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Abstract—Non-invasive neural speech interfaces aim to
reconstruct intended words from brain activity, offering critical
communication options for individuals with severe dysarthria or
locked-in syndrome. Among the available recording modalities,
electroencephalography (EEG) remains the most accessible and
cost-effective choice for long-term brain—computer interface
(BCI) applications. Decoding imagined speech from EEG,
however, remains difficult because of low signal-to-noise ratio,
pronounced inter-subject variability, and the small,
heterogeneous corpora that are currently available. This review
adopts a narrative methodology to synthesise peer-reviewed
studies on EEG-based imagined-speech decoding. Relevant
articles were identified through keyword-based searches in
major digital libraries and were included if they used non-
invasive EEG, explicitly instructed imagined or covert speech,
and reported quantitative decoding performance. The selected
studies are organised along the processing pipeline, from
experimental paradigms and data acquisition to preprocessing,
feature extraction, representation learning, and classification.
Across this body of work, binary imagined-speech tasks that rely
on carefully designed time—frequency features and shallow
classifiers often report accuracies above 80 percent, whereas
multi-class word or phoneme recognition exhibits a much wider
spread of performance and remains highly sensitive to dataset
design and evaluation protocol. Recent trends favour
convolutional and recurrent neural networks, temporal
convolutional networks, and transfer learning strategies, which
improve performance on some datasets but do not yet resolve
fundamental issues of restricted vocabularies, inconsistent
evaluation practices, and limited cross-subject generalisation.
The review distils these observations into practical
recommendations for dataset construction, model design, and
evaluation protocols and outlines research directions aimed at
more robust and clinically meaningful EEG-based imagined-
speech BCls.

Keywords—Electroencephalography (EEG); Imagined speech;
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I INTRODUCTION

Human—computer interaction is increasingly seeking to
bypass impaired neuromuscular pathways by directly reading
intent from the brain. Brain—computer interfaces (BCls)
instantiate this vision by translating neural activity into
actionable commands, opening communication channels for
people with severe dysarthria or locked-in syndrome (e.g.,
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ALS) [1]. Among BCI paradigms, imagined speech, which
involves mentally articulating words without overt movement,
provides a highly natural control signal that aligns closely with
the cognitive actions users intend to perform.

Multiple neuroimaging modalities have been explored for
imagined speech, such as electroencephalography (EEG) [2],
[3], electrocorticography (ECoG) 41, and
magnetoencephalography (MEG) [5]. EEG remains the most
practical route for broad deployment due to its non-
invasiveness, portability, and millisecond-scale temporal
resolution [2], [3]. Yet decoding imagined speech from scalp
potentials is intrinsically difficult: signals are low-amplitude
and noisy, non-stationary across sessions, and highly variable
across subjects; vocabularies are small; and existing corpora
are heterogeneous and limited in size [6], [7]. These factors
jointly confound generalisation and inflate reported accuracies
under convenient but optimistic evaluation splits.

Early pipelines relied on handcrafted representations, band-
limited filtering, and artefact suppression techniques (such as
notch filtering and Independent Component Analysis, or ICA).
This was followed by the extraction of features like Common
Spatial Patterns (CSP), Power Spectral Density (PSD),
wavelets, Hjorth parameters, and Riemannian mappings, which
were then fed into conventional classifiers. Recent
advancements have shifted towards deep learning methods for
end-to-end  representation and sequence modelling.
Convolutional Neural Networks (CNNs) are now commonly
used to capture spatial-spectral structures, while Bidirectional
Long Short-Term Memory networks (BLSTMs) and
Transformers are employed to model temporal dynamics. This
approach is often supplemented by transfer learning and self-
or contrastive pretraining to address challenges such as data
scarcity and cross-subject variability [8], [9]. Although there
has been encouraging progress, the field still lacks unified
protocols for train/test splits (intra- vs. cross-subject),
consistent metrics (accuracy/F1 vs. sequence-level WER), and
transparent baselines with code releases. These limitations
hinder reproducibility and fair comparisons across imagined
speech datasets [5].

Several review articles have previously examined speech-
related brain—computer interfaces and neural speech decoding
from a broad perspective, often spanning both invasive and
non-invasive modalities or merging imagined speech with
overt, whispered, or attempted speech paradigms. These
surveys are valuable for framing the overall landscape,
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particularly the neurophysiology of speech production and the
evolution of decoding architectures, yet they often treat EEG-
based imagined speech as a secondary case within a wider
taxonomy of neural speech interfaces [45], [46], [47], [48]. As
a result, key methodological details that strongly determine
EEG performance, such as trial segmentation conventions,
artefact handling, representation choices, and cross-subject
evaluation practice, are frequently dispersed across sections
rather than consolidated into an end-to-end pipeline view. In
contrast, the present review is deliberately scoped to non-
invasive EEG-based imagined-speech decoding and is
organised along the full processing chain from acquisition and
signal conditioning to representation learning and evaluation,
with the aim of making both the current state of the art and its
unresolved gaps more transparent to readers.

This article adopts a narrative review methodology with a
defined scope and explicit selection criteria to improve
transparency and replicability. Relevant literature was
identified through keyword-based searches in major digital
libraries, including IEEE Xplore, PubMed, Scopus, and Google
Scholar, using combinations of terms such as “imagined
speech”, “covert speech”, “silent speech”, “EEG”, “brain—
computer interface”, and “neural speech decoding”. Studies
were included if they used non-invasive EEG in human
participants, employed explicit imagined or covert speech tasks
at the level of phonemes, syllables, words, or short phrases, and
reported quantitative decoding results. Studies were excluded if
they relied solely on invasive recordings, did not include an
imagined-speech component, or were non-empirical papers
without original experimental evaluation. Screening was
performed in two stages, first by title and abstract to remove
clearly irrelevant work, then by full-text inspection to verify
modality, task design, and reported outcomes. To reduce
selection bias and ensure coverage of influential lines of work,
citation chaining was applied to key papers, and the final set
was prioritised toward peer-reviewed sources that reported
sufficient experimental detail to permit methodological
comparison, particularly regarding preprocessing, data splits,
and evaluation metrics.

The objectives of this review are to:

e Summarise publicly available imagined-speech EEG
datasets, their experimental paradigms, acquisition
setups, preprocessing techniques, and data-structuring
strategies for deep learning;

e Provide actionable recommendations for designing
efficient and generalisable deep-learning architectures
tailored to EEG-based imagined-speech decoding; and

e Examine the potential of EEG-driven deep learning for
advancing neural speech interpretation and assistive
communication technologies.

The remainder of this paper is organised as follows.
Section II reviews the foundations of EEG, data acquisition
protocols, and preprocessing methods. Section III presents
feature engineering and deep learning approaches. Section IV
discusses evaluation protocols and metrics. Section V
synthesises results and discussion, and Section VI concludes
with future research perspectives.
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II. EEG FOUNDATIONS, DATA ACQUISITION, AND
PREPROCESSING

A. Electroencephalography (EEG)

Electroencephalography (EEG) is a non-invasive method
for measuring brain electrical activity, where electrodes placed
on the scalp detect voltage differences generated by brain
transmissions, forming signals [10]. EEG systems typically use
14-64 electrodes, producing multidimensional signals, and are
favoured for Brain-Computer Interfaces (BCls) due to their
non-invasiveness, simplicity, and high temporal resolution.
However, EEG is susceptible to motion artefacts and
myoelectric interference, especially during spoken language,
posing challenges for Automatic Speech Recognition (ASR)
[11]. Despite these challenges, EEG has been effectively used
to analyse perceived speech and classify imagined phonics
[12].

EEG signals are categorised into five frequency bands:
gamma (>35 Hz), beta (12-35 Hz), alpha (8-12 Hz), theta (4-8
Hz), and delta (0.5-4 Hz) [13], each of which corresponds to
distinct cognitive states. Gamma waves, for example, are
linked to overt and covert speech, showing significant changes
in various brain regions [14]. Beta waves are associated with
muscle activity and speech generation, while alpha waves are
crucial for auditory feedback and speech perception, with
lower frequencies during covert speech [3]. Theta waves
support phonemic restoration and the processing of
coarticulation cues [14], aiding in consonant identification
[15]. Lastly, delta waves play a role in intonation, rhythm, and
other speech-related processes [16].

B. Data Acquisition

Acquiring high-quality EEG data is pivotal in developing
Brain-Computer Interface (BCI) systems for deciphering
imagined speech. The process involves recording the brain's
electrical activity through electrodes on the scalp. This section
outlines the key factors and methodologies for collecting EEG
data for imagined speech recognition.

In the study, participants were presented with speech cues
(either vowels or words) through visual, auditory, or
audiovisual means. When these cues were shown before the
imagery of speech, participants memorised them, which helped
to differentiate the imagined speech task from reading or
listening tasks. Participants engaged in imagined speech while
simultaneously performing reading or listening tasks in
scenarios where cues were provided concurrently. It is
important to note that listening and reading activate different
areas of the brain: the temporal lobes are involved in listening,
while the occipital lobes are activated during reading.
Therefore, the format of the cues and their timing in relation to
imagined speech can impact brain activation patterns.

The acquisition protocol of the Arizona State University
dataset [17] solely employed visual cues, presented
simultaneously with an imagined speech recording. Subjects
performed speech imagery at each "beep" until cue cessation (7
x T seconds), using short and long words. Common Spatial
Pattern (CSP) was applied to identify active brain areas.
Results highlighted activity primarily in the left frontal, middle,
and parietal regions, corresponding to the motor cortex and
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language areas. The KaraOne dataset [18] employing separate
cue presentation aimed at distinguishing pronounced and
imagined speech states. Central brain areas showed
discriminative features. Without a specified rationale, Coretto
et al. [19] employed a distinct protocol utilising audio and
visual cues before imagined speech tasks. They used vowels
and Spanish words, recording EEG data without spatial
analysis. Further investigation is warranted to ascertain brain
regions involved in cue processing.

Studies have elicited speech imagery at multiple linguistic
levels, including vowels [17], phonemes [18], syllables [20],
words [21], [22] and sentences [23] .As summarised in Fig. 1,
word classification constitutes the largest share of reported
EEG imagined-speech tasks, followed by vowel and phoneme
or consonant-vowel targets, with a smaller fraction devoted to
phrase-level decoding and symbol-like targets (digits or
letters). This distribution is not only a matter of experimental
convenience. Coarser targets such as isolated words reduce
label ambiguity, shorten annotation pipelines, and often permit
simpler evaluation, whereas phoneme-level and phrase-level
settings impose stricter demands on temporal alignment,
representation capacity, and cross-subject robustness.
Consequently, comparisons across papers should be interpreted
in light of the underlying task unit, because “high accuracy” in
a small closed vocabulary does not imply comparable progress
toward open-vocabulary decoding.

Phrases

Digits/Ltrs

12%

Words
42%

Phonemes/CVs

Vowels

Fig. 1. Speech unit types across studies.

Sub-lexical units, such as vowels, phonemes, and syllables,
are often used to focus on early planning and articulatory
coding. In contrast, lexical items and binary-response questions
(like yes/no) explore message preparation with a greater
emphasis on syntactic and semantic complexity. From the
literature we reviewed, we identified 28 EEG datasets related
to imagined speech: eight are publicly available and twenty are
private. Dataset selection is concentrated around a small
number of publicly available corpora, which shapes what is
routinely benchmarked and what remains underexplored. Fig. 2
shows that Kara One, the Coretto database, and the ASU
dataset dominate the empirical evidence base, while other
datasets appear only sporadically. This imbalance has practical
implications. First, methodological “trends” can become
dataset-specific, optimised to a narrow range of paradigms and
recording setups. Second, generalisation claims are often
constrained by repeated evaluation on the same few corpora,
sometimes with inconsistent splitting conventions across
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studies. For readers, the figure clarifies why cross-dataset
conclusions should be framed cautiously, and why broader
benchmarking across heterogeneous corpora is essential for
credible progress.

Kara One (2015)
Coretto ct al. (2017) I
ASU (2017)
BCI Competition V-3 (2020) IS
DaSalla et al. (2009)
Think out loud (2020)
FEIS (2019)
Sarmiento et al. (2021) [l

0 2 4 o 8§ 10 12 14
Number of papers

Fig. 2. EEG-based imagined speech public datasets.

In summary, collecting EEG data for imagined speech
recognition is a complex process that involves configuring the
EEG system, removing artefacts, designing experiments, and
taking individual subject considerations into account.
Advances in EEG technology and data acquisition methods
hold promise for improving brain-computer interface (BCI)
systems tailored for imagined speech applications.

C. Preprocessing Techniques

During imagined speech tasks, the raw EEG signals are
prone to various artefacts and noise, which can significantly
impair subsequent feature extraction and classification stages.
Hence, suitable preprocessing methods are crucial for
enhancing the signal-to-noise ratio and extracting pertinent
information from the EEG data. Nonetheless, effectively
cleaning the data without sacrificing important information or
features for later analysis or pattern recognition remains
challenging. It's crucial to remove noise before downsampling
to avoid misinterpreting downsampled values as noise.

In cases where EEG acquisition involves a high sampling
rate, such as 1000Hz, downsampling is often employed to
balance computational efficiency and data integrity. However,
it may lead to the loss of important features. Thus, using the
original sample size could facilitate observing discriminative
speech recognition features while considering available
resources [24].

Standard preprocessing techniques include band-pass
filtering, blind source separation (BSS), and subtracting mean
values from each channel to remove high-frequency noise and
focus on the frequency bands most relevant for speech
processes [12]. Notch filters at 60 Hz and band-pass filters with
various frequency ranges, such as 0.5-100 Hz [25], 1-50 Hz
[26], and 2-40 Hz [27], have been applied to eliminate
powerline interference, and the signals were segmented into 5-
second epochs with a 0.5-second overlap to capture temporal
dynamics. Other preprocessing methods include independent
component analysis (ICA) [7], artefact removal [28], sliding
window data augmentation [29], and baseline correction [28].
As a result, end-to-end learning methods that require minimal
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preprocessing have gained interest in EEG classification.
However, directly classifying nearly raw EEG signals remains
challenging and requires further investigation [30].

III.  REPRESENTATION LEARNING AND DECODING

In most imagined-speech studies, EEG processing follows a
broadly similar structure. After artefact removal and band-
limited filtering, continuous recordings are segmented into
trials aligned with cue onsets or imagery windows. These trials
are re-referenced or normalised, then transformed into
representations that emphasise spatial pattemns, spectral
content, temporal dynamics, or connectivity structure.
Handcrafted features compress each trial into a fixed-
dimensional vector, which is then passed to a classifier, while
deep models often operate directly on multichannel time series
or time—frequency maps and learn discriminative features
jointly with the decoder. The subsections below describe the
main feature-extraction strategies and classification approaches
used in this pipeline.

A. Feature Extraction

Feature extraction is a central step in decoding imagined
speech from EEG, since it determines how rich but noisy
neural activity is converted into stable and discriminative
representations for BCI systems. The aim is to retain task-
relevant information while suppressing background activity
and artefacts. Commonly used transformations include Fourier,
wavelet, and Hilbert-Huang decompositions, as well as spatial
filtering techniques such as Common Spatial Patterns (CSP)
and Principal Component Analysis (PCA). These families of
methods, together with their typical application scenarios, can
be conveniently summarised in a feature taxonomy table, for
example Table I, to provide readers with a compact overview
of the design space.

Because EEG is inherently a time-series signal, several
studies have relied on time-domain models such as
autoregressive  (AR) coefficients [31] or borrowed
representations from speech processing, such as Mel
Frequency Cepstral Coefficients (MFCC) [32]. On the
KARAONE dataset, MFCC features achieved higher
performance than simple statistical and non-linear descriptors,
with reported accuracies of 19.69 percent for MFCC, 1591
percent for statistical features, and 14.67 percent for non-linear
features on an 11-class task, where chance level is 9.09 percent
[33]. This pattern is consistent with the intuition that MFCCs
capture spectral envelopes and formant-related structure that
are more tightly linked to articulatory and phonetic content
than raw amplitude statistics. In a related line of work, some
authors have treated EEG segments as sequences of local
“visual words” and applied Bag of Features (BoF) models,
effectively borrowing ideas from text and image representation
to capture recurring temporal patterns [34].

Functional and effective connectivity features have
received comparatively less attention in imagined-speech
decoding, despite their potential to quantify coordinated
activity across brain regions. Qureshi et al. [35] employed
functional connectivity descriptors, including covariance and
the maximum linear cross-correlation coefficient (MaxLCor),
and reported 87.90 percent accuracy in a binary imagined-
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speech classification task. Pawar et al. [36] combined
MaxLCor with Discrete Wavelet Transform (DWT) features
and obtained 40.64 + 245 percent accuracy. These results
suggest that connectivity measures can enhance discrimination,
particularly when combined with spectral or time—frequency
features, but they have not yet been systematically explored for
larger vocabularies or more challenging cross-subject settings.

A further design decision concerns whether features are
extracted per channel or jointly across channels. Single-channel
analysis is simpler and can highlight localised activity, but
simultaneous extraction from multiple channels provides a
more realistic view of distributed speech networks. Channel
cross-covariance (CCV) matrices are a common way to encode
such multichannel structure, since they aggregate relationships
between electrodes into a compact form that can be processed
by classical or deep models [37]. CCV can be computed in
both time and frequency domains and over different window
lengths, such as 025, 0.5, or 1 second, which allows the
representation to trade temporal resolution for robustness [38].

Beyond these families, several works have employed Mel
Frequency Cepstral Coefficients (MFCC) [25], Discrete
Wavelet Transform (DWT) [21], Wavelet Packet
Decomposition (WPD), Short-Time Fourier Transform (STFT)
[28], and low-order statistical descriptors [15], [21]. In some
cases, investigators have treated the raw microvolt values
across channels as a high-dimensional feature vector without
additional handcrafted compression [39]. This strategy
maximises information content but places a heavier burden on
the classifier and typically requires larger datasets or strong
regularisation. Overall, the literature reflects a gradual
evolution from hand-engineered spectral and spatial markers
toward more structured, multichannel representations that are
better suited for deep learning.

B. Classification Approaches

Once features have been extracted, the next step is to map
each trial to its corresponding imagined-speech category, for
example, a word, phoneme, or binary decision. The literature
spans a spectrum of classifiers, from shallow machine learning
models to deep neural architectures, each motivated by
different assumptions about the structure and complexity of
EEG data.

Early work relied primarily on traditional machine learning
algorithms. Nguyen et al. [40] represented trials as tangent
vectors on a Riemannian manifold of covariance matrices and
employed a multiclass relevance vector machine to
discriminate vowels and short words, achieving accuracies up
to 49 percent. This approach leverages the geometry of
covariance space to improve robustness but remains limited by
linear decision boundaries in the tangent space. Sereshkeh et al.
[41] combined autoregressive coefficients and DWT features
with a support vector machine (SVM) and achieved 69.3
percent accuracy in online decoding of binary “yes” versus
“no” decisions, highlighting the strength of SVMs when
feature engineering is carefully tuned to the task. Cooney et al.
[33] compared multiple feature sets and found that MFCC
features paired with an SVM classifier produced the best
performance on an 11-class imagined-speech task, with 22.7
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percent accuracy, which exceeds chance but also illustrates the
difficulty of multi-class decoding in realistic scenarios.

As datasets and vocabularies grew, many studies shifted
toward deep learning to learn representations and decision
boundaries  jointly. Several efforts have combined
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to capture spatial and temporal structure,
respectively [42]. In some cases, feature vectors, for example
channel covariance matrices, are passed through a Deep
Autoencoder (DAE) that compresses them into low-
dimensional latent codes, which are then wused for
classification. Siamese networks have been introduced to refine
these latent spaces by enforcing that trials with the same label
are mapped closer to one another than trials from different
classes, which improves discriminability in settings with
limited training examples [30]. Using the same Coretto dataset
[19], such metric-learning extensions have been reported to
outperform baseline architectures without Siamese constraints
[27].

To clarify the methodological landscape before comparing
individual architectures, Fig. 3 presents the distribution of
model families used across the selected studies. The figure is
created by categorising each paper according to its primary
decoding approach- such as conventional machine learning
with handcrafted features, CNN-based models, recurrent or
sequence models, and transfer learning or hybrid methods- and
then summing these categories throughout the survey. Two key
observations emerge: first, deep learning currently dominates
recent research, due to its ability to learn task-relevant features
directly from noisy, high-dimensional EEG data; second,
traditional pipelines remain common in small-data scenarios
because their inductive biases and fewer parameters make them
easier to train and interpret. This distribution guides the
organisation of Section IIL.B, which compares model families
based on the specific problem constraints they address, rather
than treating architectures as interchangeable options.

Deep leaming architectures explored in this context include
pure CNNs, CNN combined with Long Short-Term Memory
(LSTM) units, and Deep Autoencoders [7], [28]. Hierarchical
designs, in which features are learned at multiple levels using
stacked CNN, temporal CNN (TCNN), and DAE modules,
have also been proposed [12]. Other classifiers include
Random Forests (RF) [15], Support Vector Machines (SVM)
[7], K-Nearest Neighbours (KNN), Naive Bayes [39], Deep
Belief Networks (DBNs) [43], transfer learning schemes [29],
Recurrent Neural Networks (RNNs) [43], Temporal
Convolutional Networks (TCNs) [44], bimodal deep neural
networks with fusion layers, Transformer-based models, and
Capsule Networks. These architectures differ in how they trade
off expressiveness, parameter count, and data requirements, but
they share the objective of capturing complex, non-linear
relationships that cannot be modelled by shallow classifiers.

Reported accuracies span a wide range and depend strongly
on task design and dataset characteristics. For binary problems
such as distinguishing vowels from consonants (C/V),
detecting the presence or absence of nasality (+Nasal),
identifying bilabial articulation (+Bilabial), or discriminating
specific phonemes like /iy/ and /uw/, accuracies between 69
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percent and 89 percent have been reported [26], [45]. Multi-
class tasks that target larger phoneme inventories or full words
achieve more variable performance, with accuracies reported
from around 24.19 percent up to 97.34 percent [12], often
under subject-dependent or session-specific splits that may be
optimistic. Transfer learning approaches that initialise models
from related EEG tasks or from other subjects have also been
investigated, with accuracies of 65.65 percent [39] and 95.5
percent [29] reported in particular configurations. These figures
demonstrate the potential of advanced classifiers but also
underline the difficulty of comparing methods across studies
with different protocols.

CNN

54.2%

1.7
VAE ’ Ilj.r.
RNN A
DAE
ELM ‘
BiRNN - MLP

L3TM DBN

Fig. 3. Distribution of model families used for EEG imagined-speech
decoding in our survey.

Despite these advances, several challenges remain for
classification in imagined-speech EEG. Inter-subject variability
and non-stationarity across sessions make it difficult to design
models that generalise reliably beyond the conditions in which
they were trained. The limited size of most labelled datasets
constrains deep architectures and increases the risk of
overfitting, particularly in multi-class problems and when
moving toward phrase or sentence-level decoding. Current
results therefore, provide important proof-of-concept evidence,
but they also point to the need for larger and more diverse
datasets, more rigorous cross-subject and cross-session
evaluations, and classifier designs that explicitly address
variability and uncertainty in real-world settings. These issues
are closely linked to the evaluation protocols and metrics
discussed in the following section.

IV. EVALUATION PROTOCOLS AND METRICS

The thorough evaluation of imagined-speech decoders
relies on three key components: the metric, the validation
approach, and the subject segmentation. These factors
collectively influence the comparability and reliability of the
reported findings across different studies. Reported evaluation
practice is dominated by a narrow set of metrics, which partly
explains why headline results can be difficult to compare
across papers. As summarised in Fig. 4, accuracy is by far the
most frequently reported metric, while complementary
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measures that reveal class imbalance effects and decision
reliability, such as sensitivity, specificity, F-score, and AUC,
appear less consistently. Statistical testing and effect-size
reporting are rare, despite the known variance induced by
subject identity, session effects, and split choice. The practical
consequence is that two studies may report similar accuracies
while differing substantially in error structure and operational
usefulness, particularly in multi-class settings where confusion
patterns matter. This motivates the use of a minimal, standard
metric set that pairs accuracy with class-sensitive and
uncertainty-aware reporting, and it reinforces the need to
publish confusion matrices and split protocols alongside
aggregate numbers.

In the literature reviewed, accuracy emerges as the most
common outcome measure, used in 96.6% of publications,
primarily because of its straightforward interpretation for
established vocabularies. To assess agreement beyond random
chance and reduce issues related to class imbalance, numerous
studies also present Cohen’s k (13.6%). Many researchers
enhance a single scalar metric with a confusion matrix
(27.1%), from which precision/PPV (11.9%),
recall/sensitivity/ TPR (16.9%), specificity/TNR (2%), and the
F-score (15.3%) are calculated. When a classifier’s function is
based on a continuous decision variable or a threshold score,
ROC curves and AUC serve as suitable summaries.

Accuracy
Confusion Matrix [N
Sensitivity
F-score NN
Kappa
PPV
t-test

aNova

Precision
p-value [l
Wilcoxon
Auc i
Specificity |
0 10 20 30 40 50 60
Number of papers

Fig. 4. Frequency of evaluation metrics reported in EEG imagined-speech
studies.

Statistical testing is not yet routine in imagined-speech
EEG studies, although it is essential for separating genuine
methodological gains from variance induced by subject identity
and split choice. Across the surveyed papers, roughly one third
report inferential evidence, using p-values, t-tests, ANOVA, or
non-parametric alternatives such as the Wilcoxon signed-rank
test to quantify improvement over baselines. Validation
practice is similarly uneven. Hold-out evaluation remains
common, but cross-validation is more frequently adopted, and
a substantial subset of studies explicitly reserves a validation
set for hyperparameter selection, which is particularly
important for deep models where tuning decisions can
dominate reported performance. These methodological choices
interact directly with the most consequential design decision in
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this literature, namely whether evaluation is subject-dependent
or subject-independent. Most studies still follow subject-
dependent testing, which typically yields higher scores because
the model is assessed on participants represented during
training. Consistent with this pattermn, stronger results under
subject-dependent settings have been reported in [82] and [77].
Subject-independent evaluation is more difficult because inter-
subject variability is large and non-stationary, but it is the
setting that best reflects practical deployment. For example,
although [62] reported that a new deep model improves over
conventional baselines, performance across unseen subjects
remains weaker than within-subject testing. Against this
methodological background, Fig. 5 summarises reported
accuracies by target type. Short word sets tend to produce
higher central performance than phoneme-level decoding, with
vowel classification typically intermediate, a hierarchy that
follows expected differences in temporal granularity and class
separability. Fig. 5 also includes a sentence-level reference
group from high-density ECoG, which provides an upper-
bound context given its higher signal fidelity and should not be
interpreted as directly comparable to scalp EEG. Overall, the
figure reinforces a practical interpretation principle: progress
should be judged not only by peak accuracy, but by robustness
under stricter splits and by performance retention when moving
from simplified targets toward linguistically richer decoding
] S—

e I |
e ‘

Yol
o
T

(v0]
(9]
T

Accuracy (%)
~ (o]
o

| 1
70| T
651
3-5 word 7-phoneme Vowel Sentence(HD-ECoG)

Fig. 5. Reported accuracy ranges per task granularity.

V. RESULTS AND DISCUSSION

The surveyed literature shows that EEG-based imagined-
speech decoding has moved from proof-of-concept
demonstrations to increasingly sophisticated pipelines that
combine advanced preprocessing, feature learning, and deep
classifiers. Yet, even the strongest reported systems remain
some distance from robust, general-purpose communication
tools. The gap arises from a combination of signal-level
limitations, constrained datasets, substantial inter-subject
variability, and heterogeneous evaluation practices that make it
difficult to compare methods or to judge their readiness for
real-world use.

The corpus of studies considered in this review was drawn
from major digital libraries and includes work that focuses on
artificial intelligence techniques, feature extraction methods,
signal filtering, and data acquisition strategies for speech-
related EEG decoding. Most of the selected articles are peer-
reviewed journal publications [45], [46], [47], [48], with a
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noticeable concentration of contributions from research groups
in Korea and India [30], [47], [21], [26]. Foundational work
appeared between 2013 and 2016, but the number of
publications increased sharply in 2020 and 2021, reflecting a
recent shift toward deep leaming and transfer learning
approaches in this domain.

Table I provides a compact overview of representative
studies on EEG-based imagined-speech decoding. It lists, for
each work, the task design, preprocessing steps, feature
extraction methods, classifiers, and corresponding accuracies.
Several patterns emerge. Binary imagined-speech tasks, such
as distinguishing a small set of directional commands or
phonological contrasts, frequently report accuracies above 80
percent [21], [44], while multi-class settings display wider
variation, with values ranging from about 24 percent to above
90 percent depending on vocabulary size, feature choices, and
the evaluation protocol [12], [20], [59], [60], [61], [63].
Methods that rely on rich time—frequency representations,
including DWT, RADWT, SPWVD, and other time—frequency
images coupled with CNN or TCN architectures, account for
many of the top-performing models [21], [44], [S9]61].
Transfer learning, often with ResNet or DenseNet backbones,
yields additional gains when labelled data are limited [20],
[29], [54].

In comparative terms, EEG-based decoding still trails
invasive or high-field modalities in maximum performance.
ECoG studies have reported accuracies of 88.3 percent for
pairwise imagined-speech classification [49] and 98.8 percent
for syllable recognition using spatio-spectral feature clustering
[50]. MEG-based systems have achieved phrase classification
accuracies around 95 percent [51]. These results illustrate what
is possible when spatial resolution and signal-to-noise ratio are
high, but they depend on invasive surgery or bulky laboratory
hardware. EEG, by contrast, is non-invasive, relatively
inexpensive, and portable, which makes it attractive for
eventual clinical and home use despite its lower ceiling on
accuracy. In practice, current EEG systems are most promising
when restricted to modest vocabularies, such as command sets
including “up”, “down”, “left”, ‘“right”’, “forward”,
“backward”, and “‘select”, which can control screens, mobile
devices, or prosthetic devices [52].

To turn this heterogeneous body of work into a coherent
roadmap, the remaining discussion is organised into four
closely related themes: signal quality and representation,
dataset scale and linguistic diversity, individual variability and
generalisation, and evaluation protocols and practical
deployment. Each theme is framed as an open challenge, then
linked to existing studies that partly address it, and finally used
to motivate specific directions for future research.

A. Signal Quality and Representation

Low signal-to-noise ratio is an intrinsic limitation of non-
invasive EEG. Imagined speech generates weak and spatially
diffuse activity that must be recovered in the presence of
ocular, muscular, and environmental artefacts. Many of the
works in Table I address this by combining classical denoising,
such as bandpass and notch filtering, Independent Component
Analysis, and Common Average Referencing, with carefully
designed features [20], [21], [60], [61]. Time—frequency
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methods, including DWT, RADWT, SPWVD, and other time—
frequency images, further concentrate energy into
discriminative bands. When these representations are fed to
CNNs, TCNs, or hybrid deep architectures, substantial
performance gains are obtained [21], [44], [59]-[61].

These approaches, however, remain tailored to controlled
imagery windows and predefined frequency ranges. They are
rarely tested in more naturalistic, continuous settings, and their
performance may degrade when task timing is variable or when
artefact statistics change between sessions. Moreover, most
feature pipelines are hand-tuned to particular datasets, which
complicates reuse across tasks. One natural extension of the
current literature is to replace fixed front-ends with adaptive or
learned ones that are trained jointly with the classifier, for
example, denoising autoencoders, learnable filterbanks, or self-
supervised objectives that encourage separation of neural
signal and artefacts. Such work would build directly on the
existing time—frequency and connectivity-based
representations, but would aim to make them more robust and
less dependent on manual feature engineering.

B. Dataset Scale, Vocabulary, and Linguistic Diversity

A second, closely related challenge concerns dataset size
and linguistic coverage. Many studies in Table I employ
relatively small subject pools and limited vocabularies, often
focusing on a handful of vowels, short words, or simple
commands [21], [44], [59]-[61], [63]. This is understandable,
since imagined-speech experiments are demanding and EEG
recording sessions are time-consuming. Nevertheless, small
datasets restrict the expressive power that can be used in
models, and they make it hard to separate genuine algorithmic
improvements from overfitting to narrow tasks. A few works
have attempted to move beyond this constraint by combining
datasets such as FEIS and KARAONE [20], [29], [59] or by
constructing tasks involving subject, verb, and object words
[62]. These studies demonstrate that richer vocabularies are
technically feasible, but they also highlight the need for more
extensive collections of trials if vocabulary size and linguistic
variability are to increase.

Language and phoneme variability adds another layer of
complexity that has not yet been fully explored. Most
experiments are carried out in a single language, with phoneme
sets chosen for convenience or for strong acoustic—articulatory
contrasts. FEIS and KARAONE provide broader phonetic
inventories and are valuable in this respect [20], [59], [60], but
there is little systematic work on how language-specific
phonology or prosody influences EEG decodability. Future
datasets that are designed from the outset to be multi-lingual
and multi-phonemic, with shared vocabularies and standardised
splits, would enable these questions to be addressed. They
would also provide a more solid foundation for the transfer
leaming strategies already investigated in [20], [29], [54],
which rely on diverse data to learn generalisable
representations.

C. Individual Variability and Generalisation

Inter-subject and inter-session variability remains one of
the most significant barriers to robust imagined-speech
decoding. Anatomical differences, variations in electrode
placement, and individual cognitive strategies all contribute to
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changes in the recorded signal. Many of the highest accuracies
in Table I come from subject-dependent or mixed-trial
evaluations, where training and test sets share data from the
same individuals and recording sessions [44], [S9]-[61], [63].
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In such settings, complex models can learn idiosyncratic
patterns and achieve strong performance, but this success does
not guarantee generalisation to new users or days.

TABLEI. SUMMARY OF REPRESENTATIVE STUDIES ON EEG-BASED IMAGINED SPEECH DECODING
Preprocessing Feature Classification
Ref. Task Method Extraction Method Accuracy
Muti-class and binary classification of - Kernel ELM Multi-class: 49%
(21] “left,” “right,” “up,” and “down.” fea DWT - Statistical features | Binary: 85%
[54] (,jlasmflcatlon of five vowels and Transfer leaming CNN 24%
six words
addition of new classes to a pre-trained instantaneous Deep metric learning framework -6-class accuracy of 45.00 £ 3.13%.
[55] e . . frequency and spectral
classifier with few trials. entropy - 5-class accuracy of 48.10 £ 3.68%
- Sliding window data | MPC Transfer  learning o .
[29] | Vowels, Short and long words augmentation with ResNet50 pre- | ~ ;2;;’ (min) f;)r V(})lwilsl d
- Band-pass filtering MSC trained - 95.5% (max) for short-long words
[44] Vowels and words FastICA DWT TCN and CNN 96.49%
[56] words "rock", "paper", "scissors", and Classma}l signal GSP/GL SVM 50.10%
rest state processing
o tional -62.55% (long words), 66.44% (long
[57] long words, short words, vowels Ape]ﬁ 1otna . network metrics Naive Bayes vs short), 53.47% (short words),
rehutectonics 48.13% (vowels)
- 0.62 on the private EEG dataset.
kinesthetic imagery of the “left hand” . . on the prvate “a ase
s A multiscale multiscale - 0.70 on BCI competition IV 2a
and “right hand.” . visualise (“split” and . .
[58] « At . . convolutional t-SNE convolutional dataset.
fall in”), imagine the pronunciations .
(“g0” and “stop”) transformer transformer - 072 on the Arizona State
> University dataset.
- Long words: 94.82%
Vowels, Short and long words . - Short-long words: 94.26%
391 | classification SPWVD TFR images CNN _ Short words: 94.68%
- Vowels: 84.50%
Butterworth bandpass SVM, KNN, | 87.26%
Vowels, Short and long words | filter, Notch filter, Random Forest, | 89.23%, 95.5%, and 92.16% for long
[60] classification Common average RADWT/PSO Rotation Forest, | words, short—long words, short
referencing Bagging, AdaBoos words, and vowels, respectively.
Butterworth bandpass
Vowels, Short and long words | filter, Notch filter, Binary: 79.82% to 82.04%
[61] classification Common average SP CNN Multiclass: 49.93% to 51.44%
referencing
The words included “I” and “partner” as Downsampling = from | CNNs and ground s
. “ o« " 1000 to 500 Hz, Band- | truth (mel- | Structural Similarity .
subject words, “move, have,” and . Subject words 79.2%, Verb words
[62] et 1 " » | pass filtering (30-125 | spectrogram), Index Measure o . N
drink” as verb words, and “box, . 82.5%, Object words 81.1%
“ N “ \ . Hz), and Embedding | (GRU)-based (SSIM)
cup,” and “phone” as object words .
of spectrograms regression
) . Bandpass filtering (10- LSTM model with o
[3] Four words: UP, DOWN , LEFT, right 100 Hz) WST L2 regularisation 92.50%
FEIS : /1, /u:/, J&/, /2:/, /m/, /n/, In/, /f/, D " £
20 Ist, 11, V1, 12, /3/, /Ip/, It/, /k/ KaraOne : | ICA and bandpass DWT 1 cep (D rar; c:,r - KaraOne: 82.35%
(20 | Jiy7, ruw, Ipiyt, tiys, /diyl, /ml, /n/pat, | filtering carning (DenseNet, | pryg g9 019,
ResNet)
pot, knew, and gnaw
[63] Niy/, luw/, /piy/, /tiy/, /diy/, /m/, /n/,pat, | filter up to 1 kHz EM-CSP Enserpble stacking 9734%
pot, knew, and gnaw bandpass learning
Multi-class and binary classification of - Kemnel ELM Multi-class: 49%
(21] “left,” “right,” “up,” and “down.” IcA DWT - Statistical features Binary: 85%

ANN = artificial neural network (NN), AR = autoregression, CNN = convolutional NN, CSP = common spatial pattern, DAE = Deep Autoencoder, DNN = deep NN, DT = decision tree, DTCWT = Double-Tree Complex
Wavelet Transform (WT), DTF = direct transfer function, DWT = Discrete WT, ELM = extreme learning, FFT = Fast Fourier Transform (FT), HMM = hidden Markov model, kNN = k-nearest neighbour, LDA = linear
discriminant analysis, LSTM = long short-term memory, MaxLCor= Maximum Linear Cross-correlation Coefficient, MFCC = Mel Frequency Cepstral Coefficients, NB = naive Bayes, PDC = partial directed coherence,
RF = random forest, RMS = root mean square, RNN = recurrent NN, t-SNE= t-stochastic neighbor embedding, CAR=Common Average Reference, RVM = relevance vector machine (VM), STFT = Short Time FT, SVM

Several studies have started to reduce this gap. Transfer
learning approaches initialise models on one dataset or group
of subjects and then fine-tune them on a smaller target set. For
example, [29] uses ResNet-based transfer with sliding-window

= support VM, TL = transfer learning.

augmentation, and [20] explores knowledge transfer between
FEIS and KARAONE, reporting accuracies above 80 percent
for some configurations. Metric-learning strategies, such as
Siamese networks and deep metric learning frameworks [30],
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[55], encourage models to place trials with the same label
closer together in latent space and trials with different labels
further apart. These methods help to reduce subject-specific
variability and have outperformed simpler baselines on the
same data [27], [30].

Even so, most of these works still require subject-specific
fine-tuning and have not yet been evaluated on large,
independent cohorts. A promising direction is the development
of architectures and training regimes that explicitly disentangle
subject and task factors, for instance, through adversarial
domain adaptation, subject embedding layers, or factorised
latent spaces. The existing transfer and metric-learning
literature provides concrete starting points, but more ambitious
cross-subject and cross-session benchmarks will be needed to
identify which strategies lead to genuine gains in generalisation
rather than to improvements confined to a single dataset.

D. Evaluation Protocols and Practical Deployment

The way performance is measured is as important as the
models themselves. Evaluation protocols in the imagined-
speech literature vary widely. Many studies employ subject-
dependent or random cross-validation schemes that mix trials
from the same recording session in training and test sets. This
practice often yields optimistic estimates of accuracy, because
nuisance factors such as noise statistics and electrode
placement are shared across splits. Only a subset of studies
explicitly report cross-subject or cross-session results, and for
widely used datasets such as KARAONE, FEIS, or the Arizona
State University corpus, there is still no consensus on standard
training and test partitions [3], [20], [58], [59], [63].

Some authors have already taken steps toward more
transparent evaluation. For example, [21] distinguishes
between binary and multi-class performance on directional
commands, [59] and [60] report separate accuracies for vowels,
short words, and long words, and [62] analyses subject, verb,
and object categories separately. These distinctions make it
easier to understand how a model behaves under different task
demands. However, further progress will likely require
community-wide agreement on recommended protocols, such
as fixed cross-subject splits, reporting of both accuracy and F1-
score, and the introduction of sequence-level metrics, such as
word error rate, when moving toward continuous decoding.

Practical deployment also raises questions that are only
beginning to be addressed. Online or real-time experiments
remain rare, although [41] demonstrates that binary “yes/no”
decisions can be decoded in an online setting with reasonable
accuracy. Most of the work summarised in Table I is still
offline. Bringing systems into real-time use will require
efficient preprocessing, models that can run with limited
hardware, and calibration procedures that minimise user
burden. The command-based applications discussed in [52]
suggest that small-vocabulary control may already be within
reach, provided that stability over time and across sessions can
be established.

E. Synthesis

Taken together, the available evidence suggests a field that
is technically vibrant but structurally constrained. Time—
frequency and connectivity features coupled with CNNs,
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RNNs, and transfer learning have demonstrated that imagined-
speech decoding from EEG is feasible and that accuracies can
be high on carefully controlled tasks [20], [21], [44], [S9]-{63].
At the same time, low signal-to-noise ratio, limited and
linguistically narrow datasets, strong individual variability, and
heterogeneous evaluation protocols restrict the generalisability
of these findings. The four themes discussed above are tightly
interconnected. Better representations depend on richer and
more diverse data. Robust generalisation relies on both
sophisticated modelling and realistic cross-subject evaluations.
Practical deployment in turn depends on all three: signal
quality, data and model scale, and credible performance
estimates.

If future work can align efforts along these lines, for
example, by constructing larger multi-site datasets, adopting
shared benchmark protocols, and exploiting representation
learning techniques that explicitly tackle subject and session
variability, EEG-based imagined-speech interfaces may evolve
from laboratory prototypes into reliable communication tools
for individuals with severe motor and speech impairments [53].
In that sense, the current literature should be viewed not only
as a catalogue of methods and accuracies, but also as a
foundation on which a more standardised and -clinically
relevant generation of imagined-speech BCls can be built.

VI.  CONCLUSION

EEG-based imagined-speech decoding is a promising yet
challenging area in non-invasive brain-computer interface
research. Despite significant progress in recent years, the field
is still limited by low signal-to-noise ratios, high variability
among subjects, and a lack of large, standardised datasets. This
review consolidates the various methodologies employed
throughout the decoding process, covering EEG acquisition,
preprocessing, feature extraction, and deep learning-based
representation learning, to offer a comprehensive overview of
the current state of the art. The synthesis of existing literature
indicates a clear shift from traditional handcrafted signal-
processing techniques to data-driven deep learning
architectures. These new methods can learn spatial, spectral,
and temporal representations concurrently. However,
methodological inconsistencies—especially regarding dataset
selection, evaluation protocols, and performance metrics—
persist and hinder reproducibility and direct comparisons
between studies. To accelerate advancements in this field,
future research should focus on establishing unified benchmark
datasets and  cross-subject evaluation  frameworks.
Additionally, incorporating multimodal signals, as well as
contrastive and self-supervised learning strategies, and domain
adaptation techniques may enhance the generalizability of the
models. Furthermore, interdisciplinary collaboration between
neuroscientists, linguists, and machine learning researchers is
vital to ensure that the models developed are physiologically
interpretable and ethically sound. Ultimately, the combination
of EEG and deep learning in imagined-speech decoding has the
potential to transform assistive communication technologies.
Achieving this goal will necessitate not only innovative
algorithms but also rigorous experimental standardisation and
open, collaborative research practices that promote
transparency, reproducibility, and equitable progress across the
field.
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