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Abstract—Ensuring the integrity of outsourced data in cloud 

storage remains a critical challenge, especially when existing 

auditing schemes rely on centralized third-party auditors (TPAs), 

which introduce single points of failure, privacy leakage risks, 

and a lack of economic fairness. Current blockchain-based 

approaches improve transparency but still fail to simultaneously 

achieve privacy-preserving verification and fair payment 

between data owners and cloud service providers (CSPs). To 

address this gap, this study proposes a blockchain-based integrity 

verification scheme that supports decentralized, privacy-

preserving, and economically fair audits for encrypted cloud 

data. The proposed scheme integrates homomorphic linear 

authenticators (HLA) and multi-party computation (MPC) to 

verify data integrity without revealing plaintext, while smart 

contracts are used to enforce automatic payment or penalty 

based on audit results, ensuring fairness and accountability. A 

prototype implementation confirms the practicality of the system. 

Experimental results show that the audit latency is reduced by up 

to 35 per cent and smart contract gas consumption by 

approximately 30 per cent compared to existing schemes, while 

maintaining low computation and communication overhead. 

Security analysis demonstrates that the scheme provides data 

integrity, privacy protection, fairness, and resistance to replay 

and collusion attacks. Overall, this work offers a practical and 

scalable solution for secure cloud storage auditing. 
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I. INTRODUCTION 

Cloud storage has become an essential component of 
modern data management infrastructures [1]. However, 
outsourcing data to third-party cloud service providers (CSPs) 
raises critical concerns regarding data integrity, confidentiality, 
and user trust [2]. Since users no longer possess physical 
control over their data, they require reliable mechanisms to 
ensure that outsourced files remain intact and unmodified. 
Traditional auditing schemes rely on trusted third-party 
auditors (TPAs), but these centralized architectures suffer from 
inherent weaknesses such as single points of failure, implicit 
trust assumptions, potential collusion, and limited 
transparency [3]. 

Blockchain technology provides a decentralized and 
tamper-resistant alternative for cloud auditing, replacing TPAs 
with distributed consensus and verifiable smart contract 
execution [4], [5]. Although several blockchain-based integrity 
verification schemes have been proposed, most of them still 
exhibit one or more of the following limitations: 

• They focus on transparency but fail to protect data 
privacy during audits. 

• They do not support fair economic compensation 
between users and CSPs in cases of data loss or fraud. 

• They provide incomplete support for dynamic data 
operations or require additional trust in off-chain 
verifiers [6]. 

Therefore, an important research gap remains: existing 
approaches do not offer a unified framework that 
simultaneously achieves decentralized verification, privacy 
preservation, and fair payment in cloud storage environments. 

To address this gap, this study proposes a blockchain-based 
integrity verification scheme that integrates privacy-preserving 
audit and economic fairness into a single framework. 
Homomorphic Linear Authenticators (HLA) and Multi-Party 
Computation (MPC) are combined to enable verification of 
encrypted data without revealing its content. In addition, smart 
contracts are employed to enforce an automatic fair payment 
mechanism that compensates CSPs only when data integrity is 
successfully proven, while also providing dispute resolution in 
case of corruption or data loss. 

The main contributions of this work are summarized as 
follows: 

• We design a fully decentralized cloud data integrity 
verification framework that removes reliance on TPAs 
and guarantees audit correctness while preserving data 
privacy. 

• We develop a smart contract–based fair payment 
protocol that enforces automatic rewards or penalties 
based on audit outcomes, ensuring economic 
accountability between users and CSPs. 
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• We implement the prototype and conduct 
comprehensive security analysis and experimental 
evaluation. Results demonstrate that the proposed 
scheme achieves low audit latency, reduced 
communication overhead, and feasible gas consumption 
in practical cloud environments. 

The rest of the study is organized as follows: Section II 
reviews related work. Section III introduces the system 
architecture and threat model. Section IV presents the proposed 
scheme in detail. Section V provides security analysis. 
Section VI discusses performance evaluation and experimental 
results. Finally, Section VII concludes the study and outlines 
future research directions. 

II. RELATED WORK 

Ensuring the integrity of outsourced data has long been a 
fundamental challenge in cloud storage systems. Early 
cryptographic solutions such as Provable Data Possession 
(PDP) and Proof of Retrievability (PoR) enabled users or 
trusted third-party auditors (TPAs) to verify data correctness 
without downloading the entire file [7]. However, these 
methods rely heavily on centralized auditors, which introduces 
risks of single-point failure, collusion, and trust assumption 
issues [8]. 

To mitigate reliance on TPAs, blockchain-based integrity 
verification schemes have gained increasing attention. Zhang 
et al. combined blockchain with lattice-based cryptography to 
achieve public auditing and improved transparency, but their 
scheme lacks support for efficient computation and dynamic 
data updates, which limits real-world applicability [9]. Zhou 
et al. proposed a blockchain-enabled data monitoring scheme; 
however, it provides limited analysis of computational costs 
and does not address economic fairness between cloud service 
providers (CSPs) and users [10]. 

Recent works have explored the integration of 
homomorphic authenticators and advanced cryptographic 
techniques to enhance verifiability. Sankar et al. introduced a 
lattice-based multi-cloud auditing model, which offers 
theoretical security but lacks practical deployment evaluation 
[11]. Xie et al. proposed a T-Merkle hash tree to support 
dynamic data operations; nevertheless, their design does not 
incorporate fair payment or dispute resolution mechanisms 
[12]. Liu and Huang presented privacy-preserving and 
blockless verification schemes, but challenges remain in 
achieving decentralized enforcement and secure economic 
incentives [13], [14]. 

Another research direction focuses on blockchain-based 
economic mechanisms for cloud data services. While these 
methods record audit outcomes on-chain, most do not leverage 
smart contracts for automatic enforcement or compensation. 
For example, He et al. improved communication efficiency but 
failed to establish a clear arbitration mechanism for disputes 
[15]. Li et al. incorporated zero-knowledge proof-based 
privacy, yet did not support on-chain payment settlement or 
dynamic file updates [16]. 

Wang et al. developed a smart contract-driven integrity 
auditing scheme for multi-cloud and multi-replica 
environments, optimizing tag generation to reduce overhead 

[17]. However, their system assumes a trusted key generation 
center (KGC) and primarily focuses on multi-CSP coordination 
rather than privacy preservation and fair exchange in a single-
cloud scenario. 

In summary, existing blockchain-based auditing schemes 
still face the following limitations: 

• Reliance on centralized authorities such as TPAs or 
KGCs. 

• Absence of fair payment mechanisms to guarantee 
accountability between users and CSPs. 

• Incomplete support for encrypted data verification while 
preserving privacy. 

To overcome these challenges, this study proposes a 
decentralized, privacy-preserving integrity verification scheme 
that integrates homomorphic authenticators, multi-party 
computation (MPC), and smart contracts to achieve secure 
auditing, automated dispute resolution, and fair compensation. 

III. SCHEME FRAMEWORK 

A. Scheme Model 

The proposed scheme consists of three primary entities, as 
illustrated in Fig. 1. 

 

Fig. 1. Scheme model. 

1) Data owner (DO): A user who outsources encrypted 

data to the cloud and later requests integrity verification. The 

DO is responsible for generating encryption keys, computing 

homomorphic tags, and initiating audit requests. 

2) Cloud service provider (CSP): A storage service 

provider that maintains outsourced data on behalf of the DO. 

The CSP responds to audit challenges by generating proofs of 

data possession. 

3) Blockchain network: A decentralized ledger that hosts 

smart contracts. It facilitates audit challenge distribution, proof 

aggregation, verification, and fair payment based on audit 

results. The blockchain is assumed to be transparent, tamper-

resistant, and always available. 

The system is designed to operate without relying on any 
third-party auditor or centralized key generation authority. All 
integrity audits, payment mechanisms, and verification 
processes are executed through smart contracts deployed on the 
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blockchain. Data remains encrypted throughout the process 
using AES-GCM, while integrity verification is performed 
using homomorphic linear authenticators (HLA).  

B. Threat Model 

We consider both internal and external adversaries. 

• Malicious CSP: The primary threat arises from a 
dishonest CSP, who may: 

o Delete or alter outsourced data to reduce storage 

overhead. 

o Forge integrity proofs to pass audits without 

storing actual data. 

o Reject fair payment conditions or evade penalties 

following a failed audit. 

• External Attacker: An outsider may attempt to: 

o Intercept or tamper with communication between 

DO and CSP. 

o Replay previous audit responses to bypass 

verification. 

o Eavesdrop on blockchain transactions to infer 

private information. 

• Collusion Risk: The CSP may attempt to collude with 
external entities to manipulate audit results or payment 
transactions. However, smart contracts on the 
blockchain act as impartial executors, preventing such 
collusion. 

We assume that the blockchain platform is secure, the 
consensus mechanism is reliable, and all cryptographic 
primitives (e.g., AES-GCM, Keccak-256, HLA) are resilient 
against known attacks. All communication channels are 
assumed to be protected by standard TLS protocols. 

C. Security Targets 

The proposed scheme aims to achieve the following 
security objectives: 

1) Data integrity: CSPs should be unable to modify or 

delete data without detection. Audit verification must fail if the 

data is tampered with. 

2) Privacy preservation: The CSP cannot learn the content 

of the data during upload, verification, or audit, as all data 

remains encrypted and audit is performed via MPC and HLA. 

3) Audit correctness: If the CSP stores data correctly and 

follows the audit protocol honestly, the verification will 

succeed with high probability. 

4) Fair payment: The smart contract ensures that CSPs are 

compensated only when audits are successful and penalized 

when they fail to produce valid proofs. 

5) Collusion resistance: Neither the CSP nor any external 

party can manipulate or falsify audit results due to the tamper-

proof nature of the blockchain and the transparency of smart 

contract execution. 

6) Replay resistance: Each audit challenge is randomly 

generated and time-bound, preventing the reuse of old 

responses. 

IV. SCHEME REALIZATION 

This section outlines the proposed scheme's implementation 
process, which is divided into five main phases. It begins by 
introducing the notations and initialization settings that 
establish the theoretical foundation of the scheme. Following 
this foundational setup, the focus shifts to a detailed 
examination of the three critical parts: file upload, file 
download, and file update. 

A. Notations 

The symbols used throughout the scheme are defined in 
Table I. 

TABLE I.  NOTATIONS 

Notation Definition 

𝐹  File 

𝐶  Ciphertext 

𝐵𝑖 𝑖-th data block 

𝑆𝑗 𝑗-th share in MPC 

𝑃𝑗  𝑗-th party in MPC 

𝑀  MPC protocol 

𝑅 Merkle Hash Tree Root Node 

𝑛 Number of data blocks 

𝐼𝐷  Identifier 

𝜎 Homomorphic tag 

𝑃𝑎𝑦𝑠𝑡𝑜𝑟  Storage service fees 

𝑃𝑎𝑦𝑐𝑜𝑚𝑝  Compensation costs 

B. Initial Setting 

The proposed scheme leverages several core cryptographic 
components and concepts: 

1) Cyclic groups and bilinear mapping: Let 𝐺 and 𝐺𝑇  be 

two cyclic groups of the same prime order 𝑝, with 𝑔 as the 

generator of group 𝐺 . A bilinear mapping is defined as, 

𝑒: 𝐺 × 𝐺 → 𝐺𝑇. These form the foundation for constructing the 

cryptographic scheme. 

2) User and file identity: Each user 𝑈 is identified by an 

𝐼𝐷𝑈  and a corresponding Ethereum account 𝐸𝐴𝑈 . Files are 

identified by an 𝐼𝐷𝐹. The Cloud Service Provider (CSP) is also 

identified by an 𝐼𝐷𝐶𝑆𝑃  and has a corresponding Ethereum 

Account 𝐸𝐴𝐶𝑆𝑃. 

3) Encryption keys and signatures: User 𝑈  randomly 

generates an RSA key pair  (𝑠𝑝𝑘, 𝑠𝑠𝑘)  for digital signature 

purposes. Additionally, user 𝑈  selects an element 𝑢 from 𝐺 , 

with a private key 𝑠𝑠𝑘 = 𝑥 ∈  𝑍𝑃, and calculates the public 

key 𝑦 = 𝑔𝑥. 

4) Multi-Party Computation (MPC): To enhance the 

security and trustworthiness of the integrity verification 

process, MPC is employed. In MPC, the data is divided into 

multiple shares 𝑆𝑗 , which are distributed among different 

parties 𝑃𝑗. These parties collaboratively perform computations 
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under the MPC protocol without disclosing their individual 

inputs. 

5) Economic model: Upon successful storage of user data, 

users are required to pay the CSP storage fees 𝑃𝑎𝑦𝑠𝑡𝑜𝑟. If user 

data is lost or damaged, the CSP must provide compensation to 

the user, denoted as 𝑃𝑎𝑦𝑐𝑜𝑚𝑝. 

These cryptographic elements and concepts provide the 
necessary theoretical and technical foundation for the proposed 
blockchain-based cloud data integrity verification scheme, 
ensuring data security and transaction fairness. 

C. File Upload 

There are a total of six steps for file upload, as shown in 
Fig. 2. 

 

Fig. 2. Steps of file upload. 

1) Step-1: Authentication: Before uploading file 𝐹 , the 

CSP must verify the user's identity. The user 𝑈 uses a digital 

certificate issued by a trusted Certificate Authority (CA) to 

verify their identity. Specifically, user 𝑈  first hashes their 

identity as ℎ (𝐼𝐷𝑈) and then signs this hash using their private 

key  to create the signature 𝑆𝑖𝑔𝑠𝑠𝑘 (ℎ (𝐼𝐷𝑈)). The user 𝑈 sends 

this signature along with their digital certificate to the CSP. 

Upon receiving the signature and the certificate, the CSP uses 

the CA's public key to validate the digital certificate, ensuring 

its authenticity. Then, CSP uses the public key 𝑠𝑝𝑘 from the 

certificate to verify the signature . If the verification is 

successful, the user is authenticated and can proceed to the 

step-2. 

2) Step-2: Encryption: User 𝑈 generates a signature for file 

𝐹 using the private key 𝑠𝑠𝑘. 

𝑆𝑖𝑔𝐹 = 𝐼𝐷𝐹 ∥ 𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹)                        (1) 

𝑆𝑖𝑔𝐹 can be used as an identifier for file 𝐹. Subsequently, 
user 𝑈 divides the file 𝐹 into 𝑛 data blocks, 𝐹 = {𝐵𝑖 }(1 ≤ 𝑖 ≤
𝑛). For the 𝑖-th data block 𝐵𝑖, user 𝑈 uses PBKDF2 algorithm 
to calculate the convergence key and uses AES-GCM 
algorithm to calculate the ciphertext. 

Generate a unique salt value 𝑃𝑖 for each data block 𝐵𝑖. 

𝐾𝐵𝑖
= 𝑃𝐵𝐾𝐷𝐹2(𝐵𝑖, 𝑃𝑖, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑑𝑘𝑙𝑒𝑛)        (2) 

Encrypt the data block using the derived key 𝐾𝐵𝑖
. 

𝐶𝐵𝑖
= 𝐴𝐸𝑆−𝐺𝐶𝑀(𝐾𝐵𝑖

, 𝐵𝑖)                         (3) 

User 𝑈  calculates file tags, using Keccak-256 hash 
function. 

𝑇𝐹 = 𝐾𝑒𝑐𝑐𝑎𝑘 − 256(𝐶𝐵𝑖
)                       (4) 

User 𝑈  uses data block ciphertext {𝐶𝐵𝑖
}  to construct a 

Merkle hash tree and calculate its root points. 

𝑅𝐶 = 𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒({𝐶𝐵𝑖
})                           (5) 

User 𝑈 calculates file signature. 

𝛿 = 𝐻(𝑅𝐶)𝑥 𝑚𝑜𝑑 𝑝                            (6) 

User 𝑈 calculates homomorphic signature. 

𝑊𝑖 = 𝐼𝐷𝐹 ∥ 𝑖                    (7) 

𝜎𝑖 = (𝐻(𝑊𝑖 × 𝑢𝐶𝐵𝑖))𝑥 𝑚𝑜𝑑 𝑞                   (8) 

3) Step-3: Upload: User 𝑈 sends the file label 𝑇𝐹  to CSP, 

and CSP performs repeatability detection. If the file label 𝑇𝐹  

already exists on the cloud server, it indicates duplication. In 

this case, CSP and the user execute a proof of ownership 

agreement to prove that the user indeed owns the file 𝐹, and 

the user does not need to upload the file 𝐹 again. If the file 

label 𝑇𝐹  is not stored on the cloud server, it indicates that the 

file 𝐹  is not duplicated, and user 𝑈  will send 

(𝑆𝑖𝑔𝐹 , {𝐶𝐵𝑖
},{𝜎𝑖}) to CSP. 

4) Step-4: Integrity verification: To enhance the security 

and privacy of the integrity verification process, user 𝑈 can act 

as an auditor and engage in an integrity verification protocol 

with the Cloud Service Provider (CSP), leveraging Multi-Party 

Computation (MPC) as follows: 

User 𝑈  retrieves the file identifier 𝑆𝑖𝑔𝐹 = 𝐼𝐷𝐹 ∥
𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹) from the cloud server. 

Using the public key 𝑠𝑝𝑘 to verify the correctness of the 
signature 𝑆𝑖𝑔𝑠𝑠𝑘(𝐼𝐷𝐹). 

If the verification fails, the user will output a result of false. 
If the verification is successful, the user can recover the file 
identification 𝐼𝐷𝐹. 

Initialization: User 𝑈  selects a subset 𝐼 =
{𝑆1 ,𝑆2 , 𝑆3 , . . . , 𝑆𝑐−1 , 𝑆𝑐} ⊂ [1, 𝑛]  containing 𝑐  elements. This 
subset is used as the seed value set {𝑆𝑖} to initiate 𝑀. 

Sharing Data for MPC: User 𝑈 divides the data into shares 

𝑆𝑗  for the selected indices 𝐼 . These shares are distributed 

among different parties 𝑃𝑗 involved in 𝑀. 

Engaging the MPC Protocol: The parties {𝑃𝑗} 
collaboratively execute 𝑀  to securely compute random 
numbers. The protocol ensures that none of the parties, 
including the CSP, can learn the individual shares or the final 
random numbers until the computation is complete. 

Secure Computation: 𝑀  employs a pseudo-random 
function, denoted as 𝑓: {0,1}∗ → [1, 𝑛], to securely compute 
the random numbers. The function takes as input the shares 
{𝑆𝑗} , the current block identifier 𝐵𝑖𝑑  and the current 

timestamp 𝑇𝑠. 

Output Generation: As a result of the secure computation, 
𝑀 outputs two sets of random numbers: {𝑟𝑖}  and {𝑧𝑖}. These 
numbers are generated in such a manner that they are 
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unpredictable to outside observers, ensuring the integrity of the 
computation process. 

Challenge Formation: User 𝑈  forms a challenge 𝑐ℎ𝑎𝑙 =
{(𝑟𝑖 , 𝑧𝑖)}  using the random numbers generated by 𝑀 . This 
challenge is then sent to the CSP to verify the integrity of cloud 
data. 

CSP calculates the proof information 𝜇  and 𝐿  using the 
received challenge, where: 

𝜇 = ∑  𝑖∈𝐼 𝑧𝑖𝐶𝐵𝑖
                    (9) 

𝐿 = ∏  𝑖∈𝐼 𝜎𝑧𝑖

𝑟𝑖                 (10) 

CSP sends (𝜇, 𝐿) as proof to user 𝑈. 

User  𝑈 checks the correctness of the following equation to 
check the integrity of cloud data: 

Γ1:𝑒(𝐿, 𝑔) = 𝑒((∏  𝑖∈𝐼 𝐻(𝑊𝑖)
𝑍𝑖 ⋅ 𝑢𝜇), 𝑦)           (11) 

This step utilizes MPC to ensure that the computation of μ 
and L is done without revealing the actual values of {𝐶𝐵𝑖

} and 

{𝜎𝑍𝑖
} to any single party, enhancing the privacy of the data. 

By incorporating MPC into the integrity verification 
process, this approach not only maintains the confidentiality of 
the data during the verification but also enhances the security 
and trustworthiness of the cloud storage system. The use of 
MPC allows multiple parties to compute the verification 
without revealing their inputs, thereby providing a more secure 
and privacy-preserving verification process. Fig. 3 illustrates 
the process of step-4. 

 

Fig. 3. Step-4 integrity verification. 

5) Step-5: Create transaction: User 𝑈  can generate 

effective file tamper proof records by integrating auxiliary 

information from file 𝐹  into a transaction in the blockchain. 

This allows other users to have a clear understanding of the 

storage service quality provided by CSP and helps them choose 

the most suitable storage service. The details are as follows. 

User 𝑈 calculate: 

𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥ 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥ 𝛿 ∥ 𝐴𝑢𝑔𝐹  (12) 

where, 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 > 0  indicates that user 𝑈  pays storage 
service fees to CSP, 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 <  0 indicates that CSP pays 

compensation fees to user 𝑈, and 𝐴𝑢𝑔𝐹  represents additional 
information for file 𝐹. 

As shown in Fig. 4, the user submits Smart Contract 1 to 
generate a transaction TX, where the transaction TX parameter 
is 𝐹𝑟𝑜𝑚 = 𝐸𝐴𝑈,𝑇𝑜 = 𝐸𝐴𝐶𝑆𝑃 and 𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥
𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥ 𝛿 ∥ 𝐴𝑢𝑔𝐹. 

 

Fig. 4. Smart contract 1. 

After receiving the output result of Smart Contract 1, User 
𝑈 uses the private key 𝑠𝑠𝑘 to generate signature information 
𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑆𝑖𝑔𝑠𝑠𝑘(TX), and submits the transaction TX =
𝐹𝑟𝑜𝑚 ∥  𝑇𝑜  ∥ 𝑉𝑎𝑙𝑢𝑒 ∥ 𝐷𝑎𝑡𝑎 ∥ 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 to the blockchain. 

6) Step-6: Fair payment: After data is uploaded to the 

cloud server, users need to pay for the storage services 

provided by CSP. As shown in Fig. 5, user 𝑈 can submit Smart 

Contract 2 to the blockchain, where Smart Contract 2 will be 

automatically activated and executed. If the formula 𝛤1  is 

established, it means that the data block {𝐵𝑖𝑗} has been fully 

stored on the cloud server, and at this time, user 𝑈 needs to pay 

the corresponding storage service fee to CSP. Otherwise, if the 

equation 𝛤1 is not valid, it indicates that the data block {𝐵𝑖𝑗} 
has been damaged or lost, and CSP needs to take 

corresponding responsibility and provide certain compensation 

for the damage or loss of the data. The mechanism of fair 

payment is shown in Fig. 6. 

 

Fig. 5. Smart contract 2. 
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Fig. 6. Step-6 fair payment. 

D. File Download 

The user first submits a download request to the CSP and 
retrieves all encrypted data blocks. To verify the consistency of 
the data and restore the original file 𝐹 , the process is as 
follows: 

The encrypted data blocks are used as leaf nodes to 
construct a Merkle hash tree, from which the root node 𝑅𝐶 is 
derived. 

An external Multi-Party Computation (MPC) protocol is 
executed to verify the consistency of the data blocks. This step 
ensures a secure verification process without revealing any 
actual data to individual parties, while confirming that the 
blocks have not been tampered with. 

The user then parses the transaction TX from the 
blockchain to extract the file identifier and associated 
verification metadata. 

Verify the correctness of equation Γ2: 𝑒(𝛿, 𝑔) =
𝑒(𝐻(𝑅𝐶 ),𝑦). If the equation Γ2  holds true, it confirms the 
integrity and authenticity of the data blocks. 

The decryption keys 𝐾𝐵𝑖
 are securely distributed among 

multiple parties using the MPC protocol. This ensures that no 
single party has access to the complete decryption key, 
enhancing the security of the decryption process. 

With the securely distributed keys, decrypt each data block 
using the AES-GCM algorithm: 

𝐵𝑖 = 𝐴𝐸𝑆−𝐺𝐶𝑀−𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝐵𝑖
, 𝐶𝐵𝑖

)             (13) 

Reassemble the original file 𝐹 = {𝐵𝑖} from the decrypted 
data blocks 𝐵𝑖. 

Fig. 7 shows the complete file download process. 

 

Fig. 7. File download. 

E. File Update 

When a data block 𝐵𝑖 in file 𝐹 needs to be updated to a new 
version, the process incorporates MPC to enhance privacy and 
security. 

User 𝑈  first encrypts the updated data block using the 
PBKDF2 key derivation function and the AES-GCM 
encryption algorithm to encrypt the updated data block 𝐵𝑖

′ to 
obtain the ciphertext 𝐶𝑖

′ , and recalculates the homomorphic 

signature 𝜎𝑖
′ = (𝐻(𝑊𝑖) ⋅ 𝑢

𝐶𝐵𝑖
′

))𝑥 . Subsequently, user 𝑈  will 

send an update request (𝑖, 𝐶𝑖
′,𝜎𝑖

′)  to CSP. CSP replaces the 
ciphertext block 𝐶𝑖 in file 𝐹  with the new block 𝐶𝑖

′  and send 
{𝜛𝑖} to user 𝑈 , where 𝜛𝑖 represents the information of the 
sibling nodes associated with the path from 𝐻(𝐶𝑖

′) to the root 
node. 

User 𝑈 first calculates the value 𝑅𝐶 of the root node based 
on {𝜛𝑖} and 𝐻(𝐶𝑖

 ), and then continues to verify whether the 
condition 𝛤2: 𝑒(𝛿, 𝑔) = 𝑒(𝐻(𝑅𝐶 )𝑥,𝑔)  holds. If it is true, it 
indicates that the position updated by the server is correct, that 
is, the ciphertext block 𝐶𝑖

′  is the updated block of ciphertext 
block 𝐶𝑖. 

User 𝑈 recalculates the value 𝑅𝐶
′  of the root node based on 

{𝜛𝑖}  and 𝐻(𝐵𝑖
′) , and signs it 𝛿′ = 𝐻(𝑅𝐶

′ )𝑥 . Then, 𝑈 
recalculates the 𝐷𝑎𝑡𝑎 = 𝐻(𝐼𝐷𝑈) ∥ 𝐻(𝐼𝐷𝐹) ∥ 𝑓𝑙𝑎𝑔 ⋅ 𝑃𝑎𝑦 ∥
𝛿′ ∥ 𝐴𝑢𝑔𝐹, and finally integrates the 𝐷𝑎𝑡𝑎 information into a 
blockchain transaction on the blockchain. The insertion and 
deletion operations of data blocks can refer to the data block 
update operations mentioned above. 

V. SECURITY ANALYSIS 

This section evaluates the proposed scheme against the 
adversarial threats defined in Section III and demonstrates how 
the system satisfies its key security objectives. 

A. Data Integrity and Unforgetability 

Theorem 1: If the user does indeed download the original 
uploaded data, then the user will be able to successfully pass 
data consistency verification, with the process further secured 
by MPC. 

Proof: In this scheme, when users download encrypted data 
{𝐶𝐵𝑖 } from the CSP, it is necessary to verify the consistency of 
their data in order to recover the correct original plaintext 𝐹. 
To achieve this goal, users can utilize a Merkle hash tree to 
compute the root node 𝑅, where the root node 𝑅 is determined 
by all data block ciphertexts {𝐶𝐵𝑖} as leaf nodes. If any part of 
this information is altered, the value of 𝑅  will also change 
accordingly. Users can verify the correctness of the following 
equation to detect data consistency. 

If equation Γ2: 𝑒(𝛿, 𝑔)  holds true, it indicates that the 
downloaded ciphertext information {𝐶𝐵𝑖}  corresponds to the 
originally uploaded data. Subsequently, the user can recover 
the original file through convergence keys. Otherwise, if 
equation Γ2  does not hold true, it signifies that during the 
downloading process, the ciphertext of data blocks {𝐶𝐵𝑖 } has 
been corrupted. 
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B. Privacy Preservation 

Theorem 1: This scheme can ensure the privacy protection 
of user data, and adversary 𝑋  cannot obtain any useful 
information about user data during the integrity verification 
process. 

Proof: The parameters {𝑟, 𝑧, 𝜇, 𝛿, 𝜎} involved in this scheme 
do not expose any information about the user-uploaded data 
blocks 𝐵𝑖. In particular, there is a security vulnerability in the 
integrity verification scheme based on HLA, where in the 
integrity verification process, adversary 𝑋  would utilize the 
generation of aggregate signature 𝜇′ =  ∑ 𝑧𝑖𝑖∈𝐼 𝐶𝐵𝑖

, by 

repeatedly selecting indices  (𝑖, 𝑧𝑖)  to obtain specific linear 
combinations. Finally, by solving linear equations, adversary 𝑋 
could extract user information contained in the aggregate 
signature. 

C. Fair Payment Guarantee 

The smart contract logic enforces incentive compatibility 
between the DO and CSP. Both parties deposit tokens before 
an audit round. The contract releases: 

• Payment to the CSP if the audit passes. 

• Refund or penalty compensation to the DO if the audit 
fails. 

This design ensures that CSPs cannot receive rewards 
without proving data possession, and DOs cannot cheat without 
valid evidence. All transactions and outcomes are verifiable 
and immutable on the blockchain ledger, providing 
accountability without external arbitration. 

D. Resistance to Replay and Collusion 

Each audit challenge is freshly generated via secure on-
chain randomness (e.g., Keccak-based hash or block nonce). 
Since the challenge indices and weights are unpredictable, a 
CSP cannot reuse previous responses (replay resistance). 

In addition, the smart contract acts as an impartial, 
decentralized entity. Any attempt by DO and CSP to collude 
would be visible on-chain. Moreover, data tags and Merkle 
roots are bound to each user and file instance, making it 
infeasible to reuse or share tags across users (collusion 
resistance). 

E. Soundness and Completeness of Verification 

The verification algorithm satisfies: 

• Completeness: If the CSP honestly stores all data and 
follows the protocol, verification always passes. 

• Soundness: If any challenged block is corrupted or 
missing, the aggregated tag will not satisfy the bilinear 
verification equation, and the audit will fail with 
overwhelming probability. 

Under the random oracle model, the probability of passing 
an audit without the correct data is negligible. 

VI. EVALUATION AND RESULTS 

In this section, we evaluate the performance of our 
proposed scheme in terms of computational overhead, 

communication cost, and scalability. We also compare it 
against existing schemes to demonstrate its efficiency and 
practicality. 

A. Experimental Setup 

All experiments were conducted on a machine with an Intel 
Core i7-11700 CPU, 16 GB RAM, running Ubuntu 22.04. The 
implementation was developed in Python and Solidity. The 
blockchain environment is a local Ethereum testnet using 
Ganache, and smart contracts were deployed using the Truffle 
scheme. 

We use the following cryptographic primitives: 

• AES-GCM (128-bit) for symmetric encryption. 

• Keccak-256 for hashing and challenge randomness. 

• HLA over elliptic curve groups (BLS12-381). 

• PBKDF2 for key derivation from file ID. 

We evaluate performance on files ranging from 10 MB to 1 
GB, and measure: 

• Tag generation time 

• Audit-proof generation and verification time 

• Encryption time 

• MPC overhead (optional component) 

• Gas cost of smart contract interactions 

B. Tag Generation and Upload Performance 

As shown in Fig. 8, the tag generation time grows linearly 
with the file size. For a 100 MB file, the average tag generation 
takes 1.2 seconds, which is significantly lower than Zhou et al. 
and Sankar, both of which exceed 2.5 seconds under similar 
settings [10][11]. 

 

Fig. 8. Tag generation time vs. File size. 

The AES-GCM encryption adds a fixed overhead of 
approximately 0.9 seconds per 100 MB, which remains 
acceptable in practice. Combined upload time remains under 
2.5 seconds per 100 MB. 

C. Audit Efficiency 

Fig. 9 presents the time taken by the CSP to compute the 
audit proof and the time taken by the smart contract to verify it. 
Even for files of 500 MB, the audit process completes within 
200 ms. The aggregated tag greatly reduces computational 
effort compared to verifying each block individually. 
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Fig. 9. Audit time vs. File size. 

With MPC enabled, verification time increases modestly 
due to interaction rounds, reaching 420 ms for a 500 MB file. 
However, this added cost ensures privacy without revealing 𝜇. 

D. Data Update Overhead 

Fig. 10 shows the cost of a single block update 
(modify/insert/delete). Tag recomputation and Merkle tree 
adjustment combined take less than 80 ms per block. On-chain 
update verification (including Merkle path) adds ~15,000 gas 
(~$0.03 equivalent on Ethereum). 

This demonstrates that dynamic updates are practical and 
lightweight. 

 

Fig. 10. Update overhead per operation. 

E. Smart Contract Gas Cost 

Fig. 11 shows the estimated gas consumption of core smart 
contract functions. Contract 1 handles audit-related operations, 
while Contract 2 governs fair payment and dispute resolution. 
Deployment is the most gas-intensive, followed by storage-
heavy and payment functions. 

 

Fig. 11. Smart contract gas consumption. 

The core smart contract functions involved in each audit 
namely, submitting audit evidence and triggering payment 
consume approximately 90,000 to 100,000 gas in total, which 
demonstrates the practical feasibility and scalability of the 
proposed scheme. 

F. Comparison with Existing Schemes 

Fig. 12 compares our scheme with Zhou et al. and Liu in 
terms of audit latency and update overhead [10][13]. This 
scheme consistently outperforms baselines due to: 

• Tag aggregation via HLA (vs. per-block tag checking). 

• No third-party verifier involvement. 

• On-chain automation via smart contracts. 

For 1 GB files, our scheme achieves 35 to 50 per cent 
reduction in audit time and 30 per cent lower update cost. 

 

Fig. 12. Comparison with existing schemes. 

VII. CONCLUSION 

This study proposes a blockchain-based integrity 
verification scheme for encrypted cloud data that achieves 
decentralized auditing, privacy preservation, and fair economic 
incentives. By integrating Homomorphic Linear Authenticators 
(HLA), Multi-Party Computation (MPC), and smart contracts, 
the scheme eliminates reliance on third-party auditors and 
ensures automatic and transparent dispute resolution and 
payment settlement between data owners and cloud service 
providers. The system supports dynamic data operations and 
enables encrypted data verification without exposing plaintext 
information. Security analysis confirms that the scheme 
achieves data integrity, confidentiality, fairness, and resistance 
to replay and collusion attacks. Experimental results further 
demonstrate that the proposed protocol achieves low audit 
latency, acceptable computation and communication overhead, 
and practical gas consumption. 

Despite its advantages, the proposed scheme has several 
limitations. First, the use of MPC introduces additional 
communication overhead, which may affect performance in 
large-scale or resource-constrained environments. Second, the 
prototype is designed for a single-cloud setting and does not 
fully consider multi-cloud interoperability or cross-chain audit 
synchronization. Third, the cost of deploying smart contracts 
and executing transactions on public blockchains may increase 
under high network congestion or volatile gas prices. 
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Future research will focus on three directions: 

• Optimizing the MPC protocol and reducing on-chain 
interaction costs through lightweight cryptographic 
primitives or zero-knowledge proofs; 

• Extending the framework to support multi-cloud and 
cross-provider integrity verification, enabling 
collaboration and redundancy among distributed storage 
services; 

• Migrating the scheme to Layer-2 or permissioned 
blockchain platforms to reduce gas consumption and 
enhance scalability. 
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