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Abstract—The accelerating pace of digital transformation is 

reshaping labour-market dynamics, driving the emergence of 

new competencies, and intensifying the need for scalable skill-

intelligence systems within open innovation ecosystems. Yet, 

research on Indonesian Named Entity Recognition (NER) 

remains limited for skill-extraction tasks, especially in low-

resource contexts where annotated data are scarce and novel skill 

expressions evolve rapidly. To address this gap, this study 

contributes to applied Natural Language Processing (NLP) by 

introducing the Few-Shot Semantic Meta-Learning framework 

with CRF (FSM-CRF) for Indonesian skill entity recognition, 

which integrates semantic span representations, episodic meta-

learning, and BIO-constrained CRF decoding to enhance 

prototype stability and entity-boundary precision for complex, 

multi-token skill expressions. Using the NERSkill.id dataset, the 

proposed model is evaluated under a 3-way, 10-shot episodic 

setting and achieves a micro-F1 of 73.84%, outperforming 

traditional supervised approaches (IndoBERT fine-tuning, 

BiLSTM-CRF) and existing few-shot baselines. Ablation 

experiments further demonstrate that semantic span modelling 

and structured CRF inference play pivotal roles in improving 

robustness, while meta-learning strengthens adaptability across 

diverse and evolving skill categories. From an open innovation 

perspective, this framework offers a data-efficient solution for 

dynamic competency mapping, reducing dependence on costly 

annotation pipelines and enabling continuous updates to 

workforce skill taxonomies. Overall, the findings highlight 

semantic meta-learning as a promising foundation for next-

generation skill-intelligence infrastructures that support AI-

enabled innovation management, strategic workforce planning, 

and evidence-informed policy design. 
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I. INTRODUCTION 

The rapid acceleration of digital transformation has 
reshaped how organizations, industries, and governments 
understand, cultivate, and manage human capabilities, as 
digital technologies reconfigure work processes and 
employment structures [1], [2], [3]. As emerging technologies 
continually redefine job roles and competency requirements, 
skill intelligence systems designed to detect, map, and update 
workforce skills in real-time have become a critical component 

of open innovation ecosystems [4], [5]. In this environment, 
organizations must rely on agile, data-driven mechanisms to 
monitor labour-market trends, identify emerging competencies, 
and support continuous learning and upskilling [6], [7]. 
However, traditional approaches that depend on manual 
curation of skill taxonomies or large-scale labelled datasets are 
increasingly unsustainable, especially in dynamic contexts 
where new skills evolve faster than they can be annotated or 
embedded into curricula [1], [2]. Gayatri et al. [8] show that 
this challenge is particularly evident in Indonesian digital 
labour markets, where projected gaps in advanced digital 
competences persist through 2025, while Prasetyo [9] 
illustrates how platform-mediated work and informal-economy 
dynamics in Indonesia accelerate the diversification of 
technical and digital skills beyond the reach of conventional 
competency-based education systems. Together, these findings 
highlight the urgency of building scalable skill intelligence 
infrastructures that can operate with minimal manual labelling 
while remaining sensitive to rapidly evolving, locally 
embedded skill configurations in digital labour platforms and 
education ecosystems [1], [7], [8]. 

Despite growing interest in automated skill extraction, the 
development of robust NER systems for skill-related 
Indonesian text remains limited, with existing work on 
Indonesian NER still concentrating mainly on news or cross-
linguistic corpora rather than fine-grained occupational skills 
[10], [11]. Skill entities in these contexts frequently surface as 
multi-word expressions such as troubleshooting network, cloud 
security management, or analysis perform server whose non-
compositional and domain-specific semantics are known to 
challenge sequence labelling models when multiword 
expressions are not explicitly modelled [12]. These 
characteristics become even more problematic under low-
resource conditions, where only a few annotated examples are 
available for each skill type and conventional architectures 
struggle to learn reliable decision boundaries [13], [14]. State-
of-the-art NER approaches based on BiLSTM-CRF and 
Transformer fine-tuning, including IndoBERT-style models, 
still rely heavily on large, domain-specific annotated corpora 
and exhibit reduced generalization when confronted with 
domain-specific phrasing, rich morphological variation, and 
heterogeneous syntactic structures, as observed in job 
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advertisements, legal/technical documents, and other 
specialized corpora [15], [16], [17]. 

Few-shot learning offers a promising alternative for skill 
entity recognition because it allows models to generalize from 
only a handful of labelled examples [18], [19], [20]. However, 
prototype-based few-shot NER methods such as Prototypical 
Networks and their variants remain highly sensitive to multi-
token span representations, which often leads to unstable 
prototypes and inaccurate entity boundaries in complex skill 
phrases [19], [21], [22]. Even when enhanced with contrastive 
or prompt-based learning, many few-shot NER architectures 
still underutilize structured sequence information, resulting in 
inconsistent BIO label transitions and degraded precision on 
span-level prediction [20], [23]. To date, only a limited body of 
work has jointly integrated semantic span representations, 
dynamic prototype refinement, and structured decoding layers 
(e.g., CRF) within a unified framework, and virtually none of 
these studies has been tailored to Indonesian SkillNER 
scenarios. At the same time, research on data-efficient NER for 
skills has only begun to explore its role in labour-market 
analytics and innovation systems, despite evidence that 
automated skill extraction can support soft-skill mapping, 
competency taxonomies, and workforce analytics for open 
innovation and Industry 4.0 ecosystems [24], [25]. 

To address these gaps, this study proposes a Few-Shot 
Semantic Meta-Learning framework with CRF (FSM-CRF) for 
Indonesian Skill Entity Recognition, building on recent 
advances in few-shot NER and meta-learning for low-resource 
settings [18], [19], [26], [27]. The approach integrates three 
complementary components: 1) semantic span representations 
derived from IndoBERT to model the rich semantics and label 
interactions of multi-word skill expressions, inspired by span- 
and label-aware few-shot architectures [23], [28], [29]; 2) 
episodic meta-learning to construct stable class prototypes and 
enhance generalization under limited supervision, in line with 
recent prototypical and contrastive few-shot NER methods 
[26], [27], [30]; and 3) BIO-constrained CRF decoding to 
enforce structural consistency and improve entity boundary 
detection, following evidence that structured decoding remains 
beneficial in sequence labelling for NER [31], [32]. Using the 
NERSkill.id dataset containing annotated Indonesian skill 
entities across HSkill, SSkill, and Tech categories [33] and 
extending prior work on Indonesian NER in disaster, financial, 
and misinformation domains [32], [34], [35]. The framework is 
evaluated through comprehensive experiments, including 
baseline comparisons, ablation studies, and statistical 
significance testing, as recommended in recent few-shot NER 
evaluations. The results demonstrate that the proposed model 
consistently outperforms traditional supervised and state-of-
the-art few-shot baselines under scarce per-class supervision, 
achieving notable gains in F1 for complex multi-token skill 
spans while maintaining BIO-consistent predictions. 

The contributions of this study are fourfold. First, it 
introduces a novel semantic meta-learning architecture 
specifically designed for low-resource Indonesian SkillNER. 
Second, it establishes a new benchmark by constructing and 
analysing the NERSkill.id dataset, which is organised around 
realistic workforce skill categories. Third, it presents a rigorous 
empirical evaluation that combines standard performance 

metrics, ablation studies, and Friedman–Nemenyi statistical 
testing to clarify the respective roles of the semantic, meta-
learning, and structured decoding components. Finally, from an 
open innovation perspective, this work demonstrates how data-
efficient NER models can strengthen adaptive skill intelligence 
systems, reduce reliance on costly annotation pipelines, and 
support dynamic workforce innovation strategies. Although the 
individual components employed in this study semantic span 
representations, episodic meta-learning, and CRF-based 
structured decoding have been examined in earlier research, 
their combination within FSM-CRF goes beyond a 
straightforward assembly of existing techniques. In this work, 
Indonesian SkillNER is treated as a span-centric learning 
problem under few-shot conditions, where the formation of 
class representations, the identification of entity boundaries, 
and the enforcement of label consistency are addressed in a 
unified manner. 

Unlike prior span-based or few-shot NER approaches that 
largely rely on representation similarity alone, or structured 
decoding methods that are applied after fixed token-level 
predictions, FSM-CRF brings these processes together during 
learning. This integration enables more stable handling of 
multi-token skill expressions while maintaining coherent 
sequence structure throughout inference. In practical terms, it 
helps mitigate common failure cases observed in low-resource 
settings, such as unstable class representations and fragmented 
entity boundaries. The resulting framework therefore supports 
more reliable skill extraction in Indonesian texts, not by 
introducing isolated components, but by reshaping how they 
interact under limited supervision. Taken together, the core 
contribution of this work lies in enabling stable, span-level skill 
extraction under few-shot conditions with structured sequence 
consistency a capability that prior Indonesian and few-shot 
SkillNER systems could not achieve reliably while remaining 
transferable to other low-resource and dynamically evolving 
skill domains beyond the specific dataset or national context 
studied here. 

 The remainder of this study is organised as follows: 
Section II reviews related work. Section III describes the 
proposed method. Section IV outlines the experimental setup 
and presents and discusses the results. Finally, Section V 
concludes with theoretical, practical, and policy implications. 

II. RELATED WORKS 

A. Skill Intelligence and Digital Competencies 

As digital transformation accelerates, the need for advanced 
skill-intelligence systems has become increasingly evident. 
Contemporary studies emphasize that organizations now 
depend on data-driven mechanisms to identify emerging 
competencies, support continuous learning, and sustain 
competitiveness within open innovation ecosystems [1], [4]. 
Traditional approaches, such as manually curated skill 
taxonomies or extensively annotated datasets, are no longer 
adequate in environments where new skills evolve rapidly and 
unpredictably [4]. In Indonesia, these challenges are even more 
pronounced due to persistent digital skill gaps and the growing 
influence of platform-based and informal labour markets [8], 
[36], [37]. From an open innovation perspective, the ability to 
extract skill-related information from unstructured text is 
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essential for enabling timely, evidence-based decision-making 
[25], [38]. Consequently, NLP techniques capable of operating 
with limited supervision play an increasingly strategic role in 
supporting dynamic competency mapping across innovation-
driven ecosystems [14], [26]. 

B. Indonesian Named Entity Recognition 

Research on Indonesian Named Entity Recognition (NER) 
has expanded across various domains such as news, disaster 
management, finance, and other publicly accessible texts, 
employing models like Bi-LSTM–CRF and transformer-based 
fine-tuning (e.g., IndoBERT) [10], [34], [39]. However, despite 
this growth, these efforts predominantly target general entity 
types (persons, organizations, locations), while the domain of 
skill extraction remains largely unexplored. Skill entities pose 
additional complexity: unlike conventional NER categories, 
skill expressions often manifest as multi-word, semantically 
rich phrases such as troubleshooting network or cloud security 
management, which require deeper contextual and 
compositional understanding. Although datasets like 
NERSkill.id aim to provide foundational resources for 
Indonesian SkillNER [33], conventional token-level NER 
methods struggle to represent the full complexity and 
variability of skill-related language. This gap underscores the 
need for models specifically optimized for skill extraction, 
especially in innovation-oriented environments where timely 
and accurate competency insights are essential. 

C. Few-Shot Named Entity Recognition Approaches 

Few-shot NER methods have gained significant attention 
for their ability to generalize from minimal annotated data a 
capability increasingly important in innovation-driven domains 
where new concepts and competencies continuously emerge 
[18], [40]. Meta-learning and prototypical-network approaches 
aim to build class-level representations (prototypes) that 
support rapid adaptation to new entity categories [18], [27]. 
Despite their promise, existing few-shot approaches encounter 
substantial limitations when applied to multi-token or domain-
specific entities. Prototype representations often become 
unstable, resulting in inaccurate span boundaries and 
misclassification of entity spans, especially when prototypes 
are too closely distributed, or label dependency is roughly 
estimated [17], [41]. Although more recent techniques that 
incorporate prompting or contrastive learning have improved 
representation quality [19], [42], they frequently overlook 
structural constraints such as consistent BIO-label transitions 
or sequence-level dependencies. Notably, the literature lacks a 
unified approach that combines semantic span modelling, 
episodic meta-learning, and structured decoding (e.g., CRF), 
especially tailored for specialized domains such as skill 
extraction in low-resource languages. This absence represents a 
significant research gap in developing adaptable, data-efficient 
competency extraction methods compatible with open 
innovation and dynamic labour-market ecosystems. 

D. Semantic, Meta-Learning, and Conditional Random Field 

(CRF) 

Semantic span representations have emerged as a robust 
alternative to token-level modelling because they better capture 

the internal structure and meaning of multi-word entities, an 
advantage especially relevant for complex or domain-specific 
phrases common in skill-related text [29], [43], [44]. However, 
their integration within few-shot learning frameworks remains 
limited  even though semantic grounding is essential for 
forming stable and generalizable prototypes under data scarcity 
[18], [45]. Meta-learning offers strong potential for rapid 
adaptation, but without rich semantic span features, prototypes 
often become inconsistent especially for long or heterogeneous 
skill expressions which can severely degrade boundary 
detection accuracy [17], [22]. 

In parallel, Conditional Random Field (CRF)-based 
decoding remains highly effective for enforcing BIO-consistent 
label transitions and ensuring structurally coherent predictions, 
helping mitigate over-prediction and improving reliability 
when dealing with multi-token, semantically dense entity spans 
[46], [47]. Despite the promise shown by each component 
semantic span modelling, meta-learning, and structured 
decoding the existing literature typically treats them in 
isolation. To date, no study (to our knowledge) has proposed a 
unified few-shot framework that integrates all three 
components, and none is tailored to the context of Indonesian 
SkillNER. The present research fills this gap by combining 
semantic span representations, episodic meta-learning, and 
BIO-constrained CRF decoding into a cohesive architecture, an 
integration that we argue enhances prototype stability, 
improves boundary precision, and strengthens overall 
robustness, thereby supporting the responsiveness and 
knowledge adaptiveness central to open-innovation 
frameworks. 

III. PROPOSED METHOD 

This section presents a Few-Shot Semantic Meta-Learning 
Framework with CRF (FSM-CRF) for Indonesian Skill Entity 
Recognition. The framework (see Fig. 1) integrates BIO-to-
span reformulation, semantic prototype modelling, episodic 
meta-learning, and CRF-based decoding. The methodological 
design is informed by established practices in deep-learning 
NER [14], [48], [49], annotation scheme studies [50], and 
Indonesian transformer-based NER research [51], [52]. 

A. Data Preparation and Pre-processing 

1) BIO labelling and reformulation: The Begin–Inside–

Outside (BIO) tagging scheme, which is widely used in 

sequence labelling studies surveyed by Seow et al. [53], is 

adopted to explicitly represent the boundary structure of skill 

entities, which in Indonesian texts frequently appear as multi-

token expressions rather than isolated terms. 

Within this scheme, the B label indicates the beginning of a 
skill mention, I marks tokens that continue the same skill span, 
and O is assigned to tokens that do not belong to any skill 
entity. This explicit distinction allows the model to separate 
entity boundaries from internal token composition, which is 
essential for accurately capturing complex skill expressions. 
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Fig. 1. A few-shot semantic meta -learning framework with CRF for an Indonesian skill entity recognition model. 

To illustrate this process, consider the sentence “memahami 
step troubleshooting network”. The token “troubleshooting” is 
labelled as B-HSkill, followed by “network” as I-HSkill, 
reflecting that both tokens together form a single Hard Skill 
entity. In contrast, tokens such as “memahami” and “step” 
receive the O label. This token-level annotation preserves the 
internal structure of skill expressions while clearly defining 
their boundaries. 

The BIO scheme is chosen primarily for its robustness and 
practicality in low-resource annotation settings. Compared to 
more elaborate schemes such as BILOU, BIO offers a simpler 
and more consistent annotation process, a trade-off that is 
commonly recommended in recent NER surveys such as Hu et 
al. [49] when annotation consistency and boundary ambiguity 
are key concerns. In addition, BIO integrates naturally with 
structured sequence decoding, allowing label consistency to be 
enforced during inference without increasing annotation 
complexity. 

NER data are initially represented as token–label pairs: 

𝓍 = {𝓌1 ,… , 𝓌2}, 𝓎 = {𝓉1 ,… , 𝓉2} 

where, each label follows the BIO scheme: 

𝓉1 ∈  {𝑂, 𝐵 − 𝐸𝑘, 𝐼 − 𝐸𝑘}, 𝐸𝑘 ∈  {𝐻𝑆𝑘𝑖𝑙𝑙, 𝑆𝑆𝑘𝑖𝑙𝑙, 𝑇𝑒𝑐ℎ} 

 The BIO scheme has been shown to influence NER 
performance depending on annotation design [48], [50]. To 
enable span-level reasoning, sequences of BIO labels are 
reformulated into entity spans: 

𝑠 = {𝑖, 𝑗, 𝐸𝑘}, 𝑗 = max{𝑛: 𝑡𝑛 = 𝐼 − 𝐸𝑘} 

yielding, the mapping: 

𝑓𝐵𝐼𝑂→𝑠𝑝𝑎𝑛(𝓎) = {𝑖, 𝑗, 𝐸𝑘} | 𝓉1 =  𝐵 − 𝐸𝑘, 𝓉𝑖+1:𝑗 =  𝐼 − 𝐸𝑘 

This reformulation consolidates multi-token constructs 
such as 𝐵 − 𝐻𝑆𝑘𝑖𝑙𝑙 + 𝐼 − 𝐻𝑆𝑘𝑖𝑙𝑙  into a single coherent span 
entity 𝐻𝑆𝑘𝑖𝑙𝑙 , 𝐵 − 𝑆𝑆𝑘𝑖𝑙𝑙 + 𝐼 − 𝑆𝑆𝑘𝑖𝑙𝑙 → 𝑆𝑆𝑘𝑖𝑙𝑙 , and 𝐵 −
𝑇𝑒𝑐ℎ + 𝐼 − 𝑇𝑒𝑐ℎ → 𝑇𝑒𝑐ℎ , consistent with span-level 
methodologies in contemporary NER [54], [55]. 

2) Subword tokenization and label projection: Indonesian 

text is encoded using a transformer-based subword tokenizer 

(e.g., IndoBERT), following established practices in 

Indonesian and low-resource NER [51], [52], [56]. 

Tokenization yields a mapping: 

𝑤𝑜𝑟𝑑_𝑖𝑑𝑠[𝑚] = {
𝑖,    

𝑛𝑜𝑛𝑒,
 
𝑠𝑢𝑏𝑤𝑜𝑟𝑑 𝑚 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑠 𝓌1,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

BIO labels are projected onto subword units: 

𝓉𝑚
𝑠𝑢𝑏 = {

𝓉𝑤𝑜𝑟𝑑_𝑖𝑑𝑠[𝑚],    

𝑂,
 
𝑤𝑜𝑟𝑑_𝑖𝑑𝑠[𝑚]  ≠ 𝑛𝑜𝑛𝑒,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The output of pre-processing is a structured representation: 

𝓍𝑠𝑢𝑏, 𝓎𝑠𝑢𝑏, 𝑠𝑝𝑎𝑛, 𝑤𝑜𝑟𝑑_𝑖𝑑𝑠 

which maintains alignment between spans, subword 
embeddings, and sequence-level decoding. 

B. Semantic Prototype Layer 

1) Span-based embedding construction: Each span 𝑠 =
{𝑖, 𝑗, 𝐸𝑘}  is converted into a semantic embedding based on 

token-level contextual states: 

𝑣𝑠𝑝𝑎𝑛 =  
1

|𝑇𝑠𝑝𝑎𝑛|
 ∑ ℎ𝑡

 𝑡 ∈ 𝑇𝑠𝑝𝑎𝑛

 

Span embeddings are widely used in span-based NER due 
to their representational robustness [49], [55]. 

2) Text-derived semantic prototypes: Each entity label is 

verbalized as: 

𝑑𝑘 = "𝐿𝑎𝑏𝑒𝑙 ∶  𝐸𝑘" 

and encoded using the same transformer encoder: 

𝑝𝑘
𝑡𝑒𝑠𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑑𝑘)[𝐶𝐿𝑆] 

Label-descriptive prototypes leverage semantic priors from 
pretrained language models, consistent with recent advances in 
semantic-aware NER [14], [49]. 
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3) Semantic alignment objective: Span embeddings and 

text-derived prototypes are aligned using a consistency 

objective. For each span embedding 𝑣𝑖: 

𝑠𝑖
𝑑𝑎𝑡𝑎 = 𝑣𝑖. 𝑝𝑑𝑎𝑡𝑎, 𝑠𝑖

𝑡𝑒𝑠𝑡 = 𝑣𝑖 . 𝑝𝑡𝑒𝑠𝑡 

with probability distributions: 

𝑞𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖
𝑑𝑎𝑡𝑎), 𝑟𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖

𝑡𝑒𝑠𝑡) 

and their mixture: 

𝑚𝑖 =
𝑞𝑖 +  𝑟𝑖

2
 

The semantic alignment loss is: 

ℒ𝑠𝑒𝑚 =
1

2
[𝐾𝐿(𝑞𝑖||𝑚𝑖)] + [𝐾𝐿(𝑟𝑖 ||𝑚𝑖)] 

encouraging representational coherence across data-driven 
and label-informed semantic spaces. 

The semantic fusion mechanism is designed to integrate 
evidence from annotated data with prior semantic information 
derived from label descriptions, an idea aligned with recent 
prototype-based few-shot NER studies that explicitly bridge 
span representations and textual type descriptions [21]. During 
each training episode, span representations extracted from the 
support set are first aggregated to form provisional class 
representations. These representations are then aligned with 
label-level embeddings obtained from textual descriptions of 
each skill category, where the use of semantic constraints to 
stabilize learning under scarce supervision has been shown to 
be effective in related settings [57]. 

Through this alignment process, the resulting class 
representations capture both observed patterns in the data and 
broader semantic characteristics associated with each skill type. 
This combined representation provides a more stable basis for 
classification, particularly when dealing with rare or newly 
emerging skill expressions that may not appear frequently in 
the training data; prototype ambiguity under limited samples 
has been repeatedly highlighted as a key challenge in the 
literature. 

C. Episodic Meta-Learning Layer 

FSM-CRF employs N-way K-shot episodic meta-learning, 
an approach widely used in few-shot NLP tasks and beneficial 
for low-resource NER [49], [56]. Each training episode follows 
an N-way K-shot setting that reflects realistic low-resource 
learning conditions. For instance, in a 3-way 10-shot 
configuration, three skill categories, HSkill, SSkill, and Tech, 
are selected, and ten support instances are sampled for each 
category. A separate set of query sentences is then used to 
evaluate the model’s predictions. 

Within each episode, span representations from the support 
set are used to construct category-level representations, which 
are subsequently applied to classify spans in the query set. By 
repeatedly exposing the model to such episodic tasks, the 
learning process encourages rapid adaptation across different 
skill categories and supports generalization in scenarios where 
annotated examples are limited. 

Each meta-learning episode samples: 

• a class set 𝐶𝑒 = {𝐸1,… , 𝐸𝑁} 

• a support set 𝑆𝑒  containing 𝐾 spans per class, 

• a query set 𝒬𝑒  drawn from disjoint samples. 

Span embeddings are classified using a softmax classifier: 

𝑃(𝓎𝑖 = 𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑣𝑖 + b)𝑘∗ 

The meta-learning loss is defined as: 

ℒ𝑚𝑒𝑡𝑎 = −
1

𝑀
∑ log𝑃(𝓎𝑖 = 𝓎𝑖

𝑡𝑟𝑢𝑒)

𝑀

𝑖=1

 

Through repeated episodes, the model acquires generalized 
representations that support effective few-shot generalization 
across new Indonesian skill-entity contexts [51], [52]. 

D. CRF-Based Sequence Decoder 

Conditional Random Fields (CRF) are integrated to enforce 
global consistency and BIO structural rules, a proven technique 
in modern NER architectures [49], [56]. Token-level 
classification approaches that rely solely on independent 
predictions, as discussed in a recent comprehensive NER 
review [53], often struggle to maintain consistency across an 
entire sequence, particularly when entities span multiple 
tokens. This limitation becomes evident in skill extraction 
tasks, where fragmented predictions can lead to incomplete or 
incorrect entity boundaries. To address this issue, a CRF layer 
widely adopted in modern NER pipelines [58] is employed as a 
sequence-level decoder that jointly optimizes label assignments 
across the sentence. 

In this framework, the CRF layer incorporates structural 
constraints derived from the BIO tagging scheme to guide the 
decoding process. Certain label transitions are explicitly 
restricted to prevent invalid sequences. For example, 
transitions such as O → I-HSkill or B-Tech → I-SSkill are 
disallowed, while transitions like B-HSkill → I-HSkill or I-
Tech → O are permitted. By enforcing these constraints during 
decoding, the model is encouraged to produce coherent and 
contiguous skill spans rather than isolated token predictions. 

This structured decoding mechanism is particularly 
beneficial for handling multi-token skill expressions, which are 
prevalent in the NERSkill.id dataset. By considering both local 
token information and global sequence structure, the CRF layer 
helps reduce boundary fragmentation and improves the 
reliability of span-level predictions, especially for longer and 
semantically dense skill entities. 

1) Emission computation 

For each subword embedding ℎ𝑡: 

𝑒𝑡,𝑘 = (𝑊𝑡𝑎𝑔 ℎ𝑡 + 𝑏𝑡𝑎𝑔)
𝑘
 

2) Transition constraints 

BIO constraints are encoded in the transition matrix: 

𝐴𝑖,𝑗 = −104 , 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑖 → 𝑗 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑠 𝐵𝐼𝑂 𝑟𝑢𝑙𝑒𝑠 
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Illegal sequences, such as 𝑂 → 𝐼 − 𝐻𝑆𝑘𝑖𝑙𝑙 or 𝐵 − 𝑇𝑒𝑐ℎ →
𝐼 − 𝑆𝑆𝑘𝑖𝑙𝑙, are strictly discouraged. 

3) CRF Loss 

The CRF objective for an entire sequence is: 

ℒ𝐶𝑅𝐹 = − log𝑃(𝓎 | 𝑒, 𝐴) 

The CRF layer ensures global sequence validity and 
reduces fragmented entity predictions. 

E. Joint Optimization Objective 

The overall objective integrates CRF decoding, episodic 
meta-learning, and semantic alignment: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐶𝑅𝐹 +  𝛼ℒ𝑚𝑒𝑡𝑎 + 𝛾ℒ𝑠𝑒𝑚 

with weighting coefficients: 

𝛼 = 0.8, 𝛾 = 0.05 

Optimization follows 𝐴𝑑𝑎𝑚𝑊  with differential learning 
rates for encoder and classification layers, consistent with best 
practices in transformer-based NER and low-resource 
adaptation [49], [56]. 

F. Evaluation Protocol 

Evaluation follows an episodic meta-testing setup, 
consistent with few-shot NER practices [49], [56]. Each 
evaluation episode includes: 

• a support set for rapid adaptation, 

• a query set for prediction, 

• CRF decoding to generate sequence-consistent BIO 
labels. 

Predicted subword tags are mapped back to word-level BIO 
labels via: 

𝑡̂𝑖 = 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑏𝑤𝑜𝑟𝑙𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝓌1 

Performance is measured using precision, recall, and F1-
score at the entity level, following widely adopted NER 
evaluation methodologies [14], [48]. 

IV. RESULTS 

A. Dataset 

The NERSkill.id 1  dataset provides a comprehensive 
benchmark for Few-Shot NER, capturing the diversity of skill 
expressions needed in fast-evolving digital labour 
environments, as summarized in Table I. The training set 
contains 3.440 sentences annotated with 22.798 Hard Skill, 
11.852 Soft Skill, and 17.515 Technology entities, offering a 
rich and varied foundation for models that must generalize 
from limited examples. Complementing this, the testing set 
comprises 861 sentences with 5.719 Hard Skill, 2.897 Soft 
Skill, and 4.199 Technology entities, creating a challenging 
evaluation setting in which the model must distinguish between 
abstract soft-skill expressions and more structured technical 
terms under sparse supervision. This configuration closely 
reflects real-world innovation dynamics, where emerging 

 
1 https://data.mendeley.com/datasets/5s8r9ndfvc/2 

competencies appear in fragmented forms yet demand accurate 
interpretation to support data-driven decision-making and 
guide strategic responses to technological change. 

TABLE I.  DISTRIBUTION OF SENTENCES AND ENTITIES IN THE 

NERSKILL.ID FEW-SHOT NER BENCHMARK 

Data Sentences 
Entity 

HSkill SSkill Tech 

Train 3440 22798 11852 17515 

Test 861 5719 2897 4199 

 

Fig. 2. Illustration of tokenization, BIO tagging, and span construction from 

the NERSkill.id dataset prior to transformer-based encoding. 

The example in Fig. 2 illustrates how entities from the 
NERSkill.id dataset is processed within the Few-Shot NER 
pipeline, showing the step-by-step transformation from raw 
text into span-level embeddings. In the sentence “memahami 
step troubleshooting network”, the tokens “troubleshooting” 
and “network” are correctly recognized as a continuous Hard 
Skill through the BIO tagging scheme, producing token spans 
that remain faithful to their semantic boundaries. These spans 
are then merged into a coherent entity representation 
“troubleshooting network” before being encoded by an 
Indonesian transformer backbone (indobert-base-p2). This 
encoding captures both contextual nuance and the internal 
structure of the skill expression, enabling the model to 
generalize effectively even when annotated examples are 
limited. The transition from token-level labels to enriched span 
embeddings demonstrates the dataset’s ability to support robust 
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Few-Shot NER modelling, particularly in identifying complex 
technical skills embedded in practical, real-world language. 

TABLE II.  HYPERPARAMETERS USED IN THE FEW-SHOT NER 

EXPERIMENT FOR SKILL EXTRACTION 

Component Hyperparameter Value 

Pretrained encoder Model name indobert-base-p2 

Input Max sequence length 96 

Few-shot episode 

(train) 

N-way 3 

K-shot (support per class) 15 

Q (query sentences) 30 

Few-shot episode 

(test) 

N-way 3 

K-shot 10 

Q 20 

Training schedule 
Training episodes 3000 

Evaluation episodes 50 

Optimization 

Optimizer AdamW 

Encoder learning rate 1×10⁻⁵ 

Head learning rate 3×10⁻⁴ 

Weight decay 0.01 

Warmup ratio 0.1 

Architecture and 

regularization 

Dropout 0.1 

Frozen encoder layers 6 

Prototypical 

learning 

Prototype dimension Encoder hidden size 

Temperature 𝜏 0.1 

Prototype loss weight 𝛼 0.8 

Semantic 

alignment 

JS alignment weight 𝛾 0.05 

Alignment temperature 

𝜏_𝑠𝑒𝑚  
0.07 

Fusion mechanism Semantic fusion Enabled 

Decoding CRF layer Enabled 

Class balancing Class weights √max _𝑐𝑜𝑢𝑛𝑡 /𝑐𝑜𝑢𝑛𝑡  

Rare entity boost Rare entity boost All 1.0 

B. Experiment Setup 

The experimental setup (as shown in Table II) was 
designed to examine how a semantic meta-learning framework 
with CRF can extract skill information from limited examples 
within a fast-changing and innovation-driven labor ecosystem. 
We implemented an episodic Few-Shot NER architecture 
based on a semantic meta-learning variant of the Episodic Span 
Metric NER model, using indobert-base-p2 as the 

underlying encoder. Each episode incorporated all three skill 
categories in the NERSkill.id dataset (HSkill, SSkill, Tech) in a 
3-way configuration, with up to 15 support sentences and 30 
query sentences, and a maximum sequence length of 96 
subword tokens. BIO-labelled tokens were transformed into 
span-level representations to construct data-driven class 
prototypes, which were then adaptively combined with text-
based label prototypes through a semantic fusion mechanism. 
A JS-divergence alignment term was added to strengthen 
semantic coherence between the two sources of prototypes. To 
ensure training stability in a low-resource setting typical of 
emerging skills and novel competency expressions the lower 
six transformer layers were frozen, while task-specific layers 

were optimized with differential learning rates using AdamW. 
A CRF decoder with strict BIO transition constraints was used 
to produce structured predictions. During evaluation, the same 
episodic protocol was applied to the test set using 3-way 
episodes, 10-shot support, and 20 query sentences across 50 
episodes, enabling a realistic assessment of how effectively the 
semantic meta-learning model generalizes across diverse skill 
types encountered in complex digital labour markets. 

C. Main Results 

The evaluation outcomes, summarized in Table III, indicate 
that the proposed approach demonstrates strong generalization 
under the 3-way, 10-shot, 20-query episodic configuration 
evaluated across 50 episodes. Overall, the model achieves a 
micro-F1 of 73.84% and a macro-F1 of 74.33%, reflecting 
balanced performance across entity types. Among the three 
categories, the model performs best on Tech entities (F1 = 
84.10%, Precision = 84.23%, Recall = 83.96%), suggesting 
that technology-related terms are typically more concrete and 
consistently benefit from the span-based prototypical 
representation and the constrained CRF decoding mechanism. 
Soft Skill (SSkill) extraction also yields strong results (F1 = 
76.79%), which underscores the effectiveness of the semantic 
fusion component in capturing more abstract and context-
dependent skill expressions. In contrast, Hard Skill (HSkill) 
shows lower performance (F1 = 62.12%), with recall slightly 
lagging behind precision, indicating that the model is more 
conservative and tends to miss instances of hard skills that 
often exhibit greater lexical variability. The close alignment 
between micro, macro, and weighted averages (around 74% 
F1) suggests that performance remains relatively stable across 
classes without overfitting to any particular entity type. From 
an open innovation perspective, these findings highlight the 
potential of semantic meta-learning as a scalable approach for 
mapping emerging competencies in digital labour ecosystems, 
while also revealing the need for further refinement, 
particularly in handling more heterogeneous hard-skill 
expressions to improve the robustness of AI-driven skill 
intelligence systems. 

TABLE III.  MODEL PERFORMANCE ACROSS ENTITIES UNDER THE 

SEMANTIC META-LEARNING FRAMEWORK WITH CRF 

Entity Precision Recall F1 

HSkill 63.16 % 61.12 % 62.12% 

SSkil 78.22 % 75.41 % 76.79 % 

Tech 84.23 % 83.96 % 84.10 % 

micro avg 74.64 % 73.06 % 73.84 % 

macro avg 75.20 % 73.49 % 74.33 % 

weighted avg 74.53 % 73.06 % 73.78 % 

The comparative results presented in Table IV, highlight 
the contrasting learning behaviours of traditional supervised 
architectures and episodic meta-learning approaches. The 
BiLSTM-CRF and IndoBERT fine-tuning baselines, each 
trained for 5 supervised epochs, deliver strong F1 scores of 
70.55% and 72.80%, respectively. Their performance reflects 
the advantages of dense, token-level supervision, which 
enables stable optimization and effective pattern learning when 
sufficient labelled data is available. However, these models 
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inherently depend on extensive annotation and remain less 
flexible when encountering emerging or low-frequency skill 
expression situations that commonly arise in dynamic, 
innovation-driven labour markets. 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN BASELINE AND THE 

PROPOSED MODEL 

Model Precision Recall F1 

BiLSTM-CRF 74.55 % 66.96 % 70.55 % 

Transformer Fine-Tuning(IndoBERT) 70.36 % 75.41 % 72.80 % 

Prototypical Networks 1.97 % 3.48 % 2.51 % 

Frozen ProtoNet 3.40 % 5.02 % 4.05 % 

FSM-CRF (Proposed model) 74.64 % 73.06 % 73.84 % 

In comparison, few-shot baselines, such as Prototypical 
Networks (F1 = 2.51%) and Frozen ProtoNet (F1 = 4.05%), 
both trained for 3000 episodic iterations, perform poorly 
despite their substantially longer training schedule. This gap 
demonstrates that simply increasing episodic cycles does not 
guarantee effective learning in domains characterized by 
heterogeneous multi-token skill spans and nuanced semantic 
structures. Without mechanisms to incorporate span-level 
context or semantic grounding, these models struggle to form 
reliable prototypes, resulting in extremely low predictive 
accuracy. 

TABLE V.  ABLATION RESULTS OF THE FSM-CRF MODEL 

Model Few Shot 
k-shot = 10 

Precision Recall F1 

FSM-CRF (proposed method) 74.64 % 73.06 % 73.84 % 

Meta-Learning + CRF 40.41 % 37.34 % 38.81 % 

Semantic + CRF 71.51 % 68.58 % 70.02 % 

Semantic + Meta-Learning 43.48 % 57.54 % 49.53 % 

The proposed Few-Shot Semantic Meta-Learning model 
with CRF, also trained for 3000 episodic iterations, achieves a 
significantly higher F1 score of 73.84%, approaching the 
performance of fully supervised fine-tuning despite operating 
under few-shot constraints. This improvement stems from its 
ability to integrate span-based representations with semantic 
fusion and BIO-constrained decoding, enabling the model to 
generalize effectively from limited examples. From an open 
innovation perspective, these findings suggest that semantic 
meta-learning offers a more adaptive and scalable solution for 
identifying emerging competencies in complex digital labour 
ecosystems. While traditional models excel when labelled data 
is abundant, the proposed approach demonstrates superior 
resilience and adaptability qualities increasingly essential for 
monitoring skill evolution in technology-mediated, rapidly 
transforming markets. 

The ablation results presented in Table V clarify the 
individual and combined contributions of the semantic module, 
meta-learning strategy, and CRF-based structured decoding 
within the proposed framework. The FSM-CRF full model 
(Semantic + Meta-Learning + CRF) delivers the highest 
performance 74.64% precision, 73.06% recall, and 73.84% F1 

demonstrating that these three components operate 
synergistically rather than serving as direct substitutes. When 
the semantic module is removed (Meta-Learning + CRF), 
performance falls sharply to an F1 of 38.81%, indicating that 
meta-learning alone is insufficient for constructing stable span 
prototypes without explicit semantic grounding. In contrast, 
retaining the semantic module, but disabling meta-learning 
(Semantic + CRF) yields a considerably stronger F1 of 
70.02%, showing that semantic fusion together with BIO-
constrained CRF decoding provides a solid foundation for low-
resource skill extraction. The Semantic + Meta-Learning 
configuration (without CRF) produces an F1 of 49.53%, with 
notably higher recall (57.54%) than precision (43.48%), 
suggesting a tendency toward over-prediction when sequence-
level constraints are absent. These results collectively highlight 
that semantic representation and structured decoding are 
central to robust Few-Shot NER on complex skill data, while 
meta-learning contributes critical adaptability when supported 
by strong semantic and structural priors. 

TABLE VI.  NEMENYI TEST P-VALUES FOR FSM-CRF ABLATION MODELS 

 
FSM-

CRF* 

Meta-

Learning + 

CRF 

Semantic + 

CRF 

Semantic + 

Meta-

Learning 

FSM-CRF* 1 0.354 0.947 0.692 

Meta-

Learning + 

CRF 

0.354 1 0.692 0.947 

Semantic + 

CRF 
0.947 0.692 1 0.947 

Semantic + 

Meta-

Learning 

0.692 0.947 0.947 1 

The statistical analysis applied to the four few-shot 
configurations FSM-CRF full model (Semantic + Meta-
Learning + CRF), Meta-Learning + CRF, Semantic + CRF, 
and Semantic + Meta-Learning was conducted using a non-
parametric Friedman test followed by a Nemenyi post-hoc 
procedure. The Friedman test produced a chi-square value of 
𝜒2(3)  = 3.00 with 𝜌  = 0.392, indicating no statistically 
detectable difference among the models under the current 
number of evaluation runs. The post-hoc Nemenyi comparison, 
summarised in Table VI, reports 𝜌-values ranging from 0.35 to 
0.95, confirming the absence of significant pairwise 
differences. Although the descriptive performance metrics 
clearly position the full Semantic + Meta-Learning + CRF 
model as the strongest configuration, the statistical results 
suggest that the observed differences represent consistent 
performance trends rather than formally significant 
improvements. Such outcomes are common in few-shot 
learning experiments, where limited observations and episodic 
variability often reduce the statistical power of non-parametric 
tests. From an open innovation perspective, this interplay is 
essential: only when all three components are integrated does 
the model achieve the resilience and flexibility required to 
identify emerging skills and competencies in rapidly evolving, 
technology-intensive labour markets. 

D. Discussion 

The experimental results highlight that combining semantic 
span representations, meta-learning, and CRF-based structured 
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decoding yields an effective framework for Few-Shot Named 
Entity Recognition in skill-focused Indonesian text. The full 
model integrating semantic fusion and episodic meta-learning 
with BIO-constrained CRF achieves the highest overall 
performance (F1=73.84%), demonstrating stronger 
generalization than all ablated variants despite learning from 
limited examples per entity type. This behaviour is consistent 
with recent evidence that hybrid meta-learning architectures 
and semantic-aware prototype representations can substantially 
improve performance in low-resource NER, especially when 
dealing with domain-specific entities that exhibit multi-word 
compositions and rich semantic dependencies [18], [21], [22], 
[29]. More broadly, the observed gains also align with survey 
findings that emphasize the advantage of combining deep 
contextual encoders with structured decoding and metric- or 
prototype-based components for complex NER scenarios [14], 
[53]. 

 

Fig. 3. F1-score comparison of ablated model configurations for FSM-CRF 

(k-shot = 10). 

Ablation analysis further clarifies the role of each 
component in the proposed framework (refer to Fig. 3) and 
aligns with recent findings in learning-based information 
extraction, particularly within Indonesian legal NER contexts, 
where structured prediction and contextualized representations 
are shown to substantially enhance extraction accuracy [59]. 
Retaining semantic span representations together with CRF 
decoding (“Semantic + CRF”) yields strong performance (F1 = 
70.02%), indicating that contextualized semantic embeddings 
are crucial for modelling skill-related entities, which typically 
encode functional, behavioural, and domain-specific meaning 
consistent with recent work showing that span-level and 
semantically enriched representations substantially improve 
robustness over purely token-level models [60], [61], [62], 
[63]. In contrast, removing semantic grounding while 
preserving meta-learning (“Meta-Learning + CRF”) produces a 
marked drop in performance (F1 = 38.81%), suggesting that 
prototype formation becomes unstable without semantic 
anchors, in line with critiques that standard prototypical 
networks struggle with multi-token entities and dispersed 

prototype distributions in few-shot NER [17], [64]. The 
“Semantic + Meta-Learning” configuration, which omits CRF, 
exhibits inflated recall but reduced precision, highlighting a 
tendency to over-predict entities when sequence-level 
constraints are absent and reinforcing evidence that CRF-based 
or constrained decoding remains essential for controlling label 
noise and enforcing valid BIO transitions in practical NER 
systems [65], [66], [67], [68]. 

The statistical evaluation complements these descriptive 
findings. Although the full model consistently outperforms the 
other configurations, the Friedman test yields no statistically 
significant differences (p = 0.392), and none of the Nemenyi 
post-hoc comparisons indicate pairwise significance. This 
pattern is consistent with reports that the Friedman test has 
limited statistical power when only a small number of datasets 
or experimental conditions are available, which makes it 
difficult to detect differences even when effect sizes are non-
trivial  [69]. Similar challenges are highlighted in recent 
surveys on learning with limited labelled data and few-shot 
learning, which show that episodic evaluation and small 
numbers of runs often lead to high variance and unstable 
significance outcomes, especially in meta-learning and low-
resource settings [70], [71]. Even so, the consistent directional 
gaps between semantic-enabled and semantic-disabled variants 
in our experiments suggest meaningful functional differences 
that may become statistically robust when evaluated with more 
episodes, additional datasets, or cross-domain repetitions, in 
line with recommendations to increase repetitions and task 
diversity when benchmarking few-shot and meta-learning 
algorithms [72], [73]. 

From an open innovation perspective, these findings carry 
important implications for how skills are monitored and 
governed in digitally mediated labour markets. Recent studies 
show that organizations increasingly rely on rich skill 
taxonomies, digital platforms, and AI-based analytics to track 
emerging competencies and support innovation strategies, 
rather than focusing solely on formal qualifications [74], [75], 
[76]. In this context, the proposed semantic meta-learning 
framework with CRF offers a data-efficient mechanism for 
automatically identifying new or evolving skills from 
unstructured text, complementing ongoing efforts to map 
digital competencies and open innovation capabilities in 
organizations [77], [78]. The ability to extract fine-grained, 
semantics-aware skill entities directly supports emerging work 
on formalized skill taxonomies and soft-skill labelling, such as 
ESCO-oriented approaches and big-data-based workforce 
analytics and reduces dependence on costly manual annotation 
pipelines [75], [79]. Moreover, Few-Shot NER for skill 
intelligence aligns with AI-enabled competency mapping and 
assessment tools that aim to provide continuous, adaptive 
views of workforce capabilities for education providers, firms, 
and policy actors [3], [80]. Collectively, these connections 
position the proposed model as a technical enabler for open, 
innovation-driven skill ecosystems in which capabilities can be 
updated dynamically in response to technological change. 

V. CONCLUSION 

This study demonstrates that combining semantic span 
representations, meta-learning, and CRF-based structured 
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decoding offers an effective framework for Few-Shot Named 
Entity Recognition in skill-extraction tasks. The proposed 
semantic meta-learning model consistently outperforms all 
ablated variants and achieves performance comparable to fully 
supervised baselines, even with limited annotated examples. 
These results underscore the importance of semantic grounding 
and structured inference in stabilizing prototype formation and 
improving entity boundary detection in low-resource 
conditions. They also show that meta-learning delivers its 
strongest benefits when supported by robust semantic and 
structural priors. 

From an open innovation perspective, the model’s ability to 
generalize from minimal supervision provides meaningful 
value for adaptive skill-intelligence systems. As industries 
evolve and new competencies emerge, Few-Shot NER enables 
organizations to update skill taxonomies efficiently without 
extensive annotation pipelines. This aligns with the principles 
of open innovation, where rapid knowledge flows, flexible 
learning mechanisms, and resource-efficient processes are 
essential for maintaining competitiveness. The findings 
therefore support emerging applications in workforce analytics, 
domain-adaptive NER, and AI-driven competency mapping 
across digital innovation ecosystems. 

While limitations include the modest number of episodic 
evaluations and the single-domain focus, addressing these 
areas in future work will enhance the robustness and broader 
impact of Few-Shot NER within innovation-driven 
ecosystems. Future research should broaden evaluation across 
diverse domains, increase episodic trial counts to strengthen 
statistical validity, and explore multilingual or cross-domain 
transfer settings where skill definitions may vary. Integrating 
large language models or hybrid symbolic–neural approaches 
could further enhance adaptability and interpretability, 
especially in environments where competency requirements 
change rapidly. Such developments would extend the model’s 
relevance for educational systems, employment services, and 
digital governance. 

Beyond its empirical contributions, this study offers 
important implications for theory, practice, and policy. 
Theoretically, it reinforces the value of hybrid semantic–meta-
learning architectures for modelling complex, domain-specific 
entities. Practically, the model provides an efficient solution for 
refining skill taxonomies and supporting adaptive learning and 
talent management. For policymakers, the approach enables 
evidence-informed monitoring of emerging competencies, 
improving alignment between innovation strategies and labor-
market needs. 
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