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Abstract—The Internet of Medical Things (IoMT) 

environment is highly sensitive due to the nature of medical data 

and its direct connection to patient health, making it a prime 

target for sophisticated cyberattacks. This study explores the key 

security challenges within IoMT, discusses how Machine Learning 

(ML) can enhance threat detection capabilities, and shows how 

XAI contributes to improving transparency and understanding of 

model decisions, thereby increasing trust in these systems. It 

reviews recent advancements in Intrusion Detection Systems (IDS) 

specifically designed for IoMT networks, with a focus on 

integrating Explainable Artificial Intelligence (XAI) and ML 

models. Furthermore, the study compares various algorithms and 

models, identifying research gaps and discussing different datasets 

and feature extraction techniques used for optimizing the features. 
The reported performance and efficiency improvements are 

derived from prior studies using different dataset sizes, data-

splitting strategies, and feature-selection methods. 
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I. INTRODUCTION 

IoT is an innovative idea that links physical objects, devices, 
and everyday items to the internet to enable them to collect data 
by themselves, share it, and even analyze it. This technology 
encompasses a wide array of innovations that embed sensors, 
actuators, software, and network connectivity into various kinds 
of objects from household appliances and manufacturing 
equipment to automobiles, buildings, and wearable devices. 
Essentially, IoT provides real-time, data-driven insights and 
remote monitoring of such objects, rendering the physical world 
and digital world inextricably linked. IoT enables objects to 
perceive and inspect their surroundings, make decisions 
therefrom, and react autonomously, at times even without 
external intervention. This connectivity builds an ecosystem 
where devices collaborate to function more efficiently, 
accurately, and automatically, leading to smarter decision-
making. 

The ability for physical objects to communicate with each 
other and centralized systems is revolutionizing industries, 
driving innovation, and improving various sectors’ operations. 
Although IoT has already shown significant promise through 
early applications, the technology is still in its nascent stages. As 
IoT technologies progress, the integration of smart sensors and 
connected devices into everyday life will only increase, 
intensifying the need for solutions that address issues like 
security, interoperability, protocols, and standardization. IoT 
devices require a reliable and scalable infrastructure to function, 
which presents challenges such as data management, network 
latency, and energy consumption. The IoTs are a revolutionary 

force that connects the physical and digital worlds, facilitating 
smarter, more responsive systems. These systems can lead to 
increased efficiency, reduced operational costs, and enhanced 
capabilities in every area of society. Despite existing challenges, 
the future of IoT is filled with even more promises, ushering in 
limitless possibilities to create connected spaces that will 
transform how we live, work, and interact. 

IoT solutions are already gaining significant traction in 
verticals like healthcare, transport, manufacturing, automotive, 
and others, as illustrated in Fig. 1, and in healthcare, for 
example, IoT-enabled devices such as wearable health monitors 
and remote patient monitoring systems deliver valuable real-
time data, improving patient care, reducing healthcare expenses, 
and generating better outcomes. This type of IoT is known as the 
IoMTs [1]. 

 
Fig. 1. IoT types. 

A. The Internet of Medical Things (IoMT) 

The IoMT is an intersection of medical devices with IoT. 
The IoMT is the future of healthcare systems, where all medical 
devices are interconnected and monitored on the Internet by 
healthcare professionals. As the IoMT evolves, it offers 
significant benefits, including lower healthcare costs and 
improved patient outcomes. The IoMT serves as a key enabler 
for healthcare transformation. It offers new services such as 
remote monitoring, senior support, and e-visits, which enhance 
convenience and health outcomes for patients. At the same time, 
these services reduce per-patient costs for healthcare 
organizations. However, the emergence of mobile, wearable, 
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and telemedicine technologies has shifted security concerns 
beyond traditional physical boundaries. 

The increasing use of personal devices, such as smartphones 
and tablets, by patients and healthcare professionals to access, 
share, and process medical data adds complexity to the security 
landscape. As medical IoT devices become increasingly 
prevalent and process valuable data, they have become attractive 
targets for cyberattacks, including ransomware. However, many 
medical device users are unaware of the vulnerabilities present 
in these devices and often invest little in securing their IoT 
devices. However, implementing appropriate and well-known 
security measures can significantly mitigate several issues, such 
as cyber threats, weak encryption, unauthorized access, design 
flaws, insecure networks, lack of security awareness, 
compatibility issues, update management, dependency on the 
cloud, and lack of uniform standards. Therefore, security 
measures, such as IDS, can significantly reduce the risks 
associated with exploiting these vulnerabilities [2]. 

B. Intrusion Detection System (IDS) 

ID refers to the organized process of monitoring and 
analyzing activities within a computer system or network to spot 
signs of unauthorized access, security breaches, or attempts to 
compromise the system's confidentiality, integrity, or 
availability, as well as efforts to bypass its security defenses. 
Such intrusions may occur when external parties gain 
unauthorized access through the Internet, when legitimate users 
attempt to escalate their privileges beyond what is allowed, or 
when they misuse the access they already have. To support this 
process, IDSs are employed—these can be either software 
applications or dedicated hardware devices designed to 
automate the monitoring and analysis of suspicious activities. 

ID plays a vital role in helping organizations protect their 
systems from the increasing risks that accompany increased 
connectivity and reliance on digital infrastructure. Given the 
breadth and complexity of today's cyber threats, the question for 
security teams is not whether to implement ID, but rather to 
focus on choosing the right features and functionality for their 
needs. IDS are now an essential part of any organization's 
security program. There are several good reasons to deploy 
them: 

• Deterrence: By increasing the chances of detecting and 
punishing attackers, IDSs discourage malicious behavior 
and reduce the risk of system misuse. 

• Attack detection: IDSs are essential for detecting attacks 
and vulnerabilities that other security measures cannot 
prevent. 

• Attack precursor detection: IDs can identify early signs 
of potential attacks, allowing organizations to respond 
proactively. 

• Threat documentation: IDSs provide an organization 
with a record of ongoing threats, helping to understand 
the current security landscape. 

• Security quality monitoring: IDSs serve as a tool for 
evaluating and managing security measures, especially 
in large and complex environments. 

• Improved recovery and analysis: IDSs provide valuable 
information about breaches, making it easier to diagnose, 
recover from, and correct underlying issues. 

By increasing the expected risk of detection and punishment, 
IDS acts as a powerful deterrent against attackers [3]. 

II. RELATED WORKS 

Over the past few years, there have been numerous studies 
aimed at creating and improving IDS for IoT and IoMT 
networks. The studies aim to utilize novel methods to enhance 
the capacity of the systems to detect and manage threats 
effectively. The research in [4] explores the detection of 
cyberattacks in IoT networks through a deep learning (DL)-
based IDS. The system employs an autoencoder (AE) model that 
optimizes detection time and offers enhanced precision with 
99.76% detection. The AE model operates through encoding and 
decoding network packets to identify malicious activities. The 
experiment used the UNSW-NB15 dataset. This research in [5] 
explores ML algorithms to maximize IDS performance across 
IoT networks. With the ToN-IoT dataset, the authors 
implemented Random Forest (RF) and XGBoost, both ensemble 
learning methods that were very efficient in ID. The solution 
described reached 99% accuracy. 

The study in [6] explores the integration of blockchain 
technology with anomaly-based ID systems to enhance the (IoT) 
networks security. This study leverages Convolutional Neural 
Networks (CNNs) and Artificial NNs (ANNs). They are trained 
on the IoT-23 dataset, achieving an impressive accuracy of 
99.8%. This approach not only enhances security but also 
supports scalability within IoT environments. In [7], the 
researchers present an IDS based on federated transfer learning 
to secure IoMT devices. Their method uses a Deep NN (DNN) 
to train models locally on the endpoints, while preserving user 
data privacy. Testing using the CICIDS2017 dataset yielded a 
high accuracy rate of 99.51%, confirming the system's 
effectiveness in protecting sensitive healthcare information. 

The work presented in [8] focuses on building an IDS 
specifically designed for IoMT applications using the 
CICIoMT-2024 dataset. The study evaluates the performance of 
three boosting algorithms—XGBoost, AdaBoost, and 
CatBoost—for classifying network traffic. Among these 
algorithms, XGBoost achieved the best results with an accuracy 
of 95.01%, followed by AdaBoost with 92.89% and CatBoost 
with 88.37%. Additionally, the researchers applied XAI 
techniques to make the models more interpretable. 

The study in [9] aims to combat Distributed Denial of 
Service (DDoS) attacks in blockchain-enabled IoMT networks 
using ML-based IDs. The study compares the performance of 
XGBoost, Decision Tree (DT), and RF models using the 
CICIoMT-2024 dataset. The results demonstrate the system's 
strong potential to effectively detect and mitigate DDoS attacks, 
achieving an accuracy of 99.99%. In [10], an anomaly-based IoT 
network IDS using a DNN with filter-based feature selection to 
exclude highly correlated features is proposed. The model 
started by scoring 84% accuracy on UNSW-NB15. To address 
class imbalance, the authors utilized Generative Adversarial 
Networks (GANs) to produce synthetic data for minority attack 
classes to boost accuracy to 91%. The work in [11] suggests an 
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EML algorithm-based IoT network IDS using the Message 
Queuing Telemetry Transport (MQTT) protocol. 

The authors created the SEN-MQTTSET dataset from three 
experiment scenarios: normal traffic, subscriber attacks, and 
broker attacks. Feature extraction was performed using an 
ensemble statistical algorithm, and algorithms such as Random 
Forest (RF) and support vector machine (SVM) were used. The 
system achieved a 99% accuracy level as well as network 
latency measurement for normal and malicious traffic. The 
research work in [12] discusses a novel attacker detection 
method for an edge-focused IoMT structure based on the Swarm 
NN (Swarm-NN) framework. The system, implemented on the 
ToN-IoT dataset as well as a real-time secured dataset, achieved 
99.5% accuracy. The study in [13] focuses on monitoring 
network traffic and medical devices to detect malicious and 
unintended activity. To improve performance while reducing 
computational costs, the study uses mutual information (MI) and 
XGBoost as filter-based feature selection techniques. Evaluating 

the system on the CICIDS2017 dataset, it achieved a high 
accuracy of 98.79%. In [14], the authors propose *SafetyMed*, 
an intelligent IDS that combines long-short-term memory 
(LSTM) and CNNs networks. This hybrid model is designed to 
analyze sequential and network data to detect intrusion attempts. 
After validation on the CICIDS2017 dataset, *SafetyMed* 
demonstrated an accuracy of 97.63%. 

The study in [15] presents a swarm neural network-based ID 
approach specifically designed for data-intensive IoMT 
systems. The model was tested on the real-time NF-ToN-IoT 
dataset and achieved an accuracy of 89.0%, demonstrating its 
practical applicability in healthcare settings. The work in [16] 
presents a Software-as-a-Service (SaaS)-based IDS specifically 
developed to address the unique security challenges of IoMT 
systems. This approach incorporates PSO for feature 
engineering and was evaluated on the WUSTL-EHMS-2020 
dataset, achieving an accuracy of 96.56%. The comparison of 
the previous studies is shown in Table I. 

TABLE I.  COMPARISON OF PREVIOUS STUDIES 

Accuracy Dataset Methods Problem Ref 

99.76% UNSW-NB15 
Autoencoder-based DL technique with DNN, 

XGBoost, Adaboost, ExtraTreeClassifier, RF 

Detecting malicious activity on IoT network traffic and 

improving ID in 5G networks 
[4] 

99.85% ToN-IoT dataset 

ML-based classification models, including Ridge 

Classifier, XGBoost, Logistic Regression, RF, and 

Gradient Boosting 

The increasing security threats to IoT networks due to 

the rapid expansion of connected devices 
[5] 

94% IoT-23 dataset 

A combination of Blockchain for access control and 

Anomaly-Based IDS using lightweight ML models on 

FPGA hardware accelerators 

Increasing security challenges in IoT networks due to 

growing threats and scalability issues 
[6] 

99.51% CICIDS2017 Federated Transfer Learning using DNN 
Increasing cyberattacks on IoMT devices and the need 

for data privacy 
[7] 

XGBoost: 

95.01%, 
CICIoMT-2024 

Boosting ensemble methods (XGBoost, AdaBoost, 

CatBoost) with XAI 

cybersecurity threats to IoMT devices and the need for 

explainable AI-based IDS 
[8] 

99.99% CICIoMT2024 ML-based IDS using XGBoost, DT and RF 

Vulnerability of Blockchain-enabled IoMT networks to 

DDoS attacks, affecting network availability and 

security 

[9] 

84% without 

GANs, 91% 

with GANs 

UNSW-NB15 

dataset 

DNN with filter-based feature selection and 

Generative Adversarial Networks to generate 

synthetic data for minority attack category. 

Traditional threat detection methods struggle to detect 

new threats and deal with imbalanced data sets 
[10] 

99% 

SEN-

MQTTSET 

dataset 

Elite ML (EML) algorithms with an ensemble 

statistical multi-view cascade feature generation. 

IoT networks face increased cyber-attacks and time 

constraints in communication. 
[11] 

99.5% ToN-IoT dataset 
Swarm-NN (Swarm-NN) with an Empirical Intelligent  

Agent (EIA) for ID and health data analysis. 

IoMT networks are vulnerable to cyber-attacks during 

data transmission, leading to privacy leakage and 

security risks. 

[12] 

98.79% 
CICIDS2017 

dataset 

Tree-based ML (DT, RF, XGBoost, CatBoost) with  

Mutual Information and XGBoost Feature Selection 

(MI-XGBoost). 

IoMT networks are vulnerable to cyberattacks, 

necessitating effective and accurate IDS. 
[13] 

97.63% 
CIC-IDS2017 

dataset 

Hybrid CNN and LSTM networks for ID from 

sequential and grid data. 

IoMT devices are vulnerable to cyberattacks due to 

limited computational power, simplified architecture, 

making them easy targets 

[14] 

89.0% 
NF-ToN-IoT 

dataset 

Swarm-NN model for detecting intruders during data 

transfer in IoMT systems. 

IoMT devices have limited storage capacity, computing 

power, which requires data transfer to external systems, 

which then leads to security vulnerabilities. 

[15] 

96.57% 
WUSTL-

EHMS-2020 

SaaS-based IDS with PSO, ML/DL models, and 

SHAP. 

IoMT devices are resource-constrained and vulnerable to 

cyberattacks. 
[16] 

 

III. ML APPROACHES 

ML models use some algorithms to learn and identify 
complex patterns in data. ML is all about making computers 
capable of identifying patterns in data and making decisions or 
predictions based on the intelligence gathered. There are several 
primary approaches to ML: 

• Supervised Learning: In this approach, the model learns 
from labelled data, where both the inputs and outputs are 
provided. The goal is to make accurate predictions or 
classifications, such as identifying diseases based on 
medical data or predicting stock prices. Examples 
include DTs, Linear Regression (LR), and SVM. 
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• Unsupervised Learning: Unsupervised learning 
addresses data without pre-defined labels. The model 
tries to identify inherent structures or patterns, such as 
clustering similar data points or reducing the dimension 
of complex datasets. Common methods are k-means 
clustering, principal component analysis (PCA), and 
autoencoders. 

• Reinforcement Learning (RL): RL is a learning paradigm 
that mimics human trial-and-error learning. An agent 
takes an action in an environment, receiving feedback 
(reward or penalty) based on the outcome of the action 
taken. RL has wide-ranging applications in robotics, 
game playing (e.g., AlphaGo), and autonomous cars. 

• Semi-supervised and Self-supervised Learning: These 
methods are between supervised learning and 
unsupervised learning, using both labelled and 
unlabelled data or extracting features from the data itself 
to reduce the amount of labelled data. With continuous 
advancements, ML is becoming more powerful, 
adaptive, and integrated into everyday technologies [17]. 

A. Classification 

Classification is a supervised ML in which the aim is to 
identify a categorical class label for the input. When classifying, 
the model has been trained using labelled data so that every one 
of the inputs corresponds to a class label. After training, new, 
unseen data can be employed to classify, based on patterns 
learned in the course of training. Classification operations are 
common in various disciplines like health, finance, and 
information security [18]. There are two types of classification: 

1) Binary: It is a supervised learning problem in which the 

goal is to classify input data into one of the two potential 

classes. The model is trained on labelled data to distinguish 

between two outcomes, most commonly being 0 or 1, True or 

False, or Positive or Negative. It is widely applied in all 

domains like spam detection, disease diagnosis, fraud detection, 

and opinion extraction. In [19], the authors describe the various 

simple performance measures used in binary class assessment 

as belonging to three main families: the measures depending on 

one classification threshold (raw and composite measures), the 

measures depending on the probabilistic interpretation of error, 

and the classification measures. The authors also cover 

graphical methods such as ROC curves and precision–recall 

curves and outline statistical methods for examining the 

significance of performance measures and calculating 

confidence intervals. They provide a simplified example to 

illustrate the calculation of these measures and the 

interrelationships between them, emphasizing the importance 

of choosing appropriate performance measures based on 

specific classification objectives, especially in the context of 

class imbalance. In [20], the author provides a comprehensive 

review of binary performance assessment, focusing on the 

analysis, relationships, and classification of different 

performance tools. The study classifies these tools into 

“performance measures” and “performance metrics”, and 

defines them semantically and formally to clarify their use 

across different domains. Several new concepts, such as binary, 

complementarity, and normalization, are introduced to examine 

the similarities, redundancies, and dependencies between 

different tools. The main contributions of the study are the 

Periodic Table of Performance Tools (PToPI), a visual 

representation that organizes performance tools systematically, 

helping researchers choose appropriate metrics. 

2) Multi-class: It is a statistical and ML classification task 

that involves more than two classes. It involves classifying data 

into one of the possible classes. Each sample can only be 

classified into one class. In [21], the author provides a detailed 

review of the evaluation metrics used in multiclass 

classification, emphasizing their role in evaluating ML models. 

The discussion begins with basic concepts such as precision, 

recall, and the confusion matrix, which serve as the basis for 

more advanced metrics. The study explains how precision, 

despite its widespread use, can be misleading, especially in 

imbalanced datasets, leading to the introduction of balanced 

precision and weighted variances to address this issue. Cross-

entropy is introduced as a metric that assesses the divergence 

between predicted and actual probability distributions. In 

addition, the author examines more advanced evaluation 

techniques, such as Matthew's Correlation Coefficient (MCC), 

which considers all components of the confusion matrix, and 

Cohen's kappa, which measures the concordance of predicted 

versus actual classes with chance adjustment. The talk 

emphasizes the importance of applying the right evaluation 

methods based on the specific problems of the dataset, such as 

class imbalance or the need for good prediction in certain 

classes. 

B. ML Key Models 

DT models are a popular and easy-to-understand ML 
method, applied in both classification and regression problems. 
The method works by splitting the dataset into subsets 
depending on feature values, allowing decisions to culminate in 
classification or prediction outcomes. According to authors in 
[22], DTs encompass a number of algorithms, including ID3, 
C4.5, CART, CHAID, and QUEST. These algorithms have been 
widely used in various fields, including medical diagnosis, text 
classification, and image processing, because of their 
interpretability and simplicity. 

 SVM models are powerful supervised learning algorithms 
well-suited for both classification and regression tasks, with a 
particular strength in handling classification problems. The 
basic idea behind SVM is to find the optimal level that separates 
the data points into different categories within an N-dimensional 
space. By maximizing the margin between the closest data 
points of each class, SVMs enhance both the accuracy and 
generalization of the model. According to the findings in [23], 
SVMs can efficiently process large-scale datasets, making them 
highly effective in terms of computational performance and 
accuracy. The study also explored various optimization 
strategies, such as integrating fuzzy membership functions into 
multi-kernel learning frameworks, and identifying optimal 
solution spaces based on dataset size, further demonstrating 
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SVM’s scalability and adaptability to complex data 
environments. 

The k-Nearest Neighbors (k-NN) model is a straightforward, 
yet widely used supervised learning method, especially effective 
for classification and regression tasks. As a non-parametric 
approach, it works by assigning a class to a new data point based 
on the majority class among its closest neighbors. Its simplicity 
and effectiveness make it a popular choice in many ML 
applications. In [24], the k-NN algorithm was used to categorize 
data into positive and negative classes. The results showed high 
accuracy, confirming the algorithm’s strength in reliable and 
accurate classification tasks. 

 Naive Bayes (NBs) model is a probabilistic classifier in the 
field of ML that is commonly applied in classification, 
particularly where we have large data. It functions on the 
principles of Bayes' theorem, which presumes features to be 
conditionally independent, i.e., the presence of one feature does 
not influence the presence of another. The algorithm is 
specifically utilized in domains such as text classification, spam 
filtering, and sentiment analysis because of its simplicity and 
efficiency. Naïve Bayes is known for its speed and effectiveness 
on high-dimensional data, and it serves as a solid foundation for 
various classification problems. In [25], the researchers used the 
Naïve Bayes algorithm. Two different data distribution 
techniques, Hold-Out and 10-Cross Fold Validation, were used 
to evaluate the algorithm's performance. It was found that using 
the Naïve Bayes algorithm with the Hold-Out method achieves 
better accuracy. 

RFs model is a popular ML model that builds a collection of 
DTs and merges their individual predictions to generate the final 
result. The approach is suitable for both classification 
(prediction of classes) and regression (prediction of continuous 
outcomes) problems. It works by randomly selecting subsets of 
data and features to train multiple DTs, which helps improve 
accuracy and prevent overfitting. The overall outcome is based 
on the majority vote (in classification) or average (in regression) 
of the trees, making the model more stable and reliable than a 
single decision tree. Its strength lies in its ability to handle 
complex datasets and adapt to a variety of patterns, making it a 
robust and accurate algorithm, as in [26]. The author conducted 
a novel spatial RFs technique that enhances traditional RFs by 
incorporating higher-order spatial statistics. This approach 
utilizes local spatial-spectral information to effectively identify 
intrinsic heterogeneity, spatial interactions, and sophisticated 
spatial patterns, hence presenting a more sophisticated 
framework for geoscience data modeling and analysis. Further, 
it highlights the superiority of this approach compared to 
traditional RFs, specifically in their potential to generate 
spatially coherent predictions. 

Neural Networks (NN) models: A neural network is a 
computer system modeled on the biological neural networks 
found in the human brain. It is composed of interconnected 
neurons, or nodes, that work together to recognize patterns, 
make decisions, and solve complex problems. In [27], the 
authors discussed various optimization methods which are 
employed to enhance artificial NNs (ANNs) through the use of 
parameter optimization methods including network architecture, 
hidden neuron numbers, and learning rates. Several algorithms 

include the particle swarm optimization (PSO), Genetic 
Algorithm (GA), backtracking search algorithm (BSA), 
Artificial Bee Colony (ABC), among others, help to maximize 
both the effectiveness and efficacy of ANNs. 

IV. DATASETS IN IOMT 

In IoMT, datasets play a pivotal role in developing and 
evaluating ML models for healthcare applications, as shown in 
Table II. This data is typically collected from various IoT 
devices, some from different medical devices. Common datasets 
used in the IoMT include: 

UNSW-NB15 dataset is a premier benchmark to assess 
network IDS (NIDS). It was developed by the Australian Centre 
for Cyber Security (ACCS) at UNSW Canberra with the vision 
to overcome the drawbacks of existing datasets by incorporating 
contemporary attack scenarios and actual network traffic. The 
dataset consists of raw network packet captures processed using 
Bro-IDS and Argus tools, resulting in 49 features that include 
flow-based, basic connection characteristics, and content-based 
characteristics. It contains both normal and malicious traffic, and 
covers a variety of attack types such as DoS, exploits, fuzzers, 
backdoors, and reconnaissance. UNSW-NB15 is widely used in 
cybersecurity research, particularly in ID, anomaly detection, 
and ML-based security applications. Its richness in attack 
diversity and realistic traffic patterns makes it a valuable 
resource for testing the effectiveness of modern NIDS solutions 
[28]. 

ToN-IoT (Telemetry and Network of IoT) dataset is a 
modern cybersecurity dataset designed for ID in Internet of 
Things (IoT) and Industrial IoT (IIoT) environments. It was 
developed by the UNSW Canberra Cyber Range Lab and 
includes telemetry data from various IoT devices, network 
traffic, and system logs, so it is a large set for cybersecurity 
research. The dataset includes both normal and abnormal and 
has a broad variety of cyber threats such as denial of service 
(DoS), ransomware, backdoors, and reconnaissance. It embraces 
multiple data types, including IoT sensor logs, operating 
systems (Windows and Linux), and network traffic, to facilitate 
cross-layer security analysis. ToN-IoT is widely used in ML-
based ID and anomaly detection due to its realistic attack 
scenarios and multi-source data collection, making it highly 
relevant to modern IoT security problems [29]. 

IoT-23 dataset is a public database, and it is intended for 
educational research purposes in the area of malware and 
network ID in IoT settings.  IoT-23 was created by Stratosphere 
Lab in collaboration with Avast, and contains 23 different 
scenarios, including normal IoT network traffic and malicious 
traffic generated by different malware families. The dataset 
consists of classified network traffic captures (PCAP files) along 
with extracted flow-based features, allowing researchers to 
analyze various attack behaviors such as a DDoS, botnets, and 
control (C&C) communications. IoT-23 is widely used in 
cybersecurity research to develop and evaluate ML models 
aimed at detecting and mitigating IoT-based cyber threats [30]. 

The CICIDS2017 dataset is generated by the Canadian 
Institute for Cybersecurity (CIC), is a premier benchmark for the 
testing of IDS and conducting cybersecurity research. The 
dataset mimics actual network traffic by including both 
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legitimate activity and a variety of attack types, such as DDoS 
attacks, brute force attacks, botnet traffic, intrusions, and web 
attacks. It consists of detailed network flow data captured over a 
five-day period, including packet captures (PCAPs) and 
extracted flow-based features. CICIDS2017 is valuable for 
training ML models due to its inclusion of time-stamped traffic, 
classified attack categories, and real-world user behavioral 
profiles. The dataset is widely used in anomaly detection, 
performance evaluation of IDS, and cybersecurity analytics, 
making it a primary resource for advancing network security 
research [31]. 

The CICIoMT-2024 dataset is an extensive benchmark 
dataset created for the assessment of security controls within the 
environment of the IoMT. Created by the Canadian Institute for 
Cybersecurity, the dataset comprises network traffic data 
collected from an IoMT testbed composed of 40 devices, of 
which 25 were real devices and 15 simulated devices, with the 
perspective of representing the different protocols utilized in 
healthcare settings like Wi-Fi, MQTT, and Bluetooth. In order 
to replicate the real-world threat scenarios, 18 different attacks 
have been performed on this testbed, which are divided into five 
main categories: DDoS, DoS, reconnaissance, MQTT-based 
attacks, and spoofing. This dataset serves as a useful tool for 
researchers and practitioners interested in designing and testing 
IDSs and other security mechanisms for IoMT infrastructure 
[32]. 

The SEN-MQTTSET dataset is a specialized resource 
developed to enhance IDSs within IoT environments using the 
MQTT protocol. This dataset includes three distinct scenarios: 
normal operations, attacks targeting subscribers, and attacks on 
intermediaries. To extract meaningful features from the raw 
data, a statistics-based multi-view sequential feature generation 
algorithm was used, resulting in a multi-context feature set [33]. 

The NF-ToN-IoT dataset is the NetFlow-based version of 
the ToN-IoT dataset to enhance research on network ID in IoT 
networks. By transforming ToN-IoT raw packet captures 

(pcaps) into NetFlow logs, NF-ToN-IoT gives us the flow-based 
view of the network traffic and therefore, it is valuable to 
investigate communication patterns as well as for anomaly 
detection. The dataset contains a total of about 16.9 million data 
flows, where 63.99% are marked as attack samples and 36.01% 
are labeled as benign. The attack categories are Backdoor, DoS, 
DDoS, Injection, Man-in-the-Middle (MITM), Password, 
Ransomware, Scanning, and XSS. Each flow is described using 
12 NetFlow features, including source and destination IP 
addresses, ports, protocols, and byte counts. NF-ToN-IoT is 
publicly available and is a valuable resource for training and 
testing ML models for enhancing the security of IoT networks 
[34]. 

The WUSTL-EHMS-2020 dataset is a targeted resource 
aimed at promoting cybersecurity research in the IoMT context. 
The dataset was obtained using the Enhanced Healthcare 
Monitoring System (EHMS) Real-Time Testbed located at 
Washington University in St. Louis, and it uniquely integrates 
network flow measurements with patient biometric information, 
thereby filling the gap of datasets that bring these two elements 
together. It has 16,318 samples, of which 14,272 are labeled as 
normal, and 2,046 are attack instances, and has 44 distinct 
features—35 for network metrics and 8 for patient vital signs. 
The dataset includes man-in-the-middle attacks, such as 
spoofing and data injection, and data confidentiality and 
integrity violations. Researchers are using WUSTL-EHMS-
2020 to develop and evaluate IDSs specifically designed for 
IoMT environments, leveraging ML techniques to analyze the 
complex interaction between network activity and medical data 
[35]. 

The dataset is typically divided into training, validation, and 
test sets for model development and evaluation. Common split 
ratios include 70% for training, 15% for validation, and 15% for 
testing, or 80% for training and 20% for testing, to ensure fair 
evaluation and good generalization performance.

TABLE II.  IOMT DATASETS 

Ref. Dataset Field Year Total Features Target attack 

[28] UNSW-NB15 Cybersecurity, Network ID 2015 49 
DoS, Fuzzers, Backdoor, Exploits, Generic, 

Reconnaissance, Shellcode, Worms 

[29] ToN-IoT 
IoT network traffic. 

 
2020 44 

DDoS, Mirai, Keylogging, Scanning, DoS, Backdoor, 

Ransomware, Injection, XSS, Password attack, MITM 

[30] IoT-23 
IoT network traffic. 

 
2020 47 

DDoS, DoS, Brute Force, Port Scan, MITM, Malware, 

Backdoor, Worm, Credential Stuffing, Botnet attacks 

[31] CICIDS2017 
Network traffic data from 

various real-world scenarios 
2017 80 

DDoS, Brute Force, DoS, Port Scan, Heartbleed, Botnet, 

Web Attack, SSH, Infiltration, etc. 

[32] CICIoMT-2024 
Network traffic data from IoMT 

devices 
2024 44 DDoS, DoS, Spoofing, Recon, MQTT 

[33] The SEN-MQTTSET 
Network traffic data from IoT 

devices using MQTT protocol 
2021 120 DoS, Subscriber Attack, Broker Attack 

[34] NF-ToN-IoT v1, v2, v3 
Network traffic data from IoT 

devices 

2021-

2025 
8, 43, 53 Backdoor, DoS, DDoS, Injection, Scanning, XSS 

[35] WUSTL-EHMS-2020 IoMT network 2020 44 MITM attacks: Spoofing, Data Injection 

 

V. EXPLAINABLE AI (XAI) ALGORITHMS 

XAI refers to a group of methods and techniques designed 
to enhance the transparency, interpretability, and 
trustworthiness of AI models. Traditional AI models, especially 
DL and complex ML models, often function as "black boxes", 

making it difficult to understand how they arrive at specific 
decisions. XAI algorithms aim to bridge this gap by providing 
insights into model predictions, ensuring accountability, and 
facilitating human-AI collaboration. XAI algorithms can be 
broadly classified into two types: 
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A. Model-Specific XAI Algorithms  

These methods are built into specific models and provide 
intrinsic interpretability. 

• DTs: A hierarchical structure that allows for 
straightforward interpretation by mapping decision 
paths. 

• LR: Provides direct interpretability through feature 
coefficients that indicate the impact of each variable. 

• Rule-Based Models: Generate human-readable rules that 
explain decision-making, such as in fuzzy logic systems. 

B. Post-Hoc XAI Algorithms 

 These techniques analyze and interpret complex, pre-trained 
models without altering their structure. 

• Shapley Additive Explanations (SHAP): Founded on 
cooperative game theory, SHAP allocates a significant 
score to every feature, indicating its contribution to the 
prediction made by the model. 

• Local Interpretable Model-agnostic Explanations 
(LIME): Creates local approximations of a black-box 
model by training simple surrogate models in the vicinity 
of single predictions. 

• Gradient-weighted Class Activation Mapping (Grad-
CAM): Used for DL to reveal the regions of an image 
that supported a model's decision. 

• Counterfactual Explanations: Explain decisions by 
identifying minimal changes in input that would lead to 
a different output, providing actionable insights [36]. 
These are all XAI techniques, as shown in Table III: 

TABLE III.  COMPARISON OF XAI TECHNIQUES 

Technique Description Strengths Weakness Use Cases 

DT 

A hierarchical structure where 

decisions are made based on feature 

values. 

Transparent, easy to 

visualize, interpretable. 

Prone to overfitting, less 

powerful for complex tasks. 

Customer segmentation, medical 

diagnosis, credit scoring. 

LR 
Predicts outputs based on a 

weighted sum of input features. 

Simple, easy to interpret, 

direct feature influence. 

Limited to linear relationships, 

sensitive to outliers. 

Price prediction, demand forecasting, 

stock market prediction. 

Rule-Based 

Models 

Make decisions based on 

predefined or learned rules. 

Transparent, easy to 

implement, interpretable. 

Can become overly complex, 

less powerful for complex 

patterns. 

Expert systems, diagnostic systems, 

regulatory compliance. 

SHAP 

Assigns an important score to each 

feature based on game theory 

(Shapley values). 

Theoretically grounded, 

consistent across models. 

Computationally expensive, 

slow for large models. 

Feature importance analysis, model 

interpretation, ML. 

LIME 

Approximates complex models 

with simpler interpretable models 

around individual predictions. 

Model-agnostics provides 

local explanations. 

Local explanations may not 

generalize, computationally 

expensive. 

Image classification, text 

classification, fraud detection. 

Grad-CAM 
Visualizes which parts of an image 

influenced the model's decision. 

Provides intuitive 

visualizations, works well 

with CNNs. 

Limited to CNNs, hard to 

interpret for complex models. 

Image classification, object 

detection, medical imaging. 

Counterfactual 

Explanations 

Explain a decision by identifying 

minimal changes in input to alter 

the output. 

Actionable, easy to 

understand, intuitive. 

May not be meaningful in 

complex models, 

computationally intensive. 

Decision support, recommender 

systems, financial services. 

 

VI. FEATURE SELECTION TECHNIQUES IN ID 

Feature selection is a necessary process in developing IDSs 
to reach dimensionality reduction, better accuracy, and better 
computational efficiency. By selecting the most informative 
features from network traffic data, IDS can gain a higher 
classification accuracy while, in the meantime, decreasing the 
number of false positives and negatives. A few optimization 
algorithms in feature selection, specifically bio-inspired ones 
such as GA, PSO, GWO, and ABC, play an important role in 
this process. GA ensures solution diversity through crossover 
and mutation, but it can be computationally expensive. 

PSO is efficient and simple, but may suffer from early 
convergence. GWO effectively balances exploration and 
exploitation, making it suitable for high-dimensional IDS 
datasets. ABC offers flexibility and robustness but may 
converge slowly than other algorithms. Despite their limitations, 
these methods continue to evolve, addressing weaknesses and 
improving feature selection performance, ultimately enhancing 
IDS effectiveness. The selection of an appropriate feature 
selection technique relies on factors like dataset size, feature 

complexity, and the desired balance between computational cost 
and classification performance. Proper feature selection can 
significantly enhance IDS effectiveness by improving detection 
rates while reducing processing overhead [37]. 

VII. PRACTICAL DEPLOYMENT: CONSIDERATIONS AND 

LIMITATIONS 

Practical deployment of IoT and IoMT intrusion detection 
systems also reveals important evaluation limitations commonly 
observed in existing studies. In particular, several datasets rely 
on labeling mechanisms derived from device identifiers, such as 
source MAC addresses. When MAC-related or identity-derived 
attributes are simultaneously included in the feature space, 
learning models may unintentionally capture device identity 
rather than genuine attack behavior, leading to label–feature 
leakage and overly optimistic performance results. To mitigate 
this risk, robust experimental practices explicitly exclude direct 
device identifiers (e.g., raw MAC addresses, organizationally 
unique identifiers, or vendor-specific prefixes) from the feature 
set and enforce device-level data partitioning, ensuring that 
traffic generated by the same device does not appear across 
training and testing splits. Clear documentation of feature 
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inclusion/exclusion decisions and data-splitting strategies is 
therefore essential for realistic, generalizable, and reproducible 
IoMT IDS evaluations. 

VIII. CONCLUSION 

The review shows that combining ML and XAI represents a 
promising direction in designing IDSs for IoMT environments. 
ML techniques enable accurate detection of complex threats, 
while XAI helps interpret these decisions and support 
trustworthy responses in sensitive medical contexts. However, 
challenges remain regarding scalability, real-time data handling, 
and privacy protection. The study recommends further studies 
to develop more efficient hybrid models, increase the adoption 
of XAI to ensure transparency, and establish standardized 
testing frameworks suitable for IoMT systems. Additionally, 
existing evaluations may suffer from label–feature leakage when 
device identifiers such as MAC addresses are used for labeling 
while also being included in the feature space. To ensure 
realistic and generalizable results, future studies should exclude 
direct device identifiers and apply device-level data partitioning 
between training and testing sets. 
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