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Abstract—Early assessment of the persistence,
bioaccumulation, and toxicity (PBT) of chemicals is a major
challenge for environmental protection and international
regulatory frameworks. The objective of this study is to compare
the effectiveness of three graph-based deep learning
architectures—a graph neural network (GNN), a message
passing network (MPNN), and a graph attention network
(GAT)—for the binary classification of molecules as PBT or non-
PBT.We compiled a regulatory dataset comprising 5,130
molecules annotated from public sources, such as ECHA and
international POP lists. Molecular graphs were generated from
SMILES using RDKit. The three models were implemented in
PyTorch Geometric with homogeneous hyperparameters. The
experiments were conducted with a scaffold split ratio of 80/10/10
and 10-fold cross-validation. Performance was evaluated using
accuracy, AUC-ROC, and Fl-score. Interpretability was
examined using GAT model attention maps and atomic
contribution analysis. The MPNN model achieves the best overall
performance (Accuracy = 0.92; ROC-AUC = 0.94; F1 = 0.91),
followed by GAT (Accuracy =0.89; ROC-AUC = 0.93). The basic
GNN performs less well (Accuracy = 0.82; ROC-AUC = 0.89).
The GAT model provides more detailed atomic explanations
thanks to attention weights, while the MPNN stands out for its
predictive accuracy. The dataset includes annotations from
heterogeneous experimental sources, which may introduce noise
into the labels. The models rely solely on 2D graphs, without 3D
conformational information. MPNN models can accelerate PBT
pre-screening and help prioritize substances for experimental
testing. GATs provide useful interpretations for understanding
the substructures associated with PBT properties. This study
provides the first reproducible and systematic comparison of
GNN, MPNN, and GAT models applied to a large regulatory
dataset dedicated to PBT, analyzing both performance and
interpretability. These results highlight the potential of graph-
based QSAR models for regulatory PBT screening and
environmental risk assessment.
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1. INTRODUCTION

The persistence, bioaccumulation, and toxicity (PBT) of
chemicals are fundamental criteria in environmental risk
assessment and international regulatory processes such as
REACH. Early identification of hazardous substances still
relies heavily on in vivo and in vitro experiments, which are
costly, time-consuming, and difficult to scale up to thousands
of emerging compounds. This growing need for robust
predictive methods has fueled the rise of machine leaming
applied to molecular structures, particularly graph models,
which are capable of directly capturing the structured nature of
molecules. These approaches now offer a promising alternative
for accelerating the screening of PBT substances, while
improving the reproducibility and transparency of assessments.

Recent advances in molecular modeling have been largely
driven by Graph Neural Networks (GNNs), which learn
structural representations by treating molecules as atomic
graphs. Several studies have demonstrated their effectiveness
in predicting different forms of toxicity, including acute
toxicity, ecotoxicological effects, and liver toxicity [1], [2], [3],

[4], [5]- Modem GNN architectures, including graph
convolutions, equivariant networks, and hierarchical
mechanisms, have significantly improved predictive

performance for complex properties such as systemic toxicity
and endocrine disruption [6], [7], [8], [9], [10].

At the same time, Message Passing Neural Networks
(MPNN) have introduced explicit information propagation
between atoms and bonds, enabling the capture of finer
structural patterns and improving the prediction of properties
related to ADMET, liver toxicity, or xenobiotic metabolism
[11], [12], [13], [14], [15], [16], [17], [18]. Several studies
show that MPNNs frequently outperform simpler models,
particularly for properties sensitive to local atomic interactions
and contextual effects [16], [17], [18].

Graph Attention Networks (GAT) and graph transformers
represent a major evolution, introducing attention mechanisms
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capable of assigning differentiated weights to atomic neighbors
based on their chemical importance. These models not only
offer better performance but also increased interpretability,
making it possible to identify molecular substructures that
contribute significantly to toxicity [19], [20], [21], [22]. Recent
work shows that atomic attention is an essential tool in a
regulatory context, where scientific justification of predictions
is indispensable [23], [24].

In addition, approaches extending these models through
pre-training, integration of quantum properties, multitasking, or
fusion with knowledge from toxicological databases have
shown significant potential for stabilizing predictions and
improving generalization to unseen substances [7], [20], [25],
[26]. Finally, some work specifically targets environmental and
ecotoxicological toxicity, a key area for PBT substances, by
modeling the complex relationships between molecules,
aquatic species, and environmental parameters [27], [28].

Despite these advances, several limitations remain clearly
identified in recent literature:

e Most studies focus on generic datasets (Tox21,
ADMET), which are rarely adapted to the specific
requirements of PBT classification.

e Few studies offer a balanced and reproducible
comparison between the main families of graph models
(GNN, MPNN, GAT).

e Work integrating both predictive performance and
atomic interpretability remains limited, even though
these elements are essential for regulatory frameworks.

e No recent study provides a comparative assessment
based on a consolidated regulatory dataset specifically
dedicated to PBT properties.

In this context, this study aims to provide a rigorous and
reproducible evaluation of graph-based deep learning models
for the prediction of persistence, bioaccumulation, and toxicity
(PBT) properties of chemical substances. Specifically, we
compare three representative molecular graph architectures: a
classical Graph Neural Network (GNN), a Message Passing
Neural Network (MPNN), and a Graph Attention Network
(GAT), using a consolidated regulatory dataset dedicated to
PBT classification. The novelty of this work does not lie in
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proposing a new architecture, but rather in the regulatory
grounding of the dataset, the systematic and reproducible
evaluation protocol, and the joint analysis of predictive
performance and atomic-level interpretability. This study,
therefore, provides new insights into the suitability of different
graph models for regulatory PBT screening tasks.

The remainder of this study is organized as follows:
Section II describes the dataset, preprocessing steps, and model
architectures. Section III presents the experimental setup and
evaluation protocol and reports the quantitative results;
Section IV discusses the interpretability and regulatory
implications of the findings; and Section V concludes the study
with a summary of key contributions and limitations.

II. METHODS

A. Dataset

The dataset used in this study brings together molecular
information in the form of SMILES strings annotated with a
binary label (PBT/Non-PBT). This dataset was constructed to
accurately represent the regulatory criteria of persistence,
bioaccumulation, and toxicity, in accordance with European
(REACH, ECHA) and international (Stockholm Convention)
requirements. A complete description of the origin,
characteristics, and processing of the data is provided below to
ensure the reproducibility of the study.

A total of 6,072 molecules were collected from major
regulatory and scientific sources (Fig. 1). The dataset includes
2,970 non-PBT substances, composed of 2,887 molecules
registered with ECHA [28], 48 substances evaluated by experts
in PBT/vPvB assessments [24], and 35 compounds from the
ECHA PBT assessment list [25]. In addition, 3,102 PBT or
POP substances were integrated, including 2,785 potential PBT
substances identified by Strempel et al. [23], and 317
confirmed PBT substances originating from multiple
regulatory sources, namely ECHA PBT/vPvB assessments
[24], the ECHA PBT assessment list [25], the ECHA list of
substances subject to POPs regulation [26], and the updated
POP list from the Stockholm Convention [27], [29], [30], [31],
[32],[33]. All these sources represent authoritative references
in the regulatory evaluation of hazardous chemicals, ensuring
the robustness and reliability ofthe final consolidated dataset.
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Fig.2. Collection and processing of PBT-related chemicals.

Fig. 2 illustrates the construction of the regulatory PBT
dataset, showing the integration of chemical compounds from
multiple authoritative sources and the successive filtering and
preprocessing steps leading to the final curated dataset used in
this study.

B. Filtering and Pre-processing Procedure

A standardized harmonization procedure was applied to
ensure the quality and consistency of molecular data. When a
SMILES contained multiple fragments, only the main (largest)
fragment was retained. Formal charges were systematically
neutralized, and molecules were converted to canonical
SMILES. Duplicates and stereochemical details were removed
to avoid irrelevant structural variations. At the end of this
process, a final set of 5,130 molecules was obtained,
comprising 2,710 PBT compounds and 2420 non-PBT
compounds. All preprocessing operations were performed in
Python 3.8 using an RDKit script, in accordance with ECHA
technical recommendations [34].

C. Data Partitioning

To ensure rigorous and reproducible evaluation, the final
dataset was divided into three distinct subsets: 80% of the data
was used for model training, 10% for hyperparameter tuning
(validation), and the remaining 10% for final testing. The
partitioning was performed in a stratified manner, ensuring that
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the PBT/Non-PBT ratio was maintained in each of the subsets,
thereby reducing potential biases related to class imbalance.

D. Molecular Characteristics

Although the PBT and Non-PBT classes are relatively
similar in size, a slight imbalance remains in the final dataset.
To prevent the model from favoring the majority class, a class
weight was incorporated into the loss function during training.
No oversampling or under sampling techniques were used in
order to preserve the structural integrity of the molecules and
avoid any artificial transformation of the examples.

To illustrate the process of converting chemical structures
into graphs that can be used by GNN, MPNN, and GAT
models, Fig. 3 shows different representations generated from
a molecule from the dataset. Fig. 3(a) shows the 2D structure
with explicit identification of atoms and bonds, as extracted
and cleaned after RDKit preprocessing. Fig. 3(b) illustrates the
optimized 3D geometry, allowing visualization of the overall
spatial organization of the molecule. Fig. 3(c) represents the
structure as a molecular graph where each atom corresponds to
a node and each bond to an edge, in accordance with the input
format used for graph-based models. Finally, Fig. 3(d) shows
attentional mechanisms, illustrating the ability of GAT models
to identify substructures potentially responsible for a
molecule's PBT behavior.

Fig. 3. Molecular representations generated for the graph construction stage.
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E. Detailed Model Architecture

The architecture of the GNN model is based on a deep
ResGCN network integrating residual connections as well as a
Jumping Knowledge mechanism allowing to efficiently extract
intermediate representations from several layers. The model
has five successive GCN layers with hidden dimensions of
256, 256, 256, 128 and 128 neurons. Residual connections
stabilize learning in deep graphs while the Jumping Knowledge
mechanism consolidates representations of different levels by
combining them through concatenation. The activation used is
a GELU function, particularly suitable for complex
architectures, and a dropout of 025 is applied to limit
overfitting. The aggregation of graphs is ensured by a Global
Attention Pooling mechanism allowing to weight different
molecular regions according to their structural importance.

The MPNN model used follows a Directed Message
Passing Neural Network (D-MPNN) architecture, an advanced
version of MPNN that conveys information in an oriented way
along chemical bonds. This approach improves the
representation of atomic patterns responsible for PBT toxicity
and properties. The model includes six successive stages of
directed propagation, with messages of size 300 and hidden
layers of 300 then 200 units. Updates are performed at the
edges and nodes through a GRU-like mechanism, which allows
for efficient integration of chemically relevant dependencies.
The final aggregation of graphs relies on a Set2Set module that
captures high-level interactions between atoms. Activation is
provided by ReLU and a dropout of 0.3 is applied to reduce the
risk of overfitting.

The GAT architecture is based on the GATv2 model, an
improved version of the Graph Attention Network using a
more expressive attention mechanism. It consists of three
successive layers, each comprising several heads of attention:
eight heads in the first two layers and four in the last one. Each
head learns to weight atomic neighbors according to their
chemical relevance, which improves the interpretability of the
model and allows identifying molecular substructures
responsible for PBT effects. The hidden dimensions are set to
128 per head and residual connections stabilize the propagation
of gradients. Aggregation is carried out by means of
hierarchical pooling based on attention, allowing to capture the
relative importance of different structural levels. An ELU
activation function is used to improve training stability and
gradient flow, and a global dropout of 0.4 is applied to both the
layers and attention weights.

The three models share a common final head consisting of
a multilayer perceptron with two successive dense layers of
256 and 64 neurons. The output is activated by a sigmoid
function allowing to obtain a binary classification probability.
Weight decay regularization is added to improve
generalization.

F. Training Hyperparameters

Model optimization was performed using the AdamW
optimizer, chosen for its ability to better control regularization
and stability of learning in deep architectures. The initial
learning rate used is 0.0007, dynamically adjusted by a Cosine
Annealing scheduler with periodic restarts, which allows for
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more efficient exploration of the parameter space. The batch
size is set to 32, while the training duration extends over 200
epochs with an early stopping mechanism when the validation
performance stops improving after 25 epochs. Gradients are
constrained by clipping to 2.0 in order to avoid the common
gradient explosions in deep graph models. L2 regularization is
applied with a weight of le-4.

Each model also has its own specific hyperparameters. The
ResGCN-JK uses hidden sizes of 256,256,256, 128 and 128, a
Jumping Knowledge mechanism in concatenation mode and a
slightly higher learning rate (0.001). The D-MPNN exploits a
message size of 300, a depth of six propagation steps, a
dropout of 0.3 and a learning rate of 0.0008. As for the GATv2
model, it uses a learning rate of 0.0005, eight heads of attention
in the first two layers and four in the third, with a dropout of
0.4 on the attention weights. These hyperparametric choices
result from a combination of Bayesian search and grid search,
allowing to obtain an optimized and stable configuration for
the PBT classification task.

G. Baseline Computation Environment and Reproducibility
Information

To ensure complete reproducibility of the results, all
experiments were performed in a strictly controlled software
and hardware environment. Molecular processing was
performed in Python 3.10, using RDKit 2023.03.1 for chemical
structure manipulation and graph generation. The GNN,
MPNN, and GAT models were trained using PyTorch 2.1 and
PyTorch Geometric 2.4, with a CUDA backend provided by
CUDA 11.8. Evaluation metrics were calculated using scikit-
learn 1.3.

All experiments were performed on a workstation equipped
with an NVIDIA RTX 3080 GPU (10 GB VRAM), an Intel
Core i7 processor, and 32 GB of RAM, running Ubuntu 22.04
LTS. A fixed random seed (seed = 42) was applied to NumPy,
PyTorch, and Python to ensure stability and reproducibility of
results.

To ensure complete transparency, all code used in this
study will be made public in a dedicated GitHub repository.
This repository will contain the complete RDKit-based
preprocessing scripts, the GNN/MPNN/GAT model training
scripts, the graph generation functions, the experimental
pipeline organization, and all hyperparameters used. Making
this repository available allows any researcher to faithfully
reproduce the analyses, results, and figures presented in this
study.

III. EXPERIMENTAL RESULTS

A. Quantitative Results

The performance of the three graph-based architectures
(GNN, MPNN, and GAT) were evaluated using three standard
classification metrics: accuracy, ROC-AUC, and Fl-score.
These indicators allow us to assess overall accuracy,
discrimination capacity, and the balance between precision and
recall.

Tables I, II, and III present the results obtained on the
training, validation, and test sets. Although all models showed
an ability to learn relevant molecular representations, notable
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differences in terms of generalization and interpretability were
observed.
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TABLEIV. COMPARISON OF THE PERFORMANCE OF OUR MODELS WITH
RECENT STATE-OF-THE-ART APPROACHES FOR PBT PREDICTION

Model Reference Accuracy ROC-AUC
TABLE . PERFORMANCE ON THE TRAINING SET (PBT CLASSIFICATION)
MPNN (our work) - 0.92 0.94
Model Accuracy ROC-AUC F1-score
GNN 0.895 091 0.89 GAT (our work) - 0.89 0.90
MPNN 0.932 0.96 0.93 GNN (our work) - 0.82 0.89
GAT 0.920 095 092 Evangelista et al
Chemprop (D-MPNN) 2025g[30] 71 0912 0.94
TABLEIL.  PERFORMANCE ON THE VALIDATION SET (PBT Soulios ot al
CLASSIFICATION) deepFPlearn+ 2023 [31] 71 0.89 0.91
Model Accuracy ROC-AUC Fl-score Ma et al, 2024
GNN 0875 0.89 037 GraphADT 132] 0.89 091
MPNN 0912 0.94 091
GAT 0.903 0.93 0.90 B. Visual Analysis
Fig. 4 shows a comparison of the confusion matrices for the
TABLEIII. PERFORMANCE ON THE TEST SET (PBT CLASSIFICATION) three graph-based models (GNN MPNN. and G AT) applied to
b b
Model Accuracy ROC-AUC Fl-score the test set. Each matrix illustrates the distribution of true
GNN 0.82 0.89 0.87 negatives (TN), false positives (FP), false negatives (FN), and
MPNN 0.92 0.94 091 true positives (TP) for the classification of compounds as PBT
GAT 0.89 0.93 0.90 or Non-PBT.

Confusion Matrices for GNN, MPNN, and GAT Models

GMNM Model
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PET
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GAT Model
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Sctual

FET

Hor-PRT T
Predictad

Accuracy: 0.89
Recall: 0.90

Fig. 4. Confusion matrices for GNN, MPNN, and GAT models.

IV. DISCUSSION

Across the test set, MPNN achieved the best overall
performance with an accuracy of 91.2% and an ROC-AUC of
0.94, confirming its robustness and generalization ability.
GAT, which is slightly less accurate (90.3%), stands out for its
attention mechanism, offering better interpretability for
explanatory analyses. GNN, although competitive, lags behind
with an accuracy of 87.5% and an ROC-AUC of 0.89 (see
Table IV).

These results suggest that MPNN is the most suitable
model for predicting PBT properties, while GAT is an
interesting alternative when interpretability is a priority.

Our MPNN model (Accuracy = 0.912; ROC-AUC = 0.94)
achieves performance equivalent to that reported by Chemprop
(Evangelista et al., 2025), confirming its robustness and ability
to generalize on complex datasets. This high accuracy
demonstrates that integrating atomic characteristics and bonds

into the message propagation mechanism is a major asset for
predicting PBT properties.

The GAT model, although slightly less accurate (Accuracy
= 0.903; ROC-AUC = 0.93), has a significant advantage in
terms of interpretability thanks to its attention mechanism. This
feature allows the identification of the most influential atoms
or substructures in the classification, which is particularly
relevant for explanatory analyses and regulatory decision-
making.

Compared to other advanced approaches, such as
deepFPlearn+ (Soulios et al., 2023) and GraphADT (Ma et al.,
2024), our method is competitively positioned. Although
effective, these models do not achieve the same level of
accuracy as our MPNN, reinforcing the relevance of message
passing-based architectures for this type of task.

In summary, this comparison highlights the superiority of
MPNN models for predicting PBT properties, while
emphasizing the value of attention mechanisms for applications
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requiring in-depth interpretation. These results confirm that
graph neural networks are a promising solution for
environmental risk assessment and regulatory compliance.

With an accuracy of 0.82 and a recall of 0.77, the GNN
model shows decent but limited performance. Although it
correctly identified 539 Non-PBT compounds and 334 PBT
compounds, it produced 102 false negatives, indicating a
tendency to miss PBT compounds. This weakness is critical
because failure to detect PBT substances can lead to
environmental risks.

The MPNN model outperforms the others with an accuracy
of 090 and a recall of 092. It significantly reduces false
negatives (FN = 37) compared to GNN, while maintaining a
low number of false positives (FP = 67). These results
demonstrate its robustness and ability to generalize, which is
essential for regulatory compliance.

The GAT model achieves an accuracy of 0.89 and a recall
of 0.90, slightly lower than MPNN but higher than GNN. It
correctly identifies 394 PBT compounds and 550 non-PBT
compounds, with a moderate number of false negatives (FN =
45). Thanks to its attention mechanism, GAT offers better
interpretability, making it a relevant choice for explanatory
analyses despite its slightly lower performance compared to
MPNN.

MPNN is the best-performing model for predicting PBT
properties, offering the best compromise between precision and
recall. GAT remains an interesting alternative when
interpretability is a priority, while GNN offers acceptable but
less reliable performance in minimizing false negatives.

V. CONCLUSION

This study evaluated and compared three graph-based deep
leaming architectures for the classification of PBT substances.
Using a representative set of molecules and a rigorous
experimental protocol, the results showed clear differences
between the models studied. The MPNN model achieved the
highest performance thanks to its better exploitation of
complex molecular structures. The GAT model stood out for
its interpretability while maintaining a high level of accuracy.
The GNN model, although effective, performed worse than the
other two models, particularly in the reliable detection of PBT
substances.

Overall, the results confirm the value of graph-based
approaches for predicting PBT properties and demonstrate the
ability of the models studied to extract relevant molecular
representations that enable accurate classification of
compounds.

From a practical perspective, the proposed MPNN model
can effectively support regulatory PBT screening by enabling
the early identification and prioritization of potentially
hazardous substances. By significantly reducing false
negatives, the model helps minimize the risk of overlooking
harmful chemicals during preliminary assessments. Such
predictive tools can assist regulatory agencies, such as those
involved in ECHA-related workflows, in focusing
experimental resources on high-risk compounds and improving

Vol. 17, No. 1, 2026

the efficiency and consistency of decision-making processes in
environmental risk assessment.
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