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Abstract—Breast cancer is one of the most life-threatening and
heterogeneous diseases. It contains various molecular subtypes,
each subtypes have different characteristics, treatment outcomes,
and prognosis. The proper integration of multi-omics data,
including genomics, epigenomics, transcriptomics, and
proteomics, is very important for enhancing the breast cancer
molecular subtypes classification accuracy. Despite the increase in
high-dimensional multi-omics data, selecting a suitable integration
method for multi-omics data in breast cancer molecular subtypes
classification still remains a crucial challenge. This study aims to
evaluate and compare, and assess the effectiveness of the multi-
omics data integration methods, including exploring the
advantages, limitations, and highlighting their performance in
terms of accuracy, interpretability, scalability, and biological
relevance. Our findings indicate that transformer-based
integration methods areincreasingly adoptedin recentstudies due
to their superior ability to handle high-dimensional heterogeneous
data and capture intricate cross-omics relationships while
providing interpretable insights. Additionally, we provide a
comparative overview of existing models, discuss key trends over
the years, and offer actionable guidance for method selection
based on dataset characteristics and research objectives. Finally,
we suggest future research directions, emphasizing hybrid deep
learning frameworks, graph-based models, and attention
mechanisms to enhance predictive accuracy and biological
interpretability.
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I.  INTRODUCTION

Breast canceris one of the major life-threatening and most
prevalent cancers affecting women worldwide. Despite the
advancements in the treatment and screening process, the
heterogeneity of breast cancer still presents a major challenge
[1]. The heterogeneity ofbreast cancer is not only morphological
but also rooted deeply at a molecular level, which influences
disease progression, therapeutic response and prognosis [2]. As
a result, the precise and accurate classification of breast cancer
into its molecular subtypes has gained significant attention
nowadays.

Molecular subtyping of breast cancer, such as Luminal-A,
Luminal-B, HER2-Enriched, Basal-Like and Normal-Like, has
emerged from the gene expression profiling [3]. These
molecular subtypes reflect diverse oncogenic mechanisms and
clinical outcomes, necessitating precise and robust classification
frameworks [4]. While traditional subtyping relies basically on
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mono-omics data, recent studies show that the integration of
multi-omics data can significantly enhance the accuracy and
reliability of breast cancer molecular subtypes classification [5].

Recently, high-throughput technologies such as multi-omics
data have become increasingly accessible, including genomics,
epigenomics, transcriptomics, and proteomics [6]. Each multi-
omics data type captures different aspects of breast tumor
heterogeneity, such as genomics, which reveals DNA-level
alterations, epigenomics uncovers regulatory modifications,
transcriptomics measures gene activity, and proteomics reflects
functional outputs [7]. Integrating the diverse multi-omics data
types provides a more comprehensive view of breast cancer,
allowing for more accurate subtype classification of breast
cancer [7].

Accurate and precise multi-omics data integration for breast
cancer molecular subtypes classification is very important, as
these molecular subtypes are defined through coordinated
alteration across the multiple biological layers rather than by
individual molecular signals [8]. The effective and accurate
integration of multi-omics data variants allows the identification
of meaningful biological patterns by integrating various
variations in genes, gene expression profiles, protein level
interaction, and epigenetic modification thathelp in the precise
classification of breast cancer molecular subtypes [9]. The
precise classification of breastcancer molecular subtypes is very
important for enhancing the diagnostic accuracy, personalized
treatment plans, and prognostic assessment [ 10]. Inappropriate
or poor integration of multi-omics data in breast cancer
molecular subtypes classification can lead to loss of important
biological information, noise amplification, or even a
misleading molecular subtypes classification of breast cancer
[11]. Therefore, the selection of an appropriate method for
integrating the multi-omics data is required to maintain the
biological relevance as well as the data heterogeneity, which is
a key challenge in multi-omicsbreast cancermolecular subtypes
classification research.

Despite the rapid increase in multi-omics breast cancer
subtypes classification research, there is still a lack of clear
guidance regarding the appropriate multi-omics data integration
methods for breast cancer molecular subtypes classification.
Existing reviews have provided a broad overview of multi-
omics integration methods in various domains. However, there
is a lack of focus on multi-omics integration methods
specifically for breast cancer molecular subtypes classification.
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To overcome this issue, this review study introduces a breast-
cancer focused analytical evaluation of the multi-omics
integration methods and compares the three most common
integration methods, including concatenation-based, model-
based, and transformation-based integration. By evaluating
these integration methods using evaluation criteria, including
biological interpretability, scalability, and robustness. This
study provides a structured and comparative assessment of the
integration methods for multi-omics data in breast cancer
molecular subtypes classification.

This study evaluates the integration methods used by
existing research, as well as provides actionable insights and
methodological guidance for researchers in choosing a suitable
multi-omics integration method for breast cancer molecular
subtypes classification. The key contributions of this review are
summarized as follows:

e To explore the existing multi-omics integration methods
for breast cancer molecular subtypes classification.

e To provide a clear comparison and evaluation of
integration methods for multi-omics data to classify the
breast cancer molecular subtypes.

e To highlight the advantages and disadvantages of the
integration methods for the multi-omics data, primarily
for breast cancer molecular subtypes classification.

e To suggest future suggestions and directions for
developing more accurate and useful integration models.

The rest of the study is organized as follows: Section II
emphasizes related works, while Section III focuses on the
existing integration methods for multi-omics data in breast
cancer molecular subtypes classification. Section [V is about the
analysis of multi-omics data integration methods for breast
cancer molecular subtypes classification. Section V concentrates
on the discussion, while Section VI emphasizes the suggestions
and recommendations for future research. Lastly, Section VIl is
the conclusion of the study.

II. RELATED WORKS

Multi-omics integration methods are widely explored to
enhance disease characterization and subtype classification by
integrating various multi-omics data types and analyzing high-
dimensional ~multi-omics data such as genomics,
transcriptomics, epigenomics and proteomics. This section
reviews the existing related works on the comparison of multi-
omics integration methods for cancer subtypes classificationand
provides the necessary background and context for
understanding current methodological trends and limitations.

Acharyaand Mukhopadhyay [12] review various network-
based methods based on ML for the integration of multi-omics
data in precision oncology, such as clustering and factorization.
The study also explores the challenges associated with multi-
omics data integration, particularly in the context of network-
based integration methods. It also determines the challenges in
multi-omics data integration in precision oncology. Similarly,
Menyhartand Gyo6rffy [8] discuss algorithmic frameworks and
data integration methods for cancer subtypes, disease
mechanism and diagnosis. The study sheds light on both single-
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omics and multi-omics data integration methods, including the
bottom-up and top-down integration methods. It also explains
various other integration methods, such as multivariate,
statistical, network, fusion-based, similarity-based and
correlation-based integration. The study also explores the
application of multi-omics data integration methods in various
multi-omics data types.

In the same way, Adossa et al. [13] introduce recent
developments in the single-cell multi-omics and
comprehensively review the existing data integration methods.
The study particularly focuses on early, intermediate and late
data integration methods, including exploring the conceptual
principles and main characteristics of each data integration
method. Also, the study determines various tools that are used
for the integration methods in single-cell multi-omics data.
Moreover, Vahabi and Michailidis [ 14] provide an overview of
multi-omics data integration methods with different statistical
approaches, focusing on unsupervised learning tasks, including
disease onset prediction, biomarker discovery, disease
subtyping and module discovery. The study mainly focuses on
unsupervised multi-omics data integration methods, particularly
regression-based integration methods, clustering and network-
based integration methods. It also elaborates on the working of
each data integration method in mono-omics data, such as
genomics, epigenomics, and transcriptomics.

Additionally, Cai et al. [15] review ML-based multi-omics
data integration methods for cancer, specifically early
integration, intermediate integration and late integration
methods. It mainly reviews the integration methods working
process in different multi-omics datasets. The study also
explores various multi-omics data integration tools and their
applications. Also, the study determines the strength of each
integration method in cancer subtypes classification. Moreover,
Subramanian et al. [16] review the multi-omics integration
methods, particularly network-based, fusion-based, similarity-
based and neighborhood-based integration methods. The study
also explores the application ofthese integration methods in the
prediction of biomarkers, diagnostics and driver genes for
diseases. Italso providesan overview of portals forvisualization
and interpretation of multi-omics datasets.

Furthermore, Heo et al. [17] provide an overview of the
rationale and concepts of multi-omics integration methods in
cancer research. The study explores multi-omics integration
methods and techniques used to help in the integration process
and how the multi-omics integration methods are applied in
different  cancer  subtypes  classification,  cancer
pathophysiology, drug target discovery and clinical decision
support. It also determines the latest findings and implications
in cancer multi-omics studies. Though enough progress hasbeen
made and various research has been conducted on multi-omics
integration methods across variouscancer types and domains, as
shown in Table I. However, there is no existing study that
focuses on the multi-omics data integration methods for breast
cancer molecular subtypes classification. To overcome this
issue, this comparison study introduces a breast cancer-specific
multi-omics integration methods that evaluate and compares the
existing multi-omics integration methods for multi-omics data
in breast cancer molecular subtypes classification.
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TABLE . EXISTING RELATED WORKS ON MULTI-OMICS INTEGRATION
Integration Methods
Reference Objective Concatenation- Model- Transformation- Limitations
based based based Others
Integration Integration Integration
Acharya and . . . Only focus on network-based multi-
Muk}zpadhyay Reviews ML—base.d mt.egratlon X X X N4 omi}és integration methods in precision
methods for multi-omics data
[12] oncology.
Focus only on multivariate, statistical,
Menyhart and Explore' the multi—om'ics network, fusion-based, s@ilaﬁty—
Gybrify [8] integration  methods with | X X X v based, and correlation-based
application in cancer research integration methods fortumorsubtypes,
prognosis and diagnosis only.
Explore computational Focus on early, intermediate and late
Adossa,etal. [13] | strategies for single-cell multi- | v v v X integration methods only for single-cell
omics integration methods multi-omics data.
Review unsupervised multi- Focus only on regression-based,
Vahabi and | omics data integration clustering and network-based
Michailidis [14] methods for various disease X X X 4 integration methods in different disease
subtyping subtyping.
Focus only on early integration,
. Explore the ML-based multi- intermediate integration and late
Cai,etal.[15] omics integration methods v v v X integration methods in general cancer
research.
Review multi-omics  data Focus only on network-based, fusion-
Subramanian, et | integration methods and their based, similarity-based and
al. [16] application in the cancer X X X v neighborhood-based integration
domain methods in general cancer.
Explore  multi-omics  data Focus only on computation integration
Heo, etal. [17] integration methods in cancer | X X X v
methods for cancer subtypes.
research.
Compare the multi-omics . L
. . Focus specifically on multi-omics
Current Study integration methods for breast v v v X integration methods for breast cancer
cancer molecular subtypes P
e molecular subtypes classification.
classification

III. INTEGRATION METHODS FOR MULTI-OMICS DATA IN
BREAST CANCER MOLECULAR SUBTYPES

The integration of multi-omics data is highly significant as it
integrates various biological data types and variants, including
genomics (Copy Number Alteration (CNA), Copy Number
Variation (CNV), Single Nucleotide Polymorphism (SNP)),
epigenomics (DNA-Methylation (DNA-Methyl)),
transcriptomics (Messenger RNA (mRNA), MicroRNA
(miRNA)) and proteomics (Reverse Phase Protein Array
(RPPA)). for evaluating and understanding the mechanism and
structure of breast cancer disease [17]. While mono-omics data
offer limited information about breast cancer [ 18]. Multi-omics
data integration captures the interaction and relationship among
breast cancer molecular subtypes at the molecular level and
provides a deeper understanding of breast cancer cellular
function [19]. With the help of accurate and proper multi-omics
data integration, healthcare professionals can explore the
aggressiveness and behavior of breast cancer by classifying
molecular subtypes, and also provide information about the
potential causes behind breast cancer. Proper integration of
multi-omics data variants can also assist in understanding the
flow from one omics data layer to another omics layer [16].

One of the main tasks of the multi-omics data in breast
cancer is the early classification of molecular subtypes, for
instance, classifying the breast cancer based on molecular level,

such as Luminal-A, Luminal-B, HER2-Enriched, Basal-Like
and Normal-Like [20]. Breast cancer patients’ treatment
depends on their specific molecular subtype. By properly
utilizing the multi-omics data integration methods and
considering various levels of the multi-omics data variants,
breast cancer molecular subtypes can be accurately classified at
the molecular level so that the patients can get better treatment
on time [20].

To gain the full potential of multi-omics data for accurate
classification of breast cancer molecular subtypes, effective
integration methods are important to capture the behavior and
aggressiveness of breast cancer based on its molecular level
through the integration of various multi-omics data variants.
Typically, the three most common and prominent methods are
used for multi-omics data integration, including the
concatenation-based integration, model-based integration and
transformation-based integration, which are discussed in
subsections.

A. Concatenation-Based Integration (CBI)

Concatenation-Based Integration (CBI), also known as early
integration, is one of the most direct integration methods, as
shown in Fig. 1. It directly combines various multi-omics data
variantsandcreatesajointmatrix. The CBI methodusually does
not require comprehensive feature engineering or extensive
preprocessing, as all omics features are added to a large input
matrix. The joint matrix is delivered into the model for the
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classification tasks. In this integration method, a joint matrix is
formed by stacking the feature vectors together from various
datasets, which creates a single and larger feature vector for each

dataset.
e
DNA
Methylation

(Cuncat?nnte Multi-Omics DataseI5>

l

Concatenation-based Integration

Fig. 1. Concatenation-based integration method.

For the breast cancer molecular subtypes classification,
Cristovao et al. [21]use CBI for integrating mRNA and miRNA
to train the Feed Forward Neural Network (FFNN) model for
classifying breast cancer molecular subtypes. CBI assists the
models in learning omics information at once and also captures
the non-linear pattern. However, it leads the model to high-
dimensional input and affects the model's performance. It
indicates that CBI struggles in modelling and capturing the
complex relationships and interactions among various omics
variants and also leads to reduced interpretability and potential
overfittingwhen labeled data are limited. In the same way, Zeng
et al. [22] utilize CNNS5 and integrate CNV and mRNA using
CBI, where multi-omics data are merged at the input feature
level and processed jointly by the CNNS5. According to the
study, CBlis straightforward, efficient, and avoids complex pre-
processing or feature transformation and it is suitable for a
lightweight DL model. It affects learning because concatenated
data emphasize dominant subtypes (e.g., Luminal A). Hence,
CBI omics specific detail can be lost, and also high
dimensionality challenges can occur and cannot explicitly
capture complex relationships between omics variants.

Furthermore, Rakshit et al. [23] apply SVM and integrate
DNA-Methyl, nRNA and miRNA using CBl into a single large
dataset. The integrated data is directly processed using Stacked
Autoencoder (SAE) to reduce dimensionality before being fed
into the classification model. CBI s straightforward and allows
unified processing of high-dimensional multi-omics data, but it
loses omics-specific signals, introduces noise from irrelevant
features, and does not provide a solution to weigh the
contributions of different multi-omics data variants.

B. Model-Based Integration (MBI)

Model-Based Integration (MBI), alsoknown as intermediate
integration, is a more organized, structured and adaptive
integration method as shown in Fig. 2. In the model-based
integration method, all multi-omics data variants are first
processed by their module and converted into an intermediate
form before a final model s created using various intermediate
models. Hence, the integration happens to determine the various
multi-omics data associated with a specific disease.

For the breast cancer molecular subtypes classification, Lin,
etal. [24] propose DeepMO and integrate mRNA, DNA-Methyl
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and CNV through MBI and their own feature extraction
subnetwork, and then fuse the learned high-level patterns into a
single integrated representation for classification. The MBI
method allows the model to capture complex cross-omics
relationships more effectively than the CBI method. However,
MBI is sensitive to class imbalance, relies on default
hyperparameters, and has higher computational demands due to
large feature sets. Similarly, Choi and Chae [25] propose
moBRCA-net and integrate DNA-Methyl and miRNA by MBI
through separate self-attention modules to learn the importance
of'individual features. The high-level data are then fused into a
single joint representation, which is used by a shared
classification network to classify subtypes. MBI preserves
biological relationships between omics variants, reduces
dimensionality, and enhancesinterpretability. Hence, MBlrelies
on feature selection, misses some cross-omics dependencies,
and has higher computational requirements.

e Y ——— R — e—
B DNA .
CNV Methylation miRNA NN RPPA
A
Model 1 Model 2 Model3 | sause Model n

l

Model-based Integration

Fig.2. Model-based integration method.

In the same way, Lupat et al. [26] develop MOANNA and
integrate Gene-Exp, CNV and Somatic Mutation through MBI
using a semi-supervised AE, transforming the high-dimensional
input into a 64-dimensional latent representation. This
integrated feature vector is then used by multiple supervised
classifiers to classify breast cancer molecular cancer subtypes.
By learning compact and informative features, MBI improves
classification performance compared to other methods.
However, it requires large training datasets and may still face
challenges with high-dimensional data. Moreover, Guo et al.
[27] propose AGCN and integrate CNV, DNA-Methyl and
mRNA through MBI into Protein-Protein Interaction (PPI)
network. MBI captures complex cross-omics relationships and
gene-level structural information before classification,
producing a joint representation for breast cancer molecular
subtype classification. Hence, MBI depends on accurate graph
construction, which is computationally intensive and less
flexible for non-graph data.

Further, Li and Nabavi [28] utilize GNN and CNV, mRNA,
and miRNA into a single supra-graph using MBI, where nodes
represent genes and edges capture intra- and inter-omics
interactions. GNN layers learn hiddenrepresentations across the
entire graph, and combined with features from a parallel
network to form a final integrated vector for classification. The
MBI method captures complex biological relationships and
improves representation. Hence, it depends on predefined graph
connections and requires high computational effort.
Furthermore, Tao et al. [29] propose SMOMKL and integrate
CNV, DNA-Methyl and mRNA using MBI and transform into
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a kernel matrix representing patient similarities. These kernels
are combined within the MKL model using learned weights,
allowing the integration to occur at the similarity level rather
than by raw data concatenation. MBI effectively handles high-
dimensionality and improves predictive performance; however,
it can be computationally intensive and depends on proper
kernel selection.

Moreover, Ren et al. [30] propose MVGNN and integrate
DNA-Methyl, nRNA and miRNA using MBI, which is first
separately processed through individual GCN branches to
extract omics-specific patterns. These patterns are then fused
using a multi-view attention mechanism to create a single
integrated representation that captures complex cross-omics
relationships. MBI effectively models inter-omics correlations
and highlights important features. Hence, it requires high-
quality graphs and can be computationally demanding.
Similarly, Zeng et al. [31] utilize DiffRS-net and use MBI for
integrating DNA-Methyl mRNA and miRNA separately to
select important features, rather than concatenating raw data
directly. The correlated features are fused within a DL using an
attention mechanism, which assigns higher importance to more
informative features before classification. MBI reduces data
dimensionality and better captures cross-omics relationships.
Hence, it mainly focuses on linear correlations and requires
careful parameter tuning.

Islam et al. [32] apply DNN and use MBI for integrating
CAN, Gene-Exp and mRNA. In the main classification model,
each omics variant is first processed separately through its own
neural network branch to learn high-level features, and these
learned features are then merged at an intermediate stage before
making the final classification. MBI design allows the model to
capture omics-specific patterns first and then leam
complementary information from both data variants together.
The integratedmodel achieved better classification performance
than models using only a single omics variant. However, it
requires a relatively large amount of data and may face
challenges related to high dimensionality. In the same way, Li et
al. [33] introduce CautionGCN and apply MBI for integrating
CNV, DNA-Methyl and RNAseq. By using MBI, each omics
variant is first processed through a causal multi-head AE to
extract meaningful and low-dimensional features rather than
directly concatenating raw data. SNF is then applied to integrate
cross-omics relationships at the network level, and a graph
convolutional network jointly learns from the fused similarity
network and the extracted features to perform classification.
MBI design helps capture complex multi-omics interactions and
improves robustness to high-dimensional and imbalanced data.
Hence, it introduces higher computational complexity and
depends on accurate similarity modeling.

C. Transformation-Based Integration (TBI)

Transformation-Based Integration (TBI) is also known as
the late integration method. In the TBI method, each multi-
omics data layer is transformed intoa representable, comparable
latent space, such as a graph, kernel similarity matrices, or core
matrix. Each multi-omics dataset is transformed into an
intermediate form before integrating all the data into a joint
transformation. Oncethedatais transformed, allthe multi-omics
data layers are integrated into the model using a specific
technique, as shown in Fig. 3.
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For the breast cancer molecular subtypes classification, Ma
and Guan [34] present MOCSC and apply TBI for integrating
mRNA, miRNA, DNA-Methyl and CNV. By using TBI, each
omics variant is processed separately, where features are first
learned using SSDAE and then used by an individual NN to
produce separate classification. These omics-specific
classifications are finally combined usinga VCDN to generate
the final classification result. TBI-based fusion improves
robustness by integrating information from multiple omics
views, but it depends on the quality of each omics-specific
model. Similarly, Meshoul etal. [35] present ET and integrate
CNV, DNA-Methyl and RNA through TBI, and select features
separately for each omics type before combining them. The
study showed that the TBI improves the feature relevance and
explainability, but it increases complexity and depends heavily
on the quality of feature selection. In the same way, Huang et al.
[18] propose DSCCN and integrate DNA-Methyl and mRNA
using TBI, where each variant is processed separately through
its own network to generate independent classification, which
are combined at the decision level to produce the final
classification. TBImethod captures complementary information
from each omics type and avoids problems with high-
dimensional concatenation. Hence, it may be less effective for
underrepresented subtypes and could benefit from additional
data or extensions to other omics types.

Further, Zhang et al. [36] propose AET-net and integrate
Gene-Exp and DNA-Methyl. Each omics variant is first
processed separately and then fused into a shared latent
representation using an AE, capturing essential features from
both omics variants. This fused feature vector is then processed
by a classifier for final classification.

TBI reduces dimensionality, handles high-dimensionality of
the data effectively, and models complex dependencies. Hence,
it requires careful tuning and overfitting with small datasets.
Lastly, Li et al. [37] present MoGCN and integrate CNV,
RNAseq and RPPA using TBI. The multi-omics data is first
processed through a separate AE to learn a shared latent
representation. It then applies SNF to create a unified PSN, and
finally, a GCN performs classification using both the joint
feature matrix and the fused network. TBI captures nonlinear
relationships, improves stability, and achieves high accuracy,
though it requires substantial computation and may be sensitive
to noise in high-dimensional data.

p— R — R — ——
. DNA .
CNV Methylation miRNA | eenen RPPA
Intermediate Intermediate Intermediate Intermediate
Form 1 Form 2 Form 3 e Form n

Combine Tntermediate Forms using
Graph or Core Matrix

Transformation-based Integration

Fig.3. Transformation-based integration method.
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TABLE II. EXISTING STUDIES ON MULTI-OMICS DATA INTEGRATION METHODS FOR BREAST CANCER MOLECULAR SUBTYPES CLASSIFICATION
References Obiective Proposed Integration Accurac Performance Advantages of Limitations of
. Models Methods y Metrics Integration Method Integration Method
o Effectively handles | e Lacks interpretability in
Breast Cancer « Accuracy high-dimensional latent representations.
Cristovao, Molecular LR & FFNN CBI 94.00% « Precision multi-omics data. . e Sensitive . to
etal. [21] Subtypes o Recall e Captures  non-linear hyperparameter tuning.
Classification relationships across | e May overfit with limited
omics variants. labeled data.
Breast c ¢ Out.pertform; single- | Gengitive  to class
reas ancer omics-base .
. . . imbalance.
Lin, et al. | Molecular « DeepMO MBI 78.20% e Accuracy integration methods-. « Computational
[24] Subtypes * AUC * Handles high- complexity from large
Classification g?;irtlszg,al data feature sets.
o Relies on feature
e Enhances performance selection to manage high
by preserving dimensionality and
Breast Cancer o Accuracy biological relationships computational costs.
. between omics variants | e Potentially missing some
h Molecul BRCA- F1- . .
ghgl: [zg?d Su%te;}l:eir ‘ nme(t) ¢ MBI 90.90% : Prefizgrf e Learn feature omics dependencies.
Classification « Recall unpona.nce effectively. | e Does  not expl1c1Fly
e Improving model cross-omics
interpretability and dependencies, which
subtype distinction. could be extended in
future work.
o Effectively handles
Breast Cancer high integration | e Can exacerbate the curse
Islam,etal. | Molecular « DNN MBI 79.20% o Accuracy through feature of d@ensmnahty. N
[32] Subtypes learning e Requires large training
Classification e Improve subtype data to avoid overfitting.
classification over.
e Handles high- | e Potential overfitting in
Breast Cancer e F1-Score dimensional multi- large datasets.
Lupat,etal. | Molecular o .. . . .
[26] Subtypes e MOANNA MBI 85.60% ® Precision omics effectively. e Reconstruction loss may
Classification e Recall e Improves not align perfectly with
generalization. classification.
e Accuracy . Lo
e Avoids data | e Dependent on individual
B AUR . . . . .
Ma and Mrzi‘::ular Cancer : Mlicr(;))c Fl inconsistency by fusing classifier quality.
Guan [34] Subtypes * MOCSC TBI 95.00% Value at the decision level. eMay propagate errors
Claszi}f)ication oW v ted e Captures cross-omics from weak omics
Fle{%:h?e correlations effectively. models.
e Accuracy
e Accuracy A tiost
¢ AUROC e Improves feature | °r MUIISIALe  process
e F1-Score relevance across omics. increases complexity.
Breast Cancer M F1 | «Enn e Dependent on the feature
Meshoul, et | Molecular o ¢ viacro nhances selection quality.
al. [35] Subtypes oET TBI 84.50% Value explainability. « Computationally
Classification e Precision o flexible with early/late expensive
e Recall schemes for different | Dopes not \.)vork well with
° ROC—AUC data handling. smaller datasets.
o Weighted
F1 Value
¢ Potential loss of omics-
. specific patterns.
7z tal f/{re?St ) Cancer o F1-Score -?and](?s .lngbiilalnced e Exacerbates
eng, et al olecular o .. ata via weighted loss; . . L.
22] Subtypes e CNN5 CBI 90.02% e Precision direct  leaming  on dlmenSIOIlayt.y issues. '
Classification * Recall combined features. o Lacks explicit handling
of inter-omics
correlations.
Breast Cancer | « AGCN relational dependencies . [ ay
. e Accuracy P introduce bias if prior
Guo, et al. | Molecular Variants: o between genes across .
27] Subtypes SEGCN & MBI 89.42% e AUC omics layers. knowledgg is incomplete.
Classification cAGCN * Mcc «Enables  biologically | * ComPutationally
meanineful fusion b intensive for large-scale
¢ | graphs:
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References Obiective Proposed Integration Accurac Performance Advantages of Limitations of
J Models Methods Y Metrics Integration Method Integration Method
incorporating prior | eLack of flexibility in
structural relationships. handling non-graphical
data representations.
o Successfully identifies
inter-omics e Data imbalance in breast
associations to capture cancer datasets reduces
Breast Cancer @mplempntary accuracy for minority
Huan et | Molecular e Accuracy information and reduce subtypes.
aLll 8g]’ Subiypes e DSCCN TBI 90.60% e AUC data heterogeneity. e Future extensions are
’ e e F1-Score o Outperforms needed for non-coding
Classification . .
concatenation-based, omics and data
ensemble-based, and augmentation
knowledge-driven techniques.
methods.
e Relies on unsupervised
Breast Cancer o Captures nonlinear AE anfi SNF. .
Li, et al | Molecular e Accuracy relationships and | ° Ir.ltensn.y for  high-
p * MoGCN TBI 89.80% . o dimensional data.
[37] Subtypes e F1-Score improves stability . .
Classification effectively. * Potential noise
interference in  multi-
omics integration.
e Complexity in causal
. inference
Breast Cancer e Accuracy ¢ Reduces  bias  and e May introduce
Li, et al | Molecular e F1-Score enhances robustness to assumptions
. ’ e CautionGCN | MBI 89.18% . imbalanced data. )
[33] Subtypes ® Precision L e Dependent on accurate
SO e Captures multi-omics L
Classification e Recall . . . similarity networks.
interactions via graphs. .

e Computationally
demanding.

e Dependent on predefined
graph connections, which

Breast Cancer o Incorporates biological may s unknown
Li and | Molecular o Multi-Omic e Accuracy knO\;Il)edge into g%;ph relations.
. ; MBI 86.40% i i i
Nabavi[28] [ Subtypes GNN ’ e F1-Score structures  for better | ngh}?r complgxny m
Classification tati graph construction.
representation . .

e Potential  bias  from
incomplete  biological
knowledge in edges.

e Learns optimal kernel | o Kernel selection  is
Breast Cancer combinations for critical and may miss
Tao, et al. | Molecular o e Accuracy omics. non-linear interactions.
[29] Subtypes * SMOMKL MBI 87.00% e AUC e Improves  predictive | e Computationally
Classification power through kemel expensive for large
fusion. kemels.
® Reduces
dimensionality ~ while | e Sensitive to
Breast Cancer capturing complex hyperparameter tuning,
Zhang, et | Molecular o e Accuracy dependencies through which can affect
al. [36] Subtypes * AET-net TBI 90.00% e F1-Score Transformation integration quality.
Classification attention, leading to | e Potential for overfitting
effective multi-omics in smaller datasets.
integration.
e Accuracy e Captures inter-omics
Breast Cancer e AUC correlations via graphs; | e Relies on graph quality
Ren, et al. | Molecular o e F1-Score attention weights and similarity networks
[30] Subtypes * MVGNN MBI 91.80% o Precision important features. e Computational overhead
Classification e Sensitivity e Handles heterogeneous in multi-view fusion.
o Specificity data structures.
o Detects correlations .
. . o Assumes linear
across multiple omics . . .
Breast Cancer e Accuracy variants relationships, may miss
. non-linear interactions.
Zeng, et al. | Molecular . o e F1-Score e Reduces . . .
e DiffRS-net MBI 91.30% . . Co . e Sparsity  tuning  is
[31] Subtypes ® Precision dimensionality  while sensitive
Classification e Recall preserving associations ' .
e Lacks dynamic

e Enhances
interpretability.

weighting of views.
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References Obiective Proposed Integration Accurac Performance Advantages of Limitations of
J Models Methods y Metrics Integration Method Integration Method
o Straightforward e May miss omics-specific
combination of signals in high-
heterogeneous data dimensional space.
Breast Cancer . .
. e Enables unified | eIncreases the risk of
Rakshit, et | Molecular . . . .
¢ SVM CBI 93.50% e Accuracy processing in a deep noise from irrelevant
al. [23] Subtypes
Classification model features. .
® Reduces the | eLacks a mechanism to
preprocessing weigh different omics
complexity. contributions.
Table I shows the comparison of existing studies on multi- type, sample size, interpretability, and computational

omics integration, highlighting the utilization of integration
methods from a CBI to MBI and TBL It summarizes the
objectives, proposed models for the classification, the type of
integration method used, and their reported performance
metrics. and highlighting the advantages and limitations of each
integration method used in breast cancer molecular subtypes
classification.

IV. ANALYSIS OF MULTI-OMICS DATA INTEGRATION
METHODS FOR BREAST CANCER MOLECULAR SUBTYPES
CLASSIFICATION

All three multi-omics data integration methods are used by
the existing studies for breast cancer molecular subtypes
classification. Each integration method has its own
characteristics, strengths and limits, as shown in Table IIL

Table Il provides a practical guideline for selecting a
suitableintegration method for multi-omics data in breastcancer
molecular subtypes classification, based on aspects such as data

requirements from the observation of the existing studies.
According to the findings from the existing studies, CBI is
appropriate for both mono-omics and multi-omics data,
particularly when the dataset is small to medium in size. CBI is
straightforward to implement, computationally light, and highly
interpretable, making it ideal when simplicity and clarity are
important. It works best for combining a limited number of
omics variants, where the primary goal is to preserve
interpretability and generate easily understandable insights.
While MBI is specifically designed for medium to large multi-
omics datasets and is appropriate for medium interpretability
and computational complexity. Lastly, TBI providesa balance
between predictive performance and interpretability, handling
high-dimensional omics variants more effectively. It is
especially designed for large multi-omics datasets and is suitable
for high-dimensional data. It can easily capture more complex
interactions and relationships among different omics data types
and variants, and is more appropriate for a graph-based
architecture.

TABLE III. COMPARISON OF MULTI-OMICS DATA INTEGRATION METHODS FOR BREAST CANCER MOLECULAR SUBTYPES CLASSIFICATION
Integration Methods Sgii;fii::y Interpretability C()Cl:::;’t; t;‘(i):;al Strenghts Weaknesses
o Simple, fast and straightforward.
X o No preprocessing is required as all omics | o Ignores inter-omics
ﬁ:l:;:;et?:;wn-lsizjelgl): featu.res are integrated into a large input relati0n§hips.
Combines all omics data | Small  to . matrix. ¢ Increasing the nqmber of
into one large input | Medium High Low o Uses a full feature set. fejature.s toge;ther increases
matrix  without much OHgndle al.l omics data types in a single dlme.n'smnahty. ‘ o
preprocessing. joint matrix. . Sensm\{e to n01s§/mlssmg
e Produces continuous data, which makes it data, high-dimensional.
easier for various ML models to analyze.
e Complex to design.
e Cannot handle
x:’edge:::iz;ed (MBI): heterogeneous data. .
L feat Medium to . . e Captures omics-specific relationships and | ° Perform feature selection
cams | eatures N Medium Medium apture P P before integrating omics
separately using sub- [ Large teractions. . e &
models, then merges the data, whlch can lead to the
learned representation loss of important features.
¢ Require carefulhypermeter
tuning for each sub-model.
o Suitable for high-dimensional data.
e Capture more complex interactions and | ® Transformation can cause
. relationships among different omics data information loss,
Iramiormtion el e depending ondovn
Converts omics data into . _ ® Most common integration data method. quality. ) )
a shared latent space Large Low to Medium | High e Easily deal with data heterogeneity. * Challenges in transforming
(e, graphs), then o Suitable for graph-based architecture. data into an intermediate
integrates. o Include the statistical frameworks, such as form.
core-based integration and graph-based | ®Kemel methods are
semi-supervised learning, fordevelopinga computationally extensive.
model.
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Overall, Table IIl serves as a decision-support guideline for
researchers, guiding them in choosing the most appropriate
integration methods for omics data, particularly in breast cancer
subtypes classification based on the specific characteristics of
their dataset, research objectives, and available computational
resources.

V. DISCcUSsSION

Existing studies have increasingly explored CBI, MBI, and
TBI methods for multi-omics data analysis in breast cancer
molecular subtypes classification. Each integration method has
its own strengths and limitations in capturing inter-omics
relationships, managing data dimensionality, and improving
classification performance.

Trends of Multi-Omics Integration Methods (2018-2025)

Number of Exis
4
Y

1 - & 4 T
< \
.
\
. \
,
P e S TN

2018 2019 2020 2022 2023 2024 2025
Years
—&— Concatenation-Based Integration — B Model Based Integration Transformer

Based Integration

Fig. 4. Trends of multi-omics integration methods in breast cancer molecular
subtypes classification.

Fig. 4 shows trends in the use of multi-omics integration
methods for breast cancer molecular subtype classification from
2018 to 2025. Based on the graph, it is clear that early studies
predominantly use CBI methods due to their simplicity and ease
of implementation, while MBI methods became increasingly
popular from 2019 onward, reflecting their ability to capture
inter-omics interactions and improve predictive performance.
Additionally, TBI emerged in 2022 and shows a growing
adoption trend, highlighting its superior capacity to handle high-
dimensional heterogeneous data, model complex relationships
across omics layers, and provide attention-driven
interpretability. This finding shows a clear shift in the field
toward leveraging deep learning architectures for more accurate
and biologically informative breast cancer molecular subtype
classification, indicating that TBI methods are becoming a
preferred approach for multi-omics integration in recent studies.

Fig. 5 demonstrates the comparison of CBI, MBI, and TBI
integration methods for multi-omics data in breast cancer
molecular subtypes classification based on the accuracy of the
models. For CBI, the minimum accuracy 90.20% is shown by
CNNS5 with CBI. While SVM shows a medium accuracy of
93.50% with CBI, and FFNN achieves a maximum accuracy of
94.00% with CBI. Models with CBI show stable and strong
accuracy, but their performance mainly depends on integrating
different multi-omics variants into a joint matrix directly, which
may increase data dimensionality and complexity. For MBI, the
performance varies more widely. DeepMo and DNN with MBI
shows minimum accuracy of 78.20%, indicating weaker
performance. Models such as MOANNA, MoGNN, and
SMOMKL with MBI show medium accuracy of 85.60%,
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86.40% and 87.00% demonstrate more good performance. The
models, including MVGNN, DiffRS-net, and moBRCA-net
with MBI, achieve significantaccuracy of 91.80%, 91.30%, and
90.90%, showing that MBI can perform well when advanced
models are used. For TBI, MoGCN attained 89.80% with TBI
represents the minimum accuracy, while AET-netand DSCCN
with TBI achieve accuracy of 90.00% and 90.60% show
medium performance. While the best results are achieved by ET
and MOCSC, with TBI attaining an accuracy of 95.00%, which
is the maximum accuracy in the entire comparison.

Comparsion of Integration Methods
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Fig. 5. Comparison of multi-omics integration methods in breast cancer
molecular subtypes classification.

Overall, TBI is the strongest and most effective integration
method, as it consistently achieves high accuracy and includes
the best-performing models. This indicates that transforming
multi-omics data into a shared representation before integration
is more effective for breast cancer molecular subtypes
classification than direct concatenation or model-level
integration.

As per the analysis of the existing studies, the CBI method
is widely used due to its simplicity and ease of implementation.
However, this integration method completely ignores the
complex interaction and relationships among the multi-omics
data types, which leads to the potential loss of the most relevant
information. Additionally, the CBI method suffers from high
dimensionality, increases computational complexity, overfitting
risks, and is sensitive to missing values or noise. Most of the
existing studies highlight that the concatenation-based method
is easy to implement. However, it does not fully capture the
heterogeneity and hierarchical nature of the multi-omics data.
Furthermore, another main disadvantage ofthis method is that it
frequently increases the number of features in the joint matrix,
which further increases the dimensionality of the multi-omics
data.

MBI provides a more adaptive and structured approach. It
allows capturing the omics-specific interactions and
relationships, thereby offering more detailed biological insights.
However, the model-based integration method is relatively
complex to design and also computationally expensive,
particularly when dealing with high-dimensional multi-omics
data. Furthermore, domain-specific modeling and hypermeter
tuning are required for model-based integration, which further
increases the proposed model complexity.
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Lastly, TBI has been less frequently used in the existing
studies, particularly for breast cancer molecular subtypes
classification. But it has several advantages, including the
potential to handle high-dimensional heterogeneous data types,
capture both inter-omics and intra-omics interaction and
relationships and provide more structured insights through the
graph and attention mechanism. Although the TBI is not used
frequently in breast cancer molecular subtypes classification
according to our observation, it has gained significant attention
in other cancer domains because of showing superior
performance in modeling long-range dependencies and dynamic
relationships between features. TBI allows modular processing
of each multi-omics data type while also enabling meaningful
cross-model interaction, which makes it suitable for integrative
analysis.

While the CBI method remains popular due to its simplicity,
the MBI offers enhanced interpretability and biological
relevance, and the TBI method has great potential for next-
generation multi-omics data analysis. As the multi-omics
research continues to evolve, combining the strengths of the
multi-omics integrationmethods couldlead to amore robustand
accurate classification of breast cancer molecular subtypes,
eventually contributing to improve the diagnosis, prognosis and
personalized treatment strategies.

VI. SUGGESTIONS AND FUTURE DIRECTIONS

Based on the analysis of existing multi-omics integration
methods for breast cancer molecular subtype classification,
several opportunities for future research exist. While current
methods, including CBI, MBI, and TBI, have demonstrated
significant progress, challenges remain in balancing accuracy,
interpretability, scalability, and robustness to incomplete data.
The following section outlines key directions and practical
suggestions to advance the development of more e ffective and
reliable multi-omics integration strategies.

A. Development of Hybrid Integration Methods

Future studies should explore hybrid approaches that
combine the strengths of CBI, MBI, and TBI integration
methods. Such integration methods could leverage the
simplicity and efficiency of CBI, the interpretability of MBI and
the high-dimensional, attention-driven capabilities of TBI.
Hybrid models may provide improved classification accuracy
while maintaining biological interpretability and scalability.

B. Enhancing TBI Models

TBI has shown great promise in capturing complex intra-
and inter-omics relationships. Future work should focus on
optimizing these methods for efficiency and robustness,
including techniques to handle class imbalance, reduce
computational costs, and incorporate multi-modal biological
knowledge. This could enable TBI methods to generalize better
across diverse multi-omics datasets and multiple omics variants.

C. Robust Integration for Missing or Partial Omics Data

Many current integration methods assume complete multi-
omics data variants, which is often not feasible in real-world
studies. Future research should develop integration methods,
such as multi-view transformers or imputation-enhanced
models, to robustly integrate incomplete or partially missing
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omics data. This will increase the applicability of multi-omics
integration in clinical and large-scale cohort studies.

D. Focus on Interpretability and Biological Insight

While TBI and MBI methods provide high accuracy, their
interpretability can still be limited. Future research should
emphasize methods that not only classify breast cancer
molecular subtypes accurately but also provide interpretable
outputs, highlighting key molecular features, pathways, and
cross-omics interactions. Attention mechanisms, feature
selection, or graph-based interpretability techniques can support
this goal.

E. Scalability to High-Dimensional Multi-Omics Datasets

As multi-omics datasets grow in size and complexity, there
is a need for methods that can scale efficiently without
sacrificing performance. Future studies should focus on
dimensionality reduction, computational optimizations, and
adaptive integration methods that can handle large,
heterogeneous datasets while maintaining predictive accuracy.

VII. CONCLUSION

In terms of multi-omics data, the integration methods
include concatenation-based, model-based, and transformation-
based integration. These integration methods allow the
discovery of hidden patterns in the multi-omics data. This study
evaluates the multi-omics data integration methods for
classifying the breast cancer molecular subtypes. The
concatenation-based integration is straightforward, fast, and
simple, and it also does not require preprocessing. However,
CBI ignores the inter-omics interaction and also increases the
number of features in the joint matrix. Model-based integration
captures the interaction and relationship among multi-omics
data types. However, MBI is more complex to design and it also
cannot handle the high-dimensional heterogeneous data. The
transformation-based integration appears to bea more promising
alternative, particularly for the multi-omics data to classify the
breastcancermolecularsubtypes, asitnot only handlesthe high-
dimensional data heterogeneity effectively but also captures
more complexinteractions. Eachmethod has distinct advantages
and is suitable for different research scenarios. Simple or
concatenation-based models are recommended for small
datasets; transformation-based or model-based integration
methods support high interpretability. Furthermore,
transformation-based integration methods also handle large
heterogeneous datasets, and transformation-based multi-view
models are effective for datasets with missing modalities.

Overall, the findings show that each multi-omics data
integration method for breast cancer molecular subtypes
classification provides various advantages and limitations.
However, the selection of the multi-omics integration methods
totally varies on the combination of multi-omics data types,
variants and nature of the proposed model for the classification
of breast cancer molecular subtypes. Hence, these insights
provide practical guidance for selectingappropriate multi-omics
integration methods based on study objectives, data
characteristics, and computational constraints, offering
structured guidelines for future Al-driven research in breast
cancer subtype classification.
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