(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

A Blockchain-Based Privacy-Preserving Scheme for
Integrity Verification and Fair Payment in Cloud Data
Storage

Li Zhenxiang!, Jin Yuanrong?, Mohammad Nazir Ahmad?
Sichuan Vocational College of Information Technology, Guangyuan, China'-?2
Infrastructure University Kuala Lumpur, Kuala Lumpur, Malaysia!-2
Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia?

Abstract—Ensuring the integrity of outsourced data in cloud
storage remains a critical challenge, especially when existing
auditing schemes rely on centralized third-party auditors (TPAs),
which introduce single points of failure, privacy leakage risks,
and a lack of economic fairness. Current blockchain-based
approaches improve transparency but still fail to simultaneously
achieve privacy-preserving verification and fair payment
between data owners and cloud service providers (CSPs). To
address this gap, this study proposes a blockchain-based integrity
verification scheme that supports decentralized, privacy-
preserving, and economically fair audits for encrypted cloud
data. The proposed scheme integrates homomorphic linear
authenticators (HLA) and multi-party computation (MPC) to
verify data integrity without revealing plaintext, while smart
contracts are used to enforce automatic payment or penalty
based on audit results, ensuring fairness and accountability. A
prototype implementation confirms the practicality of the system.
Experimental results show that the audit latency is reduced by up
to 35 per cent and smart contract gas consumption by
approximately 30 per cent compared to existing schemes, while
maintaining low computation and communication overhead.
Security analysis demonstrates that the scheme provides data
integrity, privacy protection, fairness, and resistance to replay
and collusion attacks. Overall, this work offers a practical and
scalable solution for secure cloud storage auditing.

Keywords—Cloud storage; blockchain; integrity verification;
smart contract; privacy-preserving audit; fair payment

I. INTRODUCTION

Cloud storage has become an essential component of
modern data management infrastructures [1]. However,
outsourcing data to third-party cloud service providers (CSPs)
raises critical concerns regarding data integrity, confidentiality,
and user trust [2]. Since users no longer possess physical
control over their data, they require reliable mechanisms to
ensure that outsourced files remain intact and unmodified.
Traditional auditing schemes rely on trusted third-party
auditors (TPAs), but these centralized architectures suffer from
inherent weaknesses such as single points of failure, implicit
trust assumptions, potential collusion, and limited
transparency [3].

Blockchain technology provides a decentralized and
tamper-resistant alternative for cloud auditing, replacing TPAs
with distributed consensus and verifiable smart contract
execution [4], [5]. Although several blockchain-based integrity
verification schemes have been proposed, most of them still
exhibit one or more of the following limitations:

e They focus on transparency but fail to protect data
privacy during audits.

e They do not support fair economic compensation
between users and CSPs in cases of data loss or fraud.

e They provide incomplete support for dynamic data
operations or require additional trust in off-chain
verifiers [6].

Therefore, an important research gap remains: existing
approaches do not offer a wunified framework that
simultaneously achieves decentralized verification, privacy
preservation, and fair payment in cloud storage environments.

To address this gap, this study proposes a blockchain-based
integrity verification scheme that integrates privacy-preserving
audit and economic fairmess into a single framework.
Homomorphic Linear Authenticators (HLA) and Multi-Party
Computation (MPC) are combined to enable verification of
encrypted data without revealing its content. In addition, smart
contracts are employed to enforce an automatic fair payment
mechanism that compensates CSPs only when data integrity is
successfully proven, while also providing dispute resolution in
case of corruption or data loss.

The main contributions of this work are summarized as
follows:

e We design a fully decentralized cloud data integrity
verification framework that removes reliance on TPAs
and guarantees audit correctness while preserving data
privacy.

e We develop a smart contract-based fair payment
protocol that enforces automatic rewards or penalties
based on audit outcomes, ensuring economic
accountability between users and CSPs.

370 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

e We implement the prototype and conduct
comprehensive security analysis and experimental
evaluation. Results demonstrate that the proposed
scheme achieves low audit latency, reduced
communication overhead, and feasible gas consumption
in practical cloud environments.

The rest of the study is organized as follows: Section II
reviews related work. Section III introduces the system
architecture and threat model. Section IV presents the proposed
scheme in detail. Section V provides security analysis.
Section VI discusses performance evaluation and experimental
results. Finally, Section VII concludes the study and outlines
future research directions.

II. RELATED WORK

Ensuring the integrity of outsourced data has long been a
fundamental challenge in cloud storage systems. Early
cryptographic solutions such as Provable Data Possession
(PDP) and Proof of Retrievability (PoR) enabled users or
trusted third-party auditors (TPAs) to verify data correctness
without downloading the entire file [7]. However, these
methods rely heavily on centralized auditors, which introduces
risks of single-point failure, collusion, and trust assumption
issues [8].

To mitigate reliance on TPAs, blockchain-based integrity
verification schemes have gained increasing attention. Zhang
etal. combined blockchain with lattice-based cryptography to
achieve public auditing and improved transparency, but their
scheme lacks support for efficient computation and dynamic
data updates, which limits real-world applicability [9]. Zhou
et al. proposed a blockchain-enabled data monitoring scheme;
however, it provides limited analysis of computational costs
and does not address economic fairness between cloud service
providers (CSPs) and users [10].

Recent works have explored the integration of
homomorphic authenticators and advanced cryptographic
techniques to enhance verifiability. Sankar et al. introduced a
lattice-based multi-cloud auditing model, which offers
theoretical security but lacks practical deployment evaluation
[11]. Xie et al. proposed a T-Merkle hash tree to support
dynamic data operations; nevertheless, their design does not
incorporate fair payment or dispute resolution mechanisms
[12]. Liu and Huang presented privacy-preserving and
blockless verification schemes, but challenges remain in
achieving decentralized enforcement and secure economic
incentives [13], [14].

Another research direction focuses on blockchain-based
economic mechanisms for cloud data services. While these
methods record audit outcomes on-chain, most do not leverage
smart contracts for automatic enforcement or compensation.
For example, He et al. improved communication efficiency but
failed to establish a clear arbitration mechanism for disputes
[15]. Li et al. incorporated zero-knowledge proof-based
privacy, yet did not support on-chain payment settlement or
dynamic file updates [16].

Wang et al. developed a smart contract-driven integrity
auditing scheme for multi-cloud and multi-replica
environments, optimizing tag generation to reduce overhead

Vol. 17, No. 1, 2026

[17]. However, their system assumes a trusted key generation
center (KGC) and primarily focuses on multi-CSP coordination
rather than privacy preservation and fair exchange in a single-
cloud scenario.

In summary, existing blockchain-based auditing schemes
still face the following limitations:

e Reliance on centralized authorities such as TPAs or
KGCs.

e Absence of fair payment mechanisms to guarantee
accountability between users and CSPs.

e Incomplete support for encrypted data verification while
preserving privacy.

To overcome these challenges, this study proposes a
decentralized, privacy-preserving integrity verification scheme
that integrates homomorphic authenticators, multi-party
computation (MPC), and smart contracts to achieve secure
auditing, automated dispute resolution, and fair compensation.

III. SCHEME FRAMEWORK

A. Scheme Model

The proposed scheme consists of three primary entities, as
illustrated in Fig. 1.

BLOCKCHAIN

L H L H]

r o1
@@ﬂ

FILE UFLOAD

l SER FILE DOWNLOAD Ccsp

Fig. 1. Scheme model.

1) Data owner (DO): A user who outsources encrypted
data to the cloud and later requests integrity verification. The
DO is responsible for generating encryption keys, computing
homomorphic tags, and initiating audit requests.

2) Cloud service provider (CSP): A storage service
provider that maintains outsourced data on behalf of the DO.
The CSP responds to audit challenges by generating proofs of
data possession.

3) Blockchain network: A decentralized ledger that hosts
smart contracts. It facilitates audit challenge distribution, proof
aggregation, verification, and fair payment based on audit
results. The blockchain is assumed to be transparent, tamper-
resistant, and always available.

The system is designed to operate without relying on any
third-party auditor or centralized key generation authority. All
integrity audits, payment mechanisms, and verification
processes are executed through smart contracts deployed on the

371 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

blockchain. Data remains encrypted throughout the process
using AES-GCM, while integrity verification is performed
using homomorphic linear authenticators (HLA).

B. Threat Model
We consider both internal and external adversaries.

e Malicious CSP: The primary threat arises from a
dishonest CSP, who may:

o Delete or alter outsourced data to reduce storage
overhead.

o Forge integrity proofs to pass audits without
storing actual data.

o Reject fair payment conditions or evade penalties
following a failed audit.

e External Attacker: An outsider may attempt to:

o Intercept or tamper with communication between
DO and CSP.

o Replay previous
verification.

audit responses to bypass

o Eavesdrop on blockchain transactions to infer
private information.

e Collusion Risk: The CSP may attempt to collude with
external entities to manipulate audit results or payment

transactions. However, smart contracts on the
blockchain act as impartial executors, preventing such
collusion.

We assume that the blockchain platform is secure, the
consensus mechanism is reliable, and all cryptographic
primitives (e.g., AES-GCM, Keccak-256, HLA) are resilient
against known attacks. All communication channels are
assumed to be protected by standard TLS protocols.

C. Security Targets

The proposed scheme aims to achieve the following
security objectives:

1) Data integrity: CSPs should be unable to modify or
delete data without detection. Audit verification must fail if the
data is tampered with.

2) Privacy preservation: The CSP cannot learn the content
of the data during upload, verification, or audit, as all data
remains encrypted and audit is performed via MPC and HLA.

3) Audit correcmess: If the CSP stores data correctly and
follows the audit protocol honestly, the verification will
succeed with high probability.

4) Fair payment: The smart contract ensures that CSPs are
compensated only when audits are successful and penalized
when they fail to produce valid proofs.

5) Collusion resistance: Neither the CSP nor any external
party can manipulate or falsify audit results due to the tamper-
proof nature of the blockchain and the transparency of smart
contract execution.

Vol. 17, No. 1, 2026

6) Replay resistance: Each audit challenge is randomly
generated and time-bound, preventing the reuse of old
responses.

IV. SCHEME REALIZATION

This section outlines the proposed scheme's implementation
process, which is divided into five main phases. It begins by
introducing the notations and initialization settings that
establish the theoretical foundation of the scheme. Following
this foundational setup, the focus shifts to a detailed
examination of the three critical parts: file upload, file
download, and file update.

A. Notations

The symbols used throughout the scheme are defined in
Table 1.

TABLE L. NOTATIONS

Notation Definition
F File
C Ciphertext
B; i-th data block
S; j-th share in MPC
B Jj-th party in MPC
M MPC protocol
R Merkle Hash Tree Root Node
n Number of data blocks
1D Identifier
o Homomorphic tag
Payg,r Storage service fees
Pay.omp Compensation costs

B. Initial Setting

The proposed scheme leverages several core cryptographic
components and concepts:

1) Cyclic groups and bilinear mapping: Let G and G be
two cyclic groups of the same prime order p, with g as the
generator of group G. A bilinear mapping is defined as,
e:G X G — Gp. These form the foundation for constructing the
cryptographic scheme.

2) User and file identity: Each user U is identified by an
ID; and a corresponding Ethereum account EA;. Files are
identified by an ID. The Cloud Service Provider (CSP) is also
identified by an ID.sp and has a corresponding Ethereum
Account EAgp.

3) Encryption keys and signatures: User U randomly
generates an RSA key pair (spk, ssk) for digital signature
purposes. Additionally, user U selects an element u from G,
with a private key ssk = x € Zp, and calculates the public
key y = g*.

4) Multi-Party Computation (MPC): To enhance the
security and trustworthiness of the integrity verification
process, MPC is employed. In MPC, the data is divided into
multiple shares S;, which are distributed among different
parties P;. These parties collaboratively perform computations

372 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

under the MPC protocol without disclosing their individual
inputs.

5) Economic model: Upon successful storage of user data,
users are required to pay the CSP storage fees Payg,,,. If user
data is lost or damaged, the CSP must provide compensation to
the user, denoted as Pay qm,,-

These cryptographic elements and concepts provide the
necessary theoretical and technical foundation for the proposed
blockchain-based cloud data integrity verification scheme,
ensuring data security and transaction fairness.

C. File Upload

There are a total of six steps for file upload, as shown in
Fig. 2.

s N\ ' N 's N
Step 1 - Step 2 - Step 3
Authentication Encryption Upload
_ J/ . J . /
e ~ s N 's ~
Step 6 - Step 5 - Step 4
Fair Payment Create Transaction Integrity Verification
\ / \. J \ /

Fig.2. Steps of file upload.

1) Step-1: Authentication: Before uploading file F, the
CSP must verify the user's identity. The user U uses a digital
certificate issued by a trusted Certificate Authority (CA) to
verify their identity. Specifically, user U first hashes their
identity as h (IDy)and then signs this hash using their private
key to create the signature Sigg, (h (IDy)). The user U sends
this signature along with their digital certificate to the CSP.
Upon receiving the signature and the certificate, the CSP uses
the CA's public key to validate the digital certificate, ensuring
its authenticity. Then, CSP uses the public key spk from the
certificate to verify the signature . If the verification is
successful, the user is authenticated and can proceed to the
step-2.

2) Step-2: Encryption: User U generates a signature for file
F using the private key ssk.

Sigp = IDg || Sigssi(IDf) (M

Sigr can be used as an identifier for file F. Subsequently,
user U divides the file F into n data blocks,F = {B;}(1<i <
n). For the i-th data block B;, user U uses PBKDF2 algorithm
to calculate the convergence key and uses AES-GCM
algorithm to calculate the ciphertext.

Generate a unique salt value P; for each data block B;.
Kp, = PBKDF2(B;, P;, iterations, dklen))
Encrypt the data block using the derived key K .
Cp, = AES-GCM (K, B)) (3)

User U calculates file tags, using Keccak-256 hash
function.

Ty = Keccak — 256(Cp,) 4)

Vol. 17, No. 1, 2026

User U uses data block ciphertext {Cp} to construct a
Merkle hash tree and calculate its root points.

R, = MerkleTree({CBi}) %)
User U calculates file signature.
§ = H(R)¥™4P (6)
User U calculates homomorphic signature.
W, =1IDq i (7)
g; = (H(W, x u‘Bi))xmeda ®)

3) Step-3: Upload: User U sends the file label T, to CSP,
and CSP performs repeatability detection. If the file label Ty
already exists on the cloud server, it indicates duplication. In
this case, CSP and the user execute a proof of ownership
agreement to prove that the user indeed owns the file F, and
the user does not need to upload the file F again. If the file
label T is not stored on the cloud server, it indicates that the
file F is not duplicated, and user U will send
(Sigr.{Ca}. {o:}) 1o CSP.

4) Step-4: Integrity verification: To enhance the security
and privacy of the integrity verification process, user U can act
as an auditor and engage in an integrity verification protocol
with the Cloud Service Provider (CSP), leveraging Multi-Party
Computation (MPC) as follows:

User U retrieves the file
Sigssi (IDg) from the cloud server.

identifier Sigp = IDp |

Using the public key spk to verify the correctness of the
signature Siggs, (IDg).

If the verification fails, the user will output a result of false.
If the verification is successful, the user can recover the file
identification IDg.

Initialization: User U selects a subset [=
{81,5,,55,...,5.21,S:} © [1,n] containing ¢ elements. This
subset is used as the seed value set {S;} to initiate M.

Sharing Data for MPC: User U divides the data into shares
S; for the selected indices I. These shares are distributed
among different parties P; involved in M.

Engaging the MPC Protocol: The parties {P;}
collaboratively execute M to securely compute random
numbers. The protocol ensures that none of the parties,
including the CSP, can leam the individual shares or the final
random numbers until the computation is complete.

Secure Computation: M employs a pseudo-random
function, denoted as f: {0,1}* = [1,n], to securely compute
the random numbers. The function takes as input the shares
{S;}, the curment block identifier B;; and the current
timestamp T.

Output Generation: As a result of the secure computation,
M outputs two sets of random numbers: {r;} and {z;}. These

numbers are generated in such a manner that they are

373 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

unpredictable to outside observers, ensuring the integrity of the
computation process.

Challenge Formation: User U forms a challenge chal =
{(r;,2;)} using the random numbers generated by M . This
challenge is then sent to the CSP to verify the integrity of cloud
data.

CSP calculates the proof information u and L using the
received challenge, where:

1= Yier ziCp, 9)
L=l o, (10)
CSP sends (u, L) as proof to user U.

User U checks the correctness of the following equation to
check the integrity of cloud data:

Iy:e(L,g) = e(([Tie HW)% -uk),y) (1)

This step utilizes MPC to ensure that the computation of p
and L is done without revealing the actual values of {Cp } and

{0z} to any single party, enhancing the privacy of the data.

By incorporating MPC into the integrity verification
process, this approach not only maintains the confidentiality of
the data during the verification but also enhances the security
and trustworthiness of the cloud storage system. The use of
MPC allows multiple parties to compute the verification
without revealing their inputs, thereby providing a more secure
and privacy-preserving verification process. Fig. 3 illustrates

the process of step-4.
CSP | User | | External MPC Protocol |
False

Search

File Identifier
Uses the public key to

verify the correctness

{Si}, Bia. Ts

selects seed value

i}, {2}

Send Challenge

Return Proof Information

User checks the correctness of the equation I} to check the integrity of cloud data

Fig.3. Step-4 integrity verification.

5) Step-5: Create tramsaction: User U can generate
effective file tamper proof records by integrating auxiliary
information from file F into a transaction in the blockchain.
This allows other users to have a clear understanding of the
storage service quality provided by CSP and helps them choose
the most suitable storage service. The details are as follows.
User U calculate:

Data = H(IDy) | HUDg) |l flag - Pay || § || Augy (12)

where, flag - Pay > 0 indicates that user U pays storage
service fees to CSP, flag - Pay < 0 indicates that CSP pays

Vol. 17, No. 1, 2026

compensation fees to user U, and Augy represents additional
information for file F.

As shown in Fig. 4, the user submits Smart Contract 1 to
generate a transaction TX, where the transaction TX parameter
is From = EAy,T, = EAcgpand Data = H(IDy) || HUDg) |l
flag - Pay |l 6 |l Augp.

Smart Contract 1

Input: [Dy: IDpgp: Data
Output: TX

: Compute EA;;

Compute EApgp:

From = EAy;

To = EAcsp;

Value = Gas;

TX= From||T,||Value||Data;

Db L b —

Fig. 4. Smart contract 1.

After receiving the output result of Smart Contract 1, User
U uses the private key ssk to generate signature information
Signature = Sig. . (TX), and submits the transaction TX =
From |l T, Il Value |l Data || Signature to the blockchain.

6) Step-6: Fair payment. After data is uploaded to the
cloud server, users need to pay for the storage services
provided by CSP. As shown in Fig. 5,user U can submit Smart
Contract 2 to the blockchain, where Smart Contract 2 will be
automatically activated and executed. If the formula] is
established, it means that the data block {B;;} has been fully
stored on the cloud server, and at this time, user U needs to pay
the corresponding storage service fee to CSP. Otherwise, if the
equation [7 is not valid, it indicates that the data block {B;;}
has been damaged or lost, and CSP needs to take
corresponding responsibility and provide certain compensation
for the damage or loss of the data. The mechanism of fair
payment is shown in Fig. 6.

Smart Contract 2

Input: IDy; [Desp; Paysiors PaYeomp
Output: flag
: Compute EAy;
Compute EAgsp;
If (Ii) then
Pay = Paysor;
flag =1;
Else
Pay = — Payscor;
flag =-1;
Return flag

L I R

woma:

Fig.5. Smart contract 2.

374 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Compensation
csP]

l Submit Smart Contract 2

}—.

‘ Output flag

Pay store fees

Fig. 6. Step-6 fair payment.

D. File Download

The user first submits a download request to the CSP and
retrieves all encrypted data blocks. To verify the consistency of
the data and restore the original file F, the process is as
follows:

The encrypted data blocks are used as leaf nodes to
construct a Merkle hash tree, from which the root node R is
derived.

An external Multi-Party Computation (MPC) protocol is
executed to verify the consistency of the data blocks. This step
ensures a secure verification process without revealing any
actual data to individual parties, while confirming that the
blocks have not been tampered with.

The wuser then parses the transaction TX from the
blockchain to extract the file identifier and associated
verification metadata.

Verify the correctness of equation [:e(d,g9)=
e(H(R;),y). If the equation T, holds true, it confirms the
integrity and authenticity of the data blocks.

The decryption keys K are securely distributed among
multiple parties using the MPC protocol. This ensures that no

single party has access to the complete decryption key,
enhancing the security of the decryption process.

With the securely distributed keys, decrypt each data block
using the AES-GCM algorithm:

B; = AES-GCM—decrypt(Ky, Cp.) (13)

Reassemble the original file F = {B;} from the decrypted
data blocks B;.

Fig. 7 shows the complete file download process.

o

Download Reguest

Drata Block Cipheriexts [Cg,}

Use [Cg,] a5 leal nodes and
us¢ Merkle hosh trees to
calculate the root node R

Parse the transaction infermation TX from Use the key Kg, o recover the data block

the blockchain o Data = H{10y) |l By = AES-GCM-decrypt(Ke,. f'e,) and the
H{ID) |l flag - Pay I § || Auge orginal file F = {B].
.

-
Tre(g) e Y
ez e(H{RC))

T T

Fig. 7.

File download.

Vol. 17, No. 1, 2026

E. File Update

When a data block B; in file F needs to be updated to a new
version, the process incorporates MPC to enhance privacy and
security.

User U first encrypts the updated data block using the
PBKDF2 key derivation function and the AES-GCM
encryption algorithm to encrypt the updated data block B; to
obtain the ciphertext C;, and recalculates the homomorphic
signature g = (H(W;) -uCBi))x. Subsequently, user U will
send an update request (i, C/,0;) to CSP. CSP replaces the
ciphertext block C;in file F with the new block C; and send
{®,} to user U, where w; represents the information of the
sibling nodes associated with the path from H(C;) to the root
node.

User U first calculates the value R of the root node based
on {w;} and H(C;), and then continues to verify whether the
condition [;:e(5,g) = e(H(R:)*, g) holds. If it is true, it
indicates that the position updated by the server is correct, that
is, the ciphertext block C; is the updated block of ciphertext
block C;.

User U recalculates the value Ry of the root node based on
{®;} and H(B{), and signs it 6' = H(R;)* . Then, U
recalculates the Data = H(IDy) || HUDg) |l flag - Pay |l
6" Il Augp, and finally integrates the Data information into a
blockchain transaction on the blockchain. The insertion and
deletion operations of data blocks can refer to the data block
update operations mentioned above.

V. SECURITY ANALYSIS

This section evaluates the proposed scheme against the
adversarial threats defined in Section Il and demonstrates how
the system satisfies its key security objectives.

A. Data Integrity and Unforgetability

Theorem 1: If the user does indeed download the original
uploaded data, then the user will be able to successfully pass
data consistency verification, with the process further secured
by MPC.

Proof: In this scheme, when users download encrypted data
{CB;} from the CSP, it is necessary to verify the consistency of
their data in order to recover the correct original plaintext F.
To achieve this goal, users can utilize a Merkle hash tree to
compute the root node R, where the root node R is determined
by all data block ciphertexts {CB;} as leaf nodes. If any part of
this information is altered, the value of R will also change
accordingly. Users can verify the correctness of the following
equation to detect data consistency.

If equation I5,:e(8,g) holds true, it indicates that the
downloaded ciphertext information {CB;} corresponds to the
originally uploaded data. Subsequently, the user can recover
the original file through convergence keys. Otherwise, if
equation I'2 does not hold true, it signifies that during the
downloading process, the ciphertext of data blocks {CB;} has
been corrupted.

375|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

B. Privacy Preservation

Theorem 1: This scheme can ensure the privacy protection
of user data, and adversary X cannot obtain any useful
information about user data during the integrity verification
process.

Proof: The parameters {r, z, i, §, ¢ } involved in this scheme
do not expose any information about the user-uploaded data
blocks B;. In particular, there is a security vulnerability in the
integrity verification scheme based on HLA, where in the
integrity verification process, adversary X would utilize the
generation of aggregate signature u'= Y z;Cp , by
repeatedly selecting indices (i,z;) to obtain specific linear
combinations. Finally, by solving linear equations, adversary X
could extract user information contained in the aggregate
signature.

C. Fair Payment Guarantee
The smart contract logic enforces incentive compatibility

between the DO and CSP. Both parties deposit tokens before
an audit round. The contract releases:

e Payment to the CSP if the audit passes.

e Refund or penalty compensation to the DO if the audit
fails.

This design ensures that CSPs cannot receive rewards
without proving data possession, and DOs cannot cheat without
valid evidence. All transactions and outcomes are verifiable
and immutable on the blockchain ledger, providing
accountability without external arbitration.

D. Resistance to Replay and Collusion

Each audit challenge is freshly generated via secure on-
chain randomness (e.g., Keccak-based hash or block nonce).
Since the challenge indices and weights are unpredictable, a
CSP cannot reuse previous responses (replay resistance).

In addition, the smart contract acts as an impartial,
decentralized entity. Any attempt by DO and CSP to collude
would be visible on-chain. Moreover, data tags and Merkle
roots are bound to each user and file instance, making it
infeasible to reuse or share tags across users (collusion
resistance).

E. Soundness and Completeness of Verification
The verification algorithm satisfies:

e Completeness: If the CSP honestly stores all data and
follows the protocol, verification always passes.

e Soundness: If any challenged block is corrupted or
missing, the aggregated tag will not satisfy the bilinear
verification equation, and the audit will fail with
overwhelming probability.

Under the random oracle model, the probability of passing
an audit without the correct data is negligible.

VI. EVALUATION AND RESULTS

In this section, we evaluate the performance of our
proposed scheme in terms of computational overhead,

Vol. 17, No. 1, 2026

communication cost, and scalability. We also compare it
against existing schemes to demonstrate its efficiency and
practicality.

A. Experimental Setup

All experiments were conducted on a machine with an Intel
Core i7-11700 CPU, 16 GB RAM, running Ubuntu 22.04. The
implementation was developed in Python and Solidity. The
blockchain environment is a local Ethereum testnet using
Ganache, and smart contracts were deployed using the Truffle
scheme.

We use the following cryptographic primitives:

e AES-GCM (128-bit) for symmetric encryption.

e Keccak-256 for hashing and challenge randomness.
e HLA over elliptic curve groups (BLS12-381).

e PBKDEF?2 for key derivation from file ID.

We evaluate performance on files ranging from 10 MB to 1
GB, and measure:

e Tag generation time

e Audit-proof generation and verification time
e Encryption time

e MPC overhead (optional component)

e Qas cost of smart contract interactions

B. Tag Generation and Upload Performance

As shown in Fig. 8, the tag generation time grows linearly
with the file size. For a 100 MB file, the average tag generation
takes 1.2 seconds, which is significantly lower than Zhou et al.
and Sankar, both of which exceed 2.5 seconds under similar
settings [10][11].

30

NN
X v
1}

= I
o o

Tag Generation Time (s)

v

A\

0 200 400 600 800 1000
File Size (MB)

Fig. 8. Taggeneration time vs. File size.

The AES-GCM encryption adds a fixed overhead of
approximately 0.9 seconds per 100 MB, which remains

acceptable in practice. Combined upload time remains under
2.5 seconds per 100 MB.

C. Audit Efficiency

Fig. 9 presents the time taken by the CSP to compute the
audit proof and the time taken by the smart contract to verify it.
Even for files of 500 MB, the audit process completes within
200 ms. The aggregated tag greatly reduces computational
effort compared to verifying each block individually.

376 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

0.45 Proposed Scheme:
—=— Proposed Scheme + MPC

Audit Time (s)
o o
N

0 200 400 600 800 1000
File Size (MB}

Fig.9. Audit time vs. File size.

With MPC enabled, verification time increases modestly
due to interaction rounds, reaching 420 ms for a 500 MB file.
However, this added cost ensures privacy without revealing p.

D. Data Update Overhead

Fig. 10 shows the cost of a single block update
(modify/insert/delete). Tag recomputation and Merkle tree
adjustment combined take less than 80 ms per block. On-chain
update verification (including Merkle path) adds ~15,000 gas
(~$0.03 equivalent on Ethereum).

This demonstrates that dynamic updates are practical and
lightweight.

0.08 - 16000
0.07 =15750
0.06 - 15500
0.05 -15250
0]
2 S
E 0.04 -15000 a
F a
- 5
0.03 14750
-14500
0.02
-14250
0.01
-14000
0.00 Modify Insert Delete

Operation

Fig. 10. Update overhead per operation.

E. Smart Contract Gas Cost

Fig. 11 shows the estimated gas consumption of core smart
contract functions. Contract 1 handles audit-related operations,
while Contract 2 governs fair payment and dispute resolution.
Deployment is the most gas-intensive, followed by storage-
heavy and payment functions.

80000

60000

Gas Used

40000

20000

Fig. 11. Smart contract gas consumption.

Vol. 17, No. 1, 2026

The core smart contract functions involved in each audit
namely, submitting audit evidence and triggering payment
consume approximately 90,000 to 100,000 gas in total, which
demonstrates the practical feasibility and scalability of the
proposed scheme.

F. Comparison with Existing Schemes

Fig. 12 compares our scheme with Zhou et al. and Liu in
terms of audit latency and update overhead [10][13]. This
scheme consistently outperforms baselines due to:

e Tagaggregation via HLA (vs. per-block tag checking).
e No third-party verifier involvement.
e On-chain automation via smart contracts.

For 1 GB files, our scheme achieves 35 to 50 per cent
reduction in audit time and 30 per cent lower update cost.
Proposed Scheme

—m— Zhou et al.
—— Liuetal.

IS} o o
w w =
o w o

Audit Time (s)
o
N
w

=}
N
o

0.15

0.10

100 200 300 400 500 600 700 800
File Size (MB)

Fig. 12. Comparison with existing schemes.

VII. CONCLUSION

This study proposes a blockchain-based integrity
verification scheme for encrypted cloud data that achieves
decentralized auditing, privacy preservation, and fair economic
incentives. By integrating Homomorphic Linear Authenticators
(HLA), Multi-Party Computation (MPC), and smart contracts,
the scheme eliminates reliance on third-party auditors and
ensures automatic and transparent dispute resolution and
payment settlement between data owners and cloud service
providers. The system supports dynamic data operations and
enables encrypted data verification without exposing plaintext
information. Security analysis confirms that the scheme
achieves data integrity, confidentiality, fairness, and resistance
to replay and collusion attacks. Experimental results further
demonstrate that the proposed protocol achieves low audit
latency, acceptable computation and communication overhead,
and practical gas consumption.

Despite its advantages, the proposed scheme has several
limitations. First, the use of MPC introduces additional
communication overhead, which may affect performance in
large-scale or resource-constrained environments. Second, the
prototype is designed for a single-cloud setting and does not
fully consider multi-cloud interoperability or cross-chain audit
synchronization. Third, the cost of deploying smart contracts
and executing transactions on public blockchains may increase
under high network congestion or volatile gas prices.

377|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Future research will focus on three directions:

e Optimizing the MPC protocol and reducing on-chain
interaction costs through lightweight cryptographic
primitives or zero-knowledge proofs;

e Extending the framework to support multi-cloud and
cross-provider integrity verification, enabling
collaboration and redundancy among distributed storage
services;

e Migrating the scheme to Layer-2 or permissioned
blockchain platforms to reduce gas consumption and
enhance scalability.

ACKNOWLEDGMENT

The work described in this study was supported by Sichuan

Vocational College of Information Technology, Guangyuan,

China.

Sichuan Vocational College of Information

Technology, 2025 Research Project (2025KC02).

(1]

(2]

(3]

(4]

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.

REFERENCES

Mathur P. Cloud computing infrastructure, platforms, and software for
scientific research. High Performance Computing in Biomimetics:
Modeling, Architecture and Applications. 2024 Mar21:89-127.

Ali H, Abidin S, Alam M. Auditing of outsourced data in cloud
computing: an overview. In2024 11th International conference on
computing for sustainable global development (INDIACom) 2024 Feb
28 (pp. 111-117). IEEE.

Zhao Y, Qu Y, Xiang Y, Uddin MP, Peng D, Gao L. A comprehensive
survey on edge data integrity verification: Fundamentals and future
trends. ACM Computing Surveys. 2024 Oct 7;57(1):1-34.

Shalabi K, Al-Nabhan M, Al Dala’ien MA. Blockchain Based Auditing
for Cloud Security: A Systematic Review. InWorld Congress in
Computer Science, Computer Engineering & Applied Computing 2025
(pp- 184-199). Springer, Cham.

(5]

(6]

[7]

(8]

(0]

[10]

(11]

[12]

[13]

[14

=

[15]

[16]

[17]

Vol. 17, No. 1, 2026

Hossain MI, Steigner T, Hussain MI, Akther A. Enhancing data integrity
and traceability in industry cyber physical systems (ICPS) through
Blockchain technology: A comprehensive approach. arXiv preprint
arXiv:2405.04837.2024 May 8.

Perera L, Ranaweera P, Kusaladhama S, Wang S, Liyanage M. A
survey on blockchain for dynamic spectrum sharing. IEEE Open Journal
of the Communications Society. 2024 Mar 14.

Wang L, Hu M, Jia Z, Guan Z, Chen Z. SStore: an efficient and secure
provable data auditing platform for cloud. IEEE Transactions on
Information Forensics and Security. 2024 Apr 1.

Sameera KM, Nicolazzo S, Arazzi M, Nocera A, KA RR, Vinod P,
Conti M. Privacy-preserving in Blockchain-based Federated Learning
systems. Computer Communications. 2024 Apr 20.

Zhang, Y., Geng, H., Su, L., & Lu, L. (2022). A blockchain-based
efficient data integrity verification scheme in multi-cloud storage. Ieee
Access, 10, 105920-105929.

Zhou, Z., Luo, X., Bai, Y., Wang, X., Liu, F.,, Liu, G., & Xu, Y. (2022).
A Scalable Blockchain-Based Integrity Verification Scheme. Wireless
Communications and Mobile Computing, 2022(1), 7830508.

Sankar, S. M., Selvaraj, D., Monica, G. K., & Katiravan, J. (2023). A
Secure Third-Party Auditing Scheme Based on Blockchain Technology
in Cloud Storage. arXiv preprint arXiv:2304.11848.

Xie, G., Liu, Y., Xin, G., & Yang, Q. (2021). Blockchain-Based Cloud
Data Integrity Verification Scheme with High Efficiency. Security and
Communication Networks, 2021(1),9921209.

Liu, Z., Ren, L., Feng, Y., Wang, S., & Wei, J. (2023). Data Integrity
Audit Scheme Based on Quad Merkle Tree and Blockchain. IEEE
Access, 11,59263-59273.

Huang, Y., Yu, Y., Li, H., Li, Y., & Tian, A. (2022). Blockchain-based
continuous data integrity checking protocol with zero-knowledge
privacy protection. Digital Communications and Networks, 8(5), 604-
613.

He, K., Huang, C., Shi, J.,, Hu, X,, & Fan, X. (2021, November 1).
Enabling Decentralized and Dynamic Data Integrity Verification for
Secure Cloud Storage via T-Merkle Hash Tree Based Blockchain.
Mobile Information Systems, 2022, 1-17.

Li, J., Wu, J, Jiang, G., & Srikanthan, T. (2021, November).
Blockchain-based public auditing for big data in cloud storage.
Information Processing & Management, 57(6), 102382.

Wang, M., Zhu, T., Zuo, X., Ye, D., Yu, S., & Zhou, W. (2023).
Blockchain-Based Gradient Inversion and Poisoning Defense for
Federated Learning. IEEE Internet of Things Journal.

378 |Page

www.ijacsa.thesai.org

