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Abstract—South Sumatra songket motifs present a challenging 

fine-grained classification task due to high inter-class similarity 

and substantial intra-class variability. This study proposes the 

Ghost-Vanilla Feature Map, a novel hybrid architecture that 

integrates low-cost ghost-generated features with the lightweight 

structural stability of VanillaNet to enhance discriminative 

feature learning while reducing computational burden. The 

proposed architecture is designed to address the inefficiency of 

conventional convolution-heavy networks in capturing subtle 

motif variations. Experimental evaluation on a dataset comprising 

20 songket motif classes demonstrates that a ghost ratio 2 achieves 

the best trade-off, attaining an accuracy of 0.98 with more than 

75% parameter reduction. Increasing the ghost ratio to 3 

preserves high classification performance with an accuracy of 

0.97, while ratios 4 and 5 further reduce model size at the expense 

of marginal accuracy degradation. Comparative results indicate 

that the Ghost-Vanilla Feature Map consistently outperforms 

lightweight CNN baselines, including MobileNetV3-Small, 

MobileNetV4-Conv-Small, EfficientNetV2-Small, and 

ShuffleNetV2. The proposed architecture substantially surpasses 

the Vanilla-only baseline, which achieves an accuracy of only 0.860 

despite requiring 30.19 million parameters, highlighting the 

limitations of conventional convolution-dominant designs in fine-

grained textile classification. The hybrid configuration with a 

ghost ratio 2 delivers superior accuracy while nearly halving the 

parameter count and significantly reducing computational 

overhead. Overall, the Ghost-Vanilla Feature Map provides an 

efficient and highly discriminative solution for fine-grained 

songket motif classification, achieving strong performance while 

substantially reducing model complexity through a balanced 

hybrid representation. 

Keywords—Ghost Module; fine-grained classification; 

lightweight deep learning; songket motif classification; VanillaNet 

I. INTRODUCTION 

South Sumatra songket is an intangible cultural heritage with 
symbolic, aesthetic, and philosophical value that dates back to 
the Sriwijaya era and the Palembang Darussalam Sultanate. This 
fabric functions not only as traditional attire but also as a marker 
of social identity, status legitimacy, and a medium of cultural 
expression in ceremonial contexts. The intricate geometric 
patterns, floral and faunal ornaments, and symbolic details make 
songket an artifact of remarkable visual complexity. This 
complexity underscores the urgent need for accurate and 
efficient digital documentation and classification systems for 
songket motifs [1], [2]. 

With rapid technological advancements, deep learning 
serves as one of the main strategies for motif classification. 
Research on Lombok songket, for instance, has employed 
ResNet50V2 with AdamW and adaptive transfer learning [3], 
conventional CNNs [4], and comparative models such as 
AlexNet and VGG19 [5]. Additional studies have explored 
feature-based approaches for batik motifs [6], [7] and CNN-
driven approaches for Lombok songket, further illustrating the 
breadth of computational techniques applied to traditional motif 
recognition [8], [9], [10]. While these approaches achieved 
promising accuracy, they remained computationally demanding 
and inefficient for deployment on resource-limited devices. This 
highlights the need for lightweight architectures that maintain 
performance without imposing heavy computational costs in 
traditional textile motif recognition. 

A more targeted study on Palembang songket introduced 
hierarchical Ghost feature maps with a pooling strategy, 
successfully reducing parameter counts, model size, and 
computation time [11]. Another study utilized regularization and 
ResNet-based augmentation with dropout to mitigate overfitting 
[12]. Although both approaches improved performance, they 
were still restricted to conventional or slightly modified CNNs. 
As a result, their feature representations were not fully optimized 
to address the inherent visual complexity of songket motifs. 

Songket motif recognition inherently aligns with the 
characteristics of fine-grained image classification, where inter-
class differences are subtle and often localized within dense 
geometric or ornamental structures. Such tasks demand feature 
representations capable of capturing minute variations that 
distinguish one motif from another, particularly when many 
motif classes share similar macro-patterns. This fine-grained 
nature further reinforces the need for architectures that balance 
discriminative precision with computational efficiency [13]. 

Despite their promising results, existing approaches exhibit 
specific limitations that hinder practical deployment. 
ResNet50V2-based methods [3], while achieving high accuracy, 
suffer from excessive parameter counts (>23M parameters) and 
substantial computational overhead. AlexNet and VGG19 [5] 
also impose high memory footprints (>138M and >528M 
parameters, respectively). MobileNetV3 [14], though designed 
for mobile efficiency through neural architecture search, 
incorporates architectural complexity that complicates 
interpretability and training. EfficientNetV2 [15] requires 
careful scaling-coefficient tuning and remains computationally 
intensive during training. ShuffleNetV2 [16], while achieving 
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efficiency through its channel-split and channel-shuffle 
operations, faces difficulty in capturing fine-grained textural 
details due to its limited representational capacity and the 
insufficient discriminative strength of its channel-shuffling 
mechanism. Meanwhile, the hierarchical Ghost approach [11] 
still relies on pooling strategies that may discard subtle 
discriminative details, and ResNet-based augmentation [12] 
focuses on reducing overfitting without addressing fundamental 
architectural inefficiencies. Crucially, none of these methods 
combine efficient feature generation with a minimalist backbone 
design, resulting in either computational redundancy or 
insufficient representational depth when dealing with the 
intricate geometric structures of songket motifs. 

This issue becomes particularly relevant given that the 
songket dataset is relatively balanced. The main challenge is not 
class imbalance but rather the motifs’ intrinsic complexity. 
Subtle geometric similarities, ornamental variations, and fine-
grained textures lead to high inter-class similarity alongside 
significant intra-class variability. These challenges necessitate 
feature representations that are more discriminative, moving 
beyond simply deepening networks or increasing parameter 
counts. Therefore, new approaches are required that 
simultaneously balance computational efficiency and 
representational power. 

Within the domain of lightweight architectures, two notable 
methods hold strong potential: the Ghost Module and 
VanillaNet. The Ghost Module generates additional feature 
maps using inexpensive convolution operations, thereby 
reducing computational complexity [17], [18]. Meanwhile, 
VanillaNet embodies a minimalist design philosophy, 
employing very few parameters while maintaining competitive 
accuracy across multiple domains [19], [20], [21]. Both 
approaches have shown effective performance in diverse 
applications, including facial recognition [18], multimodal 
medical image classification [22], road damage detection [20], 
and underwater crack classification [21]. 

Hybrid studies further highlight the value of integrating 
lightweight architectural principles. For instance, a Ghost-
convolution–enlightened Transformer improves grape leaf 
disease diagnosis by combining Ghost efficiency with 
transformer-level representation capacity [23], while Van-
DETR integrates VanillaNet with advanced feature fusion to 
enhance real-time object detection [24]. Recent advancements 
in re-parameterization for lightweight Vanilla-based Vision 
Transformers also demonstrate how combining structural 
simplicity with adaptive computations can improve accuracy 
without increasing complexity [25]. These findings suggest that 
combining Ghost Modules with VanillaNet has strong potential 
to yield architectures that are both lightweight and highly 
discriminative, especially for complex textile motifs. 

Ongoing developments in Ghost-based architectures, such as 
GhostNet [17], GhostNetV2 [26], GhostNetV3 [27], 
GhostFaceNets [18], GCNN [28], Ghost-YOLOv5 [29], and 
Ghost-YOLOv8 [30], continue to demonstrate the strength of 
efficient feature generation. Their applicability has also been 
demonstrated across a wide range of practical domains, 
including lung nodule detection [31], guava fruit detection in 
complex orchard environments [32], and optimized fruit 

classification using enhanced deep learning strategies [33]. In 
agricultural contexts, improved lightweight YOLO-based 
architectures have further demonstrated strong performance in 
real-time detection of multi-stage apple fruit in complex 
environments [34]. Concurrently, VanillaNet has proven 
adaptable across domains such as prostate zone segmentation in 
medical imaging [35] and hyperspectral image classification 
[36]. This strengthens the rationale for integrating these two 
concepts into a unified model that addresses limitations found in 
MobileNetV3 [14], EfficientNetV2 [15], ShuffleNetV2 [16], 
and prior Palembang songket studies [11], [12]. 

Complementary strategies such as transfer learning, 
augmentation, and resampling have also shown effectiveness 
[12], [37], but on a balanced dataset like songket, the most 
significant improvements are expected to come from 
architectural-level innovations rather than preprocessing 
techniques. Consequently, this research prioritizes designing a 
hybrid architecture capable of extracting highly representative 
fine-grained features while maintaining computational 
efficiency. 

To address the main research problem of balancing 
computational efficiency and discriminative capability in fine-
grained classification of South Sumatra songket motifs, this 
study introduces the Ghost-Vanilla Feature Map. This hybrid 
architecture is explicitly designed to overcome the limitations of 
existing approaches that either rely on deep, high-complexity 
networks or adopt lightweight models that fail to capture the 
subtle geometric and ornamental variations inherent in songket 
motifs. The Ghost Module is employed to generate additional 
feature maps at low computational cost, thereby reducing 
redundancy, while VanillaNet serves as a minimalist backbone 
that preserves representational depth without introducing 
structural complexity. This architectural combination provides a 
clear and principled justification, as it directly targets the 
intrinsic visual challenges of songket motifs, including high 
inter-class similarity and significant intra-class variability. The 
proposed approach offers domain-specific optimization that has 
not been explicitly addressed by previous Ghost-VanillaNet 
integrations and contributes to ongoing research on lightweight 
deep learning architectures for fine-grained classification tasks. 

A. Problem Identification 

CNN-based models are widely used in textile and motif 
recognition due to their ability to learn edge, texture, and 
fundamental shape attributes. For relatively simple patterns, 
these models are often sufficient. However, South Sumatra 
songket motifs exhibit high visual complexity, characterized by 
repetitive geometric structures, delicate floral-faunal ornaments, 
and symbolic details that produce both strong inter-class 
similarity and substantial intra-class variability. Although the 
dataset is balanced, the main challenges arise from subtle motif 
similarities, variations in scale and rotation, weaving 
irregularities, and metallic thread reflections that alter texture 
under different lighting conditions. Conventional CNNs rely 
heavily on local receptive fields, limiting their capacity to 
capture long-range dependencies across motif elements. 
Increasing model depth or parameter size to improve accuracy 
further exacerbates computational inefficiency, particularly on 
resource-constrained devices. Previous studies on Palembang 
Songket [11], [12] have demonstrated these limitations. A single 
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Ghost Module [11] reduces parameters but produces suboptimal 
feature representations due to an unoptimized backbone, while 
ResNet-based approaches [12] remain computationally heavy 
despite reducing overfitting. Lightweight variants reduce model 
size and computation time but often fail to optimize fine-grained 
feature representations necessary for distinguishing highly 
similar motifs. Therefore, a hybrid architecture is needed, one 
that combines low-cost feature expansion with a minimalist 
backbone design to balance efficiency and representational 
power. 

B. Main Contributions 

1) Hybrid Ghost-Vanilla Feature Map design: This study 

introduces the Ghost-Vanilla Feature Map algorithm, which 

integrates VanillaNet as a lightweight backbone with the Ghost 

Module to generate additional features via low-cost 

convolution operations. This integration yields more 

discriminative feature representations while preserving 

computational efficiency. 

2) Optimized feature extraction for complex motifs: The 

proposed algorithm specifically addresses challenges such as 

high visual similarity and fine-grained variation in South 

Sumatra songket. Ghost-Vanilla Feature Maps balance 

representational depth and efficiency, unlike conventional 

CNNs that demand heavy computational resources. 

3) Improved efficiency and generalization: By combining 

the redundancy-reduction capability of the Ghost Module with 

the structural simplicity of VanillaNet, the proposed model 

achieves an optimal trade-off between classification accuracy 

and complexity. This makes it suitable for resource-limited 

deployment while ensuring robust generalization across diverse 

motif datasets. 

4) Empirical validation on fine-grained classification: 

Through comprehensive experiments, this study demonstrates 

that the Ghost-Vanilla integration is effective for fine-grained 

classification tasks characterized by high inter-class similarity, 

contributing to broader academic discussions on lightweight 

architecture design. 

II. DATASET DESCRIPTION 

A curated dataset of 20 South Sumatran songket motif 
classes was constructed from six regions: Palembang, Ogan Ilir, 
Banyuasin, Ogan Komering Ilir, Prabumulih, and PALI (see 
Fig. 1). Images were collected under a standardized protocol 
using a fixed 45 cm capture distance, 0-degree frontal angle, 
uniform illumination, and identical camera settings. All motif 
labels were verified by a songket expert to ensure authenticity 
and adherence to traditional weaving standards. Each motif 
region was cropped to 2048 × 2048 pixels at 300 dpi. 

The dataset contained 2,000 images (100 per class), which 
were resized to 256 × 256 pixels for model input. To avoid data 
leakage, all images derived from the same motif source were 
assigned exclusively to a single train, validation, or test partition 
using motif-level grouped splitting. This ensures that evaluation 
reflects true generalization rather than memorization of repeated 

patterns. All images were captured using the same device and 
lighting configuration to maintain acquisition consistency and 
prevent device-dependent biases. 

 

Fig. 1. South Sumatran songket motif dataset. 

Although the dataset provides adequate intra-class variation, 
its size and regional scope remain limited. Future work will 
expand data collection across additional regions and devices and 
incorporate external textile datasets to further assess cross-
domain robustness. 

III. PROPOSED METHOD 

The proposed model is structured around two core modules: 
one for feature learning and the other for classification, each 
addressing distinct aspects of the model’s workflow. Fig. 2 
presents a schematic overview of the complete architecture. 

In the feature learning phase, Ghost-Vanilla Feature Maps 
are employed, implementing Ghost Feature Maps across four 
sequential stages, as defined in the VanillaNet-6 architecture. 
Stage 1 applies a Ghost Module with 1024 channels, followed 
by max pooling. Stages 2 and 3 expand the channels to 2048 and 
4096, progressively capturing more complex textures and motif 
patterns. Stage 4 maintains 4096 channels to extract high-level 
semantic features, after which average pooling with a kernel size 
of 7 compresses the representation into compact feature maps. 
The output is subsequently flattened into a one-dimensional 
vector, providing a discriminative input for the classification 
phase.
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Fig. 2. Architecture of the CNN model utilizing Ghost-Vanilla Feature Maps. 

The classification phase begins with a dense layer of 512 
units activated by ReLU, serving as the first stage of non-linear 
transformation to project the learned features into a more 
discriminative subspace. A dropout layer with a rate of 0.5 
follows, acting as a regularization mechanism to reduce 
overfitting by randomly deactivating neurons during training. 
This design ensures robustness in handling the limited dataset of 
songket motifs while maintaining model generalization. The 
second dense layer, with 512 units, further refines the 
discriminative representations by learning deeper correlations 
between the extracted features. Another dropout layer with a rate 
of 0.5 is applied, providing additional regularization and 
stability during the optimization process. Finally, the output is 
passed through a dense softmax layer with the number of units 
equal to the total motif classes, producing a probability 
distribution across all categories. 

A. Ghost-Vanilla Feature Maps 

• The hierarchical arrangement of the network 
demonstrates a progressive refinement of feature 
representations across different stages (see Fig. 3). The 
initial stem layer, with a 4×4 convolution and a stride of 
4, performs aggressive spatial downsampling, ensuring 
that redundant information is reduced while preserving 
the essential texture structures of songket motifs. Each 
subsequent stage is designed to expand the 
representational capacity through the Ghost Module, 
which generates feature maps efficiently, followed by 
MaxPooling layers that further condense the spatial 
dimensions. The kernel sizes and pooling strategies are 
carefully chosen to balance the preservation of 
discriminative motif details with the reduction of 

computational redundancy, thereby improving the 
model’s efficiency and scalability. 

• Furthermore, the sequence from Stage 1 to Stage 4 
reflects a conceptual hierarchy of visual processing, 
transitioning from low-level edges and repetitive weave 
patterns to more abstract and semantically rich motif 
structures. The integration of AveragePooling and fully 
connected layers consolidates the extracted features into 
a compact and discriminative representation, making it 
suitable for classification. This conceptual flow aligns 
with established principles in deep learning architecture 
design, where convolutional layers combined with 
pooling progressively transform input images into high-
level abstractions that are more separable in the 
classification space. In this context, the architectural 
design is specifically adapted to handle the repetitive, 
highly detailed, and structurally similar characteristics of 
songket motifs, which demand a balance of depth, 
resolution reduction, and efficient feature extraction. 

1) Stem block: The architecture begins with a Conv2D 

layer consisting of 512 filters with a 4×4 kernel and stride 4. 

This configuration simultaneously reduces the spatial 

dimension of the input and generates initial low-level feature 

representations related to edges and basic textures. The use of a 

relatively large stride at this stage accelerates computation 

while maintaining essential information from high-resolution 

images. 

2) Ghost feature stage 1: Feature Expansion. Stage 1 is 

composed of a GhostModule with 1024 output channels, kernel 

size 1×1, and ratio 2, followed by a MaxPooling layer of size 
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2×2 with stride 2. The GhostModule refines the early 

representation by applying a channel transformation through 

the 1×1 kernel, which allows efficient linear projection across 

channels without increasing spatial complexity. The subsequent 

pooling operation reduces the spatial resolution and enhances 

translational invariance, thereby mitigating the sensitivity of the 

network to motif position variations within the image. 

3) Ghost feature stage 2: Deep Feature Extraction. Stage 2 

employs a GhostModule with 2048 output channels and a 1×1 

kernel, followed by a MaxPooling operation of size 2×2 with a 

stride of 2. Increasing the number of channels at this stage 

enables the network to capture more complex mid-level 

features, which are particularly relevant for distinguishing 

motif classes with subtle structural similarities. Pooling at this 

stage contributes to the reduction of spatial dimensions while 

reinforcing the ability of the network to preserve dominant 

features in a compact and discriminative representation. 

4) Ghost feature stage 3: High-Dimensional Encoding. 

Stage 3 integrates a GhostModule with 4096 channels and a 1×1 

kernel, followed by a 2×2 pooling operation with a stride of 2. 

The significant increase in the number of channels allows the 

construction of higher-level feature abstractions, where the 

representation is a nonlinear composition of multiple mid-level 

features extracted earlier. Spatial downsampling ensures 

compactness of the representation while retaining global 

contextual information. This aligns with the hierarchical 

representation theory in CNNs, where deeper layers capture 

increasingly complex semantic concepts built upon simpler 

features from earlier stages. 

5) Ghost feature stage 4: Final Abstraction. Stage 4 

consists solely of a GhostModule with 4096 channels. The 

absence of pooling in this stage allows the model to preserve 

the full resolution of channel-level features, ensuring that high-

dimensional abstractions are maintained before transitioning 

into the classification process. This design emphasizes the 

semantic correlation between channels, which forms the final 

abstraction layer of the feature hierarchy. 

6) Feature maps and global representation: Following the 

stacked stages, an AveragePooling layer with kernel size 7×7 

aggregates spatial information into a global vector 

representation. This operation summarizes consistent features 

across the entire image and minimizes dependence on specific 

spatial locations. The subsequent Flatten layer transforms the 

pooled feature map into a one-dimensional vector suitable for 

processing by fully connected layers. 

B. Parameter Distribution of Feature Maps 

The comparison between Fig. 4 and Fig. 5 highlights the 
impact of architectural design on model complexity and 
efficiency. Fig. 4 illustrates the Vanilla Feature Maps, which are 
adopted from the VanillaNet-6 structure [19] and rely entirely 
on Conv2D layers. This design yields approximately 27.8 
million parameters, with the majority concentrated in the deeper 
convolutional stages. While this configuration provides very 
high representational capacity, it also introduces significant 
computational overhead. 

 

Fig. 3. Architecture design of Ghost-Vanilla Feature Maps. 
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Fig. 4. Layer structure of vanilla feature maps. 

In contrast, Fig. 5 presents the Ghost-Vanilla Feature Maps, 
which are derived from the VanillaNet-6 structure by replacing 
the Conv2D layers with Ghost Modules. This modification 
reduces the total parameters to approximately 13.9 million, 
nearly half of the parameters in the Vanilla configuration. The 
reduction stems from the efficiency of Ghost Modules, which 
generate additional feature maps through cheaper linear 
operations while maintaining the same hierarchical depth of up 
to 4096 channels. 

Overall, the comparison shows that Ghost-Vanilla Feature 
Maps achieve a better balance between representation power 
and computational efficiency. By significantly reducing the 
parameter count without compromising hierarchical feature 
extraction, the architecture in Fig. 5 offers a more scalable and 
resource-efficient alternative for complex image recognition 
tasks compared to the Vanilla Feature Maps shown in Fig. 4. 

 

Fig. 5. Layer structure of Ghost-Vanilla Feature Maps. 

C. Experimental Setup 

The experiment assesses Ghost-Vanilla Feature Maps 
implemented at ratios of 2, 3, 4, and 5 against a standard 

VanillaNet architecture composed of Conv2D layers. The 
dataset contains South Sumatran songket motif images grouped 
into twenty classes, partitioned into training (80%), validation 
(10%), and testing (10%). Training was carried out using the 
Adam optimizer, a learning rate of 0.001, a batch size of 32, 
across 50 epochs. 

In Ghost-Vanilla configurations, Ghost Modules are applied 
sequentially according to the defined ratios and followed by 
dense layers with Dropout. In the modified VanillaNet, Conv2D 
layers are replaced with Ghost Modules to assess their impact 
on feature extraction efficiency. 

Model performance is evaluated using accuracy, precision, 
recall, and F1-score metrics. Input images are preprocessed to 
normalize pixel values, ensuring consistent data representation 
across all models. After training, models are thoroughly tested 
on the reserved test set to examine the comparative benefits of 
Ghost-Vanilla Feature Maps over standard convolutional 
architectures, as well as the influence of ratio variations on 
overall classification performance. 

IV. RESULTS 

The comparative evaluation between Vanilla and Ghost-
Vanilla Feature Maps demonstrates that the integration of Ghost 
modules significantly enhances classification performance 
across the majority of songket motifs, as shown in Table I. While 
the Vanilla model exhibits relatively high accuracy, its 
performance is inconsistent across specific motifs, particularly 
in terms of recall. For instance, motifs such as Biduk Cukit, 
Nampan Perak, and Naga Besaung exhibit recall values as low 
as 0.40–0.50 under the Vanilla configuration, suggesting that the 
model frequently fails to identify actual instances of these 
motifs. In contrast, the Ghost-Vanilla model significantly 
improves these metrics, achieving recall values of up to 1.00 in 
most cases, thereby providing a more reliable and sensitive 
recognition process. 

A closer examination of the precision and F1-scores further 
highlights the superiority of Ghost-Vanilla Feature Maps. In 
motifs with complex visual structures, such as Bintang Berantai 
and Jatamakuta, the Vanilla model records relatively modest 
precision scores (0.56–0.88), which may lead to 
misclassifications. However, by leveraging Ghost modules, the 
Ghost-Vanilla configuration consistently elevates precision 
values to 1.00 and F1-scores to the maximum threshold. This 
indicates that the hybrid approach not only reduces false 
positives but also achieves a more balanced trade-off between 
precision and recall, which is critical in motif recognition where 
inter-class similarities are common. 

Another important observation is the stability of 
performance across motifs that are inherently easier to classify. 
Motifs such as Cantik Manis, Kenanga Makan Ulat, Mawar 
Bintang, and Sedulang Setudung already achieve perfect scores 
under the Vanilla model. Interestingly, the Ghost-Vanilla 
configuration preserves this level of performance without any 
degradation, suggesting that the hybrid approach is robust and 
does not compromise accuracy on simpler motifs. This stability 
further supports the generalizability of the proposed method 
across varying motif complexities. 
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TABLE I.  MODEL PERFORMANCE EVALUATION ON SOUTH SUMATRA SONGKET MOTIF CLASSIFICATION 

Motif Class 

Accuracy Score Precision Score Recall Score F1-score 

Vanilla  
Ghost-
Vanilla  

Vanilla  
Ghost-
Vanilla  

Vanilla  
Ghost-
Vanilla  

Vanilla  
Ghost-
Vanilla  

Biduk Cukit 0.96 1.00 0.63 1.00 0.50 1.00 0.56 1.00 

Bintang Berantai 0.96 0.98 0.56 0.71 1.00 1.00 0.71 0.83 

Bunga Cina  0.99 1.00 1.00 1.00 0.70 1.00 0.82 1.00 

Bunga Intan 1.00 1.00 1.00 1.00 0.90 1.00 0.95 1.00 

Bunga Jatuh 0.99 1.00 0.89 1.00 0.80 1.00 0.84 1.00 

Cantik Manis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Cantik Manis Nanas 0.98 1.00 0.80 1.00 0.80 1.00 0.80 1.00 

Duku 0.99 1.00 0.90 1.00 0.90 1.00 0.90 1.00 

Jando Beraes 0.99 1.00 0.83 1.00 1.00 1.00 0.91 1.00 

Jatamakuta  0.98 1.00 0.88 1.00 0.70 1.00 0.78 1.00 

Kenanga Makan Ulat 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Mawar Bintang 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Naga Besaung 0.96 0.98 0.63 1.00 0.50 0.60 0.56 0.75 

Nampan Perak 0.97 1.00 1.00 1.00 0.40 1.00 0.57 1.00 

Pacar Cina 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Perahu Kajang 0.98 1.00 0.71 1.00 1.00 1.00 0.83 1.00 

Pulir 0.99 1.00 0.77 1.00 1.00 1.00 0.87 1.00 

Sawit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Sedulang Setudung 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Seinggok Nanas 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TABLE II.  EVALUATION SUMMARY OF THE PROPOSED MODEL 

Model 
Overall 

Accuracy 

Total 

Parameters 

FLOPs 

(B) 

CNN with Vanilla 

Feature Maps 
0.860 30,194,196 15.2557 

CNN with Ghost-

Vanilla Feature 

Maps (ratio = 2) 

0.980 16,339,988 7.8003 

CNN with Ghost-

Vanilla Feature 

Maps (ratio = 3) 

0.970 7,958,079 4.0705 

CNN with Ghost-

Vanilla Feature 

Maps (ratio = 4) 

0.925 4,911,380 2.6600 

CNN with Ghost-

Vanilla Feature 

Maps (ratio = 5) 

0.905 3,440,215 1.9481 

Overall, the findings highlight the effectiveness of Ghost-
Vanilla Feature Maps in addressing the limitations of 
conventional Vanilla architectures. The hierarchical 
incorporation of Ghost modules enhances feature representation 
by capturing both dominant and subtle discriminative patterns 
while suppressing irrelevant information. As a result, the model 
achieves near-perfect classification across all songket motifs, 

confirming its potential as a robust and efficient framework for 
fine-grained cultural pattern recognition. 

Evaluation outcomes (see Table II) demonstrate that the 
proposed Ghost-Vanilla Feature architecture substantially 
outperforms the Vanilla-only baseline while simultaneously 
reducing computational complexity. The Vanilla Feature Maps 
model achieves an accuracy of only 0.860 despite requiring 
30.19 million parameters and 15.2557B FLOPs, indicating that 
conventional convolution-heavy designs impose significant 
computational overhead without delivering commensurate 
discriminative benefits for fine-grained textile classification. In 
contrast, the hybrid configuration with ghost ratio 2 attains the 
highest accuracy of 0.980 while reducing parameters to nearly 
half of the Vanilla baseline and cutting FLOPs by almost 50%. 
This finding highlights the architectural advantage of integrating 
low-cost ghost-generated features with structurally stable 
VanillaNet representations, enabling the model to extract more 
diverse and discriminative feature patterns under a significantly 
more efficient computational cost. 

A progressive reduction in parameters and FLOPs across 
higher ghost ratios further illustrates the flexibility of the hybrid 
architecture, though with diminishing returns beyond an optimal 
threshold (see Table II). The ghost ratio 3 and 4 models maintain 
strong accuracies of 0.970 and 0.925, respectively, while 
achieving substantial reductions in model size, demonstrating 
the design’s ability to balance expressivity and efficiency. 
However, the model with ghost ratio 5 exhibits a noticeable drop 
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in accuracy (0.905), revealing that excessive reliance on ghost-
generated features limits the capture of high-frequency visual 
cues essential for fine-grained motif discrimination. Taken 
together, the results establish ghost ratio 2 as the most effective 
configuration, offering an optimal synergy between 
computational parsimony and discriminative power. 

V. DISCUSSION 

The improvements achieved by the Ghost-Vanilla Feature 
Maps highlight the effectiveness of integrating Ghost modules 
into the conventional Vanilla architecture. By producing both 
intrinsic and inexpensive feature maps, the model can capture 
essential discriminative information while filtering out 
redundant patterns. This hierarchical representation leads to 
more consistent recognition outcomes across motifs, particularly 
in reducing classification variability between complex and 
simple categories. Importantly, the hybrid approach achieves 
this enhancement without increasing computational cost 
excessively, which underscores its efficiency as a feature 
extraction strategy. 

Beyond performance gains, the robustness of the Ghost-
Vanilla model demonstrates its potential for fine-grained 
cultural motif recognition. The ability to significantly improve 
classes with lower baseline performance while maintaining 
perfect scores for easier categories highlights its balanced 
generalization capacity. This indicates that the model not only 
addresses the limitations of standard convolutional layers but 
also establishes a scalable solution that can be extended to other 
domains requiring high precision and reliability in visual pattern 
analysis. 

TABLE III.  PERFORMANCE EVALUATION OF THE PROPOSED FEATURE 

MAPS 

Ghost 

Ratio 
Feature Maps 

Total 

Parameters 

Overall 

Accuracy 

ratio 2 
Ghost 67,727,028 0.965 

Ghost-Vanilla  16,339,988 0.980 

ratio 3 
Ghost 44,988,541 0.960 

Ghost-Vanilla  7,958,079 0.970 

ratio 4 
Ghost 33,914,980 0.920 

Ghost-Vanilla  4,911,380 0.925 

ratio 5 
Ghost 27,066,179 0.855 

Ghost-Vanilla  3,440,215 0.905 

The Ghost feature map, which has been employed in prior 
studies [11], is re-evaluated in this work as a comparative 
baseline using a different and more challenging dataset, where 
the number of motif classes is expanded from 10 to 20, in order 
to assess its robustness under increased fine-grained 
classification complexity. 

The experimental findings reveal that the Ghost-Vanilla 
Feature Map consistently enhances classification performance 
across all ghost ratio configurations compared to the use of 
Ghost Modules alone, as summarized in Table III. The highest 
accuracy is achieved at a ghost ratio 2, where the Ghost-Vanilla 
model attains 0.980, surpassing the standard Ghost model at 
0.965, while simultaneously reducing the parameter count from 

67.7 million to 16.3 million, a reduction of more than 75%. 
Similar improvements are observed at ghost ratios 3 and 4, 
where Ghost-Vanilla yields modest yet consistent accuracy 
gains while maintaining significantly fewer parameters. These 
results indicate that the integration of VanillaNet strengthens the 
representational capacity of the model by providing structurally 
efficient yet highly discriminative features, making the hybrid 
design particularly suitable for fine-grained classification tasks 
such as textile motifs. 

At higher ghost ratios, particularly ratio 5, both architectures 
exhibit a decline in accuracy due to the excessive reliance on 
cheap-operation feature maps, which limits the expressive 
capability typically preserved by standard convolutions. 
Nevertheless, the Ghost-Vanilla variant maintains a notable 
performance advantage over the pure Ghost model, 
demonstrating its stabilizing effect even under extreme 
reductions in convolutional complexity. These findings 
collectively suggest that ghost ratio 2 represents the optimal 
configuration for balancing accuracy, parameter efficiency, and 
deployability. Overall, the results confirm that the proposed 
Ghost-Vanilla architecture effectively addresses the dual 
challenge of computational efficiency and representational 
richness, providing a compelling solution for resource-
constrained environments and fine-grained recognition 
problems. 

The experimental results (see Table IV) reveal a 
fundamental limitation of conventional lightweight CNN 
architectures, such as MobileNetV3-Small, MobileNetV4-
Conv-Small, EfficientNetV2-Small, and ShuffleNetV2 1.0×, 
when applied to fine-grained textile classification. Although 
these architectures offer low computational overhead and small 
parameter sizes, their accuracies remain modest, ranging from 
0.425 to 0.615. This performance gap underscores that the 
inherent structural compression of lightweight models is 
insufficient to capture the subtle intra-class variations and high 
inter-class similarities typical of Songket motifs. Notably, 
EfficientNetV2-Small illustrates a critical observation: 
increasing FLOPs or depth alone (7.5516B FLOPs) does not 
guarantee improved discriminative capability, indicating that 
representational quality in this domain is governed by the 
specificity of feature construction rather than mere architectural 
scale. 

A deeper examination of the two baseline feature 
construction strategies provides additional insight into the nature 
of this limitation. The model employing Ghost Feature Maps 
achieves high accuracy (0.965) with minimal FLOPs, yet its 
parameter count swells to 67 million, revealing substantial 
structural redundancy despite its efficient convolutional 
operations. In contrast, the Vanilla Feature Maps model exhibits 
the opposite behavior: it consumes extremely high 
computational resources (15.2557B FLOPs), but yields an 
accuracy of only 0.860. This discrepancy highlights a core 
challenge in feature engineering for fine-grained tasks: reducing 
redundancy alone (as in Ghost) or increasing representational 
depth alone (as in Vanilla) is insufficient. Neither approach, 
when used in isolation, is capable of producing compact yet 
semantically rich feature embeddings required for resolving 
fine-grained motif distinctions. 
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TABLE IV.  PERFORMANCE EVALUATION OF THE PROPOSED FEATURE 

MAPS 

Approach Params 
FLOPs 

(B) 
Acc 

MobileNetV3-Small 1,538,356 0.1558 0.615 

MobileNetV4-Conv-Small 4,158,324 0.4944 0.500 

EfficientNetV2-Small 21,842,788 7.5516 0.425 

ShuffleNetV2 1.0x 2,323,704 0.3975 0.580 

CNN with Ghost Feature 

Maps 
67,727,028 1.4413 0.965 

CNN with Vanilla Feature 

Maps 
30,194,196 15.2557 0.860 

CNN with Ghost-Vanilla 

Feature Maps (Ours) 
16,339,988 7.8003 0.980 

The proposed Ghost-Vanilla Feature architecture 
demonstrates a decisive improvement by synergistically 
combining the strengths of both approaches. Achieving the 
highest accuracy of 0.980 with a substantially reduced parameter 
count (16.3M) and moderate FLOPs (7.8003B), the model 
exemplifies an optimal balance between computational 
efficiency and discriminative power. This performance gain 
suggests that the complementary interaction between Ghost-
generated low-cost feature enrichments and the structural 
regularity of VanillaNet effectively mitigates redundancy while 
preserving essential high-frequency visual cues. The hybrid 
design not only enhances feature robustness but also provides 
evidence that fine-grained textile classification benefits from 
architectures that integrate lightweight generative feature 
expansion with stabilized backbone representations. These 
findings emphasize the architectural significance of the 
proposed approach and position it as a strong candidate for 
deployment in both high-performance and resource-constrained 
environments. 

Further, comparative analysis in Table IV shows that the 
proposed Ghost-Vanilla Feature Maps address limitations not 
explicitly handled by state-of-the-art lightweight CNNs. While 
architectures such as MobileNet, ShuffleNet, and EfficientNet 
mainly reduce complexity through depthwise separable 
convolutions or compound scaling, they lack explicit 
mechanisms for enriching fine-grained local representations 
required for discriminating highly similar textile motifs. In 
contrast, the Ghost-Vanilla architecture employs a 
fundamentally different feature construction strategy that 
balances controlled feature expansion with structural regularity, 
resulting in more compact, yet semantically expressive 
representations. 

This study is limited to the architectural evaluation of the 
proposed Ghost-Vanilla Feature Map within a controlled 
experimental environment. The dataset employed has been 
curated and standardized, and the research does not extend to 
deployment-oriented aspects such as user interface 
development, real-world field testing under non-standardized 
imaging conditions, or long-term model adaptation mechanisms. 
These practical considerations fall outside the present scope and 
are recommended for investigation in future work. 

VI. CONCLUSION 

The findings of this study demonstrate that the proposed 
Ghost-Vanilla Feature Map provides an effective and 
computationally efficient solution for fine-grained textile motif 
classification. By integrating low-cost ghost-generated features 
with the structurally stable representations of VanillaNet, the 
hybrid architecture achieves the highest accuracy of 0.980 at a 
ghost ratio 2 while reducing parameters by more than 75% 
compared to the pure Ghost model. These improvements 
significantly outperform existing lightweight CNN architectures 
such as MobileNetV3-Small, MobileNetV4-Conv-Small, 
EfficientNetV2-Small, and ShuffleNetV2 1.0×, whose 
accuracies range only from 0.425 to 0.615 despite their compact 
computational footprints. These results highlight that fine-
grained motif recognition demands not only architectural 
compactness but also a carefully engineered feature extraction 
strategy capable of capturing subtle intra-class textures and high 
inter-class similarities, underscoring the architectural robustness 
and efficiency of the Ghost-Vanilla design for both high-
performance and resource-limited environments. 

Future work can explore the integration of 
reparameterization techniques from RepGhost into the Ghost-
Vanilla Feature Maps architecture to further improve model 
efficiency. By employing this strategy, convolutional kernel 
transformations can markedly reduce parameter count without 
affecting the Ghost Module’s fundamental feature extraction 
capabilities. The integration of reparameterization allows the 
model to maintain discriminative feature representations for 
complex and multi-scale songket motifs while simultaneously 
reducing overall model size. This approach can be evaluated 
across different Ghost ratios to identify the optimal balance 
between efficiency and classification accuracy and to test its 
applicability on devices with limited computational resources. 

Although songket motifs serve as an appropriate benchmark 
due to their high inter-class similarity and substantial intra-class 
variability, the primary contribution of this study is 
methodological rather than domain-specific. The core 
architectural principles, leveraging low-cost feature expansion 
in conjunction with a lightweight backbone, hold potential 
applicability across a wide range of fine-grained classification 
scenarios, including medical imaging, agricultural disease 
detection, industrial quality inspection, and remote sensing. 
Future research is necessary to evaluate the generalizability of 
the proposed method across these domains and to examine its 
progression from a research prototype to a production-ready 
system. 
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