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Abstract—Breast cancer is one of the most life-threatening and 

heterogeneous diseases. It contains various molecular subtypes, 

each subtypes have different characteristics, treatment outcomes, 

and prognosis. The proper integration of multi-omics data, 

including genomics, epigenomics, transcriptomics, and 

proteomics, is very important for enhancing the breast cancer 

molecular subtypes classification accuracy. Despite the increase in 

high-dimensional multi-omics data, selecting a suitable integration 

method for multi-omics data in breast cancer molecular subtypes 

classification still remains a crucial challenge. This study aims to 

evaluate and compare, and assess the effectiveness of the multi-

omics data integration methods, including exploring the 

advantages, limitations, and highlighting their performance in 

terms of accuracy, interpretability, scalability, and biological 

relevance. Our findings indicate that transformer-based 

integration methods are increasingly adopted in recent studies due 

to their superior ability to handle high-dimensional heterogeneous 

data and capture intricate cross-omics relationships while 

providing interpretable insights. Additionally, we provide a 

comparative overview of existing models, discuss key trends over 

the years, and offer actionable guidance for method selection 

based on dataset characteristics and research objectives. Finally, 

we suggest future research directions, emphasizing hybrid deep 

learning frameworks, graph-based models, and attention 

mechanisms to enhance predictive accuracy and biological 

interpretability. 
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I. INTRODUCTION 

Breast cancer is one of the major life-threatening and most 
prevalent cancers affecting women worldwide. Despite the 
advancements in the treatment and screening process, the 
heterogeneity of breast cancer still presents a major challenge 
[1]. The heterogeneity of breast cancer is not only morphological 
but also rooted deeply at a molecular level, which influences 
disease progression, therapeutic response and prognosis [2]. As 
a result, the precise and accurate classification of breast cancer 
into its molecular subtypes has gained significant attention 
nowadays. 

Molecular subtyping of breast cancer, such as Luminal-A, 
Luminal-B, HER2-Enriched, Basal-Like and Normal-Like, has 
emerged from the gene expression profiling [3]. These 
molecular subtypes reflect diverse oncogenic mechanisms and 
clinical outcomes, necessitating precise and robust classification 
frameworks [4]. While traditional subtyping relies basically on 

mono-omics data, recent studies show that the integration of 
multi-omics data can significantly enhance the accuracy and 
reliability of breast cancer molecular subtypes classification [5]. 

Recently, high-throughput technologies such as multi-omics 
data have become increasingly accessible, including genomics, 
epigenomics, transcriptomics, and proteomics [6]. Each multi-
omics data type captures different aspects of breast tumor 
heterogeneity, such as genomics, which reveals DNA-level 
alterations, epigenomics uncovers regulatory modifications, 
transcriptomics measures gene activity, and proteomics reflects 
functional outputs [7]. Integrating the diverse multi-omics data 
types provides a more comprehensive view of breast cancer, 
allowing for more accurate subtype classification of breast 
cancer [7]. 

Accurate and precise multi-omics data integration for breast 
cancer molecular subtypes classification is very important, as 
these molecular subtypes are defined through coordinated 
alteration across the multiple biological layers rather than by 
individual molecular signals [8]. The effective and accurate 
integration of multi-omics data variants allows the identification 
of meaningful biological patterns by integrating various 
variations in genes, gene expression profiles, protein level 
interaction, and epigenetic modification that help in the precise 
classification of breast cancer molecular subtypes [9]. The 
precise classification of breast cancer molecular subtypes is very 
important for enhancing the diagnostic accuracy, personalized 
treatment plans, and prognostic assessment [10]. Inappropriate 
or poor integration of multi-omics data in breast cancer 
molecular subtypes classification can lead to loss of important 
biological information, noise amplification, or even a 
misleading molecular subtypes classification of breast cancer 
[11]. Therefore, the selection of an appropriate method for 
integrating the multi-omics data is required to maintain the 
biological relevance as well as the data heterogeneity, which is 
a key challenge in multi-omics breast cancer molecular subtypes 
classification research. 

Despite the rapid increase in multi-omics breast cancer 
subtypes classification research, there is still a lack of clear 
guidance regarding the appropriate multi-omics data integration 
methods for breast cancer molecular subtypes classification. 
Existing reviews have provided a broad overview of multi-
omics integration methods in various domains. However, there 
is a lack of focus on multi-omics integration methods 
specifically for breast cancer molecular subtypes classification. 
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To overcome this issue, this review study introduces a breast-
cancer focused analytical evaluation of the multi-omics 
integration methods and compares the three most common 
integration methods, including concatenation-based, model-
based, and transformation-based integration. By evaluating 
these integration methods using evaluation criteria, including 
biological interpretability, scalability, and robustness. This 
study provides a structured and comparative assessment of the 
integration methods for multi-omics data in breast cancer 
molecular subtypes classification. 

This study evaluates the integration methods used by 
existing research, as well as provides actionable insights and 
methodological guidance for researchers in choosing a suitable 
multi-omics integration method for breast cancer molecular 
subtypes classification. The key contributions of this review are 
summarized as follows: 

• To explore the existing multi-omics integration methods 
for breast cancer molecular subtypes classification. 

• To provide a clear comparison and evaluation of 
integration methods for multi-omics data to classify the 
breast cancer molecular subtypes. 

• To highlight the advantages and disadvantages of the 
integration methods for the multi-omics data, primarily 
for breast cancer molecular subtypes classification. 

• To suggest future suggestions and directions for 
developing more accurate and useful integration models. 

The rest of the study is organized as follows: Section II 
emphasizes related works, while Section III focuses on the 
existing integration methods for multi-omics data in breast 
cancer molecular subtypes classification. Section IV is about the 
analysis of multi-omics data integration methods for breast 
cancer molecular subtypes classification. Section V concentrates 
on the discussion, while Section VI emphasizes the suggestions 
and recommendations for future research. Lastly, Section VII is 
the conclusion of the study. 

II. RELATED WORKS 

Multi-omics integration methods are widely explored to 
enhance disease characterization and subtype classification by 
integrating various multi-omics data types and analyzing high-
dimensional multi-omics data such as genomics, 
transcriptomics, epigenomics and proteomics. This section 
reviews the existing related works on the comparison of multi-
omics integration methods for cancer subtypes classification and 
provides the necessary background and context for 
understanding current methodological trends and limitations. 

Acharya and Mukhopadhyay [12] review various network-
based methods based on ML for the integration of multi-omics 
data in precision oncology, such as clustering and factorization. 
The study also explores the challenges associated with multi-
omics data integration, particularly in the context of network-
based integration methods. It also determines the challenges in 
multi-omics data integration in precision oncology. Similarly, 
Menyhárt and Győrffy [8] discuss algorithmic frameworks and 
data integration methods for cancer subtypes, disease 
mechanism and diagnosis. The study sheds light on both single-

omics and multi-omics data integration methods, including the 
bottom-up and top-down integration methods. It also explains 
various other integration methods, such as multivariate, 
statistical, network, fusion-based, similarity-based and 
correlation-based integration. The study also explores the 
application of multi-omics data integration methods in various 
multi-omics data types. 

In the same way, Adossa et al. [13] introduce recent 
developments in the single-cell multi-omics and 
comprehensively review the existing data integration methods. 
The study particularly focuses on early, intermediate and late 
data integration methods, including exploring the conceptual 
principles and main characteristics of each data integration 
method. Also, the study determines various tools that are used 
for the integration methods in single-cell multi-omics data. 
Moreover, Vahabi and Michailidis [14] provide an overview of 
multi-omics data integration methods with different statistical 
approaches, focusing on unsupervised learning tasks, including 
disease onset prediction, biomarker discovery, disease 
subtyping and module discovery. The study mainly focuses on 
unsupervised multi-omics data integration methods, particularly 
regression-based integration methods, clustering and network-
based integration methods. It also elaborates on the working of 
each data integration method in mono-omics data, such as 
genomics, epigenomics, and transcriptomics. 

Additionally, Cai et al. [15] review ML-based multi-omics 
data integration methods for cancer, specifically early 
integration, intermediate integration and late integration 
methods. It mainly reviews the integration methods working 
process in different multi-omics datasets. The study also 
explores various multi-omics data integration tools and their 
applications. Also, the study determines the strength of each 
integration method in cancer subtypes classification. Moreover, 
Subramanian et al. [16] review the multi-omics integration 
methods, particularly network-based, fusion-based, similarity-
based and neighborhood-based integration methods. The study 
also explores the application of these integration methods in the 
prediction of biomarkers, diagnostics and driver genes for 
diseases. It also provides an overview of portals for visualization 
and interpretation of multi-omics datasets. 

Furthermore, Heo et al. [17] provide an overview of the 
rationale and concepts of multi-omics integration methods in 
cancer research. The study explores multi-omics integration 
methods and techniques used to help in the integration process 
and how the multi-omics integration methods are applied in 
different cancer subtypes classification, cancer 
pathophysiology, drug target discovery and clinical decision 
support. It also determines the latest findings and implications 
in cancer multi-omics studies. Though enough progress has been 
made and various research has been conducted on multi-omics 
integration methods across various cancer types and domains, as 
shown in Table I. However, there is no existing study that 
focuses on the multi-omics data integration methods for breast 
cancer molecular subtypes classification. To overcome this 
issue, this comparison study introduces a breast cancer-specific 
multi-omics integration methods that evaluate and compares the 
existing multi-omics integration methods for multi-omics data 
in breast cancer molecular subtypes classification.
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TABLE I.  EXISTING RELATED WORKS ON MULTI-OMICS INTEGRATION 

Reference Objective 

Integration Methods 

Limitations Concatenation-
based 

Integration 

Model-
based 

Integration 

Transformation-
based 

Integration 

Others 

Acharya and 

Mukhopadhyay 

[12] 

Reviews ML-based integration 

methods for multi-omics data  
✘ ✘ ✘ ✓  

Only focus on network-based multi-

omics integration methods in precision  

oncology. 

Menyhárt and 

Győrffy [8] 

Explore the multi-omics 

integration methods with  

application in cancer research 
✘ ✘ ✘ ✓  

Focus only on multivariate, statistical, 

network, fusion-based, similarity -

based, and correlation-based 

integration methods for tumor subtypes, 

prognosis and diagnosis only. 

Adossa, et al. [13] 

Explore computational 

strategies for single-cell multi-

omics integration methods 
✓  ✓  ✓  ✘ 

Focus on early, intermediate and late 

integration methods only for single-cell 

multi-omics data. 

Vahabi and 

Michailidis [14] 

Review unsupervised multi-

omics data integration 

methods for various disease 

subtyping 

✘ ✘ ✘ ✓  

Focus only on regression-based, 

clustering and network-based 

integration methods in different disease 

subtyping. 

Cai, et al. [15] 
Explore the ML-based multi-

omics integration methods 
✓  ✓  ✓  ✘ 

Focus only on early integration, 

intermediate integration and late 

integration methods in general cancer 

research. 

Subramanian, et 

al. [16] 

Review multi-omics data 

integration methods and their 

application in the cancer 

domain 

✘ ✘ ✘ ✓  

Focus only on network-based, fusion-

based, similarity-based and 

neighborhood-based integration 

methods in general cancer. 

Heo, et al. [17] 

Explore multi-omics data 

integration methods in cancer 

research. 
✘ ✘ ✘ ✓  

Focus only on computation integration 

methods for cancer subtypes. 

Current Study 

Compare the multi-omics 

integration methods for breast 

cancer molecular subtypes 

classification 

✓  ✓  ✓  ✘ 

Focus specifically on multi-omics 

integration methods for breast cancer 

molecular subtypes classification. 

 

III. INTEGRATION METHODS FOR MULTI-OMICS DATA IN 

BREAST CANCER MOLECULAR SUBTYPES 

The integration of multi-omics data is highly significant as it 
integrates various biological data types and variants, including 
genomics (Copy Number Alteration (CNA), Copy Number 
Variation (CNV), Single Nucleotide Polymorphism (SNP)), 
epigenomics (DNA-Methylation (DNA-Methyl)), 
transcriptomics (Messenger RNA (mRNA), MicroRNA 
(miRNA)) and proteomics (Reverse Phase Protein Array 
(RPPA)). for evaluating and understanding the mechanism and 
structure of breast cancer disease [17]. While mono-omics data 
offer limited information about breast cancer [18]. Multi-omics 
data integration captures the interaction and relationship among 
breast cancer molecular subtypes at the molecular level and 
provides a deeper understanding of breast cancer cellular 
function [19]. With the help of accurate and proper multi-omics 
data integration, healthcare professionals can explore the 
aggressiveness and behavior of breast cancer by classifying 
molecular subtypes, and also provide information about the 
potential causes behind breast cancer. Proper integration of 
multi-omics data variants can also assist in understanding the 
flow from one omics data layer to another omics layer [16]. 

One of the main tasks of the multi-omics data in breast 
cancer is the early classification of molecular subtypes, for 
instance, classifying the breast cancer based on molecular level, 

such as Luminal-A, Luminal-B, HER2-Enriched, Basal-Like 
and Normal-Like [20]. Breast cancer patients’ treatment 
depends on their specific molecular subtype. By properly 
utilizing the multi-omics data integration methods and 
considering various levels of the multi-omics data variants, 
breast cancer molecular subtypes can be accurately classified at 
the molecular level so that the patients can get better treatment 
on time [20]. 

To gain the full potential of multi-omics data for accurate 
classification of breast cancer molecular subtypes, effective 
integration methods are important to capture the behavior and 
aggressiveness of breast cancer based on its molecular level 
through the integration of various multi-omics data variants. 
Typically, the three most common and prominent methods are 
used for multi-omics data integration, including the 
concatenation-based integration, model-based integration and 
transformation-based integration, which are discussed in 
subsections. 

A. Concatenation-Based Integration (CBI) 

Concatenation-Based Integration (CBI), also known as early 
integration, is one of the most direct integration methods, as 
shown in Fig. 1. It directly combines various multi-omics data 
variants and creates a joint matrix. The CBI method usually does 
not require comprehensive feature engineering or extensive 
preprocessing, as all omics features are added to a large input 
matrix. The joint matrix is delivered into the model for the 
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classification tasks. In this integration method, a joint matrix is 
formed by stacking the feature vectors together from various 
datasets, which creates a single and larger feature vector for each 
dataset. 

 

Fig. 1. Concatenation-based integration method. 

For the breast cancer molecular subtypes classification, 
Cristovao et al. [21] use CBI for integrating mRNA and miRNA 
to train the Feed Forward Neural Network (FFNN) model for 
classifying breast cancer molecular subtypes. CBI assists the 
models in learning omics information at once and also captures 
the non-linear pattern. However, it leads the model to high-
dimensional input and affects the model's performance. It 
indicates that CBI struggles in modelling and capturing the 
complex relationships and interactions among various omics 
variants and also leads to reduced interpretability and potential 
overfitting when labeled data are limited. In the same way, Zeng 
et al. [22] utilize CNN5 and integrate CNV and mRNA using 
CBI, where multi-omics data are merged at the input feature 
level and processed jointly by the CNN5. According to the 
study, CBI is straightforward, efficient, and avoids complex pre-
processing or feature transformation and it is suitable for a 
lightweight DL model. It affects learning because concatenated 
data emphasize dominant subtypes (e.g., Luminal A). Hence, 
CBI omics specific detail can be lost, and also high 
dimensionality challenges can occur and cannot explicitly 
capture complex relationships between omics variants. 

Furthermore, Rakshit et al. [23] apply SVM and integrate 
DNA-Methyl, mRNA and miRNA using CBI into a single large 
dataset. The integrated data is directly processed using Stacked 
Autoencoder (SAE) to reduce dimensionality before being fed 
into the classification model. CBI is straightforward and allows 
unified processing of high-dimensional multi-omics data, but it 
loses omics-specific signals, introduces noise from irrelevant 
features, and does not provide a solution to weigh the 
contributions of different multi-omics data variants. 

B. Model-Based Integration (MBI) 

Model-Based Integration (MBI), also known as intermediate 
integration, is a more organized, structured and adaptive 
integration method as shown in Fig. 2. In the model-based 
integration method, all multi-omics data variants are first 
processed by their module and converted into an intermediate 
form before a final model is created using various intermediate 
models. Hence, the integration happens to determine the various 
multi-omics data associated with a specific disease. 

For the breast cancer molecular subtypes classification, Lin, 
et al. [24] propose DeepMO and integrate mRNA, DNA-Methyl 

and  CNV through MBI and their own feature extraction 
subnetwork, and then fuse the learned high-level patterns into a 
single integrated representation for classification. The MBI 
method allows the model to capture complex cross-omics 
relationships more effectively than the CBI method. However, 
MBI is sensitive to class imbalance, relies on default 
hyperparameters, and has higher computational demands due to 
large feature sets. Similarly, Choi and Chae [25]  propose 
moBRCA-net and integrate DNA-Methyl and miRNA by MBI 
through separate self-attention modules to learn the importance 
of individual features. The high-level data are then fused into a 
single joint representation, which is used by a shared 
classification network to classify subtypes. MBI preserves 
biological relationships between omics variants, reduces 
dimensionality, and enhances interpretability. Hence, MBI relies 
on feature selection, misses some cross-omics dependencies, 
and has higher computational requirements. 

 
Fig. 2. Model-based integration method. 

In the same way, Lupat et al. [26] develop MOANNA and 
integrate Gene-Exp, CNV and Somatic Mutation through MBI 
using a semi-supervised AE, transforming the high-dimensional 
input into a 64-dimensional latent representation. This 
integrated feature vector is then used by multiple supervised 
classifiers to classify breast cancer molecular cancer subtypes. 
By learning compact and informative features, MBI improves 
classification performance compared to other methods. 
However, it requires large training datasets and may still face 
challenges with high-dimensional data. Moreover, Guo et al. 
[27] propose AGCN and integrate CNV, DNA-Methyl and 
mRNA through MBI into Protein-Protein Interaction (PPI) 
network. MBI captures complex cross-omics relationships and 
gene-level structural information before classification, 
producing a joint representation for breast cancer molecular 
subtype classification. Hence, MBI depends on accurate graph 
construction, which is computationally intensive and less 
flexible for non-graph data. 

Further, Li and Nabavi [28] utilize GNN and CNV, mRNA, 
and miRNA into a single supra-graph using MBI, where nodes 
represent genes and edges capture intra- and inter-omics 
interactions. GNN layers learn hidden representations across the 
entire graph, and combined with features from a parallel 
network to form a final integrated vector for classification. The 
MBI method captures complex biological relationships and 
improves representation. Hence, it depends on predefined graph 
connections and requires high computational effort. 
Furthermore, Tao et al. [29] propose SMOMKL and integrate 
CNV,  DNA-Methyl and mRNA using MBI and transform into 
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a kernel matrix representing patient similarities. These kernels 
are combined within the MKL model using learned weights, 
allowing the integration to occur at the similarity level rather 
than by raw data concatenation. MBI effectively handles high-
dimensionality and improves predictive performance; however, 
it can be computationally intensive and depends on proper 
kernel selection. 

Moreover, Ren et al. [30] propose MVGNN and integrate 
DNA-Methyl, mRNA and miRNA using MBI, which is first 
separately processed through individual GCN branches to 
extract omics-specific patterns. These patterns are then fused 
using a multi-view attention mechanism to create a single 
integrated representation that captures complex cross-omics 
relationships. MBI effectively models inter-omics correlations 
and highlights important features. Hence, it requires high-
quality graphs and can be computationally demanding. 
Similarly, Zeng et al. [31] utilize DiffRS-net and use MBI for 
integrating DNA-Methyl mRNA and miRNA separately to 
select important features, rather than concatenating raw data 
directly. The correlated features are fused within a DL using an 
attention mechanism, which assigns higher importance to more 
informative features before classification. MBI reduces data 
dimensionality and better captures cross-omics relationships. 
Hence, it mainly focuses on linear correlations and requires 
careful parameter tuning. 

Islam et al. [32] apply DNN and use MBI for integrating 
CAN, Gene-Exp and mRNA. In the main classification model, 
each omics variant is first processed separately through its own 
neural network branch to learn high-level features, and these 
learned features are then merged at an intermediate stage before 
making the final classification. MBI design allows the model to 
capture omics-specific patterns first and then learn 
complementary information from both data variants together. 
The integrated model achieved better classification performance 
than models using only a single omics variant. However, it 
requires a relatively large amount of data and may face 
challenges related to high dimensionality. In the same way, Li et 
al. [33] introduce CautionGCN and apply MBI for integrating 
CNV, DNA-Methyl and RNAseq. By using MBI, each omics 
variant is first processed through a causal multi-head AE to 
extract meaningful and low-dimensional features rather than 
directly concatenating raw data. SNF is then applied to integrate 
cross-omics relationships at the network level, and a graph 
convolutional network jointly learns from the fused similarity 
network and the extracted features to perform classification. 
MBI design helps capture complex multi-omics interactions and 
improves robustness to high-dimensional and imbalanced data. 
Hence, it introduces higher computational complexity and 
depends on accurate similarity modeling. 

C. Transformation-Based Integration (TBI) 

Transformation-Based Integration (TBI) is also known as 
the late integration method. In the TBI method, each multi-
omics data layer is transformed into a representable, comparable 
latent space, such as a graph, kernel similarity matrices, or core 
matrix. Each multi-omics dataset is transformed into an 
intermediate form before integrating all the data into a joint 
transformation. Once the data is transformed, all the multi-omics 
data layers are integrated into the model using a specific 
technique, as shown in Fig. 3. 

For the breast cancer molecular subtypes classification, Ma 
and Guan [34] present MOCSC and apply TBI for integrating 
mRNA, miRNA, DNA-Methyl and CNV. By using TBI, each 
omics variant is processed separately, where features are first 
learned using SSDAE and then used by an individual NN to 
produce separate classification. These omics-specific 
classifications are finally combined using a VCDN to generate 
the final classification result. TBI-based fusion improves 
robustness by integrating information from multiple omics 
views, but it depends on the quality of each omics-specific 
model. Similarly, Meshoul et al. [35] present ET and integrate 
CNV, DNA-Methyl and RNA through TBI, and select features 
separately for each omics type before combining them. The 
study showed that the TBI improves the feature relevance and 
explainability, but it increases complexity and depends heavily 
on the quality of feature selection. In the same way, Huang et al. 
[18] propose DSCCN and integrate DNA-Methyl and mRNA 
using TBI, where each variant is processed separately through 
its own network to generate independent classification, which 
are combined at the decision level to produce the final 
classification. TBI method captures complementary information 
from each omics type and avoids problems with high-
dimensional concatenation. Hence, it may be less effective for 
underrepresented subtypes and could benefit from additional 
data or extensions to other omics types. 

Further, Zhang et al. [36] propose AET-net and integrate 
Gene-Exp and DNA-Methyl. Each omics variant is first 
processed separately and then fused into a shared latent 
representation using an AE, capturing essential features from 
both omics variants. This fused feature vector is then processed 
by a classifier for final classification. 

TBI reduces dimensionality, handles high-dimensionality of 
the data effectively, and models complex dependencies. Hence,  
it requires careful tuning and overfitting with small datasets. 
Lastly, Li et al. [37] present MoGCN and integrate CNV, 
RNAseq and RPPA using TBI. The multi-omics data is first 
processed through a separate AE to learn a shared latent 
representation. It then applies SNF to create a unified PSN, and 
finally, a GCN performs classification using both the joint 
feature matrix and the fused network. TBI captures nonlinear 
relationships, improves stability, and achieves high accuracy, 
though it requires substantial computation and may be sensitive 
to noise in high-dimensional data. 

 
Fig. 3. Transformation-based integration method. 
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TABLE II.  EXISTING STUDIES ON MULTI-OMICS DATA INTEGRATION METHODS FOR BREAST CANCER MOLECULAR SUBTYPES CLASSIFICATION 

References Objective 
Proposed 

Models 

Integration 

Methods 
Accuracy 

Performance 

Metrics 

Advantages of 

Integration Method 

Limitations of 

Integration Method 

Cristovao, 

et al. [21] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

•LR & FFNN CBI 94.00% 

• Accuracy 

• Precision 

• Recall 

• Effectively handles 

high-dimensional 

multi-omics data . 

• Captures non-linear 

relationships across 

omics variants. 

• Lacks interpretability in 

latent representations. 

• Sensitive to 

hyperparameter tuning. 

• May overfit with limited  

labeled data. 

Lin, et al. 

[24] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• DeepMO MBI 78.20% 
• Accuracy 

• AUC 

• Outperforms single-

omics-based 

integration methods. 

• Handles high -

dimensional data 

effectively. 

• Sensitive to class 

imbalance. 

• Computational 

complexity from large 

feature sets. 

Choi and 

Chae [25] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• moBRCA-

net 
MBI 90.90% 

• Accuracy 

• F1-Score 

• Precision 

• Recall 

• Enhances performance 

by preserving 

biological relationships 

between omics variants 

• Learn feature 

importance effectively. 

• Improving 

interpretability and 

subtype distinction. 

• Relies on feature 

selection to manage high 

dimensionality and 

computational costs. 

• Potentially missing some 

omics dependencies. 

• Does not explicitly  

model cross-omics 

dependencies, which  

could be extended in 

future work. 

Islam, et al. 

[32] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• DNN MBI 79.20% • Accuracy 

• Effectively handles 

high integration  

through feature 

learning 

• Improve subtype 

classification over. 

• Can exacerbate the curse 

of dimensionality. 

• Requires large training 

data to avoid overfitting. 

Lupat, et al. 

[26] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• MOANNA MBI 85.60% 

• F1-Score 

• Precision 

• Recall 

• Handles high-

dimensional multi-

omics effectively. 

• Improves 

generalization. 

• Potential overfitting in 

large datasets. 

• Reconstruction loss may 

not align perfectly with  

classification. 

Ma and 

Guan [34] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• MOCSC TBI 95.00% 

• Accuracy 

• AUROC 

• Macro F1 

Value 

• Weighted 

F1 Value 

• Avoids data 

inconsistency by fusing 

at the decision level. 

• Captures cross-omics 

correlations effectively. 

• Dependent on individual 

classifier quality. 

• May propagate errors 

from weak omics 

models. 

Meshoul, et 

al. [35] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• ET TBI 84.50% 

• Accuracy 

• Accuracy 

• AUROC 

• F1-Score 

• Macro F1 

Value 

• Precision 

• Recall 

• ROC_AUC 

• Weighted 

F1 Value 

• Improves feature 

relevance across omics. 

• Enhances 

explainability. 

• flexible with early/late 

schemes for different 

data handling. 

• A multi-stage process 

increases complexity. 

• Dependent on the feature 

selection quality. 

• Computationally 

expensive. 

• Does not work well with  

smaller datasets. 

Zeng, et al. 

[22] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• CNN5 CBI 90.02% 

• F1-Score 

• Precision 

• Recall 

• Handles imbalanced 

data via weighted loss;  

direct learning on 

combined features. 

• Potential loss of omics-

specific patterns. 

• Exacerbates 

dimensionality issues. 

• Lacks explicit handling 

of inter-omics 

correlations. 

Guo, et al. 

[27] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• AGCN 

Variants: 

SEGCN & 

cAGCN 

MBI 89.42% 

• Accuracy 

• AUC 

• MCC 

• Effectively captures 

relational dependencies 

between genes across 

omics layers. 

• Enables biologically  

meaningful fusion by 

• Relies on accurate graph 

construction, which may 

introduce bias if prior 

knowledge is incomplete. 

• Computationally 

intensive for large-scale 

graphs; 
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References Objective 
Proposed 

Models 

Integration 

Methods 
Accuracy 

Performance 

Metrics 

Advantages of 

Integration Method 

Limitations of 

Integration Method 

incorporating prio r 

structural relationships. 
• Lack of flexibility in 

handling non-graphical 

data representations. 

Huang, et 

al. [18] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• DSCCN TBI 90.60% 

• Accuracy 

• AUC 

• F1-Score 

• Successfully identifies 

inter-omics 

associations to capture 

complementary 

information and reduce 

data heterogeneity. 

• Outperforms 

concatenation-based, 

ensemble-based, and 

knowledge-driven 

methods. 

• Data imbalance in breast 

cancer datasets reduces 

accuracy for minority 

subtypes. 

• Future extensions are 

needed for non-coding 

omics and data 

augmentation 

techniques. 

Li, et al. 

[37] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• MoGCN TBI 89.80% 
• Accuracy 

• F1-Score 

• Captures nonlinear 

relationships and 

improves stability  

effectively. 

• Relies on unsupervised 

AE and SNF. 

• Intensity for high-

dimensional data. 

• Potential noise 

interference in multi-

omics integration. 

Li, et al. 

[33] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• CautionGCN MBI 89.18% 

• Accuracy 

• F1-Score 

• Precision 

• Recall 

• Reduces bias and 

enhances robustness to 

imbalanced data . 

• Captures multi-omics 

interactions via graphs. 

• Complexity in causal 

inference 

• May introduce 

assumptions. 

• Dependent on accurate 

similarity networks. 

• Computationally 

demanding. 

Li and 

Nabavi [28] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• Multi-Omic 

GNN 
MBI 86.40% 

• Accuracy 

• F1-Score 

• Incorporates biologica l 

knowledge into graph 

structures for better 

representation 

• Dependent on predefined 

graph connections, which 

may miss unknown 

relations. 

• Higher complexity in 

graph construction. 

• Potential bias from 

incomplete biological 

knowledge in edges. 

Tao, et al. 

[29] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• SMOMKL MBI 87.00% 
• Accuracy 

• AUC 

• Learns optimal kernel 

combinations for 

omics. 

• Improves predictive 

power through kernel 

fusion. 

• Kernel selection is 

critical and may miss 

non-linear interactions. 

• Computationally 

expensive for large 

kernels. 

Zhang, et 

al. [36] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• AET-net TBI 90.00% 
• Accuracy 

• F1-Score 

• Reduces 

dimensionality while 

capturing complex 

dependencies through 

Transformation 

attention, leading to 

effective multi-omics 

integration. 

• Sensitive to 

hyperparameter tuning, 

which can affect 

integration quality. 

• Potential for overfitting 

in smaller datasets. 

Ren, et al. 

[30] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• MVGNN MBI 91.80% 

• Accuracy 

• AUC 

• F1-Score 

• Precision 

• Sensitivity 

• Specificity 

• Captures inter-omics 

correlations via graphs; 

attention weights 

important features. 

• Handles heterogeneous 

data structures. 

• Relies on graph quality 

and similarity networks 

• Computational overhead 

in multi-view fusion. 

Zeng, et al. 

[31] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• DiffRS-net MBI 91.30% 

• Accuracy 

• F1-Score 

• Precision 

• Recall 

• Detects correlations 

across multiple omics 

variants. 

• Reduces 

dimensionality while 

preserving associations 

• Enhances 

interpretability. 

• Assumes linear 

relationships, may miss 

non-linear interactions. 

• Sparsity tuning is 

sensitive. 

• Lacks dynamic 

weighting of views. 
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Integration Method 

Rakshit, et 

al. [23] 

Breast Cancer 

Molecular 

Subtypes 

Classification 

• SVM CBI 93.50% • Accuracy 

• Straightforward 

combination of 

heterogeneous data  

• Enables unified  

processing in a deep 

model 

• Reduces the 

preprocessing 

complexity. 

• May miss omics-specific 

signals in high-

dimensional space. 

• Increases the risk of 

noise from irrelevant 

features. 

• Lacks a mechanism to 

weigh different omics 

contributions. 
 

Table II shows the comparison of existing studies on multi-
omics integration, highlighting the utilization of integration 
methods from a CBI to MBI and TBI. It summarizes the 
objectives, proposed models for the classification, the type of 
integration method used, and their reported performance 
metrics. and highlighting the advantages and limitations of each 
integration method used in breast cancer molecular subtypes 
classification. 

IV. ANALYSIS OF MULTI-OMICS DATA INTEGRATION 

METHODS FOR BREAST CANCER MOLECULAR SUBTYPES 

CLASSIFICATION 

All three multi-omics data integration methods are used by 
the existing studies for breast cancer molecular subtypes 
classification. Each integration method has its own 
characteristics, strengths and limits, as shown in Table III. 

Table III provides a practical guideline for selecting a 
suitable integration method for multi-omics data in breast cancer 
molecular subtypes classification, based on aspects such as data 

type, sample size, interpretability, and computational 
requirements from the observation of the existing studies. 
According to the findings from the existing studies, CBI is 
appropriate for both mono-omics and multi-omics data, 
particularly when the dataset is small to medium in size. CBI is 
straightforward to implement, computationally light, and highly 
interpretable, making it ideal when simplicity and clarity are 
important. It works best for combining a limited number of 
omics variants, where the primary goal is to preserve 
interpretability and generate easily understandable insights. 
While MBI is specifically designed for medium to large multi-
omics datasets and is appropriate for medium interpretability 
and computational complexity. Lastly, TBI  provides a balance 
between predictive performance and interpretability, handling 
high-dimensional omics variants more effectively. It is 
especially designed for large multi-omics datasets and is suitable 
for high-dimensional data. It can easily capture more complex 
interactions and relationships among different omics data types 
and variants, and is more appropriate for a graph-based 
architecture. 

TABLE III.  COMPARISON OF MULTI-OMICS DATA INTEGRATION METHODS FOR BREAST CANCER MOLECULAR SUBTYPES CLASSIFICATION 

Integration Methods 
Datasets 

Suitability 
Interpretability 

Computational 

Complexity 
Strenghts Weaknesses 

Concatenation-Based 

Integration (CBI): 

Combines all omics data 

into one large input 

matrix without much 

preprocessing. 

Small to 

Medium 
High Low 

• Simple, fast and straightforward. 

• No preprocessing is required as all omics 

features are integrated into a large input 

matrix. 

• Uses a full feature set. 

• Handle all omics data types in a single 

joint matrix. 

• Produces continuous data , which makes it 

easier for various ML models to analyze. 

• Ignores inter-omics 

relationships. 

• Increasing the number of 

features together increases 

dimensionality. 

• Sensitive to noise/missing 

data, high-dimensional. 

Model-Based 

Integration (MBI): 

Learns features 

separately using sub-

models, then merges the 

learned representation 

Medium to 

Large 
Medium Medium 

• Captures omics-specific relationships and 

interactions. 

• Complex to design. 

• Cannot handle 

heterogeneous data . 

• Perform feature selection 

before integrating omics 

data, which can lead to the 

loss of important features. 

• Require careful hypermeter 

tuning for each sub-model. 

Transformation-Based 

Integration (TBI): 

Converts omics data into 

a shared latent space 

(e.g., graphs), then 

integrates. 

Large Low to Medium High 

• Suitable for high-dimensional data. 

• Capture more complex interactions and 

relationships among different omics data 

types. 

• Most common integration data method. 

• Easily deal with data heterogeneity. 

• Suitable for graph-based architecture. 

• Include the statistical frameworks, such as 

core-based integration and graph-based 

semi-supervised learning, for developing a 

model. 

• Transformation can cause 

information loss, 

depending on design  

quality. 

• Challenges in transforming 

data into an intermediate 

form. 

• Kernel methods are 

computationally extensive. 
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Overall, Table III serves as a decision-support guideline for 
researchers, guiding them in choosing the most appropriate 
integration methods for omics data, particularly in breast cancer 
subtypes classification based on the specific characteristics of 
their dataset, research objectives, and available computational 
resources. 

V. DISCUSSION 

Existing studies have increasingly explored CBI, MBI, and 
TBI methods for multi-omics data analysis in breast cancer 
molecular subtypes classification. Each integration method has 
its own strengths and limitations in capturing inter-omics 
relationships, managing data dimensionality, and improving 
classification performance. 

 
Fig. 4. Trends of multi-omics integration methods in breast cancer molecular 

subtypes classification. 

Fig. 4 shows trends in the use of multi-omics integration 
methods for breast cancer molecular subtype classification from 
2018 to 2025. Based on the graph, it is clear that early studies 
predominantly use CBI methods due to their simplicity and ease 
of implementation, while MBI methods became increasingly 
popular from 2019 onward, reflecting their ability to capture 
inter-omics interactions and improve predictive performance. 
Additionally, TBI emerged in 2022 and shows a growing 
adoption trend, highlighting its superior capacity to handle high-
dimensional heterogeneous data, model complex relationships 
across omics layers, and provide attention-driven 
interpretability. This finding shows a clear shift in the field 
toward leveraging deep learning architectures for more accurate 
and biologically informative breast cancer molecular subtype 
classification, indicating that TBI methods are becoming a 
preferred approach for multi-omics integration in recent studies. 

Fig. 5 demonstrates the comparison of CBI, MBI, and TBI 
integration methods for multi-omics data in breast cancer 
molecular subtypes classification based on the accuracy of the 
models. For CBI, the minimum accuracy 90.20% is shown by 
CNN5 with CBI. While SVM shows a medium accuracy of 
93.50% with CBI, and FFNN achieves a maximum accuracy of 
94.00% with CBI. Models with CBI show stable and strong 
accuracy, but their performance mainly depends on integrating 
different multi-omics variants into a joint matrix directly, which 
may increase data dimensionality and complexity. For MBI, the 
performance varies more widely. DeepMo and DNN with MBI 
shows minimum accuracy of 78.20%, indicating weaker 
performance. Models such as MOANNA, MoGNN, and 
SMOMKL with MBI show medium accuracy of 85.60%, 

86.40% and 87.00% demonstrate more good performance. The 
models, including MVGNN, DiffRS-net, and moBRCA-net 
with MBI, achieve significant accuracy of 91.80%, 91.30%, and 
90.90%, showing that MBI can perform well when advanced 
models are used. For TBI, MoGCN attained 89.80% with TBI 
represents the minimum accuracy, while AET-net and DSCCN 
with TBI achieve accuracy of 90.00% and 90.60% show 
medium performance. While the best results are achieved by ET 
and MOCSC, with TBI attaining an accuracy of 95.00%, which 
is the maximum accuracy in the entire comparison. 

 
Fig. 5. Comparison of multi-omics integration methods in breast cancer 

molecular subtypes classification. 

Overall, TBI is the strongest and most effective integration 
method, as it consistently achieves high accuracy and includes 
the best-performing models. This indicates that transforming 
multi-omics data into a shared representation before integration 
is more effective for breast cancer molecular subtypes 
classification than direct concatenation or model-level 
integration. 

As per the analysis of the existing studies, the CBI method 
is widely used due to its simplicity and ease of implementation. 
However, this integration method completely ignores the 
complex interaction and relationships among the multi-omics 
data types, which leads to the potential loss of the most relevant 
information. Additionally, the CBI method suffers from high 
dimensionality, increases computational complexity, overfitting 
risks, and is sensitive to missing values or noise. Most of the 
existing studies highlight that the concatenation-based method 
is easy to implement. However, it does not fully capture the 
heterogeneity and hierarchical nature of the multi-omics data. 
Furthermore, another main disadvantage of this method is that it 
frequently increases the number of features in the joint matrix, 
which further increases the dimensionality of the multi-omics 
data. 

MBI provides a more adaptive and structured approach. It 
allows capturing the omics-specific interactions and 
relationships, thereby offering more detailed biological insights. 
However, the model-based integration method is relatively 
complex to design and also computationally expensive, 
particularly when dealing with high-dimensional multi-omics 
data. Furthermore, domain-specific modeling and hypermeter 
tuning are required for model-based integration, which further 
increases the proposed model complexity. 
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Lastly, TBI has been less frequently used in the existing 
studies, particularly for breast cancer molecular subtypes 
classification. But it has several advantages, including the 
potential to handle high-dimensional heterogeneous data types, 
capture both inter-omics and intra-omics interaction and 
relationships and provide more structured insights through the 
graph and attention mechanism. Although the TBI  is not used 
frequently in breast cancer molecular subtypes classification 
according to our observation, it has gained significant attention 
in other cancer domains because of showing superior 
performance in modeling long-range dependencies and dynamic 
relationships between features. TBI allows modular processing 
of each multi-omics data type while also enabling meaningful 
cross-model interaction, which makes it suitable for integrative 
analysis. 

While the CBI method remains popular due to its simplicity, 
the MBI offers enhanced interpretability and biological 
relevance, and the TBI method has great potential for next-
generation multi-omics data analysis. As the multi-omics 
research continues to evolve, combining the strengths of the 
multi-omics integration methods could lead to a more robust and 
accurate classification of breast cancer molecular subtypes, 
eventually contributing to improve the diagnosis, prognosis and 
personalized treatment strategies. 

VI. SUGGESTIONS AND FUTURE DIRECTIONS 

Based on the analysis of existing multi-omics integration 
methods for breast cancer molecular subtype classification, 
several opportunities for future research exist. While current 
methods, including CBI, MBI, and TBI, have demonstrated 
significant progress, challenges remain in balancing accuracy, 
interpretability, scalability, and robustness to incomplete data. 
The following section outlines key directions and practical 
suggestions to advance the development of more effective and 
reliable multi-omics integration strategies. 

A. Development of Hybrid Integration Methods 

Future studies should explore hybrid approaches that 
combine the strengths of CBI, MBI, and TBI integration 
methods. Such integration methods could leverage the 
simplicity and efficiency of CBI, the interpretability of MBI, and 
the high-dimensional, attention-driven capabilities of TBI. 
Hybrid models may provide improved classification accuracy 
while maintaining biological interpretability and scalability. 

B. Enhancing TBI Models 

TBI has shown great promise in capturing complex intra- 
and inter-omics relationships. Future work should focus on 
optimizing these methods for efficiency and robustness, 
including techniques to handle class imbalance, reduce 
computational costs, and incorporate multi-modal biological 
knowledge. This could enable TBI methods to generalize better 
across diverse multi-omics datasets and multiple omics variants. 

C. Robust Integration for Missing or Partial Omics Data 

Many current integration methods assume complete multi-
omics data variants, which is often not feasible in real-world 
studies. Future research should develop integration methods, 
such as multi-view transformers or imputation-enhanced 
models, to robustly integrate incomplete or partially missing 

omics data. This will increase the applicability of multi-omics 
integration in clinical and large-scale cohort studies. 

D. Focus on Interpretability and Biological Insight 

While TBI and MBI methods provide high accuracy, their 
interpretability can still be limited. Future research should 
emphasize methods that not only classify breast cancer 
molecular subtypes accurately but also provide interpretable 
outputs, highlighting key molecular features, pathways, and 
cross-omics interactions. Attention mechanisms, feature 
selection, or graph-based interpretability techniques can support 
this goal. 

E. Scalability to High-Dimensional Multi-Omics Datasets 

As multi-omics datasets grow in size and complexity, there 
is a need for methods that can scale efficiently without 
sacrificing performance. Future studies should focus on 
dimensionality reduction, computational optimizations, and 
adaptive integration methods that can handle large, 
heterogeneous datasets while maintaining predictive accuracy. 

VII. CONCLUSION 

In terms of multi-omics data, the integration methods 
include concatenation-based, model-based, and transformation-
based integration. These integration methods allow the 
discovery of hidden patterns in the multi-omics data. This study 
evaluates the multi-omics data integration methods for 
classifying the breast cancer molecular subtypes. The 
concatenation-based integration is straightforward, fast, and 
simple, and it also does not require preprocessing. However, 
CBI ignores the inter-omics interaction and also increases the 
number of features in the joint matrix. Model-based integration 
captures the interaction and relationship among multi-omics 
data types. However, MBI is more complex to design and it also 
cannot handle the high-dimensional heterogeneous data. The 
transformation-based integration appears to be a more promising 
alternative, particularly for the multi-omics data to classify the 
breast cancer molecular subtypes, as it not only handles the high-
dimensional data heterogeneity effectively but also captures 
more complex interactions. Each method has distinct advantages 
and is suitable for different research scenarios. Simple or 
concatenation-based models are recommended for small 
datasets; transformation-based or model-based integration 
methods support high interpretability. Furthermore, 
transformation-based integration methods also handle large 
heterogeneous datasets, and transformation-based multi-view 
models are effective for datasets with missing modalities. 

Overall, the findings show that each multi-omics data 
integration method for breast cancer molecular subtypes 
classification provides various advantages and limitations. 
However, the selection of the multi-omics integration methods 
totally varies on the combination of multi-omics data types, 
variants and nature of the proposed model for the classification 
of breast cancer molecular subtypes. Hence, these insights 
provide practical guidance for selecting appropriate multi-omics 
integration methods based on study objectives, data 
characteristics, and computational constraints, offering 
structured guidelines for future AI-driven research in breast 
cancer subtype classification. 
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