
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

370 | P a g e
www.ijacsa.thesai.org

A Blockchain-Based Privacy-Preserving Scheme for

Integrity Verification and Fair Payment in Cloud Data

Storage

Li Zhenxiang1, Jin Yuanrong2, Mohammad Nazir Ahmad3

Sichuan Vocational College of Information Technology, Guangyuan, China1, 2
Infrastructure University Kuala Lumpur, Kuala Lumpur, Malaysia1, 2

Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia 3

Abstract—Ensuring the integrity of outsourced data in cloud

storage remains a critical challenge, especially when existing

auditing schemes rely on centralized third-party auditors (TPAs),

which introduce single points of failure, privacy leakage risks,

and a lack of economic fairness. Current blockchain-based

approaches improve transparency but still fail to simultaneously

achieve privacy-preserving verification and fair payment

between data owners and cloud service providers (CSPs). To

address this gap, this study proposes a blockchain-based integrity

verification scheme that supports decentralized, privacy-

preserving, and economically fair audits for encrypted cloud

data. The proposed scheme integrates homomorphic linear

authenticators (HLA) and multi-party computation (MPC) to

verify data integrity without revealing plaintext, while smart

contracts are used to enforce automatic payment or penalty

based on audit results, ensuring fairness and accountability. A

prototype implementation confirms the practicality of the system.

Experimental results show that the audit latency is reduced by up

to 35 per cent and smart contract gas consumption by

approximately 30 per cent compared to existing schemes, while

maintaining low computation and communication overhead.

Security analysis demonstrates that the scheme provides data

integrity, privacy protection, fairness, and resistance to replay

and collusion attacks. Overall, this work offers a practical and

scalable solution for secure cloud storage auditing.

Keywords—Cloud storage; blockchain; integrity verification;

smart contract; privacy-preserving audit; fair payment

I. INTRODUCTION

Cloud storage has become an essential component of
modern data management infrastructures [1]. However,
outsourcing data to third-party cloud service providers (CSPs)
raises critical concerns regarding data integrity, confidentiality,
and user trust [2]. Since users no longer possess physical
control over their data, they require reliable mechanisms to
ensure that outsourced files remain intact and unmodified.
Traditional auditing schemes rely on trusted third-party
auditors (TPAs), but these centralized architectures suffer from
inherent weaknesses such as single points of failure, implicit
trust assumptions, potential collusion, and limited
transparency [3].

Blockchain technology provides a decentralized and
tamper-resistant alternative for cloud auditing, replacing TPAs
with distributed consensus and verifiable smart contract
execution [4], [5]. Although several blockchain-based integrity
verification schemes have been proposed, most of them still
exhibit one or more of the following limitations:

• They focus on transparency but fail to protect data
privacy during audits.

• They do not support fair economic compensation
between users and CSPs in cases of data loss or fraud.

• They provide incomplete support for dynamic data
operations or require additional trust in off-chain
verifiers [6].

Therefore, an important research gap remains: existing
approaches do not offer a unified framework that
simultaneously achieves decentralized verification, privacy
preservation, and fair payment in cloud storage environments.

To address this gap, this study proposes a blockchain-based
integrity verification scheme that integrates privacy-preserving
audit and economic fairness into a single framework.
Homomorphic Linear Authenticators (HLA) and Multi-Party
Computation (MPC) are combined to enable verification of
encrypted data without revealing its content. In addition, smart
contracts are employed to enforce an automatic fair payment
mechanism that compensates CSPs only when data integrity is
successfully proven, while also providing dispute resolution in
case of corruption or data loss.

The main contributions of this work are summarized as
follows:

• We design a fully decentralized cloud data integrity
verification framework that removes reliance on TPAs
and guarantees audit correctness while preserving data
privacy.

• We develop a smart contract–based fair payment
protocol that enforces automatic rewards or penalties
based on audit outcomes, ensuring economic
accountability between users and CSPs.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

371 | P a g e
www.ijacsa.thesai.org

• We implement the prototype and conduct
comprehensive security analysis and experimental
evaluation. Results demonstrate that the proposed
scheme achieves low audit latency, reduced
communication overhead, and feasible gas consumption
in practical cloud environments.

The rest of the study is organized as follows: Section II
reviews related work. Section III introduces the system
architecture and threat model. Section IV presents the proposed
scheme in detail. Section V provides security analysis.
Section VI discusses performance evaluation and experimental
results. Finally, Section VII concludes the study and outlines
future research directions.

II. RELATED WORK

Ensuring the integrity of outsourced data has long been a
fundamental challenge in cloud storage systems. Early
cryptographic solutions such as Provable Data Possession
(PDP) and Proof of Retrievability (PoR) enabled users or
trusted third-party auditors (TPAs) to verify data correctness
without downloading the entire file [7]. However, these
methods rely heavily on centralized auditors, which introduces
risks of single-point failure, collusion, and trust assumption
issues [8].

To mitigate reliance on TPAs, blockchain-based integrity
verification schemes have gained increasing attention. Zhang
et al. combined blockchain with lattice-based cryptography to
achieve public auditing and improved transparency, but their
scheme lacks support for efficient computation and dynamic
data updates, which limits real-world applicability [9]. Zhou
et al. proposed a blockchain-enabled data monitoring scheme;
however, it provides limited analysis of computational costs
and does not address economic fairness between cloud service
providers (CSPs) and users [10].

Recent works have explored the integration of
homomorphic authenticators and advanced cryptographic
techniques to enhance verifiability. Sankar et al. introduced a
lattice-based multi-cloud auditing model, which offers
theoretical security but lacks practical deployment evaluation
[11]. Xie et al. proposed a T-Merkle hash tree to support
dynamic data operations; nevertheless, their design does not
incorporate fair payment or dispute resolution mechanisms
[12]. Liu and Huang presented privacy-preserving and
blockless verification schemes, but challenges remain in
achieving decentralized enforcement and secure economic
incentives [13], [14].

Another research direction focuses on blockchain-based
economic mechanisms for cloud data services. While these
methods record audit outcomes on-chain, most do not leverage
smart contracts for automatic enforcement or compensation.
For example, He et al. improved communication efficiency but
failed to establish a clear arbitration mechanism for disputes
[15]. Li et al. incorporated zero-knowledge proof-based
privacy, yet did not support on-chain payment settlement or
dynamic file updates [16].

Wang et al. developed a smart contract-driven integrity
auditing scheme for multi-cloud and multi-replica
environments, optimizing tag generation to reduce overhead

[17]. However, their system assumes a trusted key generation
center (KGC) and primarily focuses on multi-CSP coordination
rather than privacy preservation and fair exchange in a single-
cloud scenario.

In summary, existing blockchain-based auditing schemes
still face the following limitations:

• Reliance on centralized authorities such as TPAs or
KGCs.

• Absence of fair payment mechanisms to guarantee
accountability between users and CSPs.

• Incomplete support for encrypted data verification while
preserving privacy.

To overcome these challenges, this study proposes a
decentralized, privacy-preserving integrity verification scheme
that integrates homomorphic authenticators, multi-party
computation (MPC), and smart contracts to achieve secure
auditing, automated dispute resolution, and fair compensation.

III. SCHEME FRAMEWORK

A. Scheme Model

The proposed scheme consists of three primary entities, as
illustrated in Fig. 1.

Fig. 1. Scheme model.

1) Data owner (DO): A user who outsources encrypted

data to the cloud and later requests integrity verification. The

DO is responsible for generating encryption keys, computing

homomorphic tags, and initiating audit requests.

2) Cloud service provider (CSP): A storage service

provider that maintains outsourced data on behalf of the DO.

The CSP responds to audit challenges by generating proofs of

data possession.

3) Blockchain network: A decentralized ledger that hosts

smart contracts. It facilitates audit challenge distribution, proof

aggregation, verification, and fair payment based on audit

results. The blockchain is assumed to be transparent, tamper-

resistant, and always available.

The system is designed to operate without relying on any
third-party auditor or centralized key generation authority. All
integrity audits, payment mechanisms, and verification
processes are executed through smart contracts deployed on the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

372 | P a g e
www.ijacsa.thesai.org

blockchain. Data remains encrypted throughout the process
using AES-GCM, while integrity verification is performed
using homomorphic linear authenticators (HLA).

B. Threat Model

We consider both internal and external adversaries.

• Malicious CSP: The primary threat arises from a
dishonest CSP, who may:

o Delete or alter outsourced data to reduce storage

overhead.

o Forge integrity proofs to pass audits without

storing actual data.

o Reject fair payment conditions or evade penalties

following a failed audit.

• External Attacker: An outsider may attempt to:

o Intercept or tamper with communication between

DO and CSP.

o Replay previous audit responses to bypass

verification.

o Eavesdrop on blockchain transactions to infer

private information.

• Collusion Risk: The CSP may attempt to collude with
external entities to manipulate audit results or payment
transactions. However, smart contracts on the
blockchain act as impartial executors, preventing such
collusion.

We assume that the blockchain platform is secure, the
consensus mechanism is reliable, and all cryptographic
primitives (e.g., AES-GCM, Keccak-256, HLA) are resilient
against known attacks. All communication channels are
assumed to be protected by standard TLS protocols.

C. Security Targets

The proposed scheme aims to achieve the following
security objectives:

1) Data integrity: CSPs should be unable to modify or

delete data without detection. Audit verification must fail if the

data is tampered with.

2) Privacy preservation: The CSP cannot learn the content

of the data during upload, verification, or audit, as all data

remains encrypted and audit is performed via MPC and HLA.

3) Audit correctness: If the CSP stores data correctly and

follows the audit protocol honestly, the verification will

succeed with high probability.

4) Fair payment: The smart contract ensures that CSPs are

compensated only when audits are successful and penalized

when they fail to produce valid proofs.

5) Collusion resistance: Neither the CSP nor any external

party can manipulate or falsify audit results due to the tamper-

proof nature of the blockchain and the transparency of smart

contract execution.

6) Replay resistance: Each audit challenge is randomly

generated and time-bound, preventing the reuse of old

responses.

IV. SCHEME REALIZATION

This section outlines the proposed scheme's implementation
process, which is divided into five main phases. It begins by
introducing the notations and initialization settings that
establish the theoretical foundation of the scheme. Following
this foundational setup, the focus shifts to a detailed
examination of the three critical parts: file upload, file
download, and file update.

A. Notations

The symbols used throughout the scheme are defined in
Table I.

TABLE I. NOTATIONS

Notation Definition

𝐹 File

𝐶 Ciphertext

𝐵𝑖 𝑖-th data block

𝑆𝑗 𝑗-th share in MPC

𝑃𝑗 𝑗-th party in MPC

𝑀 MPC protocol

𝑅 Merkle Hash Tree Root Node

𝑛 Number of data blocks

𝐼𝐷 Identifier

𝜎 Homomorphic tag

𝑃𝑎𝑦𝑠𝑡𝑜𝑟 Storage service fees

𝑃𝑎𝑦𝑐𝑜𝑚𝑝 Compensation costs

B. Initial Setting

The proposed scheme leverages several core cryptographic
components and concepts:

1) Cyclic groups and bilinear mapping: Let 𝐺 and 𝐺𝑇 be

two cyclic groups of the same prime order 𝑝, with 𝑔 as the

generator of group 𝐺 . A bilinear mapping is defined as,

𝑒: 𝐺 × 𝐺 → 𝐺𝑇. These form the foundation for constructing the

cryptographic scheme.

2) User and file identity: Each user 𝑈 is identified by an

𝐼𝐷𝑈 and a corresponding Ethereum account 𝐸𝐴𝑈 . Files are

identified by an 𝐼𝐷𝐹. The Cloud Service Provider (CSP) is also

identified by an 𝐼𝐷𝐶𝑆𝑃 and has a corresponding Ethereum

Account 𝐸𝐴𝐶𝑆𝑃.

3) Encryption keys and signatures: User 𝑈 randomly

generates an RSA key pair (𝑠𝑝𝑘, 𝑠𝑠𝑘) for digital signature

purposes. Additionally, user 𝑈 selects an element 𝑢 from 𝐺 ,

with a private key 𝑠𝑠𝑘 = 𝑥 ∈ 𝑍𝑃, and calculates the public

key 𝑦 = 𝑔𝑥.

4) Multi-Party Computation (MPC): To enhance the

security and trustworthiness of the integrity verification

process, MPC is employed. In MPC, the data is divided into

multiple shares 𝑆𝑗 , which are distributed among different

parties 𝑃𝑗. These parties collaboratively perform computations

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

373 | P a g e
www.ijacsa.thesai.org

under the MPC protocol without disclosing their individual

inputs.

5) Economic model: Upon successful storage of user data,

users are required to pay the CSP storage fees 𝑃𝑎𝑦𝑠𝑡𝑜𝑟. If user

data is lost or damaged, the CSP must provide compensation to

the user, denoted as 𝑃𝑎𝑦𝑐𝑜𝑚𝑝.

These cryptographic elements and concepts provide the
necessary theoretical and technical foundation for the proposed
blockchain-based cloud data integrity verification scheme,
ensuring data security and transaction fairness.

C. File Upload

There are a total of six steps for file upload, as shown in
Fig. 2.

Fig. 2. Steps of file upload.

1) Step-1: Authentication: Before uploading file 𝐹 , the

CSP must verify the user's identity. The user 𝑈 uses a digital

certificate issued by a trusted Certificate Authority (CA) to

verify their identity. Specifically, user 𝑈 first hashes their

identity as ℎ (𝐼𝐷𝑈) and then signs this hash using their private

key to create the signature 𝑆𝑖𝑔𝑠𝑠𝑘 (ℎ (𝐼𝐷𝑈)). The user 𝑈 sends

this signature along with their digital certificate to the CSP.

Upon receiving the signature and the certificate, the CSP uses

the CA's public key to validate the digital certificate, ensuring

its authenticity. Then, CSP uses the public key 𝑠𝑝𝑘 from the

certificate to verify the signature . If the verification is

successful, the user is authenticated and can proceed to the

step-2.

2) Step-2: Encryption: User 𝑈 generates a signature for file

𝐹 using the private key 𝑠𝑠𝑘.

𝑆𝑖𝑔𝐹 = 𝐼𝐷𝐹 ∥ 𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹) (1)

𝑆𝑖𝑔𝐹 can be used as an identifier for file 𝐹. Subsequently,
user 𝑈 divides the file 𝐹 into 𝑛 data blocks, 𝐹 = {𝐵𝑖 }(1 ≤ 𝑖 ≤
𝑛). For the 𝑖-th data block 𝐵𝑖, user 𝑈 uses PBKDF2 algorithm
to calculate the convergence key and uses AES-GCM
algorithm to calculate the ciphertext.

Generate a unique salt value 𝑃𝑖 for each data block 𝐵𝑖.

𝐾𝐵𝑖
= 𝑃𝐵𝐾𝐷𝐹2(𝐵𝑖, 𝑃𝑖, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑑𝑘𝑙𝑒𝑛) (2)

Encrypt the data block using the derived key 𝐾𝐵𝑖
.

𝐶𝐵𝑖
= 𝐴𝐸𝑆−𝐺𝐶𝑀(𝐾𝐵𝑖

, 𝐵𝑖) (3)

User 𝑈 calculates file tags, using Keccak-256 hash
function.

𝑇𝐹 = 𝐾𝑒𝑐𝑐𝑎𝑘 − 256(𝐶𝐵𝑖
) (4)

User 𝑈 uses data block ciphertext {𝐶𝐵𝑖
} to construct a

Merkle hash tree and calculate its root points.

𝑅𝐶 = 𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒({𝐶𝐵𝑖
}) (5)

User 𝑈 calculates file signature.

𝛿 = 𝐻(𝑅𝐶)𝑥 𝑚𝑜𝑑 𝑝 (6)

User 𝑈 calculates homomorphic signature.

𝑊𝑖 = 𝐼𝐷𝐹 ∥ 𝑖 (7)

𝜎𝑖 = (𝐻(𝑊𝑖 × 𝑢𝐶𝐵𝑖))𝑥 𝑚𝑜𝑑 𝑞 (8)

3) Step-3: Upload: User 𝑈 sends the file label 𝑇𝐹 to CSP,

and CSP performs repeatability detection. If the file label 𝑇𝐹

already exists on the cloud server, it indicates duplication. In

this case, CSP and the user execute a proof of ownership

agreement to prove that the user indeed owns the file 𝐹, and

the user does not need to upload the file 𝐹 again. If the file

label 𝑇𝐹 is not stored on the cloud server, it indicates that the

file 𝐹 is not duplicated, and user 𝑈 will send

(𝑆𝑖𝑔𝐹 , {𝐶𝐵𝑖
},{𝜎𝑖}) to CSP.

4) Step-4: Integrity verification: To enhance the security

and privacy of the integrity verification process, user 𝑈 can act

as an auditor and engage in an integrity verification protocol

with the Cloud Service Provider (CSP), leveraging Multi-Party

Computation (MPC) as follows:

User 𝑈 retrieves the file identifier 𝑆𝑖𝑔𝐹 = 𝐼𝐷𝐹 ∥
𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹) from the cloud server.

Using the public key 𝑠𝑝𝑘 to verify the correctness of the
signature 𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹).

If the verification fails, the user will output a result of false.
If the verification is successful, the user can recover the file
identification 𝐼𝐷𝐹.

Initialization: User 𝑈 selects a subset 𝐼 =
{𝑆1 ,𝑆2 , 𝑆3 , . . . , 𝑆𝑐−1 , 𝑆𝑐} ⊂ [1, 𝑛] containing 𝑐 elements. This
subset is used as the seed value set {𝑆𝑖} to initiate 𝑀.

Sharing Data for MPC: User 𝑈 divides the data into shares

𝑆𝑗 for the selected indices 𝐼 . These shares are distributed

among different parties 𝑃𝑗 involved in 𝑀.

Engaging the MPC Protocol: The parties {𝑃𝑗}
collaboratively execute 𝑀 to securely compute random
numbers. The protocol ensures that none of the parties,
including the CSP, can learn the individual shares or the final
random numbers until the computation is complete.

Secure Computation: 𝑀 employs a pseudo-random
function, denoted as 𝑓: {0,1}∗ → [1, 𝑛], to securely compute
the random numbers. The function takes as input the shares
{𝑆𝑗} , the current block identifier 𝐵𝑖𝑑 and the current

timestamp 𝑇𝑠.

Output Generation: As a result of the secure computation,
𝑀 outputs two sets of random numbers: {𝑟𝑖} and {𝑧𝑖}. These
numbers are generated in such a manner that they are

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

374 | P a g e
www.ijacsa.thesai.org

unpredictable to outside observers, ensuring the integrity of the
computation process.

Challenge Formation: User 𝑈 forms a challenge 𝑐ℎ𝑎𝑙 =
{(𝑟𝑖 , 𝑧𝑖)} using the random numbers generated by 𝑀 . This
challenge is then sent to the CSP to verify the integrity of cloud
data.

CSP calculates the proof information 𝜇 and 𝐿 using the
received challenge, where:

𝜇 = ∑  𝑖∈𝐼 𝑧𝑖𝐶𝐵𝑖
 (9)

𝐿 = ∏  𝑖∈𝐼 𝜎𝑧𝑖

𝑟𝑖 (10)

CSP sends (𝜇, 𝐿) as proof to user 𝑈.

User 𝑈 checks the correctness of the following equation to
check the integrity of cloud data:

Γ1:𝑒(𝐿, 𝑔) = 𝑒((∏  𝑖∈𝐼 𝐻(𝑊𝑖)
𝑍𝑖 ⋅ 𝑢𝜇), 𝑦) (11)

This step utilizes MPC to ensure that the computation of μ
and L is done without revealing the actual values of {𝐶𝐵𝑖

} and

{𝜎𝑍𝑖
} to any single party, enhancing the privacy of the data.

By incorporating MPC into the integrity verification
process, this approach not only maintains the confidentiality of
the data during the verification but also enhances the security
and trustworthiness of the cloud storage system. The use of
MPC allows multiple parties to compute the verification
without revealing their inputs, thereby providing a more secure
and privacy-preserving verification process. Fig. 3 illustrates
the process of step-4.

Fig. 3. Step-4 integrity verification.

5) Step-5: Create transaction: User 𝑈 can generate

effective file tamper proof records by integrating auxiliary

information from file 𝐹 into a transaction in the blockchain.

This allows other users to have a clear understanding of the

storage service quality provided by CSP and helps them choose

the most suitable storage service. The details are as follows.

User 𝑈 calculate:

𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥ 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥ 𝛿 ∥ 𝐴𝑢𝑔𝐹 (12)

where, 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 > 0 indicates that user 𝑈 pays storage
service fees to CSP, 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 < 0 indicates that CSP pays

compensation fees to user 𝑈, and 𝐴𝑢𝑔𝐹 represents additional
information for file 𝐹.

As shown in Fig. 4, the user submits Smart Contract 1 to
generate a transaction TX, where the transaction TX parameter
is 𝐹𝑟𝑜𝑚 = 𝐸𝐴𝑈,𝑇𝑜 = 𝐸𝐴𝐶𝑆𝑃 and 𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥
𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥ 𝛿 ∥ 𝐴𝑢𝑔𝐹.

Fig. 4. Smart contract 1.

After receiving the output result of Smart Contract 1, User
𝑈 uses the private key 𝑠𝑠𝑘 to generate signature information
𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑆𝑖𝑔𝑠𝑠𝑘(TX), and submits the transaction TX =
𝐹𝑟𝑜𝑚 ∥ 𝑇𝑜 ∥ 𝑉𝑎𝑙𝑢𝑒 ∥ 𝐷𝑎𝑡𝑎 ∥ 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 to the blockchain.

6) Step-6: Fair payment: After data is uploaded to the

cloud server, users need to pay for the storage services

provided by CSP. As shown in Fig. 5, user 𝑈 can submit Smart

Contract 2 to the blockchain, where Smart Contract 2 will be

automatically activated and executed. If the formula 𝛤1 is

established, it means that the data block {𝐵𝑖𝑗} has been fully

stored on the cloud server, and at this time, user 𝑈 needs to pay

the corresponding storage service fee to CSP. Otherwise, if the

equation 𝛤1 is not valid, it indicates that the data block {𝐵𝑖𝑗}
has been damaged or lost, and CSP needs to take

corresponding responsibility and provide certain compensation

for the damage or loss of the data. The mechanism of fair

payment is shown in Fig. 6.

Fig. 5. Smart contract 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

375 | P a g e
www.ijacsa.thesai.org

Fig. 6. Step-6 fair payment.

D. File Download

The user first submits a download request to the CSP and
retrieves all encrypted data blocks. To verify the consistency of
the data and restore the original file 𝐹 , the process is as
follows:

The encrypted data blocks are used as leaf nodes to
construct a Merkle hash tree, from which the root node 𝑅𝐶 is
derived.

An external Multi-Party Computation (MPC) protocol is
executed to verify the consistency of the data blocks. This step
ensures a secure verification process without revealing any
actual data to individual parties, while confirming that the
blocks have not been tampered with.

The user then parses the transaction TX from the
blockchain to extract the file identifier and associated
verification metadata.

Verify the correctness of equation Γ2: 𝑒(𝛿, 𝑔) =
𝑒(𝐻(𝑅𝐶),𝑦). If the equation Γ2 holds true, it confirms the
integrity and authenticity of the data blocks.

The decryption keys 𝐾𝐵𝑖
 are securely distributed among

multiple parties using the MPC protocol. This ensures that no
single party has access to the complete decryption key,
enhancing the security of the decryption process.

With the securely distributed keys, decrypt each data block
using the AES-GCM algorithm:

𝐵𝑖 = 𝐴𝐸𝑆−𝐺𝐶𝑀−𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝐵𝑖
, 𝐶𝐵𝑖

) (13)

Reassemble the original file 𝐹 = {𝐵𝑖} from the decrypted
data blocks 𝐵𝑖.

Fig. 7 shows the complete file download process.

Fig. 7. File download.

E. File Update

When a data block 𝐵𝑖 in file 𝐹 needs to be updated to a new
version, the process incorporates MPC to enhance privacy and
security.

User 𝑈 first encrypts the updated data block using the
PBKDF2 key derivation function and the AES-GCM
encryption algorithm to encrypt the updated data block 𝐵𝑖

′ to
obtain the ciphertext 𝐶𝑖

′ , and recalculates the homomorphic

signature 𝜎𝑖
′ = (𝐻(𝑊𝑖) ⋅ 𝑢

𝐶𝐵𝑖
′

))𝑥 . Subsequently, user 𝑈 will

send an update request (𝑖, 𝐶𝑖
′,𝜎𝑖

′) to CSP. CSP replaces the
ciphertext block 𝐶𝑖 in file 𝐹 with the new block 𝐶𝑖

′ and send
{𝜛𝑖} to user 𝑈 , where 𝜛𝑖 represents the information of the
sibling nodes associated with the path from 𝐻(𝐶𝑖

′) to the root
node.

User 𝑈 first calculates the value 𝑅𝐶 of the root node based
on {𝜛𝑖} and 𝐻(𝐶𝑖

), and then continues to verify whether the
condition 𝛤2: 𝑒(𝛿, 𝑔) = 𝑒(𝐻(𝑅𝐶)𝑥,𝑔) holds. If it is true, it
indicates that the position updated by the server is correct, that
is, the ciphertext block 𝐶𝑖

′ is the updated block of ciphertext
block 𝐶𝑖.

User 𝑈 recalculates the value 𝑅𝐶
′ of the root node based on

{𝜛𝑖} and 𝐻(𝐵𝑖
′) , and signs it 𝛿′ = 𝐻(𝑅𝐶

′)𝑥 . Then, 𝑈
recalculates the 𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥ 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥
𝛿′ ∥ 𝐴𝑢𝑔𝐹, and finally integrates the 𝐷𝑎𝑡𝑎 information into a
blockchain transaction on the blockchain. The insertion and
deletion operations of data blocks can refer to the data block
update operations mentioned above.

V. SECURITY ANALYSIS

This section evaluates the proposed scheme against the
adversarial threats defined in Section III and demonstrates how
the system satisfies its key security objectives.

A. Data Integrity and Unforgetability

Theorem 1: If the user does indeed download the original
uploaded data, then the user will be able to successfully pass
data consistency verification, with the process further secured
by MPC.

Proof: In this scheme, when users download encrypted data
{𝐶𝐵𝑖 } from the CSP, it is necessary to verify the consistency of
their data in order to recover the correct original plaintext 𝐹.
To achieve this goal, users can utilize a Merkle hash tree to
compute the root node 𝑅, where the root node 𝑅 is determined
by all data block ciphertexts {𝐶𝐵𝑖} as leaf nodes. If any part of
this information is altered, the value of 𝑅 will also change
accordingly. Users can verify the correctness of the following
equation to detect data consistency.

If equation Γ2: 𝑒(𝛿, 𝑔) holds true, it indicates that the
downloaded ciphertext information {𝐶𝐵𝑖} corresponds to the
originally uploaded data. Subsequently, the user can recover
the original file through convergence keys. Otherwise, if
equation Γ2 does not hold true, it signifies that during the
downloading process, the ciphertext of data blocks {𝐶𝐵𝑖 } has
been corrupted.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

376 | P a g e
www.ijacsa.thesai.org

B. Privacy Preservation

Theorem 1: This scheme can ensure the privacy protection
of user data, and adversary 𝑋 cannot obtain any useful
information about user data during the integrity verification
process.

Proof: The parameters {𝑟, 𝑧, 𝜇, 𝛿, 𝜎} involved in this scheme
do not expose any information about the user-uploaded data
blocks 𝐵𝑖. In particular, there is a security vulnerability in the
integrity verification scheme based on HLA, where in the
integrity verification process, adversary 𝑋 would utilize the
generation of aggregate signature 𝜇′ = ∑ 𝑧𝑖𝑖∈𝐼 𝐶𝐵𝑖

, by

repeatedly selecting indices (𝑖, 𝑧𝑖) to obtain specific linear
combinations. Finally, by solving linear equations, adversary 𝑋
could extract user information contained in the aggregate
signature.

C. Fair Payment Guarantee

The smart contract logic enforces incentive compatibility
between the DO and CSP. Both parties deposit tokens before
an audit round. The contract releases:

• Payment to the CSP if the audit passes.

• Refund or penalty compensation to the DO if the audit
fails.

This design ensures that CSPs cannot receive rewards
without proving data possession, and DOs cannot cheat without
valid evidence. All transactions and outcomes are verifiable
and immutable on the blockchain ledger, providing
accountability without external arbitration.

D. Resistance to Replay and Collusion

Each audit challenge is freshly generated via secure on-
chain randomness (e.g., Keccak-based hash or block nonce).
Since the challenge indices and weights are unpredictable, a
CSP cannot reuse previous responses (replay resistance).

In addition, the smart contract acts as an impartial,
decentralized entity. Any attempt by DO and CSP to collude
would be visible on-chain. Moreover, data tags and Merkle
roots are bound to each user and file instance, making it
infeasible to reuse or share tags across users (collusion
resistance).

E. Soundness and Completeness of Verification

The verification algorithm satisfies:

• Completeness: If the CSP honestly stores all data and
follows the protocol, verification always passes.

• Soundness: If any challenged block is corrupted or
missing, the aggregated tag will not satisfy the bilinear
verification equation, and the audit will fail with
overwhelming probability.

Under the random oracle model, the probability of passing
an audit without the correct data is negligible.

VI. EVALUATION AND RESULTS

In this section, we evaluate the performance of our
proposed scheme in terms of computational overhead,

communication cost, and scalability. We also compare it
against existing schemes to demonstrate its efficiency and
practicality.

A. Experimental Setup

All experiments were conducted on a machine with an Intel
Core i7-11700 CPU, 16 GB RAM, running Ubuntu 22.04. The
implementation was developed in Python and Solidity. The
blockchain environment is a local Ethereum testnet using
Ganache, and smart contracts were deployed using the Truffle
scheme.

We use the following cryptographic primitives:

• AES-GCM (128-bit) for symmetric encryption.

• Keccak-256 for hashing and challenge randomness.

• HLA over elliptic curve groups (BLS12-381).

• PBKDF2 for key derivation from file ID.

We evaluate performance on files ranging from 10 MB to 1
GB, and measure:

• Tag generation time

• Audit-proof generation and verification time

• Encryption time

• MPC overhead (optional component)

• Gas cost of smart contract interactions

B. Tag Generation and Upload Performance

As shown in Fig. 8, the tag generation time grows linearly
with the file size. For a 100 MB file, the average tag generation
takes 1.2 seconds, which is significantly lower than Zhou et al.
and Sankar, both of which exceed 2.5 seconds under similar
settings [10][11].

Fig. 8. Tag generation time vs. File size.

The AES-GCM encryption adds a fixed overhead of
approximately 0.9 seconds per 100 MB, which remains
acceptable in practice. Combined upload time remains under
2.5 seconds per 100 MB.

C. Audit Efficiency

Fig. 9 presents the time taken by the CSP to compute the
audit proof and the time taken by the smart contract to verify it.
Even for files of 500 MB, the audit process completes within
200 ms. The aggregated tag greatly reduces computational
effort compared to verifying each block individually.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

377 | P a g e
www.ijacsa.thesai.org

Fig. 9. Audit time vs. File size.

With MPC enabled, verification time increases modestly
due to interaction rounds, reaching 420 ms for a 500 MB file.
However, this added cost ensures privacy without revealing 𝜇.

D. Data Update Overhead

Fig. 10 shows the cost of a single block update
(modify/insert/delete). Tag recomputation and Merkle tree
adjustment combined take less than 80 ms per block. On-chain
update verification (including Merkle path) adds ~15,000 gas
(~$0.03 equivalent on Ethereum).

This demonstrates that dynamic updates are practical and
lightweight.

Fig. 10. Update overhead per operation.

E. Smart Contract Gas Cost

Fig. 11 shows the estimated gas consumption of core smart
contract functions. Contract 1 handles audit-related operations,
while Contract 2 governs fair payment and dispute resolution.
Deployment is the most gas-intensive, followed by storage-
heavy and payment functions.

Fig. 11. Smart contract gas consumption.

The core smart contract functions involved in each audit
namely, submitting audit evidence and triggering payment
consume approximately 90,000 to 100,000 gas in total, which
demonstrates the practical feasibility and scalability of the
proposed scheme.

F. Comparison with Existing Schemes

Fig. 12 compares our scheme with Zhou et al. and Liu in
terms of audit latency and update overhead [10][13]. This
scheme consistently outperforms baselines due to:

• Tag aggregation via HLA (vs. per-block tag checking).

• No third-party verifier involvement.

• On-chain automation via smart contracts.

For 1 GB files, our scheme achieves 35 to 50 per cent
reduction in audit time and 30 per cent lower update cost.

Fig. 12. Comparison with existing schemes.

VII. CONCLUSION

This study proposes a blockchain-based integrity
verification scheme for encrypted cloud data that achieves
decentralized auditing, privacy preservation, and fair economic
incentives. By integrating Homomorphic Linear Authenticators
(HLA), Multi-Party Computation (MPC), and smart contracts,
the scheme eliminates reliance on third-party auditors and
ensures automatic and transparent dispute resolution and
payment settlement between data owners and cloud service
providers. The system supports dynamic data operations and
enables encrypted data verification without exposing plaintext
information. Security analysis confirms that the scheme
achieves data integrity, confidentiality, fairness, and resistance
to replay and collusion attacks. Experimental results further
demonstrate that the proposed protocol achieves low audit
latency, acceptable computation and communication overhead,
and practical gas consumption.

Despite its advantages, the proposed scheme has several
limitations. First, the use of MPC introduces additional
communication overhead, which may affect performance in
large-scale or resource-constrained environments. Second, the
prototype is designed for a single-cloud setting and does not
fully consider multi-cloud interoperability or cross-chain audit
synchronization. Third, the cost of deploying smart contracts
and executing transactions on public blockchains may increase
under high network congestion or volatile gas prices.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

378 | P a g e
www.ijacsa.thesai.org

Future research will focus on three directions:

• Optimizing the MPC protocol and reducing on-chain
interaction costs through lightweight cryptographic
primitives or zero-knowledge proofs;

• Extending the framework to support multi-cloud and
cross-provider integrity verification, enabling
collaboration and redundancy among distributed storage
services;

• Migrating the scheme to Layer-2 or permissioned
blockchain platforms to reduce gas consumption and
enhance scalability.

ACKNOWLEDGMENT

The work described in this study was supported by Sichuan
Vocational College of Information Technology, Guangyuan,
China. Sichuan Vocational College of Information
Technology, 2025 Research Project (2025KC02).

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

REFERENCES

[1] Mathur P. Cloud computing infrastructure, platforms, and software for

scientific research. High Performance Computing in Biomimetics:

Modeling, Architecture and Applications. 2024 Mar 21:89-127.

[2] Ali H, Abidin S, Alam M. Auditing of outsourced data in cloud

computing: an overview. In2024 11th International conference on

computing for sustainable global development (INDIACom) 2024 Feb

28 (pp. 111-117). IEEE.

[3] Zhao Y, Qu Y, Xiang Y, Uddin MP, Peng D, Gao L. A comprehensive

survey on edge data integrity verification: Fundamentals and future

trends. ACM Computing Surveys. 2024 Oct 7;57(1):1-34.

[4] Shalabi K, Al-Nabhan M, Al Dala’ien MA. Blockchain Based Auditing

for Cloud Security: A Systematic Review. InWorld Congress in

Computer Science, Computer Engineering & Applied Computing 2025

(pp. 184-199). Springer, Cham.

[5] Hossain MI, Steigner T, Hussain MI, Akther A. Enhancing data integrity

and traceability in industry cyber physical systems (ICPS) through

Blockchain technology: A comprehensive approach. arXiv preprint

arXiv:2405.04837. 2024 May 8.

[6] Perera L, Ranaweera P, Kusaladharma S, Wang S, Liyanage M. A

survey on blockchain for dynamic spectrum sharing. IEEE Open Journal

of the Communications Society. 2024 Mar 14.

[7] Wang L, Hu M, Jia Z, Guan Z, Chen Z. SStore: an efficient and secure

provable data auditing platform for cloud. IEEE Transactions on

Information Forensics and Security. 2024 Apr 1.

[8] Sameera KM, Nico lazzo S, Arazzi M, Nocera A, KA RR, Vinod P,

Conti M. Privacy-preserving in Blockchain-based Federated Learning

systems. Computer Communications. 2024 Apr 20.

[9] Zhang, Y., Geng, H., Su, L., & Lu, L. (2022). A blockchain-based

efficient data integrity verification scheme in multi-cloud storage. Ieee

Access, 10, 105920-105929.

[10] Zhou, Z., Luo, X., Bai, Y., Wang, X., Liu, F., Liu, G., & Xu, Y. (2022).

A Scalable Blockchain‐Based Integrity Verif ication Scheme. Wireless

Communications and Mobile Computing, 2022(1), 7830508.

[11] Sankar, S. M., Selvaraj, D., Monica, G. K., & Katiravan, J. (2023). A

Secure Third-Party Audit ing Scheme Based on Blockchain Technology

in Cloud Storage. arXiv preprint arXiv:2304.11848.

[12] Xie, G., Liu, Y., Xin, G., & Yang, Q. (2021). Blockchain‐Based Cloud

Data Integrity Verification Scheme with High Efficiency. Security and

Communication Networks, 2021(1), 9921209.

[13] Liu, Z., Ren, L., Feng, Y., Wang, S., & Wei, J. (2023). Data Integrity

Audit Scheme Based on Quad Merkle Tree and Blockchain. IEEE

Access, 11, 59263–59273.

[14] Huang, Y., Yu, Y., Li, H., Li, Y., & Tian, A. (2022). Blockchain-based

continuous data integrity checking protocol with zero -knowledge

privacy protection. Digital Communications and Networks, 8(5), 604-

613.

[15] He, K., Huang, C., Shi, J., Hu, X., & Fan, X. (2021, November 1).

Enabling Decentralized and Dynamic Data Integrity Verification for

Secure Cloud Storage via T-Merkle Hash Tree Based Blockchain.

Mobile Information Systems, 2022, 1–17.

[16] Li, J., Wu, J., Jiang, G., & Srikanthan, T. (2021, November).

Blockchain-based public auditing for big data in cloud storage.

Information Processing & Management, 57(6), 102382.

[17] Wang, M., Zhu, T., Zuo, X., Ye, D., Yu, S., & Zhou, W. (2023).

Blockchain-Based Gradient Inversion and Poisoning Defense for

Federated Learning. IEEE Internet of Things Journal.

