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Abstract—The rapid growth of digital English listening 

platforms has intensified the need for intelligent personalization 

mechanisms that adapt to learner progression while preserving 

data privacy. Existing adaptive systems primarily rely on static 

difficulty scaling or centralized learning architectures, often 

neglecting learner engagement dynamics and raising concerns 

about sensitive data exposure. To address these limitations, this 

study proposes PrivAURAL, a privacy-preserving and affect-

aware adaptive English listening framework that models listening 

instruction as a sequential decision-making problem. The 

objective is to dynamically personalize listening tasks by jointly 

considering comprehension performance and engagement trends, 

without transmitting raw learner data. PrivAURAL integrates 

HuBERT-based semantic–acoustic representations with affective 

proxy signals derived from learner behavior and employs a 

Federated Deep Q-Network to adapt task difficulty, playback 

speed, and assessment frequency. The model is implemented using 

PyTorch, HuggingFace speech models, and a simulated federated 

learning environment with secure aggregation. Experiments 

conducted on the TED-LIUM dataset demonstrate a 32.7% 

reduction in Word Error Rate over ten sessions, a 21.9% decrease 

in task completion time, and an improvement in listening accuracy 

from 86.1% to 87.3% compared with non–affect-aware baselines. 

Federated training further ensures stable convergence, while 

maintaining strict privacy constraints. The results confirm that 

reinforcement-driven, affect-aware personalization can 

significantly enhance listening efficiency and engagement, 

positioning PrivAURAL as a scalable, ethical, and privacy-

conscious solution for next-generation digital language learning 

systems. 

Keywords—Adaptive listening learning; federated reinforcement 

learning; affective proxy modeling; privacy-preserving AI; HuBERT 
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I. INTRODUCTION 

English proficiency, particularly listening ability, is now an 
essential skill in the global academic and business environments 
[1]. Students in the majority of non-native English-speaking 

nations have difficulty understanding spoken English due to 
discrepancies in pronunciation, accent, rate, and emphasis [2]. 
Such challenges are yet intensified in web-based learning 
environments, where students must interpret audio directions 
and lectures without immediate support [3]. Traditional audio-
centric e-learning systems, while in existence, don't typically 
take variability in learners' pace, their capacity for 
understanding, and their progression pattern into account [4]. 
Consequently, weaker listeners may lag behind, causing learner 
disengagement and sub-average learning performance [5]. 
Adaptive learning systems are an efficient solution for bridging 
the limitations by adapting the learning experience to actual 
learner performance in real-time [5]. The recent progress in deep 
learning, specifically in Automatic Speech Recognition (ASR), 
has provided phenomenal gains in speech processing ability [6]. 
HuBERT and other pre-trained models have proved a strong 
capacity for phonetic and semantic content extraction from raw 
audio, to boost speech recognition and comprehension in a large 
variety of acoustical conditions [7]. 

At the same time, reinforcement learning (RL) has been 
increasingly inserting itself in the education technology domain 
to build agents that learn to dynamically select and propose 
personalized content [8]. Most RL educational systems have 
nevertheless focused on the visual or text modality rather than 
listening tasks. In addition, hand-crafted feature-based methods 
do not generalize across different speech conditions and learners 
[9]. Most educational systems using RL have nonetheless 
concentrated on the text or visual modality instead of listening 
tasks. Besides, hand-crafted feature-based approaches tend not 
to generalize across different learners and speech contexts [10]. 
These facts highlight the requirement of a method that can 
represent natural speech robustly as well as modulate task 
difficulty and speed based on multiple learner-specific feedback 
signals. The study presents PrivAURAL, an adaptive federated 
reinforcement learning based and privacy-preserving affect-
sensitive English listening framework. In contrast to the current 
systems, that personalization is performance-only based or the 
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centralized training method, PrivAURAL combines HuBERT-
based speech representations with affective proxy signals to 
support task sequencing through a federated Deep Q-Network. 
This single design allows engagement-based personalization 
and provides a high level of data privacy and scalability of 
deployment. 

A. Problem Statement 

Online and audio-based English learning systems are rapidly 
expanding, yet most lack effective personalization, leaving 
learners disengaged and mentally strained. The available 
platforms usually offer fixed or slightly adaptive assignments 
with a lack of focus on personal understanding, behavioral 
reaction, or variability of engagement and decreased motivation 
and learning efficiency [11]. A wide variety of adaptive systems 
are based on centralized data processing, meaning that sensitive 
learner data, such as audio and performance logs, are transmitted 
to off-site servers, which challenges the privacy issue [12]. The 
conventional approaches with the use of manual acoustic 
characteristics or performance indicators do not reflect semantic 
complexity and listening dynamics in reality [13]. As a filler to 
these loopholes, the current research study suggests a privacy-
convincing, affect-sensitive adaptive listening model based on 
contextual speech representations and federated reinforcement 
learning to teach securely and personalize. 

B. Research Motivation 

The main driving force of this research is to provide a 
privacy-conscious and affect-conscious digital English listening 
tool that will promote personalized learning without breaching 
learner data. Engagement and emotional regulation of the 
learner are important factors in learning comprehension, 
attention, and retention; however, most of the current systems 
only use the measures of accuracy and response time [14]. The 
proposed method combines concepts of affective computing 
with the ideas of reinforcement learning to model cognitive 
performance patterns and the dynamics of engagement as the 
means of adjusting adaptive task sequencing [15]. PrivAURAL 
framework builds upon HuBERT-based contextual speech 
representations and behavioral affective proxy signals in a 
Federated Deep Q-Learning framework, which allows local 
personalization and retains privacy. This design promotes 
ethical, scalable, and intelligent listening training in line with the 
current data protection demands. 

C. Significance of the Study 

The study introduces a smart language learning system, 
which is a hybrid of affect-sensitive learner modeling, federated 
reinforcement learning, and secure aggregation within one 
adaptive system. Representation of contextual speech and 
affective proxy signal is used as a guide in ordering tasks in 
response to learner engagement and understanding dynamics. 
Privacy is not violated in federated training because raw 
audio/performance/affective information is not shared. The 
reinforcement learning agent is capable of dynamically 
changing the difficulty of the task, and the speed of the playback 
and the frequency of evaluation, which is less cognitively 
demanding, motivating, and increases the efficiency of listening 
in scalable, ethical, and privacy-conscious e-learning. 

D. Key Contributions 

• Proposes PrivAURAL, a privacy-preserving adaptive 
English listening framework that models listening 
instruction as a sequential decision-making process 
using federated reinforcement learning. 

• Introduces affective proxy–aware learner state modeling 
that integrates comprehension performance and 
engagement trends without explicit emotion recognition. 

• Employs HuBERT-based semantic–acoustic 
representations to capture contextual listening 
complexity for informed task adaptation. 

• Develops a Federated Deep Q-Network that enables 
collaborative policy learning across distributed learners 
without sharing raw audio or behavioral data. 

• Demonstrates empirical improvements in listening 
accuracy, task efficiency, and engagement stability 
through extensive evaluation and ablation studies under 
strict privacy constraints. 

The rest of the section is structured as follows: Section II 
provides a literature review of the work, Section III outlines the 
proposed methodology, Section IV provides experimental 
results and validation, and discusses results, and Section V 
provides conclusions and future directions. 

II. LITERATURE REVIEW 

Ahmed and Hasegawa [16] address the lack of specialized 
platforms for information and instructional technology students 
to create online education talking books without the complexity 
of Web programming. One of the core issues envisioned is the 
absence of simply accessible tools that integrate pedagogical 
design with technical simplicity for visual and hearing-impaired 
students. In response, the research propounds an easy-to-use, 
web-based platform specially designed for creating educational 
talking books. The approach involved expert evaluation by 
fourteen instructional technology professionals in a mixed-
method design via an online survey. Results showed that the 
platform was effective, simple to use, and met the educational 
needs of the target audience. Future possible enhancements 
could be enhancing customization levels and adaptive support 
for different learner profiles. 

Valledor et al. [17] analyze the approaches to English as a 
second language teaching through computer applications and 
attempt to analyze how these compare to individualized, learner-
centered strategies. A key challenge that has been realized is that 
Audio-Lingual methods are dominant within current 
applications, which is constraining educational adaptability. Via 
mixed-method review involving systematic literature search and 
elicit.org searches, the study reviews various online ESL 
teaching instruments. Results show that Blended Learning is the 
most suitable strategy, with an amalgamation of traditional and 
digital teaching benefits. The tools available are neither adaptive 
nor conducive to independent learning environments. AI-driven 
applications based on ASR, TTS, NLU, and DM are proposed 
to develop digital replicas of teacher-like interaction and 
enhance ESL instruction tailored to learners. 
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Hu et al. [18] addresses the challenge of learning focus 
identification using a combination of cognitive, affective, and 
behavioral traits, particularly in Virtual Reality (VR) 
environments. A key challenge discovered is that existing 
recognition methods lack multimodal fusion of data, decreasing 
accuracy and contextual information. To reverse the argument, 
the authors bring in a multimodal feature integration approach 
combining interaction data (e.g., clickstream, text, and test 
response) with vision-based inputs (e.g., facial expressions, 
pupil size, and eye gaze). The performance of the model is tested 
to perform better in the detection of concentration levels than 
single-modality methods. Experimental results also show that 
higher concentration is linked with superior learning outcomes 
and is heavily influenced by learners' sense of immersion. 
Subsequent studies can refine modality fusion and immersion 
measures to further support focus detection in immersive 
learning contexts. 

Hong et al. [19] address the issue that students face when 
they miss unstructured and lengthy lecture audio while studying 
online or offline. Traditional skip controls are limited because 
they operate on the time level and lack semantic awareness, 
preventing the identification of the current context and position 
in audio streams. To address this, the authors design HearIt, a 
system that offers semantic-level skip control through 
paragraph-based segmentation and auditory feedback. The 
method uses a combination of positional and topical cues to 
improve context comprehension without visualizations. A pilot 
study using an operational prototype was conducted to assess 
usability and effectiveness. Results indicated that HearIt 
improves the efficiency and simplicity of browsing auditory 
information. While promising, additional research is suggested 
to further refine the design and ascertain its effectiveness in 
diverse learning environments. 

Chaturvedi, Noel, and Satapathy [20] explore sentiment 
extraction from audio in social media videos on platforms like 
YouTube and TikTok, especially where there is no language 
translation involved, like Spanish. The major challenge 
addressed here is correctly labeling sentiment in noisy 
environments and in various accents. To correct for this, the 
authors introduce a novel algorithm that employs a vector space 
of affective concepts, noting that prefixes to words like "con" or 
"ab" usually point toward negative sentiments. Unlike typical 
models based on generic pretrained features, this approach 
allows for better learning of speech and emotion patterns by 
neurons. What is new is the use of a novel eigenvalue-based 
metric to select optimal data augmentations for making the 
model stronger. The method shows 10–20% improvement over 
baselines in emotion recognition from YouTube videos.  

Chen [21] suggested an English-spoken online dialogue 
system to overcome the restrictions of static and rule-governed 
conversation systems that are not responsive to learner 
interactions. The study is conducted to enhance spoken English 
skills through adaptive and real-time feedback in online 
contexts. A reinforcement learning algorithm is used to optimize 
dialogue strategies, where policy learning controls the system to 
choose contextually suited responses. The research utilizes the 
DailyDialog dataset, which offers diverse conversational 
contexts suitable for oral language learning. Key challenges 
include handling ambiguous learner inputs, maintaining the 

natural flow of dialogue, and ensuring personalization of 
responses. To overcome these issues, the proposed system 
integrates reinforcement learning with speech recognition, 
enabling adaptive and context-aware interaction. Evaluation 
results demonstrated a success rate of 89.6%, with significant 
improvements in dialogue coherence, as validated through 
BLEU scores and mean reward metrics. These findings highlight 
the effectiveness of reinforcement learning in advancing spoken 
English training systems beyond static, rule-based approaches. 
Table I shows the summary on literature review. 

TABLE. I. SUMMARY OF EXISTING STUDIES 

Author Method Advantages Limitations 

Ahmed & 

Hasegawa 

[16] 

Web-based 

educational 

talking book 

platform 

Simple and 

accessible 

audio-learning 

content creation 

No adaptive 

personalization or 

affect-aware 

learning 

Valledor et 

al. [17] 

Blended learning 

synthesis for 

ESL applications 

Improves 

learner 

engagement 

through mixed 

instruction 

Lacks AI-driven 

adaptation and 

individualized 

learning 

Hu et al. 

[18] 

Multimodal 

affect recognition 

using VR-based 

features 

Accurate 

detection of 

learner 

concentration 

and engagement 

Requires intrusive 

sensing and 

centralized data 

processing 

Hong et al. 

[19] 

Semantic audio 

segmentation and 

auditory 

navigation 

Enhances 

efficiency of 

lecture audio 

browsing 

No learning 

adaptation or 

personalization 

Chaturvedi 

et al. [20] 

Audio-based 

sentiment 

analysis with 

affective 

concepts 

Robust emotion 

detection in 

noisy speech 

environments 

Not designed for 

educational 

adaptation or 

personalization 

Chen [21] 

Reinforcement 

learning–based 

spoken dialogue 

system 

Enables 

adaptive and 

context-aware 

language 

interaction 

Centralized 

training; no 

privacy-aware 

deployment 

Recent advances in educational technology have 
investigated reinforcement learning as an adaptive content 
sequence method, affect-conscious modeling as an engagement 
control method, and federated learning as a privacy protection 
method; these directions are mostly explored separately. The 
current reinforcement learning-based learning systems are 
mainly text-based tutoring or dialogue management and are also 
based on centralized training pipelines, which is why they are 
not applicable to the privacy-sensitive listening context. Such 
approaches that care about affect are also prone to rely on overt 
emotion detection or multimodal sense, creating ethical issues 
and limits to deployment. Federated learning research in 
education focuses mainly on the issues of model scalability and 
data security, but does not include ways of adaptive choice to 
affective tasks and sequential decision-making. Conversely, the 
suggested PrivAURAL system combines federated 
reinforcement learning and adaptive English listening by using 
affective proxy-aware learner modeling and contextual speech 
representations, to ensure the provision of privacy-preserving, 
engagement-aware adaptive English listening. This has been 
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combined to portray missing points in the previous literature as 
critical because it facilitates the personalized progression of 
listening, emotional control, and decentralized learning without 
exposing raw learner information. 

III. PROPOSED METHODOLOGY: FEATURE EXTRACTION 

AND ADAPTIVE LEARNING WITH DQN 

The proposed PrivAURAL framework is a privacy-saving, 
adaptive English listening framework that adapts the difficulty 
of the tasks and pacing dynamically using reinforcement 
learning, but under decentralized learning conditions. The 
system works with the authentic listening materials that it takes 
as part of the TED-LIUM corpus and frames the interaction 
between the learners as a problem of successive decisions. 
Preprocessing of incoming audio is first taken through 
standardization and then altered to high-level semantic acoustic 

representations with a pretrained HuBERT encoder that allows 
robust modelling of the listening complexity in different accents 
and speech states. Simultaneously, the learner’s responsiveness 
is estimated using affective proxy indicators based on the 
patterns of behavioral and temporal response, but not the explicit 
recognition of emotions. The representations are combined into 
an organized learner state that would reflect the comprehension 
performance and engagement tendencies. A Deep Q-Network is 
locally trained on all of the learner machines to decide adaptive 
actions, such as difficulty adjustments and playback ones, based 
on observed transitions in the state and observed reward 
feedback. In order to facilitate joint enhancement without 
invading privacy, model parameters are aggregated periodically 
by use of a federated learning process. It is an end-to-end design 
that guarantees constant personalization, learner scalability, and 
close guardedness of sensitive learner data. Block Diagram of 
the proposed PrivAURAL is shown in Fig. 1. 

 

Fig. 1. Block diagram of the proposed PrivAURAL. 

A. Data Collection 

The TED-LIUM dataset [22], which contains more than 450 
hours of English speech given by TED talks with diverse 
speakers, accented to diverse contexts of the world, was 
maintained in transcriptions and sampled at 16kHz. TDE-LIUM 
consists of approximately 118 hours of speech. To enable a 
generalization to diverse profiles of learning, we considered 
TED-LIUM particularly appropriate, as it captures variations in 
accent and speaker factors such as speech rate, intonation and 
recording conditions, compared to the single-speaker recordings 
of the LJ Speech corpus. In addition, each audio clip has an 
aligned transcription, which also supports, through certainty, 
measurements of benchmarked Word Error Rate (WER) and 
comprehension-based evaluations of and with the audio clip. 

The variations in context and speaker performance also expose 
learners to realistic contexts of variety, noise and accent, which 
more accurately inform the training of reinforcement learning 
agents. 

B. Audio Preprocessing 

• All TDE-LIUM audio samples underwent a 
comprehensive preprocessing pipeline to ensure they are 
all in uniform, robust form and demonstrated, or suitable 
for hybrid feature extraction. Given the variation in 
record and speaker accent and conditions within TED-
LIUM, the natural hearing or listening variability needed 
to be preprocessed to improve the homogeneity of 
conditions across the training data. Fig. 2 illustrates the 
audio-preprocessing pipeline. 
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Fig. 2. Audio-preprocessing pipeline. 

1) Resampling: All audio is resampled to 16 kHz mono 

WAV format, which is standard in speech recognition tasks. 

This preserves the critical 0–8 kHz frequency band while 

ensuring computational efficiency. The original audio signal is 

a discrete sequence represented in Eq. (1): 

𝑥 = [𝑥1 ,𝑥2 ,… . 𝑥𝑇], 𝑥𝑖 ∈ ℝ   (1) 

• where, 𝑋  is the original sampled waveform, 𝑇  s the 
number of samples, 𝑥𝑖  is the amplitude at time step 𝑖 . 

The original sampling rate is 𝑓𝑠
𝑜𝑟𝑖𝑔

 and the target rate is 
𝑓𝑠 =16000 Hz, resampling is mathematically defined by 
interpolation in Eq. (2): 

𝑥𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒(𝑥, 𝑓𝑠
𝑜𝑟𝑖𝑔 , 𝑓𝑠) (2) 

• where, 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒(⋅) is usually performed with 
sophisticated sinc-based resampling filters and can be 
done with either linear interpolators, spline interpolators 
or sinc filters which provide accurate transformation. 

2) Channel conversion: Channels in an audio clip can be 

more than one (e.g., stereo — left and right). Mono channel 

audio is good enough for speech recognition and similar 

embedding models. The stereo audio be represented in Eq. (3):  

𝑥(𝑡) = [𝑥𝐿(𝑡), 𝑥𝑅(𝑡)]   (3) 

where, 𝑥𝐿(𝑡), 𝑥𝑅(𝑡) are the left and right channel amplitudes 
at time 𝑡. The mono signal is obtained in Eq. (4): 

𝑥𝑚𝑜𝑛𝑜(𝑡) =
1

2
(𝑥𝐿(𝑡),+𝑥𝑅(𝑡)) (4) 

where, 𝑥𝑚𝑜𝑛𝑜 is mono signal. It reduces the dimensionality 
of the audio without losing meaningful speech information. 

3) Amplitude normalization: Amplitude normalization is 

performed to normalize the loudness across different recordings 

and reduce variability as a result of the recording context. Given 

a waveform x(t), normalization scales the signal to a predefined 

dynamic range (typically [-1,1]), as shown in Eq. (5): 

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡)

max(|𝑥(𝑡)|)+ℰ
  (5) 

where, ℰ  is a small constant,  max(|𝑥(𝑡)|) is the normal 
maximum amplitude of the signal. This prevents signal clipping 
or less of the amplitude range training. 

4) Data augmentation: To improve the level of robustness 

and to resemble the situation in real-life, pitch shifting and 

tempo variation was done. These changes enhanced the 

difference in the dataset that would enable the model to do 

better in accent and speech rate. Such a pipeline will make sure 

every input will be well structured and balanced in the process 

and prepared to the next stage of hybrid feature extraction 

through MFCCs and HuBERT embeddings. 

C. Feature Representation Layer 

The Feature Representation Layer maps the trivial but 
informative state of each listening audio fragment to a compact 
but informative representation that is both linguistically 
challenging and trended on the learner affects and therefore is 
important in adaptive task sequencing in the proposed 
PrivAURAL framework. In each listening task, the raw audio 
signal 𝑥𝑡 is processed by a pretrained HuBERT encoder which 
processes the waveform directly with no feature engineering. 
HuBERT projects the temporal acoustic input into a high-level 
contextual embedding ℎ𝑡 = HuBERT(𝑥𝑡), which ℎ𝑡 represents 
phonetic transitions, speaking rate, pronouncing variability and 
semantic coherence that exist within the speech fragment. 
Within the frames of the current study, greater variance and 
entropy in ℎ𝑡 correlate with a greater listening difficulty, which 
makes such a representation appropriate in the context of 
modeling comprehension load across different accents and 
speech conditions in TED-LIUM. 

The system uses the affective state proxy modeling to 
supplement linguistic modeling, without making claims of 
explicit emotion recognition. Affective response a tis, which is 
a normalized composite signal based on prosodic instability in 
response to learners, latency of response to checked 
comprehension tasks, and trend of error in successive tasks. The 
aggregation and scaling of these signals into a restricted 
affective proxy score 𝑎𝑡 ∈ [−1,1],  such that 𝑎𝑡 negative signals 
increasing frustration, 𝑎𝑡 positive signals stable engagement are 
calculated. This proxy is not the emotion of psychological nature 
but a control signal that allows the reinforcement learning agent 
to control the difficulty and pacing of the task. The end result of 
this layer is an integrated representation {ℎ𝑡

, 𝑎𝑡}, which directly 
drives the adaptive decision process so that tasks orderings are 
guided by both speech complexity and learner responsiveness in 
a privacy-sensitive learning process. 
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D. Learner State Construction 

After the stage of feature representation, the PrivAURAL 
frameworks model adaptive listening as a Markov Decision 
Process where each interaction between learners is modeled as 
a structured state-vector. The learner state at time step 𝑡 is 
defined, as in Eq. (6): 

𝑠𝑡 = {WER𝑡,QuizScore𝑡,ResponseTime𝑡,𝑎𝑡} (6) 

The Word Error Rate WER𝑡 is computed by aligning the 
learner’s transcribed response with the reference TED-LIUM 
transcript, reflecting phonetic decoding accuracy under diverse 
accents and speech conditions. The score of comprehension, 
denoted as the score of the QuizScore𝑡, is taken to represent the 

task-specific listening questions, and it is scaled to reflect the 
meaning of the understanding without the influence of the task 
length. ResponseTime𝑡 is the interval between the completion 
of the audio and the learner responding, which is a measure of 
cognitive load, with higher values indicating more processing 
difficulty. The affective proxy 𝑎𝑡,  calculated as a response 
latency trend, prosodic variation, and error progression, is the 
measure of engagement or frustration within the limits of [−1,1] 
range (to ensure learning stability). The resulting condition 𝑠𝑡 
brings together cognitive functionality and affective sensitivity 
in a single representation so that the reinforcement learning 
agent can enable context-sensitive adaptation decisions to the 
task so as to maximize the listening progression with emotional 
balance and privacy. 

E. Adaptive Learning via Reinforcement Learning 

Adaptive personalization in the PrivAURAL framework is 
PrivAURAL framework uses reinforcement learning to obtain 
adaptive personalization, in which the adjustment of listening 
tasks is modeled and defined as a sequence decision-making 
problem. In the context of every interaction step t, the agent 
chooses an act a t that manages the presentation of the next 
listening task to the learner. Action space can be stated as a joint 
set of the difficulty of the task and the speed of playback: 

𝑎𝑡 ∈ {Easy,Medium,Hard}× {Speed ↑ ,Speed ↓}  (7) 

In Eq. (7), the difficulty levels are associated with the 
differences in the complexity of lexical, sentence length, and 
speech rate based on the TED-LIUM segments, whereas the 
demands of temporal processing are controlled with the 
playback speed changes. This type of action formulation enables 
the agent to adjust the intensity of challenges at a discrete level 
without presenting the learner with rapid cognitive change that 
might break the program. 

The performance of every action is measured by a composite 
reward function balancing an improvement in comprehension 
and affective stability: 

𝑟𝑡 = 𝜆1ΔWER𝑡+ 𝜆2ΔQuizScore𝑡+ 𝜆3Δ𝑎𝑡 (8) 

In Eq. (8), ΔWER𝑡captures the change in listening accuracy 
between successive tasks, ΔQuizScore

𝑡
reflects gains in 

semantic understanding, and Δ𝑎𝑡represents the variation in the 
affective proxy, ensuring that emotional engagement is 
preserved. The weighting coefficients 𝜆1, 𝜆2 ,𝜆3are constrained 
such that their sum equals one, allowing controlled emphasis on 

accuracy, comprehension, and affect regulation depending on 
pedagogical priorities. This rewarding method eliminates 
excessive oversight to the accuracy of the learner at the cost of 
frustration. 

Policy learning is implemented using a Deep Q-Network, 
which approximates the action-value function 𝑄(𝑠𝑡, 𝑎𝑡) that 
estimates the expected long-term reward of executing action 
𝑎𝑡in state 𝑠𝑡 . The network parameters are updated using the 
Bellman optimality principle: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑟𝑡 + 𝛾max⁡
𝑎

𝑄(𝑠𝑡+1 ,𝑎)  (9) 

In Eq. (9), 𝛾 denotes the discount factor controlling the 
influence of future rewards. The DQN is able to reach an 
adaptive policy through repeated cycles of interaction to 
dynamically select listening tasks that follow learning 
proficiency progression and emotional balance in order to 
achieve long-term and individualized learning skills. 

F. Local On-Device Training 

Adaptive Learning in the PrivAURAL model is conducted 
by the local training process on the device to make sure there is 
a personalization and privacy of the data. To every learner, the 
Deep Q-Network is realized and trained on the learner-side with 
local observed state-action-reward transitions that are produced 
during listening tasks. The representation of state, rewards and 
the changes in policies are calculated without any raw audio 
recording, the inferenced affective signal, or performance 
feedback served to any third-party server. The learned model 
parameters are only stored locally to be used in decision-making 
during task adaptation. This design enables the DQN to learn the 
speech rate or difficulty escalation sensitivity of individual 
listening patterns and to make future task sequencing based on 
those. The framework also removes the risks linked with 
centralized data storage by ensuring that all interactions between 
learners are limited by the device, and effective personalization 
can be maintained in an environment of strict privacy 
preservation requirements in continuous and learner-specific 
devices. 

G. Federated Model Aggregation 

The PrivAURAL framework will assume a federated model 
aggregation approach to facilitate collaborative adaptation of 
adaptive listening policies and be strict in guaranteeing the 
privacy of users. Following a specified training step locally, 
each learner device forwards its new DQN model parameters, 
which are represented as 𝜃𝑖, to a central aggregation server. No 
raw audio files, comprehension answers, affective signals, or 
learner data are sent, and as such, sensitive data is only stored on 
the local machine. The server then calculates an overall model 
by doing a weighted average summation of the parameters it 
gets: 

𝜃𝑔 =∑
𝑛𝑖

𝑁

𝑁

𝑖=1
𝜃𝑖   (10) 

In Eq. (10), 𝑁represents the total number of participating 
learners, and 𝑛𝑖denotes the relative contribution of learner 𝑖 , 
proportional to the number of local interactions or training 
samples observed during the aggregation round. Such a 
weighted formulation helps to keep off the dominance of 
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sparsely trained models and stabilizes convergence of the global 
policy. Aggregated parameters, denoted as 𝜃𝑔 , were then 

reallocated to all the learners, and the following cycle of local 
adaptation was initiated. Secure aggregation or encryption can 
be provided as an option to enhance the protection of privacy, 
but the main defense is the lack of data exchange. This federated 
process enables PrivAURAL to enjoy collective learning 
patterns among different learners, retain personalization, and 
avoid exposing individual listening behavior. 

H. Adaptive Listening Task Selection 

Once the federated aggregation has been completed, the new 
reinforcement learning policy is applied to choose real-time 
listening tasks to be executed by the individual learners. In each 
interaction step, the agent compares the state of the learner and 
chooses the next task configuration with a maximum estimated 
long-term reward. This choice directly determines the level of 
difficulty, the playback rate and the intensity of assessment of 
the next listening section. The policy increases task complexity 
over time as the learner becomes more proficient with respect to 
vocabulary, speech rate or length of utterances, without making 
sudden levels of difficulty that might lead to cognitive overload. 
On the other hand, the policy increases or decreases the task 
requirements in response to the indications of diminishing 
understanding or interest to maintain the learning balance. 
PrivAURAL, with this active dynamic adjustment process, 
automatically adjusts the difficulty of the tasks in accordance 
with the progression of the learners, so that the activities 
involved in listening remain both challenging but attainable. 
Such a balance is maintained and encourages continuous growth 
in skills, as well as the support of stable learning paths that are 
stable and emotional. 

I. Feedback Loop and Convergence 

PrivAURAL framework is a closed-loop system of learning 
that allows for maintaining adaptability and continuous policy 
improvement throughout time. Every iteration starts with the 
introduction of an adaptive listening task chosen by the existing 
policy, and the answer of the learner is the spoken or 
comprehension-based one. This response elicits quantifiable 
feedback indicators such as the accuracy of listening, the end 
outcome of comprehension, response time, and affective proxy 
changes. Such signals are directly added to the learner state 
representation to calculate the reward of reinforcement that is a 
reflection of performance change and emotional stability. The 
Deep Q-Network subsequently proceeds to update its action-
value estimations with the help of this feedback, which enables 
the policy to change its future task selections in accordance to 
the changing behavior of the learner. 

With the progress of learning, convergence indicators are 
monitored by the system to identify policy stability. When there 
is a little variation in the Word Error Rate across the consecutive 
sessions, then convergence is observed, showing the stability of 
the listening accuracy under similar levels of difficulty. At the 
same time, the reward cumulative curve starts to flatten, which 
means that the agent has found an efficient task 
challenge/learner ability balance. Moreover, a decrease in 
variance in the affective proxy signal is an indicator of stabilized 
engagement as well as the lack of frustration during interactions. 

All these criteria are used together to be sure that adaptation is 
not swamping and adapting to the immediate responses of 
learners. PrivAURAL successfully develops efficient and stable 
learning trajectories through convergence in line with cognitive 
and affective consistency to facilitate the long-term 
development of listening skills and ensure emotional balance 
and privacy protection. 

Algorithm 1: PrivAURAL – Privacy-Preserving 

Adaptive Listening via Federated Reinforcement 

Learning 

Input: 

    Audio tasks from TED-LIUM 
    Initial global DQN parameters θ_g 
    Learning rate α, discount factor γ 

    Reward weights λ1, λ2, λ3 

    Number of learners N 
    Local training episodes E 
Output: 
    Adaptive listening policy π* 

Initialize global Q-network parameters θ_g 
Broadcast θ_g to all learner devices 
Repeat for each federated round: 
    In parallel, for each learner i: 

        Load local listening tasks 
        Initialize local Q-network θ_i ← θ_g 
        Initialize experience buffer B_i 
        Repeat for each episode: 

            Receive current listening task 
            Preprocess audio and extract HuBERT embedding h_t 
            Estimate affective proxy a_t 

            Construct learner state s_t = {WER_t, QuizScore_t, 

ResponseTime_t, a_t} 
            While task interaction is active: 
                Select action a_t using ε-greedy policy from Q(s_t, ·; θ_i) 
                Apply adaptive action (difficulty, speed, quiz frequency) 

                Observe learner response and compute WER_t+1, 
QuizScore_t+1, ResponseTime_t+1 
                Update affective proxy a_t+1 
                Compute reward r_t = λ1ΔWER + λ2ΔQuizScore + λ3Δa 

                Store transition (s_t, a_t, r_t, s_t+1) in B_i 
                Update Q-network θ_i using mini-batch gradient descent 
                Update state s_t ← s_t+1 

        Compute model update Δθ_i = θ_i − θ_g 

        Send Δθ_i to federated server 
    Aggregate updates to obtain global model: 
        θ_g ← Σ (n_i / N) · θ_i 

    Broadcast updated θ_g to all learners 

Until convergence criteria satisfied 
Return final adaptive policy: 
    π*(s) = argmax_a Q(s, a; θ_g) 

Algorithm 1 applies a privacy-preserving adaptive listening 
model based on federated reinforcement learning. The local 
training of a Deep Q -Networks by each learner on semantic-
acoustic features and affective proxy feedback means that task 
difficulty and pacing are altered. Instead of using the learner 
data, model parameters are periodically aggregated across 
devices, so that collaborative policy refinements are made and 
personalized adaptation and strong protection of sensitive 
learner information are guaranteed. 
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Fig. 3. Overall workflow of the study. 

The novelty of this study is in its methodological approach 
that allows unified fusion of affect-conscious adaptive 
reinforcement learning with federated training of English 
listening personalization without being based on centralized data 
on learners or overt emotion recognition. PrivAURAL is a 
listening system that uses affective proxy signals to balance the 
cognitive load and engagement applied to tasks in sequencing, 
unlike other existing systems that change depending on accuracy 
or fixed levels of proficiency. Moreover, whereas the previous 
methods of reinforcement learning in education are centralized 
or performance-based, the framework is provided to allow 
decentralized policy learning with safe model aggregation, 
which does not violate privacy but allows gaining the advantage 
of collective adaptation patterns. The general workflow of the 
study is presented in Fig. 3. Such a mixture creates a scalable 
and ethically sound methodology of intelligent listening systems 
that allow personalization, emotional stability, and data privacy. 

IV. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the 
proposed PrivAURAL framework, focusing on its effectiveness 
in adaptive listening personalization, affect-aware policy 
learning, and privacy-preserving federated training. The 
experimental analysis examines learning accuracy, task 
efficiency, engagement trends, and reinforcement learning 
convergence across multiple sessions. Performance is assessed 
using Word Error Rate, task completion time, cumulative 
reward progression, and personalization behavior, and is 
compared against centralized and non–affect-aware baseline 
models. In addition, ablation studies and federated training 
analyses are conducted to isolate the contribution of 
reinforcement learning and affective proxy integration, 
demonstrating the stability and scalability of the proposed 
approach under decentralized learning constraints. Table II 
shows the hyperparameters and training configurations. 

TABLE. II. HYPERPARAMETERS AND TRAINING CONFIGURATION 

Parameter Value Description 

Learning Rate 3e−4 Step size for DQN updates 

Batch Size 64 
Number of samples per training 

batch 

Discount Factor (γ) 0.99 Weight of future rewards 

Federated Rounds 50 
Communication cycles between 

nodes 

Embedding 

Dimension 
768 

HuBERT + affective proxy 

features 

Maximum Timesteps 500,000 
Total agent–environment 

interactions 

Encryption Scheme 
Paillier 

HE 

Privacy protection for model 

updates 

A. WER Reduction Across Sessions 

Fig. 4 shows the downward trend of WER throughout the 
sessions. WER in Session 1 was 27.9, and it decreased to 26.4 
after adaptation. By the end of Session 5, the WER decreased to 
18.9% (20.6% improvement), and by the end of Session 10, to 
14.6% (32.7% improvement). The stable declining trend denotes 
proper policy streamlining by the DQN, which is motivated by 
the feedback of the reward in the form of emotion and 
comprehension rates. The findings confirm the hypothesis that 
the individual sequence of content taught by the system 
produces quicker acquisition of listening skills than traditional 
techniques. 

Fig. 5 demonstrates the time spent engaged between 
sessions. The time spent by learners in a session was initially 
around 13 minutes, which decreased to 8 minutes at a point of 
Session 10. The decreasing curve represents a more effective 
performance in the tasks without any understanding loss- the 
students accomplished the listening tasks with reduced time and 
at high feelings. Emotion-aware pacing enabled the system to 
balance engagement stability and cognitive effort. 
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Fig. 4. WER progressions over sessions. 

 

Fig. 5. Learner engagement. 

 

Fig. 6. Feature embedding clusters. 

In Fig. 6, Principal Component Analysis (PCA) 
visualizations indicate that the hybrid embedding space contains 
very clear clusters of easy, medium, and hard tasks. This 
isolation exhibits that the MFCC + HuBERT + EmoHuBERT 
feature combination is a powerful solution to distinguish the 
changes in linguistic complexity and tone of voice by enabling 
the DQN agent to allocate the duties to the learners based on 
their capabilities. 

TABLE. III. PERFORMANCE OVER WER 

Session 
Avg WER 

(Initial) 

Avg WER (After 

DQN) 

Improvement 

(%) 

1 27.9% 26.4% 5.4% 

5 23.8% 18.9% 20.6% 

10 21.7% 14.6% 32.7% 

Table III demonstrates that PrivAURAL increasingly 
decreased the WER of learners in ten sessions. In the first 
instance, there was only a slight improvement in the average 
comprehension, but through federation of adaptation, WER 
declined steadily- between 27.9 and 26.4 in Session 1 (5.4% 

change). WER was lowered to 14.6 by Session 10, which is a 
reduction of 32.7%. These results attest to the fact that emotions-
sensitive DQN learns to adapt task sequencing to the progress of 
individual learners in a dynamic manner, which leads to an 
increase in listening comprehension. All the findings were 
statistically significant (p < 0.05). 

 

Fig. 7. Distribution of DQN task choices. 

Fig. 7 represents the distribution of the task difficulties that 
the DQN agent chose. Most of the tasks with the middle-level of 
difficulty were selected, with easy and hard tasks coming next. 
This dynamic equilibrium helps avoid getting bored and 
frustrated among learners and instead achieves a progressive 
learning curve with emotionally maximized engagement. 

B. Federated Training Performance 

Fig. 8 shows the training of the federated Deep Q-Network 
agent. The cumulative reward is progressively growing, and it 
becomes stable at 240 following 400,000-time steps, which 
demonstrates effective convergence of the federated policy. This 
tendency proves that cooperative learning among distributed 
learners can provide a high level of optimization of policies and 
preserve privacy on the basis of the federated structure . 

 

Fig. 8. Federated training performance. 

C. Task Completion Time Improvement 

Table IV shows the decrease in the time spent on completing 
tasks in PrivAURAL. By the 10th session, the learners were 
solving listening tasks 21.9% faster than in the instance of the 
baseline system. Emotion-sensitive adaptation assists in 
balancing cognitive load and being motivated so that a learner 
can advance effectively with specialized challenges. 

TABLE. IV. TASK COMPLETION OVER TIME 

Session Baseline System PrivAURAL System Time Saved (%) 

1 9.6 sec 9.1 sec 5.2% 

5 8.8 sec 7.6 sec 13.6% 

10 8.2 sec 6.4 sec 21.9% 
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D. Personalization Efficiency 

According to the heatmap in Fig. 9, the first sessions were 
based on simple tasks, and as the skills of learners improved, the 
tasks became either medium or hard. This adaptive scaling is 
also an indication that PrivAURAL has an internal policy of 
reinforcing over time and balancing challenges and confidence 
with lower lexical complexity, which confirms their presence as 
major features to adaptive decision-making. 

 

Fig. 9. Task personalization heatmap. 

E. Ablation Study (Without vs. With DQN) 

The ablation experiment in Table V indicates the presence of 
definite performance enhancements when DQN is incorporated. 
The federated RL agent improved the performance of the 
baseline by 7.1% in WER and 1.8 seconds in task completion. 
This confirms the relevance of reinforcement-based 
personalization of enhancing understanding and effectiveness 
without compromising privacy. 

TABLE. V. ABLATION STUDY 

Metric Without DQN With DQN Improvement 

Avg WER (Final) 21.7% 14.6% +7.1% 

Task Completion Time 8.2 sec 6.4 sec −1.8 sec 

F. Performance Comparison 

Table VI compares three systems in terms of WER, accuracy 
and task-time reduction. HuBERT base model delivers the best 
WER with good self-supervised representations but mediocre 
efficiency improvements. Transformer ASR model is more 
accurate but does not adapt to emotions. Compared with other, 
PrivAURAL performs better in terms of overall learning 
efficiency with more accuracy and largest decreasing task time, 
proving the benefit of a combination of reinforcement learning, 
emotional awareness, and privacy-preserving federated updates. 
HuBERT Base reports lower raw WER due to offline ASR 
optimization, whereas PrivAURAL prioritizes adaptive learning 
efficiency and engagement-aware task sequencing rather than 
standalone recognition accuracy. 

TABLE. VI. PERFORMANCE COMPARISON 

Method 
WER (%) 

↓ 

Accuracy 

(%) ↑ 

Task Time 

Reduction 

(%) 

HuBERT Base (Self-

Supervised Speech 

Model) [23] 

10.1 84.7 14.3 

Transformer ASR (No 

Emotion Modeling) [24] 
16.7 86.1 17.0 

Proposed PrivAURAL 

(DQN + Emotion + 

Privacy) 

14.6 87.3 21.9 

G. Discussion 

The experimental outcomes prove that the suggested 
PrivAURAL framework is efficient in facilitating the adaptive 
listening to English allowing to combine the reinforcement 
learning, personalization based on affect, and federated training. 
The steady declining Word Error rate between sessions suggests 
that the modeling of instruction can be represented as a 
progressive decision-making problem which facilitates the 
system to match the task complexity with that of the individual 
learner. Contrary to the baselines, which are usually more 
accurate and somewhat static, PrivAURAL modulates the 
content pacing and difficulty dynamically and achieves better 
understanding results and lower completion time of the task. The 
subsequent stabilization of cumulative rewards and policy 
entropy further affirms that the federated Deep Q-Network 
approach will approach sound strategies of adaptation without 
oscillations. 

Analysis of engagement indicates that affective proxy 
signals can be used to control cognitive load, which enables 
learners to accomplish tasks more effectively whilst ensuring 
performance is steady. The visualization of feature embedding 
reveals that HuBERT-based representations together with 
behavioral cues are useful in distinguishing the level of listening 
difficulty, which can guide the policy to choose an informed 
task. Notably, federated aggregation allows all learners to gain 
the advantages of collective learning but keeps the privacy of 
learners intact since the raw audio or behavior data are not 
transferred. This confirms that the observed improvements in 
accuracy, efficiency, and engagement are realized under strict 
federated privacy constraints, supporting the practical 
deployment of the framework in real-world adaptive learning 
environments. Ablation study supplements the central 
importance of reinforcement learning in attaining these gains by 
demonstrating evident degradation when adaptive policy 
learning is eliminated. On the whole, the results suggest that 
PrivAURAL can be used as a scalable and privacy-sensitive 
alternative to centralized listening systems and is especially 
applicable in distributed and personalized language learning 
systems. 

V. CONCLUSION AND FUTURE WORKS 

This study introduced PrivAURAL, a privacy-conscious and 
affect-sensitive adaptive listening model, which trained English 
instructional learning through federated reinforcement learning 
as a series of sequential decisions. The system dynamically 
adjusted the difficulty and the speed of tasks to each individual 
learning curve by combining HuBERT-based semantic acoustic 
representations with affective proxy indicators based on the 
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behavior of learners. The experimental findings showed that 
there were consistent reductions in Word Error Rate, enhanced 
task completion efficiency, stabilized engagement patterns and 
consistent policy convergence between distributed learners. 
Compared to centralized or accuracy-only listening systems, 
PrivAURAL was able to perform personalization that did not 
require sending raw audio, performance logs or affect-related 
signals thus balancing adaptive learning goals against the hard 
privacy limits. It was demonstrated that the federated Deep Q-
Network allows policy refinement by collaboratively relying on 
local autonomy, which supports the scalability of adaptive 
listening systems based on data accountability. Altogether, the 
results indicate that personalization, reinforced by 
reinforcement, together with affect-conscious regulation and 
decentralized training, can contribute to the improvement of the 
listening comprehension outcomes in the privacy-constraining 
educational context under a considerable degree. Importantly, 
these gains are achieved under strict federated privacy 
constraints, demonstrating that scalable and privacy-compliant 
deployment can be realized without compromising adaptive 
listening performance. 

The present research will be expanded in future to include 
PrivAURAL to actual classroom and mobile learning situations 
in order to confirm its applicability with real-life learners and 
their various levels of proficiency. The proposed approach can 
also be evaluated by incorporating multi-lingual and code-
switching speech datasets to assess the overall applicability of 
the proposed approach. More sophisticated federated 
optimization techniques, including adaptive client weighting 
and asynchronous aggregation can also be beneficial to 
convergence efficiency where there is heterogeneous 
participation of learners. In the modeling perspective, a policy-
gradient or multi-agent reinforcement learning formulation 
would be of value to long-term curriculum planning. Lastly, 
more detailed affective proxy modeling with multimodal 
behavioral data, without ethical or privacy breaches, is a 
prospective direction to enhance the understanding of learner 
engagement without bringing explicit emotion detection and 
intrusive data acquisition. 
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