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Abstract—Non-invasive neural speech interfaces aim to 

reconstruct intended words from brain activity, offering critical 

communication options for individuals with severe dysarthria or 

locked-in syndrome. Among the available recording modalities, 

electroencephalography (EEG) remains the most accessible and 

cost-effective choice for long-term brain–computer interface 

(BCI) applications. Decoding imagined speech from EEG, 

however, remains difficult because of low signal-to-noise ratio, 

pronounced inter-subject variability, and the small, 

heterogeneous corpora that are currently available. This review 

adopts a narrative methodology to synthesise peer-reviewed 

studies on EEG-based imagined-speech decoding. Relevant 

articles were identified through keyword-based searches in 

major digital libraries and were included if they used non-

invasive EEG, explicitly instructed imagined or covert speech, 

and reported quantitative decoding performance. The selected 

studies are organised along the processing pipeline, from 

experimental paradigms and data acquisition to preprocessing, 

feature extraction, representation learning, and classification. 

Across this body of work, binary imagined-speech tasks that rely 

on carefully designed time–frequency features and shallow 

classifiers often report accuracies above 80 percent, whereas 

multi-class word or phoneme recognition exhibits a much wider 

spread of performance and remains highly sensitive to dataset 

design and evaluation protocol. Recent trends favour 

convolutional and recurrent neural networks, temporal 

convolutional networks, and transfer learning strategies, which 

improve performance on some datasets but do not yet resolve 

fundamental issues of restricted vocabularies, inconsistent 

evaluation practices, and limited cross-subject generalisation. 

The review distils these observations into practical 

recommendations for dataset construction, model design, and 

evaluation protocols and outlines research directions aimed at 

more robust and clinically meaningful EEG-based imagined-

speech BCIs. 
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I. INTRODUCTION 

Human–computer interaction is increasingly seeking to 
bypass impaired neuromuscular pathways by directly reading 
intent from the brain. Brain–computer interfaces (BCIs) 
instantiate this vision by translating neural activity into 
actionable commands, opening communication channels for 
people with severe dysarthria or locked-in syndrome (e.g., 

ALS) [1]. Among BCI paradigms, imagined speech, which 
involves mentally articulating words without overt movement, 
provides a highly natural control signal that aligns closely with 
the cognitive actions users intend to perform. 

Multiple neuroimaging modalities have been explored for 
imagined speech, such as electroencephalography (EEG) [2], 
[3], electrocorticography (ECoG) [4], and 
magnetoencephalography (MEG) [5]. EEG remains the most 
practical route for broad deployment due to its non-
invasiveness, portability, and millisecond-scale temporal 
resolution [2], [3]. Yet decoding imagined speech from scalp 
potentials is intrinsically difficult: signals are low-amplitude 
and noisy, non-stationary across sessions, and highly variable 
across subjects; vocabularies are small; and existing corpora 
are heterogeneous and limited in size [6], [7]. These factors 
jointly confound generalisation and inflate reported accuracies 
under convenient but optimistic evaluation splits. 

Early pipelines relied on handcrafted representations, band-
limited filtering, and artefact suppression techniques (such as 
notch filtering and Independent Component Analysis, or ICA). 
This was followed by the extraction of features like Common 
Spatial Patterns (CSP), Power Spectral Density (PSD), 
wavelets, Hjorth parameters, and Riemannian mappings, which 
were then fed into conventional classifiers. Recent 
advancements have shifted towards deep learning methods for 
end-to-end representation and sequence modelling. 
Convolutional Neural Networks (CNNs) are now commonly 
used to capture spatial-spectral structures, while Bidirectional 
Long Short-Term Memory networks (BLSTMs) and 
Transformers are employed to model temporal dynamics. This 
approach is often supplemented by transfer learning and self- 
or contrastive pretraining to address challenges such as data 
scarcity and cross-subject variability [8], [9]. Although there 
has been encouraging progress, the field still lacks unified 
protocols for train/test splits (intra- vs. cross-subject), 
consistent metrics (accuracy/F1 vs. sequence-level WER), and 
transparent baselines with code releases. These limitations 
hinder reproducibility and fair comparisons across imagined 
speech datasets [5]. 

Several review articles have previously examined speech-
related brain–computer interfaces and neural speech decoding 
from a broad perspective, often spanning both invasive and 
non-invasive modalities or merging imagined speech with 
overt, whispered, or attempted speech paradigms. These 
surveys are valuable for framing the overall landscape, 
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particularly the neurophysiology of speech production and the 
evolution of decoding architectures, yet they often treat EEG-
based imagined speech as a secondary case within a wider 
taxonomy of neural speech interfaces [45], [46], [47], [48]. As 
a result, key methodological details that strongly determine 
EEG performance, such as trial segmentation conventions, 
artefact handling, representation choices, and cross-subject 
evaluation practice, are frequently dispersed across sections 
rather than consolidated into an end-to-end pipeline view. In 
contrast, the present review is deliberately scoped to non-
invasive EEG-based imagined-speech decoding and is 
organised along the full processing chain from acquisition and 
signal conditioning to representation learning and evaluation, 
with the aim of making both the current state of the art and its 
unresolved gaps more transparent to readers. 

This article adopts a narrative review methodology with a 
defined scope and explicit selection criteria to improve 
transparency and replicability. Relevant literature was 
identified through keyword-based searches in major digital 
libraries, including IEEE Xplore, PubMed, Scopus, and Google 
Scholar, using combinations of terms such as “imagined 
speech”, “covert speech”, “silent speech”, “EEG”, “brain–
computer interface”, and “neural speech decoding”. Studies 
were included if they used non-invasive EEG in human 
participants, employed explicit imagined or covert speech tasks 
at the level of phonemes, syllables, words, or short phrases, and 
reported quantitative decoding results. Studies were excluded if 
they relied solely on invasive recordings, did not include an 
imagined-speech component, or were non-empirical papers 
without original experimental evaluation. Screening was 
performed in two stages, first by title and abstract to remove 
clearly irrelevant work, then by full-text inspection to verify 
modality, task design, and reported outcomes. To reduce 
selection bias and ensure coverage of influential lines of work, 
citation chaining was applied to key papers, and the final set 
was prioritised toward peer-reviewed sources that reported 
sufficient experimental detail to permit methodological 
comparison, particularly regarding preprocessing, data splits, 
and evaluation metrics. 

The objectives of this review are to: 

• Summarise publicly available imagined-speech EEG 
datasets, their experimental paradigms, acquisition 
setups, preprocessing techniques, and data-structuring 
strategies for deep learning; 

• Provide actionable recommendations for designing 
efficient and generalisable deep-learning architectures 
tailored to EEG-based imagined-speech decoding; and 

• Examine the potential of EEG-driven deep learning for 
advancing neural speech interpretation and assistive 
communication technologies. 

The remainder of this paper is organised as follows. 
Section II reviews the foundations of EEG, data acquisition 
protocols, and preprocessing methods. Section III presents 
feature engineering and deep learning approaches. Section IV 
discusses evaluation protocols and metrics. Section V 
synthesises results and discussion, and Section VI concludes 
with future research perspectives. 

II. EEG FOUNDATIONS, DATA ACQUISITION, AND 

PREPROCESSING 

A. Electroencephalography (EEG) 

Electroencephalography (EEG) is a non-invasive method 
for measuring brain electrical activity, where electrodes placed 
on the scalp detect voltage differences generated by brain 
transmissions, forming signals [10]. EEG systems typically use 
14–64 electrodes, producing multidimensional signals, and are 
favoured for Brain-Computer Interfaces (BCIs) due to their 
non-invasiveness, simplicity, and high temporal resolution. 
However, EEG is susceptible to motion artefacts and 
myoelectric interference, especially during spoken language, 
posing challenges for Automatic Speech Recognition (ASR) 
[11]. Despite these challenges, EEG has been effectively used 
to analyse perceived speech and classify imagined phonics 
[12]. 

EEG signals are categorised into five frequency bands: 
gamma (>35 Hz), beta (12–35 Hz), alpha (8–12 Hz), theta (4–8 
Hz), and delta (0.5–4 Hz) [13], each of which corresponds to 
distinct cognitive states. Gamma waves, for example, are 
linked to overt and covert speech, showing significant changes 
in various brain regions [14]. Beta waves are associated with 
muscle activity and speech generation, while alpha waves are 
crucial for auditory feedback and speech perception, with 
lower frequencies during covert speech [3]. Theta waves 
support phonemic restoration and the processing of 
coarticulation cues [14], aiding in consonant identification 
[15]. Lastly, delta waves play a role in intonation, rhythm, and 
other speech-related processes [16]. 

B. Data Acquisition 

Acquiring high-quality EEG data is pivotal in developing 
Brain-Computer Interface (BCI) systems for deciphering 
imagined speech. The process involves recording the brain's 
electrical activity through electrodes on the scalp. This section 
outlines the key factors and methodologies for collecting EEG 
data for imagined speech recognition. 

In the study, participants were presented with speech cues 
(either vowels or words) through visual, auditory, or 
audiovisual means. When these cues were shown before the 
imagery of speech, participants memorised them, which helped 
to differentiate the imagined speech task from reading or 
listening tasks. Participants engaged in imagined speech while 
simultaneously performing reading or listening tasks in 
scenarios where cues were provided concurrently. It is 
important to note that listening and reading activate different 
areas of the brain: the temporal lobes are involved in listening, 
while the occipital lobes are activated during reading. 
Therefore, the format of the cues and their timing in relation to 
imagined speech can impact brain activation patterns. 

The acquisition protocol of the Arizona State University 
dataset [17] solely employed visual cues, presented 
simultaneously with an imagined speech recording. Subjects 
performed speech imagery at each "beep" until cue cessation (7 
x T seconds), using short and long words. Common Spatial 
Pattern (CSP) was applied to identify active brain areas. 
Results highlighted activity primarily in the left frontal, middle, 
and parietal regions, corresponding to the motor cortex and 
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language areas. The KaraOne dataset [18] employing separate 
cue presentation aimed at distinguishing pronounced and 
imagined speech states. Central brain areas showed 
discriminative features.  Without a specified rationale, Coretto 
et al. [19] employed a distinct protocol utilising audio and 
visual cues before imagined speech tasks. They used vowels 
and Spanish words, recording EEG data without spatial 
analysis. Further investigation is warranted to ascertain brain 
regions involved in cue processing. 

Studies have elicited speech imagery at multiple linguistic 
levels, including vowels [17], phonemes [18], syllables [20], 
words [21], [22] and sentences [23] .As summarised in Fig. 1, 
word classification constitutes the largest share of reported 
EEG imagined-speech tasks, followed by vowel and phoneme 
or consonant–vowel targets, with a smaller fraction devoted to 
phrase-level decoding and symbol-like targets (digits or 
letters). This distribution is not only a matter of experimental 
convenience. Coarser targets such as isolated words reduce 
label ambiguity, shorten annotation pipelines, and often permit 
simpler evaluation, whereas phoneme-level and phrase-level 
settings impose stricter demands on temporal alignment, 
representation capacity, and cross-subject robustness. 
Consequently, comparisons across papers should be interpreted 
in light of the underlying task unit, because “high accuracy” in 
a small closed vocabulary does not imply comparable progress 
toward open-vocabulary decoding. 

 
Fig. 1. Speech unit types across studies. 

Sub-lexical units, such as vowels, phonemes, and syllables, 
are often used to focus on early planning and articulatory 
coding. In contrast, lexical items and binary-response questions 
(like yes/no) explore message preparation with a greater 
emphasis on syntactic and semantic complexity. From the 
literature we reviewed, we identified 28 EEG datasets related 
to imagined speech: eight are publicly available and twenty are 
private. Dataset selection is concentrated around a small 
number of publicly available corpora, which shapes what is 
routinely benchmarked and what remains underexplored. Fig. 2 
shows that Kara One, the Coretto database, and the ASU 
dataset dominate the empirical evidence base, while other 
datasets appear only sporadically. This imbalance has practical 
implications. First, methodological “trends” can become 
dataset-specific, optimised to a narrow range of paradigms and 
recording setups. Second, generalisation claims are often 
constrained by repeated evaluation on the same few corpora, 
sometimes with inconsistent splitting conventions across 

studies. For readers, the figure clarifies why cross-dataset 
conclusions should be framed cautiously, and why broader 
benchmarking across heterogeneous corpora is essential for 
credible progress. 

 
Fig. 2. EEG-based imagined speech public datasets. 

In summary, collecting EEG data for imagined speech 
recognition is a complex process that involves configuring the 
EEG system, removing artefacts, designing experiments, and 
taking individual subject considerations into account. 
Advances in EEG technology and data acquisition methods 
hold promise for improving brain-computer interface (BCI) 
systems tailored for imagined speech applications. 

C. Preprocessing Techniques  

During imagined speech tasks, the raw EEG signals are 
prone to various artefacts and noise, which can significantly 
impair subsequent feature extraction and classification stages. 
Hence, suitable preprocessing methods are crucial for 
enhancing the signal-to-noise ratio and extracting pertinent 
information from the EEG data. Nonetheless, effectively 
cleaning the data without sacrificing important information or 
features for later analysis or pattern recognition remains 
challenging. It's crucial to remove noise before downsampling 
to avoid misinterpreting downsampled values as noise. 

In cases where EEG acquisition involves a high sampling 
rate, such as 1000Hz, downsampling is often employed to 
balance computational efficiency and data integrity. However, 
it may lead to the loss of important features. Thus, using the 
original sample size could facilitate observing discriminative 
speech recognition features while considering available 
resources [24]. 

Standard preprocessing techniques include band-pass 
filtering, blind source separation (BSS), and subtracting mean 
values from each channel to remove high-frequency noise and 
focus on the frequency bands most relevant for speech 
processes [12]. Notch filters at 60 Hz and band-pass filters with 
various frequency ranges, such as 0.5-100 Hz [25], 1-50 Hz 
[26], and 2-40 Hz [27], have been applied to eliminate 
powerline interference, and the signals were segmented into 5-
second epochs with a 0.5-second overlap to capture temporal 
dynamics. Other preprocessing methods include independent 
component analysis (ICA) [7], artefact removal [28], sliding 
window data augmentation [29], and baseline correction [28]. 
As a result, end-to-end learning methods that require minimal 
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preprocessing have gained interest in EEG classification. 
However, directly classifying nearly raw EEG signals remains 
challenging and requires further investigation [30]. 

III. REPRESENTATION LEARNING AND DECODING 

In most imagined-speech studies, EEG processing follows a 
broadly similar structure. After artefact removal and band-
limited filtering, continuous recordings are segmented into 
trials aligned with cue onsets or imagery windows. These trials 
are re-referenced or normalised, then transformed into 
representations that emphasise spatial patterns, spectral 
content, temporal dynamics, or connectivity structure. 
Handcrafted features compress each trial into a fixed-
dimensional vector, which is then passed to a classifier, while 
deep models often operate directly on multichannel time series 
or time–frequency maps and learn discriminative features 
jointly with the decoder. The subsections below describe the 
main feature-extraction strategies and classification approaches 
used in this pipeline. 

A. Feature Extraction 

Feature extraction is a central step in decoding imagined 
speech from EEG, since it determines how rich but noisy 
neural activity is converted into stable and discriminative 
representations for BCI systems. The aim is to retain task-
relevant information while suppressing background activity 
and artefacts. Commonly used transformations include Fourier, 
wavelet, and Hilbert–Huang decompositions, as well as spatial 
filtering techniques such as Common Spatial Patterns (CSP) 
and Principal Component Analysis (PCA). These families of 
methods, together with their typical application scenarios, can 
be conveniently summarised in a feature taxonomy table, for 
example Table I, to provide readers with a compact overview 
of the design space. 

Because EEG is inherently a time-series signal, several 
studies have relied on time-domain models such as 
autoregressive (AR) coefficients [31] or borrowed 
representations from speech processing, such as Mel 
Frequency Cepstral Coefficients (MFCC) [32]. On the 
KARAONE dataset, MFCC features achieved higher 
performance than simple statistical and non-linear descriptors, 
with reported accuracies of 19.69 percent for MFCC, 15.91 
percent for statistical features, and 14.67 percent for non-linear 
features on an 11-class task, where chance level is 9.09 percent 
[33]. This pattern is consistent with the intuition that MFCCs 
capture spectral envelopes and formant-related structure that 
are more tightly linked to articulatory and phonetic content 
than raw amplitude statistics. In a related line of work, some 
authors have treated EEG segments as sequences of local 
“visual words” and applied Bag of Features (BoF) models, 
effectively borrowing ideas from text and image representation 
to capture recurring temporal patterns [34]. 

Functional and effective connectivity features have 
received comparatively less attention in imagined-speech 
decoding, despite their potential to quantify coordinated 
activity across brain regions. Qureshi et al. [35] employed 
functional connectivity descriptors, including covariance and 
the maximum linear cross-correlation coefficient (MaxLCor), 
and reported 87.90 percent accuracy in a binary imagined-

speech classification task. Pawar et al. [36] combined 
MaxLCor with Discrete Wavelet Transform (DWT) features 
and obtained 40.64 ± 2.45 percent accuracy. These results 
suggest that connectivity measures can enhance discrimination, 
particularly when combined with spectral or time–frequency 
features, but they have not yet been systematically explored for 
larger vocabularies or more challenging cross-subject settings. 

A further design decision concerns whether features are 
extracted per channel or jointly across channels. Single-channel 
analysis is simpler and can highlight localised activity, but 
simultaneous extraction from multiple channels provides a 
more realistic view of distributed speech networks. Channel 
cross-covariance (CCV) matrices are a common way to encode 
such multichannel structure, since they aggregate relationships 
between electrodes into a compact form that can be processed 
by classical or deep models [37]. CCV can be computed in 
both time and frequency domains and over different window 
lengths, such as 0.25, 0.5, or 1 second, which allows the 
representation to trade temporal resolution for robustness [38]. 

Beyond these families, several works have employed Mel 
Frequency Cepstral Coefficients (MFCC) [25], Discrete 
Wavelet Transform (DWT) [21], Wavelet Packet 
Decomposition (WPD), Short-Time Fourier Transform (STFT) 
[28], and low-order statistical descriptors [15], [21]. In some 
cases, investigators have treated the raw microvolt values 
across channels as a high-dimensional feature vector without 
additional handcrafted compression [39]. This strategy 
maximises information content but places a heavier burden on 
the classifier and typically requires larger datasets or strong 
regularisation. Overall, the literature reflects a gradual 
evolution from hand-engineered spectral and spatial markers 
toward more structured, multichannel representations that are 
better suited for deep learning. 

B. Classification Approaches 

Once features have been extracted, the next step is to map 
each trial to its corresponding imagined-speech category, for 
example, a word, phoneme, or binary decision. The literature 
spans a spectrum of classifiers, from shallow machine learning 
models to deep neural architectures, each motivated by 
different assumptions about the structure and complexity of 
EEG data. 

Early work relied primarily on traditional machine learning 
algorithms. Nguyen et al. [40] represented trials as tangent 
vectors on a Riemannian manifold of covariance matrices and 
employed a multiclass relevance vector machine to 
discriminate vowels and short words, achieving accuracies up 
to 49 percent. This approach leverages the geometry of 
covariance space to improve robustness but remains limited by 
linear decision boundaries in the tangent space. Sereshkeh et al. 
[41] combined autoregressive coefficients and DWT features 
with a support vector machine (SVM) and achieved 69.3 
percent accuracy in online decoding of binary “yes” versus 
“no” decisions, highlighting the strength of SVMs when 
feature engineering is carefully tuned to the task. Cooney et al. 
[33] compared multiple feature sets and found that MFCC 
features paired with an SVM classifier produced the best 
performance on an 11-class imagined-speech task, with 22.7 
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percent accuracy, which exceeds chance but also illustrates the 
difficulty of multi-class decoding in realistic scenarios. 

As datasets and vocabularies grew, many studies shifted 
toward deep learning to learn representations and decision 
boundaries jointly. Several efforts have combined 
Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) to capture spatial and temporal structure, 
respectively [42]. In some cases, feature vectors, for example 
channel covariance matrices, are passed through a Deep 
Autoencoder (DAE) that compresses them into low-
dimensional latent codes, which are then used for 
classification. Siamese networks have been introduced to refine 
these latent spaces by enforcing that trials with the same label 
are mapped closer to one another than trials from different 
classes, which improves discriminability in settings with 
limited training examples [30]. Using the same Coretto dataset 
[19], such metric-learning extensions have been reported to 
outperform baseline architectures without Siamese constraints 
[27]. 

To clarify the methodological landscape before comparing 
individual architectures, Fig. 3 presents the distribution of 
model families used across the selected studies. The figure is 
created by categorising each paper according to its primary 
decoding approach- such as conventional machine learning 
with handcrafted features, CNN-based models, recurrent or 
sequence models, and transfer learning or hybrid methods- and 
then summing these categories throughout the survey. Two key 
observations emerge: first, deep learning currently dominates 
recent research, due to its ability to learn task-relevant features 
directly from noisy, high-dimensional EEG data; second, 
traditional pipelines remain common in small-data scenarios 
because their inductive biases and fewer parameters make them 
easier to train and interpret. This distribution guides the 
organisation of Section III.B, which compares model families 
based on the specific problem constraints they address, rather 
than treating architectures as interchangeable options. 

Deep learning architectures explored in this context include 
pure CNNs, CNN combined with Long Short-Term Memory 
(LSTM) units, and Deep Autoencoders [7], [28]. Hierarchical 
designs, in which features are learned at multiple levels using 
stacked CNN, temporal CNN (TCNN), and DAE modules, 
have also been proposed [12]. Other classifiers include 
Random Forests (RF) [15], Support Vector Machines (SVM) 
[7], K-Nearest Neighbours (KNN), Naive Bayes [39], Deep 
Belief Networks (DBNs) [43], transfer learning schemes [29], 
Recurrent Neural Networks (RNNs) [43], Temporal 
Convolutional Networks (TCNs) [44], bimodal deep neural 
networks with fusion layers, Transformer-based models, and 
Capsule Networks. These architectures differ in how they trade 
off expressiveness, parameter count, and data requirements, but 
they share the objective of capturing complex, non-linear 
relationships that cannot be modelled by shallow classifiers. 

Reported accuracies span a wide range and depend strongly 
on task design and dataset characteristics. For binary problems 
such as distinguishing vowels from consonants (C/V), 
detecting the presence or absence of nasality (±Nasal), 
identifying bilabial articulation (±Bilabial), or discriminating 
specific phonemes like /iy/ and /uw/, accuracies between 69 

percent and 89 percent have been reported [26], [45]. Multi-
class tasks that target larger phoneme inventories or full words 
achieve more variable performance, with accuracies reported 
from around 24.19 percent up to 97.34 percent [12], often 
under subject-dependent or session-specific splits that may be 
optimistic. Transfer learning approaches that initialise models 
from related EEG tasks or from other subjects have also been 
investigated, with accuracies of 65.65 percent [39] and 95.5 
percent [29] reported in particular configurations. These figures 
demonstrate the potential of advanced classifiers but also 
underline the difficulty of comparing methods across studies 
with different protocols. 

 
Fig. 3. Distribution of model families used for EEG imagined-speech 

decoding in our survey. 

Despite these advances, several challenges remain for 
classification in imagined-speech EEG. Inter-subject variability 
and non-stationarity across sessions make it difficult to design 
models that generalise reliably beyond the conditions in which 
they were trained. The limited size of most labelled datasets 
constrains deep architectures and increases the risk of 
overfitting, particularly in multi-class problems and when 
moving toward phrase or sentence-level decoding. Current 
results therefore, provide important proof-of-concept evidence, 
but they also point to the need for larger and more diverse 
datasets, more rigorous cross-subject and cross-session 
evaluations, and classifier designs that explicitly address 
variability and uncertainty in real-world settings. These issues 
are closely linked to the evaluation protocols and metrics 
discussed in the following section. 

IV. EVALUATION PROTOCOLS AND METRICS 

The thorough evaluation of imagined-speech decoders 
relies on three key components: the metric, the validation 
approach, and the subject segmentation. These factors 
collectively influence the comparability and reliability of the 
reported findings across different studies. Reported evaluation 
practice is dominated by a narrow set of metrics, which partly 
explains why headline results can be difficult to compare 
across papers. As summarised in Fig. 4, accuracy is by far the 
most frequently reported metric, while complementary 
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measures that reveal class imbalance effects and decision 
reliability, such as sensitivity, specificity, F-score, and AUC, 
appear less consistently. Statistical testing and effect-size 
reporting are rare, despite the known variance induced by 
subject identity, session effects, and split choice. The practical 
consequence is that two studies may report similar accuracies 
while differing substantially in error structure and operational 
usefulness, particularly in multi-class settings where confusion 
patterns matter. This motivates the use of a minimal, standard 
metric set that pairs accuracy with class-sensitive and 
uncertainty-aware reporting, and it reinforces the need to 
publish confusion matrices and split protocols alongside 
aggregate numbers. 

In the literature reviewed, accuracy emerges as the most 
common outcome measure, used in 96.6% of publications, 
primarily because of its straightforward interpretation for 
established vocabularies. To assess agreement beyond random 
chance and reduce issues related to class imbalance, numerous 
studies also present Cohen’s κ (13.6%). Many researchers 
enhance a single scalar metric with a confusion matrix 
(27.1%), from which precision/PPV (11.9%), 
recall/sensitivity/TPR (16.9%), specificity/TNR (2%), and the 
F-score (15.3%) are calculated. When a classifier’s function is 
based on a continuous decision variable or a threshold score, 
ROC curves and AUC serve as suitable summaries. 

 
Fig. 4. Frequency of evaluation metrics reported in EEG imagined-speech 

studies. 

Statistical testing is not yet routine in imagined-speech 
EEG studies, although it is essential for separating genuine 
methodological gains from variance induced by subject identity 
and split choice. Across the surveyed papers, roughly one third 
report inferential evidence, using p-values, t-tests, ANOVA, or 
non-parametric alternatives such as the Wilcoxon signed-rank 
test to quantify improvement over baselines. Validation 
practice is similarly uneven. Hold-out evaluation remains 
common, but cross-validation is more frequently adopted, and 
a substantial subset of studies explicitly reserves a validation 
set for hyperparameter selection, which is particularly 
important for deep models where tuning decisions can 
dominate reported performance. These methodological choices 
interact directly with the most consequential design decision in 

this literature, namely whether evaluation is subject-dependent 
or subject-independent. Most studies still follow subject-
dependent testing, which typically yields higher scores because 
the model is assessed on participants represented during 
training. Consistent with this pattern, stronger results under 
subject-dependent settings have been reported in [82] and [77]. 
Subject-independent evaluation is more difficult because inter-
subject variability is large and non-stationary, but it is the 
setting that best reflects practical deployment. For example, 
although [62] reported that a new deep model improves over 
conventional baselines, performance across unseen subjects 
remains weaker than within-subject testing. Against this 
methodological background, Fig. 5 summarises reported 
accuracies by target type. Short word sets tend to produce 
higher central performance than phoneme-level decoding, with 
vowel classification typically intermediate, a hierarchy that 
follows expected differences in temporal granularity and class 
separability. Fig. 5 also includes a sentence-level reference 
group from high-density ECoG, which provides an upper-
bound context given its higher signal fidelity and should not be 
interpreted as directly comparable to scalp EEG. Overall, the 
figure reinforces a practical interpretation principle: progress 
should be judged not only by peak accuracy, but by robustness 
under stricter splits and by performance retention when moving 
from simplified targets toward linguistically richer decoding 
tasks. 

 
Fig. 5. Reported accuracy ranges per task granularity. 

V. RESULTS AND DISCUSSION 

The surveyed literature shows that EEG-based imagined-
speech decoding has moved from proof-of-concept 
demonstrations to increasingly sophisticated pipelines that 
combine advanced preprocessing, feature learning, and deep 
classifiers. Yet, even the strongest reported systems remain 
some distance from robust, general-purpose communication 
tools. The gap arises from a combination of signal-level 
limitations, constrained datasets, substantial inter-subject 
variability, and heterogeneous evaluation practices that make it 
difficult to compare methods or to judge their readiness for 
real-world use. 

The corpus of studies considered in this review was drawn 
from major digital libraries and includes work that focuses on 
artificial intelligence techniques, feature extraction methods, 
signal filtering, and data acquisition strategies for speech-
related EEG decoding. Most of the selected articles are peer-
reviewed journal publications [45], [46], [47], [48], with a 
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noticeable concentration of contributions from research groups 
in Korea and India [30], [47], [21], [26]. Foundational work 
appeared between 2013 and 2016, but the number of 
publications increased sharply in 2020 and 2021, reflecting a 
recent shift toward deep learning and transfer learning 
approaches in this domain. 

Table I provides a compact overview of representative 
studies on EEG-based imagined-speech decoding. It lists, for 
each work, the task design, preprocessing steps, feature 
extraction methods, classifiers, and corresponding accuracies. 
Several patterns emerge. Binary imagined-speech tasks, such 
as distinguishing a small set of directional commands or 
phonological contrasts, frequently report accuracies above 80 
percent [21], [44], while multi-class settings display wider 
variation, with values ranging from about 24 percent to above 
90 percent depending on vocabulary size, feature choices, and 
the evaluation protocol [12], [20], [59], [60], [61], [63]. 
Methods that rely on rich time–frequency representations, 
including DWT, RADWT, SPWVD, and other time–frequency 
images coupled with CNN or TCN architectures, account for 
many of the top-performing models [21], [44], [59]–[61]. 
Transfer learning, often with ResNet or DenseNet backbones, 
yields additional gains when labelled data are limited [20], 
[29], [54]. 

In comparative terms, EEG-based decoding still trails 
invasive or high-field modalities in maximum performance. 
ECoG studies have reported accuracies of 88.3 percent for 
pairwise imagined-speech classification [49] and 98.8 percent 
for syllable recognition using spatio-spectral feature clustering 
[50]. MEG-based systems have achieved phrase classification 
accuracies around 95 percent [51]. These results illustrate what 
is possible when spatial resolution and signal-to-noise ratio are 
high, but they depend on invasive surgery or bulky laboratory 
hardware. EEG, by contrast, is non-invasive, relatively 
inexpensive, and portable, which makes it attractive for 
eventual clinical and home use despite its lower ceiling on 
accuracy. In practice, current EEG systems are most promising 
when restricted to modest vocabularies, such as command sets 
including “up”, “down”, “left”, “right”, “forward”, 
“backward”, and “select”, which can control screens, mobile 
devices, or prosthetic devices [52]. 

To turn this heterogeneous body of work into a coherent 
roadmap, the remaining discussion is organised into four 
closely related themes: signal quality and representation, 
dataset scale and linguistic diversity, individual variability and 
generalisation, and evaluation protocols and practical 
deployment. Each theme is framed as an open challenge, then 
linked to existing studies that partly address it, and finally used 
to motivate specific directions for future research.  

A. Signal Quality and Representation 

Low signal-to-noise ratio is an intrinsic limitation of non-
invasive EEG. Imagined speech generates weak and spatially 
diffuse activity that must be recovered in the presence of 
ocular, muscular, and environmental artefacts. Many of the 
works in Table I address this by combining classical denoising, 
such as bandpass and notch filtering, Independent Component 
Analysis, and Common Average Referencing, with carefully 
designed features [20], [21], [60], [61]. Time–frequency 

methods, including DWT, RADWT, SPWVD, and other time–
frequency images, further concentrate energy into 
discriminative bands. When these representations are fed to 
CNNs, TCNs, or hybrid deep architectures, substantial 
performance gains are obtained [21], [44], [59]–[61]. 

These approaches, however, remain tailored to controlled 
imagery windows and predefined frequency ranges. They are 
rarely tested in more naturalistic, continuous settings, and their 
performance may degrade when task timing is variable or when 
artefact statistics change between sessions. Moreover, most 
feature pipelines are hand-tuned to particular datasets, which 
complicates reuse across tasks. One natural extension of the 
current literature is to replace fixed front-ends with adaptive or 
learned ones that are trained jointly with the classifier, for 
example, denoising autoencoders, learnable filterbanks, or self-
supervised objectives that encourage separation of neural 
signal and artefacts. Such work would build directly on the 
existing time–frequency and connectivity-based 
representations, but would aim to make them more robust and 
less dependent on manual feature engineering. 

B. Dataset Scale, Vocabulary, and Linguistic Diversity 

A second, closely related challenge concerns dataset size 
and linguistic coverage. Many studies in Table I employ 
relatively small subject pools and limited vocabularies, often 
focusing on a handful of vowels, short words, or simple 
commands [21], [44], [59]–[61], [63]. This is understandable, 
since imagined-speech experiments are demanding and EEG 
recording sessions are time-consuming. Nevertheless, small 
datasets restrict the expressive power that can be used in 
models, and they make it hard to separate genuine algorithmic 
improvements from overfitting to narrow tasks. A few works 
have attempted to move beyond this constraint by combining 
datasets such as FEIS and KARAONE [20], [29], [59] or by 
constructing tasks involving subject, verb, and object words 
[62]. These studies demonstrate that richer vocabularies are 
technically feasible, but they also highlight the need for more 
extensive collections of trials if vocabulary size and linguistic 
variability are to increase. 

Language and phoneme variability adds another layer of 
complexity that has not yet been fully explored. Most 
experiments are carried out in a single language, with phoneme 
sets chosen for convenience or for strong acoustic–articulatory 
contrasts. FEIS and KARAONE provide broader phonetic 
inventories and are valuable in this respect [20], [59], [60], but 
there is little systematic work on how language-specific 
phonology or prosody influences EEG decodability. Future 
datasets that are designed from the outset to be multi-lingual 
and multi-phonemic, with shared vocabularies and standardised 
splits, would enable these questions to be addressed. They 
would also provide a more solid foundation for the transfer 
learning strategies already investigated in [20], [29], [54], 
which rely on diverse data to learn generalisable 
representations. 

C. Individual Variability and Generalisation 

Inter-subject and inter-session variability remains one of 
the most significant barriers to robust imagined-speech 
decoding. Anatomical differences, variations in electrode 
placement, and individual cognitive strategies all contribute to 
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changes in the recorded signal. Many of the highest accuracies 
in Table I come from subject-dependent or mixed-trial 
evaluations, where training and test sets share data from the 
same individuals and recording sessions [44], [59]–[61], [63]. 

In such settings, complex models can learn idiosyncratic 
patterns and achieve strong performance, but this success does 
not guarantee generalisation to new users or days. 

TABLE I.  SUMMARY OF REPRESENTATIVE STUDIES ON EEG-BASED IMAGINED SPEECH DECODING 

Ref. Task 
Preprocessing 

Method 

Feature 

Extraction 

Classification 

Method 
Accuracy 

[21] 
Muti-class and binary classification of 

“left,” “right,” “up,” and “down.” 
ICA DWT 

- Kernel ELM 

- Statistical features 

Multi-class: 49% 

Binary: 85% 

[54] 
Classification of five vowels and 

six words 
Transfer learning 

CNN 

 
24% 

[55] 
addition of new classes to a pre-trained 

classifier with few trials. 

instantaneous 

frequency and spectral 

entropy 

Deep metric learning framework 

 

-6-class accuracy of 45.00 ± 3.13%. 

- 5-class accuracy of 48.10 ± 3.68% 

[29] Vowels, Short and long words 

- Sliding window data 

augmentation 

- Band-pass filtering 

MPC 

 

MSC 

Transfer learning 

with ResNet50 pre-

trained 

- 79.7% (min) for vowels 

- 95.5% (max) for short-long words 

[44] Vowels and words FastICA DWT TCN and CNN 96.49% 

[56] 
words "rock", "paper", "scissors", and 

rest state 

Classical signal 

processing 
GSP/GL SVM 50.10% 

[57] long words, short words, vowels 
Operational 

Architectonics 
network metrics Naive Bayes 

-62.55% (long words), 66.44% (long 

vs short), 53.47% (short words), 

48.13% (vowels) 

[58] 

kinesthetic imagery of the “left hand” 

and “right hand.” . visualise (“split” and 

“fall in”), imagine the pronunciations 

(“go” and “stop”), 

multiscale 

convolutional 

transformer 

t-SNE 

multiscale 

convolutional 

transformer 

- 0.62 on the private EEG dataset. 

- 0.70 on BCI competition IV 2a 

dataset. 

- 0.72 on the Arizona State 

University dataset. 

[59] 
Vowels, Short and long words 

classification 
SPWVD TFR images CNN 

- Long words: 94.82% 

- Short-long words: 94.26% 

- Short words: 94.68% 

- Vowels: 84.50% 

[60] 
Vowels, Short and long words 

classification 

Butterworth bandpass 

filter, Notch filter, 

Common average 

referencing 

RADWT/PSO 

SVM, KNN, 

Random Forest, 

Rotation Forest, 

Bagging, AdaBoos 

87.26% 

89.23%, 95.5%, and 92.16% for long 

words, short–long words, short 

words, and vowels, respectively. 

[61] 
Vowels, Short and long words 

classification 

Butterworth bandpass 

filter, Notch filter, 

Common average 

referencing 

SPWVD CNN 
Binary: 79.82% to 82.04% 

Multiclass: 49.93% to 51.44% 

[62] 

The words included “I” and “partner” as 

subject words, “move,” “have,” and 

“drink” as verb words, and “box,” 

“cup,” and “phone” as object words 

Downsampling from 

1000 to 500 Hz, Band-

pass filtering (30-125 

Hz), and Embedding 

of spectrograms 

CNNs and ground 

truth (mel-

spectrogram), 

(GRU)-based 

regression 

Structural Similarity 

Index Measure 

(SSIM) 

Subject words 79.2%, Verb words 

82.5%, Object words 81.1% 

[3] Four words: UP, DOWN , LEFT, right 
Bandpass filtering (10-

100 Hz) 
WST 

LSTM model with 

L2 regularisation 
92.50% 

[20] 

FEIS : / i/, /u:/, /æ/, /ɔ:/, /m/, /n/, /ɳ/, /f/, 

/s/, /∫/, /v/, /z/, /ʒ/, /p/, /t/, /k/ .KaraOne :  

/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/,pat, 

pot, knew, and gnaw 

ICA and  bandpass 

filtering 
DWT 

Deep transfer 

learning (DenseNet, 

ResNet) 

- KaraOne: 82.35% 

- FEIS: 89.01% 

[63] 
/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/,pat, 

pot, knew, and gnaw 

filter up to 1 kHz 

bandpass 
EM-CSP 

Ensemble stacking 

learning 
97.34% 

[21] 
Multi-class and binary classification of 

“left,” “right,” “up,” and “down.” 
ICA DWT 

- Kernel ELM 

- Statistical features 

Multi-class: 49% 

Binary: 85% 

ANN = artificial neural network (NN), AR = autoregression, CNN = convolutional NN, CSP = common spatial pattern, DAE = Deep Autoencoder, DNN = deep NN, DT = decision tree, DTCWT = Double-Tree Complex 
Wavelet Transform (WT), DTF = direct transfer function, DWT = Discrete WT, ELM = extreme learning, FFT = Fast Fourier Transform (FT), HMM = hidden Markov model, kNN = k-nearest neighbour, LDA = linear 

discriminant analysis, LSTM = long short-term memory, MaxLCor = Maximum Linear Cross-correlation Coefficient, MFCC = Mel Frequency Cepstral Coefficients, NB = naïve Bayes, PDC = partial directed coherence, 
RF = random forest, RMS = root mean square, RNN = recurrent NN, t-SNE= t–stochastic neighbor embedding, CAR=Common Average Reference, RVM = relevance vector machine (VM),  STFT = Short Time FT, SVM 

= support VM, TL = transfer learning. 

Several studies have started to reduce this gap. Transfer 
learning approaches initialise models on one dataset or group 
of subjects and then fine-tune them on a smaller target set. For 
example, [29] uses ResNet-based transfer with sliding-window 

augmentation, and [20] explores knowledge transfer between 
FEIS and KARAONE, reporting accuracies above 80 percent 
for some configurations. Metric-learning strategies, such as 
Siamese networks and deep metric learning frameworks [30], 
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[55], encourage models to place trials with the same label 
closer together in latent space and trials with different labels 
further apart. These methods help to reduce subject-specific 
variability and have outperformed simpler baselines on the 
same data [27], [30]. 

Even so, most of these works still require subject-specific 
fine-tuning and have not yet been evaluated on large, 
independent cohorts. A promising direction is the development 
of architectures and training regimes that explicitly disentangle 
subject and task factors, for instance, through adversarial 
domain adaptation, subject embedding layers, or factorised 
latent spaces. The existing transfer and metric-learning 
literature provides concrete starting points, but more ambitious 
cross-subject and cross-session benchmarks will be needed to 
identify which strategies lead to genuine gains in generalisation 
rather than to improvements confined to a single dataset. 

D. Evaluation Protocols and Practical Deployment 

The way performance is measured is as important as the 
models themselves. Evaluation protocols in the imagined-
speech literature vary widely. Many studies employ subject-
dependent or random cross-validation schemes that mix trials 
from the same recording session in training and test sets. This 
practice often yields optimistic estimates of accuracy, because 
nuisance factors such as noise statistics and electrode 
placement are shared across splits. Only a subset of studies 
explicitly report cross-subject or cross-session results, and for 
widely used datasets such as KARAONE, FEIS, or the Arizona 
State University corpus, there is still no consensus on standard 
training and test partitions [3], [20], [58], [59], [63]. 

Some authors have already taken steps toward more 
transparent evaluation. For example, [21] distinguishes 
between binary and multi-class performance on directional 
commands, [59] and [60] report separate accuracies for vowels, 
short words, and long words, and [62] analyses subject, verb, 
and object categories separately. These distinctions make it 
easier to understand how a model behaves under different task 
demands. However, further progress will likely require 
community-wide agreement on recommended protocols, such 
as fixed cross-subject splits, reporting of both accuracy and F1-
score, and the introduction of sequence-level metrics, such as 
word error rate, when moving toward continuous decoding. 

Practical deployment also raises questions that are only 
beginning to be addressed. Online or real-time experiments 
remain rare, although [41] demonstrates that binary “yes/no” 
decisions can be decoded in an online setting with reasonable 
accuracy. Most of the work summarised in Table I is still 
offline. Bringing systems into real-time use will require 
efficient preprocessing, models that can run with limited 
hardware, and calibration procedures that minimise user 
burden. The command-based applications discussed in [52] 
suggest that small-vocabulary control may already be within 
reach, provided that stability over time and across sessions can 
be established. 

E. Synthesis 

Taken together, the available evidence suggests a field that 
is technically vibrant but structurally constrained. Time–
frequency and connectivity features coupled with CNNs, 

RNNs, and transfer learning have demonstrated that imagined-
speech decoding from EEG is feasible and that accuracies can 
be high on carefully controlled tasks [20], [21], [44], [59]–[63]. 
At the same time, low signal-to-noise ratio, limited and 
linguistically narrow datasets, strong individual variability, and 
heterogeneous evaluation protocols restrict the generalisability 
of these findings. The four themes discussed above are tightly 
interconnected. Better representations depend on richer and 
more diverse data. Robust generalisation relies on both 
sophisticated modelling and realistic cross-subject evaluations. 
Practical deployment in turn depends on all three: signal 
quality, data and model scale, and credible performance 
estimates. 

If future work can align efforts along these lines, for 
example, by constructing larger multi-site datasets, adopting 
shared benchmark protocols, and exploiting representation 
learning techniques that explicitly tackle subject and session 
variability, EEG-based imagined-speech interfaces may evolve 
from laboratory prototypes into reliable communication tools 
for individuals with severe motor and speech impairments [53]. 
In that sense, the current literature should be viewed not only 
as a catalogue of methods and accuracies, but also as a 
foundation on which a more standardised and clinically 
relevant generation of imagined-speech BCIs can be built. 

VI. CONCLUSION 

EEG-based imagined-speech decoding is a promising yet 
challenging area in non-invasive brain-computer interface 
research. Despite significant progress in recent years, the field 
is still limited by low signal-to-noise ratios, high variability 
among subjects, and a lack of large, standardised datasets. This 
review consolidates the various methodologies employed 
throughout the decoding process, covering EEG acquisition, 
preprocessing, feature extraction, and deep learning-based 
representation learning, to offer a comprehensive overview of 
the current state of the art. The synthesis of existing literature 
indicates a clear shift from traditional handcrafted signal-
processing techniques to data-driven deep learning 
architectures. These new methods can learn spatial, spectral, 
and temporal representations concurrently. However, 
methodological inconsistencies—especially regarding dataset 
selection, evaluation protocols, and performance metrics—
persist and hinder reproducibility and direct comparisons 
between studies. To accelerate advancements in this field, 
future research should focus on establishing unified benchmark 
datasets and cross-subject evaluation frameworks. 
Additionally, incorporating multimodal signals, as well as 
contrastive and self-supervised learning strategies, and domain 
adaptation techniques may enhance the generalizability of the 
models. Furthermore, interdisciplinary collaboration between 
neuroscientists, linguists, and machine learning researchers is 
vital to ensure that the models developed are physiologically 
interpretable and ethically sound. Ultimately, the combination 
of EEG and deep learning in imagined-speech decoding has the 
potential to transform assistive communication technologies. 
Achieving this goal will necessitate not only innovative 
algorithms but also rigorous experimental standardisation and 
open, collaborative research practices that promote 
transparency, reproducibility, and equitable progress across the 
field. 
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