
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

336 | P a g e  
www.ijacsa.thesai.org 

Explainable AI Techniques for Interpretable Breast 

Cancer Classification 

Tony K. Hariadi1, Qodri Aziz2, Slamet Riyadi3*, Kamarul Hawari Ghazali4, Khairunnisa Binti Hasikin5, Tri Andi6 

Dept. of Electrical Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia 1 

Artificial Intelligence and Robotic Center, Universitas Muhammadiyah Yogyakarta, Indonesia 2, 3 

Dept. of Information Technology, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia 3, 6 

Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang4 

Dept. of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia 5 
 
 

Abstract—Breast cancer is still a major health risk for women 

all over the world, and thus finding it early is very important for 

the patient's survival. Digital Breast Tomosynthesis (DBT) offers 

enhanced imaging capabilities relative to conventional 

mammography; yet, its quasi-3D characteristics provide distinct 

interpretability issues, often rendering deep learning models as 

black boxes. This work tackles the issue of transparency by testing 

three Explainable Artificial Intelligence (XAI) methods: Gradient-

weighted Class Activation Mapping (Grad-CAM), Score-CAM, 

and Local Interpretable Model-Agnostic Explanations (LIME). 

The ResNet-50 architecture was utilized to analyse a dataset of 396 

DICOM images that had been pre-processed in a unique way, 

including colour-mapping and balancing. The study used 

Insertion and Deletion Area Under the Curve (AUC) to carefully 

quantify how reliable the visual explanations were, in addition to 

usual criteria like accuracy, which achieved 94%. It was shown 

that LIME and Score-CAM generated attention maps that were 

dispersed or inconsistent, whereas Grad-CAM always showed 

lesion-specific areas with great accuracy. Grad-CAM was the best 

method for analysing DBT findings, since it had the highest 

Insertion AUC of 0.9078. These results provide radiologists with a 

way to trust and check automated diagnoses, which closes the gap 

between AI that works well and AI that is reliable in the clinic. 
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I. INTRODUCTION 

Breast cancer is still the most common kind of cancer in 
women across the world and is the leading cause of cancer 
deaths. The World Health Organization (WHO) said that in 
2020, there were more than 2.3 million new cases and 685,000 
fatalities [1]. Breast cancer is the most common kind of cancer 
in Indonesia, making up around 30% of all cancer cases [2]. It 
is more common than cervical cancer. Finding the disease early 
is crucial for enhancing the chances of survival and the long-
term outlook. Deep Learning (DL) on Convolutional Neural 
Networks (CNNs) has emerged as the most popular method for 
analyzing medical images to distinguish between benign and 
malignant breast cancers [3], [4]. Architectures like ResNet-50 
have shown outstanding performance in classification tasks, but 
how they make decisions within is still not clear. Because the 
reasoning behind a model's categorization isn't always clear, 
medical practitioners generally don't trust it because it is a 
"black box" [5]. The Explainable Artificial Intelligence (XAI) 
method was developed to clarify and simplify deep learning 
(DL) models in order to address these issues. Specifically, XAI 

techniques were developed to visualize which image regions 
most significantly influence model predictions [6], [7]. 
Nonetheless, the majority of current XAI assessments 
concentrate on 2D imaging. Digital Breast Tomosynthesis 
(DBT) has distinct interpretative issues because of its quasi-3D 
attributes and overlapping tissue features, which markedly 
contrast with traditional mammography. At present, there is an 
absence of extensive research explicitly examining the 
performance of XAI methods—such as Grad-CAM, Score-
CAM, and LIME—when used on DBT data with the ResNet-
50 architecture. 

This study seeks to evaluate and contrast three XAI 
methodologies—Grad-CAM, Score-CAM, and LIME—in 
analysing breast cancer classifications obtained from DBT 
images, addressing the current deficiency in the field. The 
evaluation employs visual saliency map analysis and 
quantitative metrics, namely the Deletion and Insertion Area 
Under the Curve (AUC). The aim of this research is to identify 
the most reliable XAI framework for 3D breast imaging, 
providing clinical decision-support insights and practical 
guidance for radiologists in selecting transparent AI 
technologies for medical diagnosis. 

II. LITERATURE REVIEW 

This section analyses previous studies that support this 
research. The literature reviewed includes topics related to 
breast cancer, DBT imaging, the use of deep learning in medical 
image classification, and the XAI methods used to understand 
CNN-based classification models. Buda et al. [8] released a 
large DBT dataset with 22,032 volumes from 5,060 patients and 
used DenseNet to create a basic model for finding breast cancer. 
This model had a sensitivity of 65% and two false positives per 
volume, but the study didn't say how easy it was to understand 
it. This work demonstrates the necessity of integrating XAI 
methods into DBT analysis to enhance the transparency and 
trustworthiness of medical AI systems. 

Rodriguez-Ruiz et al. [9] showed that an autonomous AI 
system was able to detect cancer on mammograms with an Area 
Under the Curve (AUC) of up to 0.93, which is equivalent to 
human radiological performance. Meanwhile, Antropova et al. 
[10] used DCE-MRI images with the Maximum Intensity 
Projection (MIP) approach and CNN for the classification of 
benign and malignant lesions, resulting in an AUC of 0.88. 
Although neither study integrated XAI methods, their results 
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open up important avenues for applying XAI to improve the 
clinical interpretability of CNN-based diagnostic systems. 

A study by Kim et al. [10] more explicitly demonstrates the 
impact of visualisation on diagnostic confidence and accuracy. 
Using a CNN based on ResNet-34 and heatmap visualisation 
similar to Grad-CAM, the accuracy of mammography 
classification increased (AUC from 0.79 to 0.89), and the recall 
rate decreased from 60.4% to 49.5%. These findings confirm 
the importance of visual interpretability in increasing 
radiologists' trust in AI systems, although the study did not 
directly compare several XAI methods. 

Di Martino et al. [5] examined various XAI methodologies 
employed in medicine, including SHAP, LIME, and Grad-
CAM. Researchers found that Grad-CAM works well with 
CNNs because it can highlight important parts of medical 
images on its own, regardless of the architecture. LIME uses 
surrogate models to present local interpretations, and SHAP 
uses the theory of Shapley values to ensure that everything is 
consistent across the board. Many people prefer SHAP and 
Grad-CAM; however, the most effective XAI method depends 
on the specific model, context, and clarity of understanding. 
There have been no thorough studies that have directly 
compared the XAI methods Grad-CAM, LIME, and Score-
CAM for classifying breast cancer using CNNs based on DBT. 

Kursun et al. [11] applied Score-CAM to explain the 
classification results of deep learning models in leaf image-
based plant disease detection. Score-CAM works without using 
gradients but instead calculates the weights of each activation 
channel based on the prediction score, resulting in more stable 
and less noisy visualisations than Grad-CAM. This study 
confirms that Score-CAM can improve the visual 
interpretability of CNN models without disturbing the model 
architecture. In the context of this study, Score-CAM is used as 
one of the XAI methods compared in assessing visualisation 

clarity and interpretation reliability in DBT image-based breast 
cancer classification. 

Jusman et al. [12] assessed the effectiveness of GoogLeNet 
and ResNet-50 in the classification of X-ray images for 
COVID-19 detection. ResNet-50 always did better than 
GoogLeNet, with an average test accuracy of 94%, a precision 
and recall of 90%, and an F1-score of 89%. These results 
indicate that the residual learning architecture is better at 
finding complicated patterns in medical images. ResNet-50 was 
used as the CNN backbone for this study because it can deeply 
and accurately pull out important features, which are crucial for 
classifying breast cancer based on DBT images. 

Based on a literature review, ResNet-50 has proven 
effective in medical image classification, including breast 
cancer, but interpretability challenges in DBT images still need 
to be addressed. These findings were utilized to select the 
appropriate model architecture and XAI methods for analysis 
during the implementation phase. 

III. METHODOLOGY 

This section outlines the methodologies and procedures 
employed in the research process, encompassing data 
processing, CNN model architecture, and the application and 
assessment of three XAI methods: Grad-CAM, LIME, and 
Score-CAM. This study uses the DBT image dataset for breast 
cancer classification and employs the ResNet-50 architecture as 
the primary CNN framework. Then, the XAI method analyses 
the classification results for clarity and consistency. 

A. Research Flow 

This research includes six stages, starting from data 
collection to the presentation of XAI results visualisation, as 
shown in Fig. 1.

 

Fig. 1. Research flow. 
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The following sub-sections will provide a detailed 
explanation of the flow stages depicted in Fig. 1. 

B. Pre-Processing 

● Data Collection: This study uses data from patients 
diagnosed with breast cancer, consisting of two classes, 
namely 223 benign images and 173 malignant images, 
in DICOM format. Data were obtained from the 
National Cancer Institute through the Breast Cancer 
Screen – Digital Breast Tomosynthesis (BCS-DBT) 
dataset [13]. To visualise, the two types of classes, 
benign in Fig. 2 and malignant in Fig. 3, are shown 
below. 

 

Fig. 2. Benign. 

 

Fig. 3. Malignant. 

● Data Conversion and Oversampling: The collected 
images are processed to facilitate the next stage of 
analysis. Images in DICOM format are converted into 
PNG format, called super images [14], with the aim of 
reducing the computational load without sacrificing 
image quality. Next, a random overlapping process is 
carried out to overcome the imbalance in the number of 
images between benign and malignant classes so that 
each class has 500 images [15]. 

● Pre-processing Techniques Image: This stage is carried 
out to obtain optimal CNN training results by applying 
the colour mapping technique. The colour mapping 
technique showed the highest accuracy compared to the 
other three techniques on DBT images, namely 94%. 

C. Image Classification 

Researchers used the ResNet-50 architecture to sort 
pictures. Post-training evaluation was performed using a 
confusion matrix with metrics such as accuracy, F1-score, 
recall, and precision. Subsequently, XAI methods were 
employed to visualize and interpret the underlying rationale 
behind the model's predictions. 

1) ResNet-50: This model is used in this study to sort DBT 

images is a deep convolutional neural network with 50 layers 

that learns by connecting shortcuts. This mechanism effectively 

mitigates the accuracy degradation in exceedingly deep 

networks by acquiring residual functions, thereby resolving the 

issue of vanishing gradients. ResNet-50 has been shown to 

work better than other methods for a wide range of medical 

image classification tasks, such as finding breast and prostate 

cancer [16]. Fig. 4 presents the ResNet-50 architecture. 

 

Fig. 4. ResNet-50 architecture. 

The last layer of the ResNet-50 design was modified to 
correspond with the number of classes in the DBT dataset [17]. 
Training was conducted for 25 epochs using the Adam 
optimizer, with a learning rate of 0.0001 and a batch size of 10. 
A confusion matrix was utilized to evaluate the model's 
performance by determining the accuracy, precision, recall, 
specificity, and F1-score for each class. 

2) Confusion matrix: Researchers performed evaluations of 

model classification using a confusion matrix, the value of 

which is measured based on four metrics: accuracy, F1-score, 

recall, and precision. The results of these calculations were used 

to assess whether the previous process successfully improved 

classification performance, achieved high accuracy, and 

optimally differentiated between benign and malignant classes 

[18]. The following section presents the equations for these four 

metrics. 

a) Accuracy: It is a metric that indicates the overall 
accuracy of a model's predictions. This indicator is often used 
as an initial benchmark for model performance because it 
considers the accuracy of predictions for both the positive and 

negative classes. The accuracy calculation is shown in Eq. (1): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×  100% (1) 

b) Recall or sensitivity: It is a metric that assesses a 
model's ability to identify positive data from a pool of truly 
positive data. This metric is crucial in cases such as disease 
detection or fraud, where missing a positive case can have 

serious consequences. The recall is defined in Eq. (2): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
×  100%  (2) 

c) Precision: It describes the level of accuracy of positive 
predictions produced by the model, namely the proportion of 
correct positive predictions out of all positive predictions made. 
A high precision value indicates that the model rarely produces 
false positive predictions. The precision calculation is presented 

in Eq. (3): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
×  100  (3) 

d) F1-Score: It is an evaluation metric that combines 
precision and recall into a single value using the harmonic mean 
of both. This metric provides a balance between the model's 
ability to detect positive data (recall) and produce accurate 
positive predictions (precision). The F1-Score is determined 

using Eq. (4): 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
×  100% (4) 

D. Explainable Artificial Intelligence (XAI) 

Next, the researchers visualized the results of DBT-based 
breast cancer image classification using XAI to identify areas 
in the image that most influenced the model's decision. XAI 
was used to provide a transparent interpretation of the 
classification process by highlighting points or areas that serve 
as the basis for distinguishing between two cancer classes. In 
this study, three XAI methods were used, and their performance 
was evaluated using two metrics: Deletion AUC and Insertion 
AUC. The following is an explanation of each XAI model and 
an evaluation of its performance: 

 

Fig. 5. Grad-CAM architecture. 

1) Grad-Cam: Gradient-weighted Class Activation 

Mapping (Grad-CAM) is a method for showing which parts of 

DBT images have the most impact on the model's choice 

between benign and malignant breast cancer. Grad-CAM 

makes a heatmap that shows how much each area helped the 

model make a prediction by using the gradients from the last 

convolutional layer. This makes it easier to understand how to 

classify things visually [19]. The Grad-CAM model 

architecture is shown in Fig. 5. 

Fig. 5 shows how the Grad-CAM method was used in this 
study with a CNN architecture based on ResNet-50.The DBT 
image passes through a number of convolutional layers, and the 
last one makes feature maps. After that, it goes to a fully 
connected layer that classifies tumours as either benign or 
malignant. To find the importance weights for each feature 
map, Grad-CAM takes the gradient of the target class output 
and multiplies it by the feature map that goes with it. The results 
go through a ReLU activation function, which only keeps the 
positive contributions. This creates a heatmap that shows which 
parts of the DBT image have the most effect on the model's 
prediction. 

2) SCORE-CAM: The Score-Weighted Class Activation 

Mapping (Score-CAM) method is used to visualise important 

areas in DBT images that influence the model's decision to 

differentiate between benign and malignant breast cancer. This 

method produces a heatmap of the colour-mapped image, 

where colours with higher intensity indicate areas that 

contribute most to the model's prediction. This approach allows 

for a more transparent interpretation of the classification 

results, thus improving understanding of the model's decision-

making process [11]. Fig. 6 displays the architecture of the 

Score-CAM model. 

 

Fig. 6. Score-CAM architecture. 

Fig. 6 shows the implementation flow of the Score-CAM 
method in this study using a CNN architecture using ResNet-
50. The DBT is first processed by the ResNet-50 model through 
a series of convolutional layers, ReLU activation, and pooling 
to produce output in the final convolutional layer. Next, Score-
CAM utilises the feature maps from the final layer by assigning 
weights (w₁ … wₙ) based on the contribution of each feature 
map to the prediction. These weights are then combined and 
passed through a ReLU activation function to produce a 
heatmap that highlights the areas of the DBT image that are 
most influential in the classification of both benign and 
malignant tumour types. 

3) LIME: Local Interpretable Model-Agnostic 

Explanations is an XAI method that locally explains black-box 

model predictions by generating synthetic data around an 

instance through random perturbation, predicting it again with 

the original model, and then training a simple model, such as 

linear regression, to determine the contribution of each feature. 

This method is model-agnostic and generates explanations that 

are appropriate for specific instances; however, it may yield 

different explanations for the same instance because of the 

randomness inherent in the process [20]. The results can be seen 

in Fig. 7. 

Fig. 7 shows the flow of the LIME method implementation 
in this study with a CNN architecture using ResNet-50. The 
DBT image is processed by the CNN model to obtain an initial 
prediction, then LIME generates several perturbed samples 
around the original image. Each sample is re-predicted using 
the original model, and the results are then weighted based on 
their level of similarity to the original image. This weighted 
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data is used to train a simple model that can be interpreted 
locally, resulting in a visualisation of the areas in the DBT 
image that most influence the decision to classify benign or 
malignant tumours. 

 

Fig. 7. LIME architecture. 

E. XAI Evaluation Metrics 

The evaluation of heatmap quality in this study was 
conducted using two quantitative metrics, namely deletion 
AUC and insertion AUC, which are commonly used to assess 
the performance of the XAI method [21]. The following section 
provides an explanation of the evaluation metrics. 

● Deletion AUC: An evaluation metric used to measure 
the rate of decline in the model's prediction score when 
pixels deemed most important based on the heatmap are 
gradually removed from the original image. A lower 
Deletion AUC value indicates that the resulting 
importance map has better accuracy in identifying 
relevant areas. The deletion AUC calculation is shown 
in Eq. (5): 

𝐴𝑈𝐶𝑑𝑒𝑙 =
1

𝑇
∑𝑇

𝑡=1
𝑠𝑡−1

𝑑𝑒𝑙 + 𝑠𝑡
𝑑𝑒𝑙 

2
 (5) 

● Insertion AUC: An evaluation metric used to measure 
the rate of improvement in the model's prediction score 
when important pixels are gradually added to the 
baseline image (blank or blurred). A higher Insertion 
AUC value indicates that the heatmap is able to identify 
important areas more effectively, increasing the 
confidence of the model's predictions. The insertion 
AUC calculation is shown in Eq. (6): 

𝐴𝑈𝐶𝑖𝑛𝑠 =
1

𝑇
∑𝑇

𝑡=1
𝑠𝑡−1

𝑖𝑛𝑠 + 𝑠𝑡
𝑖𝑛𝑠 

2
 (6) 

The methodology outlined includes every step, from getting 
and processing data to using the XAI method and checking how 
well it works. These steps are meant to make sure that the 
analysis is done in a planned way and to help talk about the 
results in the next sections. 

IV. RESULTS AND DISCUSSION 

In this section, the researcher shows what happened when 
they used and tested the methods from Section III. The results 
include the use of three XAI methods—Grad-CAM, Score-
CAM, and LIME—to show how easy it is to understand the 
data. They also include quantitative evaluation results using the 
Deletion AUC and Insertion AUC metrics. The analysis was 
performed to evaluate the visualisation quality and quantitative 

efficacy of each method for interpreting the outcomes of DBT 
image classification using the ResNet-50 architecture. 

A. Image Classification Result 

Researchers present the training results and confusion 
matrix of the ResNet-50 classification model to assess the 
model's performance in distinguishing benign and malignant 
breast cancer DBT images. The confusion matrix is visualised 
in Fig. 8, and the model training results are visualised in Fig. 9. 

 

Fig. 8. Confusion matrix ResNet-50. 

The graphs in Fig. 8, for accuracy and loss, show that the 
training is going well, with validation accuracy reaching about 
94%. The loss values in the validation data change a bit, but the 
loss values in the training data keep going down. The 
classification results' confusion matrix is shown in Fig. 9. It 
shows that 66 benign images and 75 cancerous images were 
correctly sorted. The colour mapping method gives more 
accurate results than other ways of pre-processing. 

 

Fig. 9. ResNet-50 training results. 

Additionally, performance metrics were evaluated to 
measure the model's accuracy, recall, precision, and F1-score in 
classifying. In this test, class 0 represents the benign category, 
while class 1 represents the malignant category. The 
performance evaluation results are shown in Table I. 
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TABLE I.  PERFORMANCE EVALUATION OF RESNET-50 

Accuracy 
Recall Precision F1-Score 

0 1 0 1 0 1 

94% 94% 94% 93% 95% 94% 94% 

Table I says that the ResNet-50 model, which used colour 
mapping pre-processing, got 94% accuracy. The values for 
recall, precision, and F1-score were about the same for both 
classes. This indicates that the model can consistently and 
accurately distinguish between benign and malignant breast 
cancer images. 

B. Explainable Artificial Intelligence Results 

This section displays the visualization results of Grad-
CAM, Score-CAM, and LIME on DBT images, indicating the 
model's focus areas during classification. Visualizations are 
presented for both benign and malignant classes, allowing for 
comparison of the model's attention patterns in each category. 
The results and explanations are shown in the following figure. 

 

Fig. 10. Grad-CAM result. 

Fig. 10 shows the results of Grad-CAM on DBT images for 
two classes: benign and malignant. In benign images, the colour 
distribution appears predominantly blue, indicating a low level 
of model activation in certain areas, resulting in no significant 
focus on the suspected tissue. Meanwhile, in malignant images, 
a yellow to red area is visible in the centre, indicating a high 
level of activation. This indicates that the model is focusing 
more attention on these areas as indicators of the presence of 
cancerous lesions. 

 

Fig. 11. Score-CAM result. 

Fig. 11 presents Score-CAM visualisation results. In benign 
images, the model's activation areas are fairly evenly 
distributed with green to yellow colour intensities, indicating a 
moderate level of focus in some parts of the breast tissue. 
Meanwhile, in malignant images, the model's focus appears 
more concentrated in the central area, with yellow-to-red colour 

intensities, but the activation distribution appears less clear than 
the Grad-CAM results. This aligns with the metric evaluation 
results, where Score-CAM performed slightly lower than Grad-
CAM. 

 

Fig. 12. LIME result. 

In Fig. 12, the LIME model highlights the image areas 
deemed most relevant by the model using yellow borders. In 
benign images, the highlighted areas are relatively small and 
scattered across a few points, indicating a lack of indications 
deemed significant by the model. In contrast, in malignant 
images, the highlighted areas are much larger and concentrated 
in specific areas of the breast, indicating that the model 
identified these areas as strong indicators of abnormalities. 

C. XAI Evaluation Metrics Result 

The performance of the XAI method was measured 
quantitatively using the Deletion AUC and Insertion AUC 
metrics. These two metrics assess the quality of the saliency 
map generated by the XAI method based on its impact on model 
predictions. The resulting metrics can be seen in Table II. 

TABLE II.  XAI MODEL EVALUATION 

Mode

l XAI 

Benign Malignant Mean 

Deletio
n AUC 

Insertio
n AUC 

Deletio
n AUC 

Insertio
n AUC 

Deletio
n AUC 

Insertio
n AUC 

Grad 

CAM 
0.8241 0.9092 0.2248 0.9064 0.5245 0.9078 

Score 

CAM 
0.9089 0.9218 0.1570 0.8152 0.5330 0.8685 

LIME 0.9145 0.9559 0.1323 0.0894 0.5234 0.5226 

Insertion AUC value (0.9078) and a competitive Deletion 
AUC value, demonstrating its ability to highlight areas that are 
truly relevant to the model's decision. Score-CAM provides 
results close to Grad-CAM on the Deletion AUC metric, but 
lower on the Insertion AUC. Meanwhile, LIME produces 
relatively stable values on both metrics but does not exceed the 
performance of Grad-CAM. These results indicate that Grad-
CAM is the most effective XAI method for interpreting DBT 
image classification models in this study. 

D. Discussion 

The results of this study provide significant insights into the 
interpretability of DBT. Even though the images were 
processed as 2D slices for model training, they still have the 
complicated quasi-3D features and overlapping tissue 
structures that are unique to the DBT modality. This modality 
is very different from regular mammography. The excellent 
localization of Grad-CAM, which has an Insertion AUC of 
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0.9078, suggests that it could be used as a "second opinion" tool 
to help radiologists understand these complicated features. The 
results also show that gradient-based methods like Grad-CAM 
are more reliable than perturbation-based methods like LIME, 
which gave less consistent results on these particular textures. 
The researcher believes that these results show that high 
classification accuracy, 94%, in this study needs to be 
combined with precise feature localization to be useful in future 
clinical decision support. 

V. CONCLUSION 

This study assesses three XAI methodologies—Grad-CAM, 
Score-CAM, and LIME—for elucidating breast cancer 
classification in Digital Breast Tomosynthesis (DBT) images, 
employing a meticulously calibrated ResNet-50 architecture. 
The model was 94% accurate, and the precision, recall, and F1-
score measures were all equal. Visual analysis indicates that 
Grad-CAM generates the most effective attention maps for 
lesion regions, while Score-CAM and LIME exhibit greater 
inconsistency, particularly in cases of cancer. Quantitative 
analysis corroborates these results, with Grad-CAM attaining 
the highest Insertion AUC (0.9078). This is why Grad-CAM is 
the best XAI framework for DBT categorization: it makes it 
easy and accurate to use AI in medicine. 

Limitations and Prospective Research: The study's results 
are promising, but they are limited by a small dataset of 396 
photos and the use of only one model architecture. The research 
emphasizes 2D-converted slices instead of comprehensive 3D 
volumetric analysis. Subsequent research ought to employ 
larger, multi-centre datasets and explore transformer-based 
architectures or 3D-CNNs to improve the generalizability of 
XAI performance in breast cancer diagnosis. 
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