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Abstract—Early assessment of the persistence, 

bioaccumulation, and toxicity (PBT) of chemicals is a major 

challenge for environmental protection and international 

regulatory frameworks. The objective of this study is to compare 

the effectiveness of three graph-based deep learning 

architectures—a graph neural network (GNN), a message 

passing network (MPNN), and a graph attention network 

(GAT)—for the binary classification of molecules as PBT or non-

PBT.We compiled a regulatory dataset comprising 5,130 

molecules annotated from public sources, such as ECHA and 

international POP lists. Molecular graphs were generated from 

SMILES using RDKit. The three models were implemented in 

PyTorch Geometric with homogeneous hyperparameters. The 

experiments were conducted with a scaffold split ratio of 80/10/10 

and 10-fold cross-validation. Performance was evaluated using 

accuracy, AUC-ROC, and F1-score. Interpretability was 

examined using GAT model attention maps and atomic 

contribution analysis. The MPNN model achieves the best overall 

performance (Accuracy = 0.92; ROC-AUC = 0.94; F1 = 0.91), 

followed by GAT (Accuracy = 0.89; ROC-AUC = 0.93). The basic 

GNN performs less well (Accuracy = 0.82; ROC-AUC = 0.89). 

The GAT model provides more detailed atomic explanations 

thanks to attention weights, while the MPNN stands out for its 

predictive accuracy. The dataset includes annotations from 

heterogeneous experimental sources, which may introduce noise 

into the labels. The models rely solely on 2D graphs, without 3D 

conformational information. MPNN models can accelerate PBT 

pre-screening and help prioritize substances for experimental 

testing. GATs provide useful interpretations for understanding 

the substructures associated with PBT properties. This study 

provides the first reproducible and systematic comparison of 

GNN, MPNN, and GAT models applied to a large regulatory 

dataset dedicated to PBT, analyzing both performance and 

interpretability. These results highlight the potential of graph-

based QSAR models for regulatory PBT screening and 

environmental risk assessment. 

Keywords—PBT prediction; persistence;  bioaccumulation; 

toxicity; QSAR models; cheminformatics; environmental risk 
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I. INTRODUCTION 

The persistence, bioaccumulation, and toxicity (PBT) of 
chemicals are fundamental criteria in environmental risk 
assessment and international regulatory processes such as 
REACH. Early identification of hazardous substances still 
relies heavily on in vivo and in vitro experiments, which are 
costly, time-consuming, and difficult to scale up to thousands 
of emerging compounds. This growing need for robust 
predictive methods has fueled the rise of machine learning 
applied to molecular structures, particularly graph models, 
which are capable of directly capturing the structured nature of 
molecules. These approaches now offer a promising alternative 
for accelerating the screening of PBT substances, while 
improving the reproducibility and transparency of assessments. 

Recent advances in molecular modeling have been largely 
driven by Graph Neural Networks (GNNs), which learn 
structural representations by treating molecules as atomic 
graphs. Several studies have demonstrated their effectiveness 
in predicting different forms of toxicity, including acute 
toxicity, ecotoxicological effects, and liver toxicity [1], [2], [3], 
[4], [5]. Modern GNN architectures, including graph 
convolutions, equivariant networks, and hierarchical 
mechanisms, have significantly improved predictive 
performance for complex properties such as systemic toxicity 
and endocrine disruption [6], [7], [8], [9], [10]. 

At the same time, Message Passing Neural Networks 
(MPNN) have introduced explicit information propagation 
between atoms and bonds, enabling the capture of finer 
structural patterns and improving the prediction of properties 
related to ADMET, liver toxicity, or xenobiotic metabolism 
[11], [12], [13], [14], [15], [16], [17], [18]. Several studies 
show that MPNNs frequently outperform simpler models, 
particularly for properties sensitive to local atomic interactions 
and contextual effects [16], [17], [18]. 

Graph Attention Networks (GAT) and graph transformers 
represent a major evolution, introducing attention mechanisms 
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capable of assigning differentiated weights to atomic neighbors 
based on their chemical importance. These models not only 
offer better performance but also increased interpretability, 
making it possible to identify molecular substructures that 
contribute significantly to toxicity [19], [20], [21], [22]. Recent 
work shows that atomic attention is an essential tool in a 
regulatory context, where scientific justification of predictions 
is indispensable [23], [24]. 

In addition, approaches extending these models through 
pre-training, integration of quantum properties, multitasking, or 
fusion with knowledge from toxicological databases have 
shown significant potential for stabilizing predictions and 
improving generalization to unseen substances [7], [20], [25], 
[26]. Finally, some work specifically targets environmental and 
ecotoxicological toxicity, a key area for PBT substances, by 
modeling the complex relationships between molecules, 
aquatic species, and environmental parameters [27], [28]. 

Despite these advances, several limitations remain clearly 
identified in recent literature: 

• Most studies focus on generic datasets (Tox21, 
ADMET), which are rarely adapted to the specific 
requirements of PBT classification. 

• Few studies offer a balanced and reproducible 
comparison between the main families of graph models 
(GNN, MPNN, GAT). 

• Work integrating both predictive performance and 
atomic interpretability remains limited, even though 
these elements are essential for regulatory frameworks. 

• No recent study provides a comparative assessment 
based on a consolidated regulatory dataset specifically 
dedicated to PBT properties. 

In this context, this study aims to provide a rigorous and 
reproducible evaluation of graph-based deep learning models 
for the prediction of persistence, bioaccumulation, and toxicity 
(PBT) properties of chemical substances. Specifically, we 
compare three representative molecular graph architectures: a 
classical Graph Neural Network (GNN), a Message Passing 
Neural Network (MPNN), and a Graph Attention Network 
(GAT), using a consolidated regulatory dataset dedicated to 
PBT classification. The novelty of this work does not lie in 

proposing a new architecture, but rather in the regulatory 
grounding of the dataset, the systematic and reproducible 
evaluation protocol, and the joint analysis of predictive 
performance and atomic-level interpretability. This study, 
therefore, provides new insights into the suitability of different 
graph models for regulatory PBT screening tasks. 

 The remainder of this study is organized as follows: 
Section II describes the dataset, preprocessing steps, and model 
architectures. Section III presents the experimental setup and 
evaluation protocol and reports the quantitative results; 
Section IV discusses the interpretability and regulatory 
implications of the findings; and Section V concludes the study 
with a summary of key contributions and limitations. 

II. METHODS 

A. Dataset 

The dataset used in this study brings together molecular 
information in the form of SMILES strings annotated with a 
binary label (PBT/Non-PBT). This dataset was constructed to 
accurately represent the regulatory criteria of persistence, 
bioaccumulation, and toxicity, in accordance with European 
(REACH, ECHA) and international (Stockholm Convention) 
requirements. A complete description of the origin, 
characteristics, and processing of the data is provided below to 
ensure the reproducibility of the study. 

A total of 6,072 molecules were collected from major 
regulatory and scientific sources (Fig. 1). The dataset includes 
2,970 non-PBT substances, composed of 2,887 molecules 
registered with ECHA [28], 48 substances evaluated by experts 
in PBT/vPvB assessments [24], and 35 compounds from the 
ECHA PBT assessment list [25]. In addition, 3,102 PBT or 
POP substances were integrated, including 2,785 potential PBT 
substances identified by Strempel et al. [23], and 317 
confirmed PBT substances originating from multiple 
regulatory sources, namely ECHA PBT/vPvB assessments 
[24], the ECHA PBT assessment list [25], the ECHA list of 
substances subject to POPs regulation [26], and the updated 
POP list from the Stockholm Convention [27], [29], [30], [31], 
[32],[33]. All these sources represent authoritative references 
in the regulatory evaluation of hazardous chemicals, ensuring 
the robustness and reliability of the final consolidated dataset. 

 
Fig. 1. Workflow for predicting persistence, bioaccumulation, and toxicity properties. The diagram illustrates the main steps: data collection from regulatory 

sources, preprocessing and construction of molecular graphs, division of the dataset, and training of the three models (GNN, MPNN, and GAT) for classifying 

substances as PBT or Non-PBT. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

356 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 2. Collection and processing of PBT-related chemicals. 

Fig. 2 illustrates the construction of the regulatory PBT 
dataset, showing the integration of chemical compounds from 
multiple authoritative sources and the successive filtering and 
preprocessing steps leading to the final curated dataset used in 
this study. 

B. Filtering and Pre-processing Procedure 

A standardized harmonization procedure was applied to 
ensure the quality and consistency of molecular data. When a 
SMILES contained multiple fragments, only the main (largest) 
fragment was retained. Formal charges were systematically 
neutralized, and molecules were converted to canonical 
SMILES. Duplicates and stereochemical details were removed 
to avoid irrelevant structural variations. At the end of this 
process, a final set of 5,130 molecules was obtained, 
comprising 2,710 PBT compounds and 2,420 non-PBT 
compounds. All preprocessing operations were performed in 
Python 3.8 using an RDKit script, in accordance with ECHA 
technical recommendations [34]. 

C. Data Partitioning 

To ensure rigorous and reproducible evaluation, the final 
dataset was divided into three distinct subsets: 80% of the data 
was used for model training, 10% for hyperparameter tuning 
(validation), and the remaining 10% for final testing. The 
partitioning was performed in a stratified manner, ensuring that 

the PBT/Non-PBT ratio was maintained in each of the subsets, 
thereby reducing potential biases related to class imbalance. 

D. Molecular Characteristics 

Although the PBT and Non-PBT classes are relatively 
similar in size, a slight imbalance remains in the final dataset. 
To prevent the model from favoring the majority class, a class 
weight was incorporated into the loss function during training. 
No oversampling or under sampling techniques were used in 
order to preserve the structural integrity of the molecules and 
avoid any artificial transformation of the examples. 

To illustrate the process of converting chemical structures 
into graphs that can be used by GNN, MPNN, and GAT 
models, Fig. 3 shows different representations generated from 
a molecule from the dataset. Fig. 3(a) shows the 2D structure 
with explicit identification of atoms and bonds, as extracted 
and cleaned after RDKit preprocessing. Fig. 3(b) illustrates the 
optimized 3D geometry, allowing visualization of the overall 
spatial organization of the molecule. Fig. 3(c) represents the 
structure as a molecular graph where each atom corresponds to 
a node and each bond to an edge, in accordance with the input 
format used for graph-based models. Finally, Fig. 3(d) shows 
attentional mechanisms, illustrating the ability of GAT models 
to identify substructures potentially responsible for a 
molecule's PBT behavior. 

 
Fig. 3. Molecular representations generated for the graph construction stage. 
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E. Detailed Model Architecture 

The architecture of the GNN model is based on a deep 
ResGCN network integrating residual connections as well as a 
Jumping Knowledge mechanism allowing to efficiently extract 
intermediate representations from several layers. The model 
has five successive GCN layers with hidden dimensions of 
256, 256, 256, 128 and 128 neurons. Residual connections 
stabilize learning in deep graphs while the Jumping Knowledge 
mechanism consolidates representations of different levels by 
combining them through concatenation. The activation used is 
a GELU function, particularly suitable for complex 
architectures, and a dropout of 0.25 is applied to limit 
overfitting. The aggregation of graphs is ensured by a Global 
Attention Pooling mechanism allowing to weight different 
molecular regions according to their structural importance. 

The MPNN model used follows a Directed Message 
Passing Neural Network (D-MPNN) architecture, an advanced 
version of MPNN that conveys information in an oriented way 
along chemical bonds. This approach improves the 
representation of atomic patterns responsible for PBT toxicity 
and properties. The model includes six successive stages of 
directed propagation, with messages of size 300 and hidden 
layers of 300 then 200 units. Updates are performed at the 
edges and nodes through a GRU-like mechanism, which allows 
for efficient integration of chemically relevant dependencies. 
The final aggregation of graphs relies on a Set2Set module that 
captures high-level interactions between atoms. Activation is 
provided by ReLU and a dropout of 0.3 is applied to reduce the 
risk of overfitting. 

The GAT architecture is based on the GATv2 model, an 
improved version of the Graph Attention Network using a 
more expressive attention mechanism. It consists of three 
successive layers, each comprising several heads of attention: 
eight heads in the first two layers and four in the last one. Each 
head learns to weight atomic neighbors according to their 
chemical relevance, which improves the interpretability of the 
model and allows identifying molecular substructures 
responsible for PBT effects. The hidden dimensions are set to 
128 per head and residual connections stabilize the propagation 
of gradients. Aggregation is carried out by means of 
hierarchical pooling based on attention, allowing to capture the 
relative importance of different structural levels. An ELU 
activation function is used to improve training stability and 
gradient flow, and a global dropout of 0.4 is applied to both the 
layers and attention weights. 

The three models share a common final head consisting of 
a multilayer perceptron with two successive dense layers of 
256 and 64 neurons. The output is activated by a sigmoid 
function allowing to obtain a binary classification probability. 
Weight decay regularization is added to improve 
generalization. 

F. Training Hyperparameters 

Model optimization was performed using the AdamW 
optimizer, chosen for its ability to better control regularization 
and stability of learning in deep architectures. The initial 
learning rate used is 0.0007, dynamically adjusted by a Cosine 
Annealing scheduler with periodic restarts, which allows for 

more efficient exploration of the parameter space. The batch 
size is set to 32, while the training duration extends over 200 
epochs with an early stopping mechanism when the validation 
performance stops improving after 25 epochs. Gradients are 
constrained by clipping to 2.0 in order to avoid the common 
gradient explosions in deep graph models. L2 regularization is 
applied with a weight of 1e-4. 

Each model also has its own specific hyperparameters. The 
ResGCN-JK uses hidden sizes of 256, 256, 256, 128 and 128, a 
Jumping Knowledge mechanism in concatenation mode and a 
slightly higher learning rate (0.001). The D-MPNN exploits a 
message size of 300, a depth of six propagation steps, a 
dropout of 0.3 and a learning rate of 0.0008. As for the GATv2 
model, it uses a learning rate of 0.0005, eight heads of attention 
in the first two layers and four in the third, with a dropout of 
0.4 on the attention weights. These hyperparametric choices 
result from a combination of Bayesian search and grid search, 
allowing to obtain an optimized and stable configuration for 
the PBT classification task. 

G. Baseline Computation Environment and Reproducibility 

Information 

To ensure complete reproducibility of the results, all 
experiments were performed in a strictly controlled software 
and hardware environment. Molecular processing was 
performed in Python 3.10, using RDKit 2023.03.1 for chemical 
structure manipulation and graph generation. The GNN, 
MPNN, and GAT models were trained using PyTorch 2.1 and 
PyTorch Geometric 2.4, with a CUDA backend provided by 
CUDA 11.8. Evaluation metrics were calculated using scikit-
learn 1.3. 

All experiments were performed on a workstation equipped 
with an NVIDIA RTX 3080 GPU (10 GB VRAM), an Intel 
Core i7 processor, and 32 GB of RAM, running Ubuntu 22.04 
LTS. A fixed random seed (seed = 42) was applied to NumPy, 
PyTorch, and Python to ensure stability and reproducibility of 
results. 

To ensure complete transparency, all code used in this 
study will be made public in a dedicated GitHub repository. 
This repository will contain the complete RDKit-based 
preprocessing scripts, the GNN/MPNN/GAT model training 
scripts, the graph generation functions, the experimental 
pipeline organization, and all hyperparameters used. Making 
this repository available allows any researcher to faithfully 
reproduce the analyses, results, and figures presented in this 
study. 

III. EXPERIMENTAL RESULTS 

A. Quantitative Results 

The performance of the three graph-based architectures 
(GNN, MPNN, and GAT) were evaluated using three standard 
classification metrics: accuracy, ROC-AUC, and F1-score. 
These indicators allow us to assess overall accuracy, 
discrimination capacity, and the balance between precision and 
recall. 

Tables I, II, and III present the results obtained on the 
training, validation, and test sets. Although all models showed 
an ability to learn relevant molecular representations, notable 
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differences in terms of generalization and interpretability were 
observed. 

TABLE I.  PERFORMANCE ON THE TRAINING SET (PBT CLASSIFICATION) 

Model Accuracy ROC-AUC F1-score 

GNN 0.895 0.91 0.89 

MPNN 0.932 0.96 0.93 

GAT 0.920 0.95 0.92 

TABLE II.  PERFORMANCE ON THE VALIDATION SET (PBT 

CLASSIFICATION) 

Model Accuracy ROC-AUC F1-score 

GNN 0.875 0.89 0.87 

MPNN 0.912 0.94 0.91 

GAT 0.903 0.93 0.90 

TABLE III.  PERFORMANCE ON THE TEST SET (PBT CLASSIFICATION) 

Model Accuracy ROC-AUC F1-score 

GNN 0.82 0.89 0.87 

MPNN 0.92 0.94 0.91 

GAT 0.89 0.93 0.90 

TABLE IV.  COMPARISON OF THE PERFORMANCE OF OUR MODELS WITH 

RECENT STATE-OF-THE-ART APPROACHES FOR PBT PREDICTION 

Model Reference Accuracy ROC-AUC 

MPNN (our work) – 0.92 0.94 

GAT (our work) – 0.89 0.90 

GNN (our work) – 0.82 0.89 

Chemprop (D-MPNN) 
Evangelista et al., 

2025 [30] 
0.912 0.94 

deepFPlearn+ 
Soulios et al., 

2023 [31] 
0.89 0.91 

GraphADT 
Ma et al., 2024 

[32] 
0.89 0.91 

B. Visual Analysis 

Fig. 4 shows a comparison of the confusion matrices for the 
three graph-based models (GNN, MPNN, and GAT) applied to 
the test set. Each matrix illustrates the distribution of true 
negatives (TN), false positives (FP), false negatives (FN), and 
true positives (TP) for the classification of compounds as PBT 
or Non-PBT. 

 
Fig. 4. Confusion matrices for GNN, MPNN, and GAT models. 

IV. DISCUSSION 

Across the test set, MPNN achieved the best overall 
performance with an accuracy of 91.2% and an ROC-AUC of 
0.94, confirming its robustness and generalization ability. 
GAT, which is slightly less accurate (90.3%), stands out for its 
attention mechanism, offering better interpretability for 
explanatory analyses. GNN, although competitive, lags behind 
with an accuracy of 87.5% and an ROC-AUC of 0.89 (see 
Table IV). 

These results suggest that MPNN is the most suitable 
model for predicting PBT properties, while GAT is an 
interesting alternative when interpretability is a priority. 

Our MPNN model (Accuracy = 0.912; ROC-AUC = 0.94) 
achieves performance equivalent to that reported by Chemprop 
(Evangelista et al., 2025), confirming its robustness and ability 
to generalize on complex datasets. This high accuracy 
demonstrates that integrating atomic characteristics and bonds 

into the message propagation mechanism is a major asset for 
predicting PBT properties. 

The GAT model, although slightly less accurate (Accuracy 
= 0.903; ROC-AUC = 0.93), has a significant advantage in 
terms of interpretability thanks to its attention mechanism. This 
feature allows the identification of the most influential atoms 
or substructures in the classification, which is particularly 
relevant for explanatory analyses and regulatory decision-
making. 

Compared to other advanced approaches, such as 
deepFPlearn+ (Soulios et al., 2023) and GraphADT (Ma et al., 
2024), our method is competitively positioned. Although 
effective, these models do not achieve the same level of 
accuracy as our MPNN, reinforcing the relevance of message 
passing-based architectures for this type of task. 

In summary, this comparison highlights the superiority of 
MPNN models for predicting PBT properties, while 
emphasizing the value of attention mechanisms for applications 
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requiring in-depth interpretation. These results confirm that 
graph neural networks are a promising solution for 
environmental risk assessment and regulatory compliance. 

With an accuracy of 0.82 and a recall of 0.77, the GNN 
model shows decent but limited performance. Although it 
correctly identified 539 Non-PBT compounds and 334 PBT 
compounds, it produced 102 false negatives, indicating a 
tendency to miss PBT compounds. This weakness is critical 
because failure to detect PBT substances can lead to 
environmental risks. 

The MPNN model outperforms the others with an accuracy 
of 0.90 and a recall of 0.92. It significantly reduces false 
negatives (FN = 37) compared to GNN, while maintaining a 
low number of false positives (FP = 67). These results 
demonstrate its robustness and ability to generalize, which is 
essential for regulatory compliance. 

The GAT model achieves an accuracy of 0.89 and a recall 
of 0.90, slightly lower than MPNN but higher than GNN. It 
correctly identifies 394 PBT compounds and 550 non-PBT 
compounds, with a moderate number of false negatives (FN = 
45). Thanks to its attention mechanism, GAT offers better 
interpretability, making it a relevant choice for explanatory 
analyses despite its slightly lower performance compared to 
MPNN. 

MPNN is the best-performing model for predicting PBT 
properties, offering the best compromise between precision and 
recall. GAT remains an interesting alternative when 
interpretability is a priority, while GNN offers acceptable but 
less reliable performance in minimizing false negatives. 

V. CONCLUSION 

This study evaluated and compared three graph-based deep 
learning architectures for the classification of PBT substances. 
Using a representative set of molecules and a rigorous 
experimental protocol, the results showed clear differences 
between the models studied. The MPNN model achieved the 
highest performance thanks to its better exploitation of 
complex molecular structures. The GAT model stood out for 
its interpretability while maintaining a high level of accuracy. 
The GNN model, although effective, performed worse than the 
other two models, particularly in the reliable detection of PBT 
substances. 

Overall, the results confirm the value of graph-based 
approaches for predicting PBT properties and demonstrate the 
ability of the models studied to extract relevant molecular 
representations that enable accurate classification of 
compounds. 

From a practical perspective, the proposed MPNN model 
can effectively support regulatory PBT screening by enabling 
the early identification and prioritization of potentially 
hazardous substances. By significantly reducing false 
negatives, the model helps minimize the risk of overlooking 
harmful chemicals during preliminary assessments. Such 
predictive tools can assist regulatory agencies, such as those 
involved in ECHA-related workflows, in focusing 
experimental resources on high-risk compounds and improving 

the efficiency and consistency of decision-making processes in 
environmental risk assessment. 
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