used in textile and motif
recognition due to their ability to learn edge, texture, and
fundamental shape attributes. For relatively simple patterns,
these models are often sufficient. However, South Sumatra
songketmotifs exhibit high visual complexity, characterized by
repetitive geometric structures, delicate floral-faunal ornaments,
and symbolic details that produce both strong inter-class
similarity and substantial intra-class variability. Although the
dataset is balanced, the main challenges arise from subtle motif
similarities, variations in scale and rotation, weaving
irregularities, and metallic thread reflections that alter texture
under different lighting conditions. Conventional CNNs rely
heavily on local receptive fields, limiting their capacity to
capture long-range dependencies across motif elements.
Increasing model depth or parameter size to improve accuracy
further exacerbates computational inefficiency, particularly on
resource-constrained devices. Previous studies on Palembang
Songket[11],[12] have demonstrated these limitations. A single
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GhostModule [11] reduces parameters but produces suboptimal
feature representations due to an unoptimized backbone, while
ResNet-based approaches [12] remain computationally heavy
despite reducing overfitting. Lightweight variants reduce model
size and computation time but often fail to optimize fine-grained
feature representations necessary for distinguishing highly
similar motifs. Therefore, a hybrid architecture is needed, one
that combines low-cost feature expansion with a minimalist
backbone design to balance efficiency and representational
power.

B. Main Contributions

1) Hybrid Ghost-Vanilla Feature Map design: This study
introduces the Ghost-Vanilla Feature Map algorithm, which
integrates VanillaNet as a lightweight backbone with the Ghost
Module to generate additional features via low-cost
convolution operations. This integration yields more
discriminative feature representations while preserving
computational efficiency.

2) Optimized feature extraction for complex motifs: The
proposed algorithm specifically addresses challenges such as
high visual similarity and fine-grained variation in South
Sumatra songket. Ghost-Vanilla Feature Maps balance
representational depth and efficiency, unlike conventional
CNNs that demand heavy computational resources.

3) Improved efficiency and generalization: By combining
the redundancy-reduction capability of the Ghost Module with
the structural simplicity of VanillaNet, the proposed model
achieves an optimal trade-off between classification accuracy
and complexity. This makes it suitable for resource-limited
deployment while ensuring robust generalization across diverse
motif datasets.

4) Empirical validation on fine-grained classification:
Through comprehensive experiments, this study demonstrates
that the Ghost-Vanilla integration is effective for fine-grained
classification tasks characterized by high inter-class similarity,
contributing to broader academic discussions on lightweight
architecture design.

II. DATASET DESCRIPTION

A curated dataset of 20 South Sumatran songket motif
classes was constructed from six regions: Palembang, Ogan Ilir,
Banyuasin, Ogan Komering Ilir, Prabumulih, and PALI (see
Fig. 1). Images were collected under a standardized protocol
using a fixed 45 cm capture distance, 0-degree frontal angle,
uniform illumination, and identical camera settings. All motif
labels were verified by a songket expert to ensure authenticity
and adherence to traditional weaving standards. Each motif
region was cropped to 2048 x 2048 pixels at 300 dpi.

The dataset contained 2,000 images (100 per class), which
were resized to 256 x 256 pixels formodel input. To avoid data
leakage, all images derived from the same motif source were
assigned exclusively to asingle train, validation, or test partition
using motif-level grouped splitting. This ensures that evaluation
reflects true generalization ratherthanmemorization of repeated
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pattemns. All images were captured using the same device and
lighting configuration to maintain acquisition consistency and
prevent device-dependent biases.

Mawar Bintang

Kenanga Makan Ulat

Jando Beraes

Jatamakuta

Naga Besaung Nampan Perak Pacar Cina Perahu Kajang

# gbs!

Sawit Sedulang Setudung

Seinggok Nanas

Fig. 1. South Sumatran songket motif dataset.

Although the dataset provides adequate intra-class variation,
its size and regional scope remain limited. Future work will
expand data collection across additional regions and devices and
incorporate external textile datasets to further assess cross-
domain robustness.

III. PROPOSED METHOD

The proposed model is structured around two core modules:
one for feature learning and the other for classification, each
addressing distinct aspects of the model’s workflow. Fig. 2
presents a schematic overview of the complete architecture.

In the feature learning phase, Ghost-Vanilla Feature Maps
are employed, implementing Ghost Feature Maps across four
sequential stages, as defined in the VanillaNet-6 architecture.
Stage 1 applies a Ghost Module with 1024 channels, followed
by max pooling. Stages 2 and 3 expand the channels to 2048 and
4096, progressively capturing more complex textures and motif
pattems. Stage 4 maintains 4096 channels to extract high-level
semantic features, after whichaverage pooling with a kerelsize
of 7 compresses the representation into compact feature maps.
The output is subsequently flattened into a one-dimensional
vector, providing a discriminative input for the classification
phase.
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Fig.2. Architecture of the CNN model utilizing Ghost-Vanilla Feature Maps.

The classification phase begins with a dense layer of 512
units activated by ReLU, serving as the first stage of non-linear
transformation to project the learned features into a more
discriminative subspace. A dropout layer with a rate of 0.5
follows, acting as a regularization mechanism to reduce
overfitting by randomly deactivating neurons during training.
This design ensures robustness in handling the limited datasetof
songket motifs while maintaining model generalization. The
second dense layer, with 512 units, further refines the
discriminative representations by learning deeper correlations
betweentheextracted features. Anotherdropout layer witha rate
of 0.5 is applied, providing additional regularization and
stability during the optimization process. Finally, the output is
passed through a dense softmax layer with the number of units
equal to the total motif classes, producing a probability
distribution across all categories.

A. Ghost-Vanilla Feature Maps

e The hierarchical arrangement of the network
demonstrates a progressive refinement of feature
representations across different stages (see Fig. 3). The
initial stem layer, with a 4x4 convolution and a stride of
4, performs aggressive spatial downsampling, ensuring
that redundant information is reduced while preserving
the essential texture structures of songket motifs. Each
subsequent stage is designed to expand the
representational capacity through the Ghost Module,
which generates feature maps efficiently, followed by
MaxPooling layers that further condense the spatial
dimensions. The kernel sizes and pooling strategies are
carefully chosen to balance the preservation of
discriminative motif details with the reduction of

computational redundancy, thereby improving the
model’s efficiency and scalability.

e Furthermore, the sequence from Stage 1 to Stage 4
reflects a conceptual hierarchy of visual processing,
transitioning from low-level edges and repetitive weave
patterns to more abstract and semantically rich motif
structures. The integration of AveragePooling and fully
connected layers consolidates the extracted features into
a compact and discriminative representation, making it
suitable for classification. This conceptual flow aligns
with established principles in deep learning architecture
design, where convolutional layers combined with
pooling progressively transform input images into high-
level abstractions that are more separable in the
classification space. In this context, the architectural
design is specifically adapted to handle the repetitive,
highly detailed, and structurally similar characteristics of
songket motifs, which demand a balance of depth,
resolutionreduction, and efficient feature extraction.

1) Stem block: The architecture begins with a Conv2D
layer consisting of 512 filters with a 4x4 kernel and stride 4.
This configuration simultaneously reduces the spatial
dimension of the input and generates initial low-level feature
representations related to edges and basic textures. The use ofa
relatively large stride at this stage accelerates computation
while maintaining essential information from high-resolution
images.

2) Ghost feature stage 1: Feature Expansion. Stage 1 is
composed ofa GhostModule with 1024 output channels, kernel
size 1x1, and ratio 2, followed by a MaxPooling layer of size
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2x2 with stride 2. The GhostModule refines the ecarly
representation by applying a channel transformation through
the 1x1 kernel, which allows efficient linear projection across
channelswithout increasingspatial complexity. The subsequent
pooling operation reduces the spatial resolution and enhances
translationalinvariance, thereby mitigating the sensitivity of the
network to motif position variations within the image.

3) Ghost feature stage 2: Deep Feature Extraction. Stage 2
employs a GhostModule with 2048 output channels and a 1x1
kernel, followed by a MaxPooling operation of size 2x2 with a
stride of 2. Increasing the number of channels at this stage
enables the network to capture more complex mid-level
features, which are particularly relevant for distinguishing
motif classes with subtle structural similarities. Pooling at this
stage contributes to the reduction of spatial dimensions while
reinforcing the ability of the network to preserve dominant
features in a compact and discriminative representation.

4) Ghost feature stage 3: High-Dimensional Encoding
Stage 3 integrates a GhostModule with 4096 channels and a 1x1
kernel, followed by a 2x2 pooling operation with a stride of 2.
The significant increase in the number of channels allows the
construction of higher-level feature abstractions, where the
representation is a nonlinear composition of multiple mid-level
features extracted earlier. Spatial downsampling ensures
compactness of the representation while retaining global
contextual information. This aligns with the hierarchical
representation theory in CNNs, where deeper layers capture

o VANILLANET STAGE

STEM BLOCK

GHOST FEATURE STAGE 1

GHOST FEATURE STAGE 2

GHOST FEATURE STAGE 3

GHOST FEATURE STAGE 4

AVERAGE POOLING
\ 4

GHOST-VANILLA
FEATURE
MAPS

v

Fig. 3.
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increasingly complex semantic concepts built upon simpler
features from earlier stages.

5) Ghost feature stage 4: Final Abstraction. Stage 4
consists solely of a GhostModule with 4096 channels. The
absence of poolingin this stage allows the model to preserve
the full resolution of channel-level features, ensuring that high-
dimensional abstractions are maintained before transitioning
into the classification process. This design emphasizes the
semantic correlation between channels, which forms the final
abstraction layer of the feature hierarchy.

6) Feature maps and global representation: Following the
stacked stages, an AveragePooling layer with kernel size 7x7
aggregates spatial information into a global vector
representation. This operation summarizes consistent features
across the entire image and minimizes dependence on specific
spatial locations. The subsequent Flatten layer transforms the
pooled feature map into a one-dimensional vector suitable for
processing by fully connected layers.

B. Parameter Distribution of Feature Maps

The comparison between Fig. 4 and Fig. 5 highlights the
impact of architectural design on model complexity and
efficiency. Fig. 4 illustrates the Vanilla Feature Maps, which are
adopted from the VanillaNet-6 structure [19] and rely entirely
on Conv2D layers. This design yields approximately 27.8
million parameters, with the majority concentrated in the deeper
convolutional stages. While this configuration provides very
high representational capacity, it also introduces significant
computational overhead.

-——4

Ghost Feature Maps

Identity

¢ > Cheap Operation

Ghost Module

Max Pooling
—

Pooled Feature Stage 1/2/3 based on VanillaNet-6 Feature
followed by pooling V' Transformation

Ghost Feature Maps

Architecture design of Ghost-Vanilla Feature Maps.
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Feature Maps Param: 27,798,528

Layer type Output Shape 1 Param #
Conv2D 64, 64, 512 25,088
Conv2D 64, 64, 1024 525,312
MaxPooling2D 32, 32, 1024 2]
Conv2D 32, 32, 2048 | 2,099,200
FEATURE LEARNING IEVGITAETT-pl] 16, 16, 2048 2]
Conv2D 16, 16, 4096 | 8,392,704
MaxPooling2D 8, 8, 4096 2]
Conv2D 8, 8, 4096 16,781,312
AveragePooling2D (1, 1, 4096 2]
Flatten 4096 2]
Dense 512 2,097,664
Dropout 512 0
CLASSIFICATION Dense 512 262,656
Dropout 512 0
Dense 20 10,260

Fig. 4. Layer structure of vanilla feature maps.

In contrast, Fig. 5 presents the Ghost-Vanilla Feature Maps,
which are derived from the VanillaNet-6 structure by replacing
the Conv2D layers with Ghost Modules. This modification
reduces the total parameters to approximately 13.9 million,
nearly half of the parameters in the Vanilla configuration. The
reduction stems from the efficiency of Ghost Modules, which
generate additional feature maps through cheaper linear
operations while maintaining the same hierarchical depth of up
to 4096 channels.

Overall, the comparison shows that Ghost-Vanilla Feature
Maps achieve a better balance between representation power
and computational efficiency. By significantly reducing the
parameter count without compromising hierarchical feature
extraction, the architecture in Fig. 5 offersa more scalable and
resource-efficient alternative for complex image recognition
tasks compared to the Vanilla Feature Maps shown in Fig. 4.

Feature Maps Param: 13,944,320

DN HR T [[eB Layer type Output Shape 1 Param #
Stem Block Conv2D 64, 64, 512 25,088

(| EA LN G (3 GhostModule 64, 64, 124 266,752
Stage 1 MaxPooling2D 32, 32, 1024 2]
Ghost Features(GF) ™ [claleI] o [TRE:} 32, 32, 2048 1,057,792
Stage 2 MaxPooling2D 16, 16, 2048 2]
e R (e 3 B Ghos tModule 16, 16, 4096 | 4,212,736
Stage 3 MaxPooling2D 8, 8, 4096 2]

GF Stage 4 GhostModule 8, 8, 4096 8,407,040
Ghost-Vanilla AveragePooling2D |1, 1, 4096 2]
Feature Maps Flatten 4096 ]
Dense 512 2,097,664

Dropout 512 o

CLASSIFICATION Dense 512 262,656
Dropout 512 <]

Dense 20 10,260

Fig. 5. Layer structure of Ghost-Vanilla Feature Maps.

C. Experimental Setup

The experiment assesses Ghost-Vanilla Feature Maps
implemented at ratios of 2, 3, 4, and 5 against a standard
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VanillaNet architecture composed of Conv2D layers. The
dataset contains South Sumatran songket motifimages grouped
into twenty classes, partitioned into training (80%), validation
(10%), and testing (10%). Training was carried out using the
Adam optimizer, a learning rate of 0.001, a batch size of 32,
across 50 epochs.

In Ghost-Vanilla configurations, Ghost Modules are applied
sequentially according to the defined ratios and followed by
dense layers with Dropout. In the modified VanillaNet, Conv2D
layers arereplaced with Ghost Modules to assess their impact
on feature extraction efficiency.

Model performance is evaluated using accuracy, precision,
recall, and F1-score metrics. Input images are preprocessed to
normalize pixel values, ensuring consistent data representation
across all models. After training, models are thoroughly tested
on the reserved test set to examine the comparative benefits of
Ghost-Vanilla Feature Maps over standard convolutional
architectures, as well as the influence of ratio variations on
overall classification performance.

IV. RESULTS

The comparative evaluation between Vanilla and Ghost-
Vanilla Feature Maps demonstrates that the integration of Ghost
modules significantly enhances classification performance
acrossthemajority of songket motifs, as shown in Tablel. While
the Vanilla model exhibits relatively high accuracy, its
performance is inconsistent across specific motifs, particularly
in terms of recall. For instance, motifs such as Biduk Cukit,
Nampan Perak, and Naga Besaung exhibit recall values as low
as 0.40—-0.50under the Vanilla configuration, suggesting that the
model frequently fails to identify actual instances of these
motifs. In contrast, the Ghost-Vanilla model significantly
improves these metrics, achieving recall values of up to 1.00 in
most cases, thereby providing a more reliable and sensitive
recognition process.

A closer examination of the precision and F1-scores further
highlights the superiority of Ghost-Vanilla Feature Maps. In
motifs with complex visual structures, such as Bintang Berantai
and Jatamakuta, the Vanilla model records relatively modest
precision scores (0.56—0.88), which may Ilead to
misclassifications. However, by leveraging Ghost modules, the
Ghost-Vanilla configuration consistently elevates precision
values to 1.00 and F1-scores to the maximum threshold. This
indicates that the hybrid approach not only reduces false
positives but also achieves a more balanced trade-off between
precision and recall, which is critical in motif recognition where
inter-class similarities are common.

Another important observation is the stability of
performance across motifs that are inherently easier to classify.
Motifs such as Cantik Manis, Kenanga Makan Ulat, Mawar
Bintang, and Sedulang Setudung already achieve perfect scores
under the Vanilla model. Interestingly, the Ghost-Vanilla
configuration preserves this level of performance without any
degradation, suggesting that the hybrid approach is robust and
does not compromise accuracy on simpler motifs. This stability
further supports the generalizability of the proposed method
across varying motif complexities.
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TABLEI.  MODEL PERFORMANCE EVALUATION ON SOUTH SUMATRA SONGKET MOTIF CLASSIFICATION
Accuracy Score Precision Score Recall Score Fl-score
Motif Class
- Ghost- - Ghost- . Ghost- . Ghost-
Vanilla Vanilla Vanilla Vanilla Vanilla Vanilla Vanilla Vanilla
Biduk Cukit 0.96 1.00 0.63 1.00 0.50 1.00 0.56 1.00
Bintang Berantai 0.96 0.98 0.56 0.71 1.00 1.00 0.71 0.83
Bunga Cina 0.99 1.00 1.00 1.00 0.70 1.00 0.82 1.00
Bunga Intan 1.00 1.00 1.00 1.00 0.90 1.00 0.95 1.00
Bunga Jatuh 0.99 1.00 0.89 1.00 0.80 1.00 0.84 1.00
Cantik Manis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cantik Manis Nanas 0.98 1.00 0.80 1.00 0.80 1.00 0.80 1.00
Duku 0.99 1.00 0.90 1.00 0.90 1.00 0.90 1.00
Jando Beraes 0.99 1.00 0.83 1.00 1.00 1.00 0.91 1.00
Jatamakuta 0.98 1.00 0.88 1.00 0.70 1.00 0.78 1.00
Kenanga Makan Ulat 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mawar Bintang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Naga Besaung 0.96 0.98 0.63 1.00 0.50 0.60 0.56 0.75
Nampan Perak 0.97 1.00 1.00 1.00 0.40 1.00 0.57 1.00
Pacar Cina 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Perahu Kajang 0.98 1.00 0.71 1.00 1.00 1.00 0.83 1.00
Pulir 0.99 1.00 0.77 1.00 1.00 1.00 0.87 1.00
Sawit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sedulang Setudung 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Seinggok Nanas 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
confirming its potential as a robust and efficient framework for
TABLE II. EVALUATION SUMMARY OF THE PROPOSED MODEL ﬁne_grained cultural pattern recognition.
Model Overall Total FLOPs Evaluation outcomes (see Table II) demonstrate that the
Accuracy Parameters (B) proposed Ghost-Vanilla Feature architecture substantially
CNN with Vanilla outperforms the Vanilla-only baseline while simultaneously
0.860 30,194,196 15.2557 . . ; .
Feature Maps reducing computational complexity. The Vanilla Feature Maps
CNN with Ghost model achieves an accuracy of only 0.860 despite requiring
W1 ost- 11 . . .
Vanila Feature 0.980 16.339.988 7 8003 30.19 m}lllon parameters and 15.255 B FLQPs, 1nd1c'atn.1g that
Maps (ratio = 2) conventional convolution-heavy designs impose significant
computational overhead without delivering commensurate
CNN with Ghost- discriminative benefits for fine-grained textile classification. In
Vanilla Feature 0-970 7,958,079 40705 contrast, the hybrid configuration with ghost ratio 2 attains the
Maps (ratio =3) . . .
highest accuracy of 0.980 while reducing parameters to nearly
CNN with Ghost- half of the Vanilla baseline and cutting FLOPs by almost 50%.
Vanilla Feature 0.925 4,911,380 2.6600 This findinghighlightsthe architectural ad vantage of integrating
Maps (ratio =4) low-cost ghost-generated features with structurally stable
CNN with Ghost- YamllaNet representations, enabling the modelto extract more
Vanilla Feature 0.905 3440215 1.9481 diverse and discriminative feature patterns under a significantly
Maps (ratio = 5) more efficient computational cost.

Overall, the findings highlight the effectiveness of Ghost-
Vanilla Feature Maps in addressing the limitations of
conventional Vanilla architectures. The hierarchical
incorporation of Ghost modules enhances feature representation
by capturing both dominant and subtle discriminative patterns
while suppressing irrelevant information. As a result, the model
achieves near-perfect classification across all songket motifs,

A progressive reduction in parameters and FLOPs across
higher ghost ratios further illustrates the flexibility of the hybrid
architecture, though with diminishingreturns beyond an optimal
threshold (see TableIl). The ghostratio3 and 4 models maintain
strong accuracies of 0.970 and 0.925, respectively, while
achieving substantial reductions in model size, demonstrating
the design’s ability to balance expressivity and efficiency.
However, the model with ghostratio 5 exhibits a noticeable drop
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in accuracy (0.905), revealing that excessive reliance on ghost-
generated features limits the capture of high-frequency visual
cues essential for fine-grained motif discrimination. Taken
together, the results establish ghost ratio 2 as the most effective
configuration, offering an optimal synergy between
computational parsimony and discriminative power.

V. DISCcUSsSION

The improvements achieved by the Ghost-Vanilla Feature
Maps highlight the effectiveness of integrating Ghost modules
into the conventional Vanilla architecture. By producing both
intrinsic and inexpensive feature maps, the model can capture
essential discriminative information while filtering out
redundant patterns. This hierarchical representation leads to
more consistent recognition outcomesacross motifs, particularly
in reducing classification variability between complex and
simple categories. Importantly, the hybrid approach achieves
this enhancement without increasing computational cost
excessively, which underscores its efficiency as a feature
extraction strategy.

Beyond performance gains, the robustness of the Ghost-
Vanilla model demonstrates its potential for fine-grained
cultural motif recognition. The ability to significantly improve
classes with lower baseline performance while maintaining
perfect scores for easier categories highlights its balanced
generalization capacity. This indicates that the model not only
addresses the limitations of standard convolutional layers but
also establishes a scalable solution that can be extended to other
domains requiring high precision and reliability in visual pattern
analysis.

TABLE III. PERFORMANCE EVALUATION OF THE PROPOSED FEATURE
MAPS
Ghost Feature Maps Total Overall
Ratio p Parameters Accuracy
Ghost 67,727,028 0.965
ratio 2
Ghost-Vanilla 16,339,988 0.980
Ghost 44,988,541 0.960
ratio 3
Ghost-Vanilla 7,958,079 0.970
Ghost 33,914,980 0.920
ratio 4
Ghost-Vanilla 4,911,380 0.925
Ghost 27,066,179 0.855
ratio 5
Ghost-Vanilla 3,440,215 0.905

The Ghost feature map, which has been employed in prior
studies [11], is re-evaluated in this work as a comparative
baseline using a different and more challenging dataset, where
the number of motif classes is expanded from 10 to 20, in order
to assess its robustness under increased fine-grained
classification complexity.

The experimental findings reveal that the Ghost-Vanilla
Feature Map consistently enhances classification performance
across all ghost ratio configurations compared to the use of
Ghost Modules alone, as summarized in Table III. The highest
accuracy is achieved at a ghost ratio 2, where the Ghost-Vanilla
model attains 0.980, surpassing the standard Ghost model at
0.965, while simultaneously reducing the parameter count from
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67.7 millionto 16.3 million, a reduction of more than 75%.
Similar improvements are observed at ghost ratios 3 and 4,
where Ghost-Vanilla yields modest yet consistent accuracy
gains while maintaining significantly fewer parameters. These
resultsindicate that theintegration of VanillaNet strengthens the
representational capacity of the model by providing structurally
efficient yet highly discriminative features, making the hybrid
design particularly suitable for fine-grained classification tasks
such as textile motifs.

At higher ghostratios, particularly ratio 5, both architectures
exhibit a decline in accuracy due to the excessive reliance on
cheap-operation feature maps, which limits the expressive
capability typically preserved by standard convolutions.
Nevertheless, the Ghost-Vanilla variant maintains a notable
performance advantage over the pure Ghost model,
demonstrating its stabilizing effect even under extreme
reductions in convolutional complexity. These findings
collectively suggest that ghost ratio 2 represents the optimal
configuration for balancing accuracy, parameter efficiency, and
deployability. Overall, the results confirm that the proposed
Ghost-Vanilla architecture effectively addresses the dual
challenge of computational efficiency and representational
richness, providing a compelling solution for resource-
constrained environments and fine-grained recognition
problems.

The experimental results (see Table IV) reveal a
fundamental limitation of conventional lightweight CNN
architectures, such as MobileNetV3-Small, MobileNetV4-
Conv-Small, EfficientNetV2-Small, and ShuffleNetV2 1.0x,
when applied to fine-grained textile classification. Although
these architectures offer low computational overhead and small
parameter sizes, their accuracies remain modest, ranging from
0.425 to 0.615. This performance gap underscores that the
inherent structural compression of lightweight models is
insufficient to capture the subtle intra-class variations and high
inter-class similarities typical of Songket motifs. Notably,
EfficientNetV2-Small illustrates a critical observation:
increasing FLOPs or depth alone (7.5516B FLOPs) does not
guarantee improved discriminative capability, indicating that
representational quality in this domain is governed by the
specificity of feature construction rather than mere architectural
scale.

A deeper examination of the two baseline feature
construction strategies providesadditional insightinto the nature
of this limitation. The model employing Ghost Feature Maps
achieves high accuracy (0.965) with minimal FLOPs, yet its
parameter count swells to 67 million, revealing substantial
structural redundancy despite its efficient convolutional
operations. In contrast, the Vanilla Feature Maps model exhibits
the opposite behavior: it consumes extremely high
computational resources (15.2557B FLOPs), but yields an
accuracy of only 0.860. This discrepancy highlights a core
challenge in feature engineering for fine-grained tasks: reducing
redundancy alone (as in Ghost) or increasing representational
depth alone (as in Vanilla) is insufficient. Neither approach,
when used in isolation, is capable of producing compact yet
semantically rich feature embeddings required for resolving
fine-grained motif distinctions.
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TABLEIV. PERFORMANCE EVALUATION OF THE PROPOSED FEATURE
MAPS
Approach Params FLOPs Acc
(B)
MobileNetV3-Small 1,538,356 0.1558 0.615
MobileNetV4-Conv-Small 4,158,324 0.4944 0.500
EfficientNetV2-Small 21,842,788 7.5516 0.425
ShuffleNetV2 1.0x 2,323,704 0.3975 0.580
CNN with Ghost Feature 67.727.028 14413 0965
Maps
CNN with Vanilla Feature 30,194,196 152557 0860
Maps
CNN with Ghost-Vanilla
Feature Maps (Ours) 16,339,988 7.8003 0.980
The proposed Ghost-Vanilla Feature architecture

demonstrates a decisive improvement by synergistically
combining the strengths of both approaches. Achieving the
highestaccuracy of0.980 with a substantially reduced parameter
count (16.3M) and moderate FLOPs (7.8003B), the model
exemplifies an optimal balance between computational
efficiency and discriminative power. This performance gain
suggests that the complementary interaction between Ghost-
generated low-cost feature enrichments and the structural
regularity of VanillaNet effectively mitigates redundancy while
preserving essential high-frequency visual cues. The hybrid
design not only enhances feature robustness but also provides
evidence that fine-grained textile classification benefits from
architectures that integrate lightweight generative feature
expansion with stabilized backbone representations. These
findings emphasize the architectural significance of the
proposed approach and position it as a strong candidate for
deployment in both high-performance and resource-constrained
environments.

Further, comparative analysis in Table IV shows that the
proposed Ghost-Vanilla Feature Maps address limitations not
explicitly handled by state-of-the-art lightweight CNNs. While
architectures such as MobileNet, ShuffleNet, and EfficientNet
mainly reduce complexity through depthwise separable
convolutions or compound scaling, they lack explicit
mechanisms for enriching fine-grained local representations
required for discriminating highly similar textile motifs. In
contrast, the Ghost-Vanilla architecture employs a
fundamentally different feature construction strategy that
balances controlled feature expansion with structural regularity,
resulting in more compact, yet semantically expressive
representations.

This study is limited to the architectural evaluation of the
proposed Ghost-Vanilla Feature Map within a controlled
experimental environment. The dataset employed has been
curated and standardized, and the research does not extend to
deployment-oriented aspects such as user interface
development, real-world field testing under non-standardized
imagingconditions, or long-term model adaptation mechanisms.
These practical considerations fall outside the present scope and
are recommended for investigation in future work.
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VI. CONCLUSION

The findings of this study demonstrate that the proposed
Ghost-Vanilla Feature Map provides an effective and
computationally efficient solution for fine-grained textile motif
classification. By integrating low-cost ghost-generated features
with the structurally stable representations of VanillaNet, the
hybrid architecture achieves the highestaccuracy of 0.980 at a
ghost ratio 2 while reducing parameters by more than 75%
compared to the pure Ghost model. These improvements
significantly outperform existing lightweight CNN architectures
such as MobileNetV3-Small, MobileNetV4-Conv-Small,
EfficientNetV2-Small, and ShuffleNetV2 1.0%, whose
accuracies range only from 0.425 to 0.615 despite their compact
computational footprints. These results highlight that fine-
grained motif recognition demands not only architectural
compactness but also a carefully engineered feature extraction
strategy capable of capturing subtle intra-class textures and high
inter-class similarities, underscoring the architectural robustness
and efficiency of the Ghost-Vanilla design for both high-
performance and resource-limited environments.

Future work can explore the integration of
reparameterization techniques from RepGhost into the Ghost-
Vanilla Feature Maps architecture to further improve model
efficiency. By employing this strategy, convolutional kernel
transformations can markedly reduce parameter count without
affecting the Ghost Module’s fundamental feature extraction
capabilities. The integration of reparameterization allows the
model to maintain discriminative feature representations for
complex and multi-scale songket motifs while simultaneously
reducing overall model size. This approach can be evaluated
across different Ghost ratios to identify the optimal balance
between efficiency and classification accuracy and to test its
applicability on devices with limited computational resources.

Although songket motifs serve as an appropriate benchmark
due to their high inter-class similarity and substantial intra-class
variability, the primary contribution of this study is
methodological rather than domain-specific. The core
architectural principles, leveraging low-cost feature expansion
in conjunction with a lightweight backbone, hold potential
applicability across a wide range of fine-grained classification
scenarios, including medical imaging, agricultural disease
detection, industrial quality inspection, and remote sensing.
Future research is necessary to evaluate the generalizability of
the proposed method across these domains and to examine its
progression from a research prototype to a production-ready
system.
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