(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

Evaluating Field Flexibility Approaches in Relational
Databases: A Performance Study of JSON and
Column-Oriented Models in Library Systems

Rizal Fathoni Aji, Nilamsari Putri Utami
Faculty of Computer Science, Universitas Indonesia, Indonesia

Abstract—This study examines two approaches for achieving
field flexibility in library systems using relational databases:
column-oriented tables and JSON data types. To evaluate the
performance and practicality of flexible schema strategies, a
dataset of 41,000 library records was implemented using both
column-oriented and JSONB-based schemas in PostgreSQL. Five
representative queries based on typical search operations in
library applications were executed repeatedly on each model, and
average execution times were measured in a controlled
environment. Results show that JSONB consistently outperforms
the column-oriented approach across all query scenarios,
benefiting from reduced structural overhead and more direct
access to semi-structured data. However, the flexibility of JSONB
introduces risks of inconsistent data structures and reduced
schema enforcement compared to the more rigid but uniform
column-oriented method. The findings highlight a trade-off
between performance and data consistency, suggesting that
JSONB is advantageous for dynamic, metadata-rich systems,
while column-oriented storage remains preferable when strict
structural integrity is required. Future work should explore
hybrid models and schema validation layers to combine flexibility
with reliable data governance.

Keywords—Field flexibility; RDBMS; column-oriented model;
JSON; library systems

I. INTRODUCTION

Relational databases have been the foundation of data
management for decades, particularly in systems like library
information systems, where maintaining consistency, data
integrity, and efficient querying is crucial [1]. Libraries often
store vast collections that encompass a wide range of materials,
books, journals, and digital media, each with unique metadata
attributes such as authorship, publication date, genre, format, or
edition. The structured schema of relational databases ensures
that these attributes are stored in a highly organized manner.
However, this rigid structure can become a constraint when new
or evolving data needs arise, such as adding metadata fields for
digital content or custom attributes for special collections [2].

Library systems differ considerably in nature. Libraries
worldwide are managed by diverse organizations with varying
management styles and differing attitudes toward collections
and technology. Libraries have evolved from early research
platforms into more fully developed applications, typically
within selected content domains [3]. Alongside the classical
research area of electronic searching, known as information
retrieval, library systems have progressed from conventional

search methods toward richer information retrieval systems.
Modern library systems must facilitate data exchange among
geographically distributed libraries and accommodate differing
system requirements. Moreover, libraries employ various
metadata standards, such as Dublin Core [4] and MARC [5],
which require flexibility in field implementation. For example,
journal article records may need to include information about
editors and publishers, whereas thesis records may not require
such details.

The predefined schema in relational databases requires that
all data types be known upfront, making it difficult to
accommodate unexpected or variable metadata without
significant modifications. As a result, adapting a relational
system to handle new types of collection metadata can lead to
increased development effort, added complexity, and potential
downtime [6]. This challenge is amplified as the library grows
or incorporates more diverse types of collections, requiring
frequent schema updates and risking disruption to the overall
system.

NoSQL databases offer considerable flexibility in handling
unstructured or semi-structured data, making them ideal for
applications where schema changes are frequent, or data
structures are unpredictable [6,7]. However, this flexibility
comes at a cost, particularly when it comes to complex querying
and table relationships. One significant challenge is the
difficulty in performing efficient joins between tables, a core
functionality that relational databases excel at. This limitation
can pose problems for systems like library information
management, where table relations are critical for day-to-day
operations [7].

In a library system, various activities, such as book check-
ins, check-outs, and reporting, rely heavily on inter-table
relationships to maintain data consistency and integrity. For
example, checkinga book in or out requires joining tables that
hold data on books, borrowers, and loan history. Moreover,
libraries often need to generate comprehensive reports, which
require data aggregation from multiple tables, like generating
overduereports, catalogupdates, or usage statistics. The absence
of native join capabilities in NoSQL databases can result in
performance bottlenecks or force developers to implement
workarounds, such as data duplication or complex client-side
logic, which can introduce additional complexity and potential
inefficiencies [7].

Thus, while NoSQL provides unmatched schema flexibility,
its shortcomings in handling relational data make it less suited

391 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

for systems like library management, where efficient table
relationships and complex joins are crucial for smooth
operations and reporting [7,8].

This study delves into several innovative approaches
designed to enhance the flexibility of relational database
management systems (RDBMS). These methods enable
developers to introduce and manage changes dynamically,
without the need for extensive schema redesigns or additional
overhead. By doing so, organizations can ensure their data
systems remain adaptable, scalable, and better suited to meet the
ever evolving demands of modern information management.

Previous studies have investigated the performance
implications of using the JSONB data type in PostgreSQL for
managing semi-structured data [9, 10]. Although JSONB offers
schema flexibility, compact binary storage, and advanced
indexing mechanisms such as GIN indexes, empirical
evaluations reveal a clear trade-off between flexibility and
performance. Comparative benchmarks consistently show that
JSONB substantially outperforms the plain JSON type and
regular column indexing, with reported query time reductions of
up to fourfold under certain workloads [9, 10]. However, most
existing work concentrates on generic database workloads or
compares JSONB with document-oriented databases, with
limited attention to domain-specific systems such as digital
libraries.

In library information systems, schemaflexibilityis a critical
requirement because bibliographic data exhibit substantial
structural diversity. Libraries manage a wide range of resource
types, including books, journal articles, theses, and heritage
collections, each requiring different metadata fields and
descriptiveelements. Some collections, such as heritage records,
demand highly customized and evolving metadata to capture
provenance, physical condition, restoration history, and cultural
context, which are often not supported by standard schemas.
These needs are typically addressed through multiple metadata
standards (such as MARC and Dublin Core) and their
integration, which increases structural complexity within the
database [11-13]. Rigid relational schemas often lead to
frequent schema modifications and increasingly complex table
designs, whereas JSONB offers a promising alternative by
enabling flexible, self-describing metadata storage within a
relational database environment. Despite its potential, empirical
evidence on JSONB performance under realistic library
workloads remains limited, particularly in comparison with
traditional column-oriented schemas. This study, therefore,
investigates the performance of JSONB in a digital library
setting, directly comparing it with column-based designs to
evaluate the costs and benefits of schema flexibility for
bibliographic metadata management.

II. FIELD FLEXIBILITY IN RELATIONAL DATABASE

Field flexibility refers to the ability to modify the structure
of data within an application without causing significant
disruptions to the underlying systems. In traditional databases,
data structures are often rigid, requiring a defined schema
upfront, which can make changes laborious and time-
consuming. However, field flexibility enables the system to
evolveas new requirements emerge, allowing for the addition

Vol. 17, No. 1, 2026

of new fields, modification of existing ones, or even changes in
data types, all while minimizing impact on the rest of the
application. Achieving this flexibility can be crucial for
applications that face frequent changes in data requirements or
need to support dynamic use cases. Below are several strategies
commonly employed to implement field flexibility:

A. Incremental Schema Changes

One approach for achieving field flexibility is through
incremental schema changes. This strategy involves gradually
evolving the database schema by adding or modifying fields as
needed, without requiring a full database redesign. For instance,
in a library information system, if new data fields, such as a
book’s digital format (e.g., PDF, ePub), are needed to support
eBook checkouts, developerscan add these fields incrementally.

Tools like database migration frameworks (e.g., Alembic for
SQLAIchemy in Python or Liquibase) can automate schema
updates and track changes, ensuring that no downtime or
significant reengineering is needed. This method allows
developers to maintain the structure and performance
advantages of a relational database while still adapting to new
requirements. Incremental changes can include:

e Adding nullable columns to accommodate new data
types.

e Using default values for new columns to ensure
compatibility with existing data.

e Creating new indexes as needed to maintain query
performance.

If a library needs to store new metadata for each book, such
as its genre or digital format, a new column can be added to the
books table incrementally:

ALTER TABLE books
VARCHAR(100);

ALTER TABLE books ADD COLUMN digital format
VARCHAR(50) DEFAULT '"None';

Existing records remain unaffected, while new records can
start using the additional fields immediately.

B. Column-Oriented Tables

Anotherstrategy for field flexibility involves using column-
oriented tables, which are structured to allow easy addition and
modification of fields. In column-oriented databases, data is
stored in columns rather than rows, making it highly efficient to
add new fields or update existing ones. These databases (e.g,
Apache HBase or Google Bigtable) are especially useful in
systems where not all records share the same structure. For
example, in a library system, you might have some books that
contain additional information, such as author biographies or
associated multimedia content, while others do not.

ADD COLUMN genre

Using a column-oriented approach, these additional fields
can be added for specific entries without forcing the entire
dataset to conform to the new structure. This also allows
efficient querying of specific fields, improving flexibility when
handling large amounts of varied data. For example, if only
certain types of books (e.g., rare manuscripts) require special

392 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

attributes like “restoration history”, a columnar table structure
allows these fields to be included only for relevant records
without affecting the rest of the data.

C. Using JSON Data Types

A highly flexible and modem approach to enhancing field
flexibility is by utilizing JSON data types within a relational
database. Several RDBMSs, such as PostgreSQL and MySQL,
now offer native support for JSON data, allowing developers to
store semi-structured or unstructured data alongside traditional
relational data. This strategy is particularly useful when the data
structure is not fully known in advance or when rapid changes
in data fields are expected.

Using JSON, fields can be added or modified on the fly,
withoutaltering the overall schema of the table. This is ideal for
systems like library databases, where books, authors, and other
entities may have variable attributes that are not always
predictable. For instance, a library might needto store additional
metadata for certain books, such as links to multimedia
resources, custom annotations, or external references. Rather
than modifying the schema each time a new attribute is needed,
a JSON column can be used to store this variable data, offering
flexibility without compromising the integrity of the relational
data. PostgreSQL implements JSON records using the JSONB
data type. It is an efficient format for storing JSON data in a
decomposed binary representation [14].

D. Flexibility for Library Application

Comparing among those three methods, each method offers
distinct advantages depending on the specific requirements of a
system. Incremental schema changes are ideal for systems that
rely heavily on predefined structures and require the assurance
ofrelationalintegrity, such as library management systems. This
method allows for controlled, gradual evolution of the database,
ensuring that new fields can be added with minimal disruption
to existing data or queries. However, it requires careful
management of migrations and can become cumbersome when
faced with frequent or unpredictable changes.

On the other hand, column-oriented tables excel in
environments where data structures vary significantly across
records, providing efficient querying of specific fields without
affecting the entire dataset. This approach is particularly useful
in large-scaleanalyticssystems, wheredifferent records may not
have a uniform set of fields. However, it lacks some traditional
relational capabilitiesrequired for complex transactions, making
itless suited for systems whererelationships between entities are
key.

Using JSONB data types, meanwhile, strikes a balance
between flexibility andrelational structure. It allows forschema-
less, semi-structured data to be stored directly within a relational
database, providing the benefits of both worlds. JSONB fields
are perfect for handlingdynamic, evolvingdatawithout the need
for frequent schema modifications. This is particularly useful
when the application must handle irregular or custom attributes,
such as in a library system that needs to store metadata for
certain books or patrons. However, JSONB based queries canbe
less efficient than traditional SQL queries, and overuse can lead
to performance degradation if not carefully managed.

Vol. 17, No. 1, 2026

In summary, while incremental schema changes offer
stability and control, column-oriented tables excel in scenarios
requiring high flexibility at the cost of relational power. JSONB
data types provide a versatile middle ground, allowing for both
flexibility and structure, though they must be used judiciously to
avoid potential performance issues. The choice between these
methods largely depends on the balance between flexibility,
performance, and the need for relational integrity in the
application.

Both column-oriented tables and the JSONB data type offer
significant flexibility to library systems, particularly when
adapting to evolving data needs without requiring modifications
to the underlying table structure. Column-oriented tables
provide a stable and structured approach, ensuring efficient data
retrieval for specific fields, especially when dealing with large
datasets. They are highly optimized for read-heavy operations
and analytical queries, offering a more consistent and
predictable performance. However, the rigidity of this structure
means that it may not be as agile when accommodating diverse
or irregular data.

In contrast, JSONB data types offer a more dynamic and
flexible way to handle semi-structured data within a relational
database. By allowing for schema-less data storage, JSONB
enables library systems to handle varying dataattributes, suchas
custom metadata for books or patrons, without frequent schema
alterations. This makes JSONB particularly powerful for
managing diverse or evolving datasets. However, the flexibility
of JSONB comes with the potential for field inconsistencies, as
there is no enforced structure across all records. Despite this,
JSONB has the advantage of using standardized formats for
metadata, making it ideal for interoperability with external
systems and APIs.

This study aims to compare these two approaches, column-
oriented tables and JSONB data types, specifically in terms of
query performance within the context of a library management
system. Understanding the trade-offs between stability and
flexibility, and how they impact query efficiency, will provide
valuable insights into which method is best suited for specific
use cases in a dynamic, data-rich environment.

III. METHODS

To conduct a thorough comparisonbetween the two methods
of field flexibility, a comprehensive dataset was collected from
the University of Indonesia's Faculty of Computer Science
library. This dataset consists of 41000 records, each
encompassing five essential fields: call number, title, author,
publisher, and the number of collections. These fields were
chosen for theirrelevance in typical library operations, allowing
to focus on the core aspects of library data management. The
records represent a diverse array of library materials, making
this dataset particularly suitable for analyzing the performance
of different data storage formats in a real-world context.

The collected data was stored in two distinct formats: one
using column-oriented tables and the other using JSONB data
types. This dual approach was to evaluate how each method
handles common library operations. Then, a series of standard
queries was executed in library applications, such as searching

393 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

for specific titles, retrieving collections by author, and counting
the total number of items in each category.

Employing these queries was to simulate everyday usage
scenarios that librarians encounter, ensuring the results reflect
practical performance metrics. Fig. 1 and Fig. 2 illustrate the
implementations of the tables for both column-oriented and
JSONB data type methods, offering a clear visual representation
of them.

BorrowLists Books Data

books_id: integer 4N id: integer books_id: integer

user_id: integer books_type: varchar(20) field_id: integer

checkout: date data: text

|: Fields
|z

id: integer
Users

fieldname: varchar(20)
id: integer

books_type: varchar(20)

Fig. 1. Simplified tables implementation of the column-oriented method.
BorrowLists Books
books_id: integer id: integer

1..N

user_id: integer books_type: varchar(20)

checkout: date metadata: jsonb

z
Users
id: integer

books_type: varchar(20)

Fig.2. Simplified table implementation of the JSONB data type method.

In addition, Table I specifies the queries used in this
experiment, emphasizing the data retrieval processes employed.
PostgreSQL was utilized for database running on an Apple M1
CPU with 8 GB of RAM to support these implementations. This
enables analyzing the data related to experimental methods.

Finally, the analysis of average execution times of each
query across both data formats was performed to draw
meaningful conclusions about their efficiency. Measuring how
quickly eachmethod processed the queriesaimed to identify any
significant differences in performance that could influence the
choice of data handling strategy for library systems.

To ensure the accuracy and reliability of the results, each
query was executed five times, and the average execution time
for each query was calculated. To maintain fairness and
accuracy between queries, the database server is restarted after
each run. This step clears the query cache, preventing any
residualdata frominfluencingsubsequent results. Averaging the
execution times can gain a more accurate representation of how
each data format performs under consistent conditions.

TABLE . QUERIES USED IN THE EXPERIMENT
SQL Query on
D Task SQL Query on column- | ;4 \p gaa
oriented method
type method
Retrieve books select l?ooksiid from data | select books id
with keyword d,‘ fields f where | from books
Q1 ‘Donald’ 0 f.fle]dngmef'author' and | where metadgta—
author name fid=d.field id and d.data | >>'author' like
like '%Donald%"; '%Donald%";
select books_id
Retrieve books select l.)ooksiid from data | from books
with keyword d, fields f where | where metadata-
Q@ ‘Donald’ or f.fieldname="author' and | >>'author' like
“Knuth’® in f:id=d.field7id and (d.data | '%Donald%' or
author name like '%Donald%' or d.data | metadata-
like ‘%Knuth%"); >>'author’ like
‘%Knuth%’;
select books id
Retrieve books select k?ooks_id from data | from books
with keyword d,‘ fields f where | where metadgta—
3 Donald’ and f.fieldname="author'’ and | >>'author' like
‘Knuth’ in f.id=d.field_id and (d.data | '%Donald%'and
like '%Donald%' and | metadata-
authorname d.data like ‘%Knuth%’); >>'author' like
“%Knuth%’;
select books_id
select books_id from data | from books
Retrieve books | d, fields f where | where metadata-
with keyword | f.fieldname="author' and | >>'author' like
Q4 ‘Donald” but | fid=d.field_id and (d.data | '%Donald%'and
not ‘Knuth’ in | like '%Donald%' and | metadata-
authorname d.data not like | >>'author'’ not
“%Knuth%"); like
“%Knuth%’;
select dl.books id from
data d1, data d2, fields f1,
Retrieve books fields f2 where (dl.data | select books_id
with keyword like '%Donald%' and | from books
‘Donald’ in fl .fif:ldna}me=‘a'uthor" and | where metad{lta—
Qs author name d1.field_id=f1 .fleld_ld). >>'author’ like
and keyword and (d2.data like | '%Donald%'and
‘Computer’ in '%C'omputer%" and metgdata— '
title f2.fieldname='title' and | >>'title' like
d2.field_id=f2.field id) “%Computer%’;
and
d1.books_id=d2.books_id;

This repeated execution also allows observing patterns and
identifyingany potential performance bottlenecksin the system.
For instance, certain queries may initially execute faster due to
caching, but when repeated multiple times, underlying
inefficiencies may become apparent. Running the queries in a
controlled environment and taking multiple measurements can
assess the stability and consistency of each method over time,
which is crucial for applications that demand high availability
and consistent performance.

Moreover, calculating the average time across multiple runs
provides a more robust foundation for comparison between the
two data formats. It ensures that the findings are not based on a
one-time performance outlier, but reflect the typical
performance behavior of both approaches. This method of
testing is essential for drawing reliable conclusions about which
data format offers better query execution performance,
particularly for the dynamic and often data-intensive operations
of a library management system.

394 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

IV. RESULTS

This sectionpresents the findings from performance analysis
of the two data storage methods: column-oriented tables and
JSONB data types. The comparison of execution times of
various common queries used in library management systems
highlights any significant differences between the two
approaches. Additionally, the implications of these results are
examined in terms of how each method performs in terms of
query efficiency, flexibility, and scalability. The insights gained
from this analysis will help determine which approach is better
suited for managing dynamic and evolving library data.

A. Table Size

Before diving into the performance analysis, first compare
the storage sizes of the tables in both the column-oriented and
JSONB data type approaches. This comparison is essential for
understandingthe storageefficiency of each method, as data size
can directly impact query performance and system resources.
The findings revealed that the column-oriented approach
resulted in a larger table size, approximately 13 MB, while the
JSONB data type approach had a smaller footprint, occupying
only around 9 MB.

Thelargersizeofthe column-oriented table canbe attributed
to its structured nature, where each fieldis explicitly definedand
indexed. On the other hand, the JSONB data type offers more
compact storage because it allows for flexible, semi-structured
data representation without requiring predefined schema
constraints. This reduced storage size may improve space
efficiency, especially when dealing with dynamic or variable
data. This size comparison lays the groundwork for evaluating
the overall efficiency of each approach in handling real-world
library data.

B. Query Performance

Table II presents the mean execution time recorded for each
query across all scenarios. These averages were computed by
running each query multiple times and aggregating the results to
reduce the influence of outliers or transient system fluctuations.

TABLE II. AVERAGE TIME OF EACH QUERY
Query Column-oriented method JSON data type method
Q1 58.03 ms 33.53 ms
Q2 77.40 ms 42.60 ms
Q3 41.74 ms 36.46 ms
Q4 58.52 ms 27.90 ms
Q5 78.22 ms 32.69 ms

By focusing on average performance rather than single run
outcomes, the analysis ensures a more reliable representation of
each datamodel’s behavior under typical operating conditions.
Fig. 3 presents a comparative performance chart derived from
the data in Table II.

The results indicate that the JSONB data type consistently
demonstrates faster query execution times compared to the
column-oriented approach. This performance advantage can be
attributed to the reduced need for data transformation and
parsing when working directly with native JSON structures. In

Vol. 17, No. 1, 2026

contrast, column-oriented storage often requires additional
processing steps, such as schema enforcement, column
reconstruction, or intermediate serialization, which increase
computational overhead during query execution.
Performance Comparison (in ms)
100
80

60

40
0
Q1 Q2 Q3 Q4 Q5

M JSON data type method

o

B Column oriented method

Fig. 3. Performance comparison chart.

V. DiscussiON

From a systems-level perspective, the superior performance
of JSONB indicates that workloads involving semi-structured or
nested data benefit significantly from storage models optimized
for hierarchical formats. By allowing complex metadata to be
stored and accessed directly without extensive schema
transformation, JSONB reduces the processing overhead
commonly associated with traditional column-oriented designs.
This efficiency becomes particularly important in library
information systems, where metadata attributes vary widely
across collections and evolve over time, requiring a storage
model that can adapt without sacrificing performance.

These findings also emphasize the importance of aligning
data representation with query pattems and application
requirements. When search operations frequently involve
flexible attributes such as author names, titles, or custom
metadata fields, JSONB enables more direct and expressive
querying compared to the join-intensive structure of column-
oriented tables. As a result, JSONB minimizes relational
reconstruction costs and simplifies query logic, leading to lower
latency and more predictable performance in real-world usage
scenarios. This demonstrates that performance is not solely
determined by hardware or indexing strategies, but is strongly
influenced by how well the data model matches the access
patterns of the system.

Overall, the consistent outperformance of JSONB across all
evaluated scenarios underscores its effectiveness for
environments that demand both flexibility and fast access to
complex data structures. While column-oriented storage offers
stronger structural enforcement and uniformity, its rigidity
introduces overhead when handling dynamic metadata. JSONB,
therefore, represents a compellingalternative for modern library
systems, where adaptability and performance are equally
critical, provided that appropriate validation and governance
mechanisms are implemented to preserve data quality and
consistency.

395|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

VI. CONCLUSION

The results of this study show that the JSONB data type
consistently delivers faster query execution times than the
column-oriented method across all evaluated scenarios. This
performance benefit is largely due to JSONB’s ability to store
and access hierarchical, semi-structured data without requiring
extensive transformation. However, despite its advantages in
speed and flexibility, the JSONB data type also presents notable
limitations. Its schema’s flexible nature can complicate data
validation, especially in structured domains such as library
information systems, where consistent formats for book records,
borrower data, and classification codes are essential.

While the JSONB data type can improve performance and
reduce overhead, it also creates challenges in maintaining data
consistency and integrity. In a library system, variation in field
naming, missing attributes, or inconsistent structures can arise
easily due to the lack of enforced schema rules. JSON
documents may also contain duplicated or redundant nested
data, making synchronization and updates more error-prone.
Additionally, the nested structure of JSON can complicate
indexing and query optimization, which are critical for fast
retrieval of books, circulation statistics, or user records. In
contrast, column-oriented storage, with its rigid schema and
normalized structure, inherently promotes uniformity and
reduces inconsistency across records.

This research has both theoretical and practical implications
for the design and management of database systems in library
information environments. From a theoretical perspective,
JSONB can bridge the gap between rigid relational models and
fully schema-less NoSQL approaches. Hierarchical storage
within relational systems can significantly improve query
performance for semi-structured metadata. This study also
extends existing literature by providing concrete performance
evidence in the underexplored domain of library and heritage
metadata management, thereby offering a foundation for future
research on hybrid data models and adaptive schema design.

Froma practical perspective, it provides guidance forsystem
architects that library systems can adopt flexible metadata
storage without incurring significant query overhead. At the
same time, the findings highlight the need for complementary
governance mechanisms to mitigate the risks associated with
schema flexibility. By balancing performance, flexibility, and
data consistency, this research informs the development of
scalable and sustainable digital library systems capable of
adapting to future metadata requirements.

Future work should explore mechanisms to mitigate the
consistency challenges associated with JSON-based storage.
Further evaluation across larger, more complex library datasets
may also clarify the conditions under which JSON’s
performance benefits outweigh its consistency drawbacks.
Additionally, examining the impact of different indexing
strategies, storage engines, and transaction loads could provide

Vol. 17, No. 1, 2026

deeper insights into optimizing JSON for use in library
information systemsand other domains requiring both flexibility
and high data reliability.

ACKNOWLEDGMENT

This study's research is supported by the Faculty of
Computer Science, Universitas Indonesia, Grant number: NKB-
20/UN2.F11.D/HKP.05.00/2025.

DECLARATION ON GENERATIVE Al

The authors acknowledge the use of generative Al to assist
in improving the clarity, grammar, and structure of the
manuscript. The content, analysis, and conclusions remain the
sole responsibility of the authors.

REFERENCES

[1] G. Feuerlicht. “Database Trends and Directions: Current Challenges and
Opportunities”. Proceedings of DATESO. 2010.

[2] S. Akinola. “Trends in Open Source RDBMS: Performance, Scalability
and Security Insights”. Journal of Research in Science and Engineering
(JRSE). 2024.

[3] T.R. Kochtanek. “Library information systems : from library automation
to distributed information access solutions”. Libraries Unlimited. 2002.

[4] S. Weibel. “The Dublin Core: A Simple Content Description Model for
Electronic Resources”. Bulletin of the American Society for Information
Science and Technology. 1997.

[5] Library of Congress. “MARC STANDARDS”.
https://www.loc.gov/marc/index.html (accessed January 20, 2026).

[6] ZH. Liu, D. Gawlick. “Management of Flexible Schema Data in
RDBMSs-Opportunities and Limitations for NoSQL”. CIDR. 2015.

[7]1 Herrnansyah,Y.Ruldeviyani,R.F. Aji. “Enhancingquery performance of
library information systems using NoSQL DBMS: Case study on library
information systems of Universitas Indonesia”. 2016 International
Workshop on Big Data and Information Security (IWBIS). 2016

[8] N. Bansal,S. Sachdeva,L.K. Awasthi. “Are NoSQL Databases Affected
by Schema?”. IETE J. Res. 70. 2024

[91 G. Turutin, M. Puzevich. “PostgreSQL JSONB-based vs. Typed-column
Indexing: A Benchmark for Read Queries”. International Journal of
Computer (1JC). 2025.

[10] Y. Vazquez Ortiz, L.M. Pierre, A.R. Sotolongo Leon. “Semi-structured
Data Management in PostgreSQL: Competing with MongoDB’s
Performance”. Proceedings of the 10th Alberto Mendelzon International
Workshop on Foundations of Data Management. 2016.

[11] A. Amato. “Towards the Interoperability of Metadata for Cultural
Heritage”. Lecture Notes on Data Engineering and Communications
Technologies 176.2023.

F.C. Paletta, C. Wijesundara. “Metadata Principles, Guidelines and Best
Practices: A Case Study of Brazil and Sri Lanka”. Proceedings of the
International Conference on Dublin Core and Metadata Applications.
2024.

[13] M. Rosyihan Hendrawan, A. Mat Isa, A. Zam Hariro Samsudin.
“Metadata Interoperability for Cultural Heritage Digital Repositories: A
Case Study in Indonesian World Heritage Site Memory Institutions”.
International Journal of Academic Research in Business and Social
Sciences. 2024.

[14] PostgreSQL. “PostgreSQL 18.1 Documentation”.
https://www.postgresql.org/files/documentation/pdf/18/postgresql-18-
A4 .pdf (accessed January 20,2026).

[12

—

396 |Page

www.ijacsa.thesai.org

