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Abstract—Driver drowsiness is a major cause of traffic
accidents, so Edge-loT platforms with limited resources need to be
able to accurately and quickly detect when drivers are drowsy.
This study examines attention-guided lightweight CNN design
predicated on MobileNetV2 for real-time driver drowsiness
detection. The authors compare a SE-enhanced MobileNetV2 to
the baseline model and a structurally optimized version that uses
Depthwise Separable Convolution (DSC), Bottleneck blocks, and
Expansion layers. Experiments on 500 images demonstrate that
channel attention enhances feature discrimination, whereas
structural optimization yields the most resilient trade-off between
accuracy and latency. Statistical validation employing 95%
confidence intervals and two-proportion Z-tests substantiates the
significance of these enhancements. The proposed models support
real-time inference despite their small size (about 2.6 million
parameters and 315 million FLOPs). These findings suggest
structural optimization is more important than attention
mechanisms in designing lightweight CNNs for embedded driver
monitoring.
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I.  INTRODUCTION

Drowsy driving remains one of the leading causes of car
accidents worldwide. This is mostly because it slows reaction
time, reduces alertness, and makes decision-making harder [1].
Recentresearch underscores the substantial influence of fatigue
on traffic incidents and stresses the necessity for automated,
vision-based detection systems proficient in recognizing ocular
signs of diminished alertness [2]. Vision-based driver
monitoring has emerged as a predominant research focus, as it
facilitates the identification of fatigue-related facial
behaviors—such as blinking patterns, eyelid closure, yawning,
and head movements—that are significantly associated with the
progression of drowsiness [3] [4].

As more and more cars adopt artificial intelligence, there is
a growing need for lightweight, real-time, and reliable fatigue-
detection models that can run effectively on Edge-loT
platforms with limited computing power [5]. Recent real-time
applications, such as MobileNet-based drowsiness detectors,
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further demonstrate the utility and efficiency of lightweight
architectures for embedded deployment [5].

Deep learning has significantly advanced driver-state
analysis by enabling image-based models to learn complex,
subtle visual patterns that are difficult to capture with
handcrafted features [6]. High-capacity CNN and transformer-
based models, such as EffRes-DrowsyNet and MG-YOLOVS,
exhibit robust benchmark performance [3], yet their
computational complexity restricts deployment on embedded
devices. Recent studies in lightweight visual recognition
emphasize diminishing model complexity via depthwise
separable convolutions, inverted bottlenecks, and fast feature
recalibration [7], with hybrid attention architectures that
selectively amplify relevant features without significant
processing burden [8]. Studies such as SCAT, which integrates
spatial and channel-enhanced self-attention, show that
combininglocal and global feature representations significantly
improves accuracy while maintaining efficiency—
demonstrating the importance of attention-guided lightweight
designs [9].

Nguyen et al. showed that DSC with dilated filters makes
embedded inference on limited hardware more efficient [10].
Lightweight CNNs can perform well when used to support
users in real-time fatigue detection, even with limited training
data in driver monitoring applications [11]. Nonetheless,
despite their efficacy, lightweight CNNs sometimes encounter
difficulties in detecting nuanced fatigue-related micro-
expressions—such as partial eyelid closure and micro-blinks—
which are essential for the early identification of drowsiness in
practical driving situations. To address this problem, attention
mechanisms such as SE, CBAM, ECA, and their hybrid
variants have been shown to effectively improve channel
selectivity and spatial focus in vision tasks. Hybrid attention,
especially, has led to big improvements in fine-grained
classification tasks with small texture changes. For example,
hybrid-attention Xception models for brain tumor analysis [12]
show that lightweight architectures gain significant benefit
from attention-based improvements. SE is well-suited to
lightweight architectures because it adds channel recalibration
with very little extracomputational cost, unlike spatial attention
or hybrid multi-branch attention mechanisms.
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Even with these improvements, the authors still don't fully
understand how attention mechanisms work in lightweight
CNN-based driver drowsiness classification, especially when
compared directly to structural lightweight optimizations.
There has not been a systematic, statistically validated study to
determine whether channel attention mechanisms, such as
Squeeze-and-Excitation, offer benefits similar to or
complementary to architectural changes in Edge-IoT settings,
especially for MobileNetV2, a popular backbone for
environments with limited resources.

This research introduces an Attention-Guided Lightweight
MobileNetV2 to facilitate real-time driver drowsiness
classification on Edge-IoT systems, addressing the identified
gap. More importantly, the study conducts a controlled,
statistically sound comparison of attention-based refinement
and structural lightweight optimization within the same
MobileNetV2 backbone. This framework offers empirical
insights into the impact of various lightweight enhancement
strategies on fine-grained fatigue-feature recognition,
computational efficiency, and deployment suitability in
resource-constrained environments.

II. RELATED WORK

Driver drowsiness detection has been widely explored
across three primary categories: facial-feature—based methods,
physiological-signal-based approaches, and vehicle-behavior
analysis [13], [14], [15]. Vision-based facial-feature methods
are still the mostuseful and widely used ofthese. They usecues
like how often someone blinks, how their eyelids close, how
often they yawn, and how their head moves [3], [5], [2]. But
classical methods often don't perform as well when lighting
changes, there are obstructions, or the appearance of different
drivers varies, which is why the authors need to use strong deep
learning models that can work in real driving situations [16]
[17].

Deep learning—based methods have substantially improved
fatigue detection by learning hierarchical facial representations
[18]. Lightweight CNNs such as MobileNet, DenseNet,
ResNet50V2, and VGG19 have been applied to eye-state
classification and driver-monitoring tasks. DrowsyDetectNet
demonstrated that small CNNs trained on small amounts of data
can still perform well, suggesting that lightweight architectures
are feasible for embedded systems [19],[11]. Hu et al. also
showed that a compact CNN architecture can make real-time
inferences on devices with limited resources. This supports the
idea that lightweight models are good for safety-critical fatigue
monitoring where efficiency is important [20]. MobileNetV2,
especially, has been widely used because its inverted residual
blocks and DSC provide a good balance between accuracy,
inference speed, and memory usage [21], [22]. Most of the
previousresearch using MobileNetV?2 has focused on the task
of recognizing or detecting eye conditions, with minimal
emphasis on comprehensive driver condition classification for
embedded real-time inference.

Lightweight CNNs are efficient but often lack expressive
power, limiting their effectiveness at detecting subtle signs of
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fatigue, such as microblinks or subtle eyelid contractions. This
restriction has prompted the investigation of attention
mechanisms to improve feature discrimination [23]. Hassan et
al. showed thatadding attention to VGG19 increases accuracy
from 96.3% to 98.85%. Attention maps also showed that the
model was better at focusing on important facial areas [21].
Similarly, MG-YOLOvVS8 introduced Mixed Local Channel
Attention (MLCA), improving small-region facial detection in
challenging lighting and occlusion conditions [3]. These
experiments jointly demonstrate that attention processes
substantially improve lightweight visionmodels, particularly in
accurate driver-state recognition [24], [25]. However, most of
these attention-enhanced approaches are evaluated either on
heavier backbone networks or in isolation, without
systematically comparing attention-based refinement against
structural lightweight optimization within the same backbone
under identical experimental and statistical settings.

Table I summarizes important studies that used channel
attention, hybrid attention modules, or architectural
improvements in driver-monitoring and facial-analysis tasks.
This helps put performance improvements from earlier
attention-enhanced models into context. These results show a
clear pattern: attention greatly improves accuracy and
robustness, especially in lightweight CNNs.

Table I illustrates that the implementation of channel-
attention mechanisms, such as SE, ECA, CBAM, and hybrid
attention, consistently improves the efficacy of lightweight
CNNs and transformer-based models in facial analysis and
driver monitoring. Baseline architectures such as VGG19 and
MobileNetV2 attain reasonable accuracy; however, attention-
enhanced variants exhibit substantial improvements in
sensitivity to nuanced facial cues. Although these studies
consistently illustrate the advantages of channel and hybrid
attention mechanisms, they fail to elucidate whether these
improvements stem from attention itself or from the inherent
architectural capacity, especially in MobileNetV2-based
lightweight models utilized within Edge-loT constraints.

Despite these advances, some significant shortcomings
remain. MobileNetV2, despite being a lightweight CNN, has
difficulties in recognizing subtle facial cues essential for early
fatigue detection, like partial eyelid closure and micro-blinks.
Second, attention mechanisms have performed well in larger
architectures, but few studies have focused on optimizing
attention-enhanced MobileNetV2 variants for edge-loT
applications. Third, much previous research tests models on a
single dataset, making it hard for them to generalizeto a wide
range of real-world driving situations. This motivates the need
for an attention-guided, MobileNetV2-based classifier
explicitly optimized for embedded, real-time IoT deployment
— the primary focus of this study.

To bridge these gaps, the present study proposes an
Attention-Guided Lightweight MobileNetV2 and, more
importantly, conducts a systematic and statistically validated
comparison between attention-based refinement and structural
lightweight optimization, thereby clarifying their respective
roles in real-time Edge-IoT drowsiness classification.
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TABLE I. SUMMARIZES KEY STUDIES APPLYING CHANNEL ATTENTION

Ref. Model / Study Attention / Enhancement Accuracy Precision Recall F1 Score
[21] | VGG19 - 96.30 96 93 95

[21] | VGG19 + Attention Channel Attention (MLP-based) 98.85 99 99 99

3] | MG-YOLOvS MLCA (Mixed Local Channel Attention) i’:ﬁ;:’;:i . - - -

[20] | MobileNetV2 Baseline - 94.09 +0.41 - - -

[20] | MobileNetV2 + ECA (MobiLiteNet) ECA (Efficient Channel Attention) 96.10 +0.34 - - -

[21] | Swin Transformer Hierarchical Window Attention 98.76 — 100 99 -100 99 -100 99 —-100
[21] | ViT Transformer Global Self-Attention 99.15-99.52 | 99 99 —-100 99

[21] | VGG19 + Attention Channel Attention 98.17 97 97 97

[21] | MobileNetV2 Fine-Tuned - 97.99 98 98 98

[12] | Hybrid Xception SE + CBAM Hybrid Channel Attention 99.21 99 99 99

[26] | Efficient Lightweight Attention Network Lightweight Channel Attention (GAP+1D Conv) | 98.5-99.3 - - -

9] iEAanomgl)’aﬁal‘Cha““el Enhanced | o0 i1 & Channel Coupled Self-Attention 99.4-99.8 - - -

9] Lightweight ViT Spatial + Channel Enhanced Attention 98.7-99.5 - - -

[27] | EffRes-DrowsyNet 1/3;?:1 tl?ziture Fusion + Multi-level Convolutional 9771 B _ B

[11] | DrowsyDetectNet Lightweight Feature Attention 94-96 - - -

III. METHODOLOGY

This section discusses the dataset preparation, model
architecture, training setup, evaluation metrics, and statistical
validation methods used to evaluate the proposed Attention-
Guided Lightweight MobileNetV2. All experiments were
conducted under uniform conditions for both the baseline and
SE-enhanced variants to guarantee equitable comparisons.

Input MobileNetv2 Classification
Image Feature Extraction Head
Output
Preprocessing = n”{;ll"”:'k Ls| SE Attention || Recalibrated | | (Drowsy /
O Features Nondrowsy)

Fig. 1. Research pipeline.

Fig. 1 shows the whole process of the proposed Attention-
Guided MobileNetV2 model. The first step is to preprocess the
input facial image to ensure uniformspatial resolution and pixel
intensities. The MobileNetV2 feature extractor then processes
the image. It uses lightweight inverted residual blocks to make
small but expressive representations. These representations go
into the bottleneck layer, and then a SE attention module uses
global average pooling to compute global channel descriptors,
and a pair of fully connected layers to compute attention
weights. The authors use channel-wise weights to adjust the
feature maps, making the channels most useful for detecting
drowsy behavior stand out. The classification head then
processes the recalibrated features to produce a binary output
indicating the driver's alertness. Real-time Edge-loT
deployments require a seamlessly integrated attention
mechanism and a lightweight architecture.

A. Dataset Preparation and Preprocessing

The authors collected 500 labeled face images from three
well-known driver-monitoring datasets: YawDD, NTHU-

Notes: — indicates metrics not reported in the original study

DDD, and DDD. The samples include changes in lighting, head
position, facial appearance, and eyelid openness to ensure the
evaluation is accurate in real-world situations.

Preprocessing includes:
e Resizing all images to: (150%150) pixels
e Pixel normalization to: [0, 1].

e Random augmentation: Rotation (20), Horizontal flip,
Width Shift (0.1), Height Shift (0.1), Shear (0.1), and
Zoom (0.1).

e Balanced splitting into training, validation, and testing
sets: ratio 80:20.

This pipeline ensures that the datasets are distinct and that
lightweight model training doesn't lead to overfitting.

B. Data Integrity and Leakage Prevention

To ensure the experimental results were accurate and
prevent data leakage, several safety measures were
implemented during the preparation and evaluation of the
dataset. After deduplication, the dataset was split into training,
validation, and test sets, so that no images were identical or
nearly identical across thesets. Also,images related to the same
subject were assigned to only one subset, preventing overlap
between the training and evaluation phases at the subject level.

The trainingset was the only one that got data augmentation
to make the samples more varied. The validation and test sets
stayed the same. There was no test-time augmentation or model
tuning after the fact. Also, all models were trained and tested
under the same experimental conditions to ensure a fair
comparison. These steps ensure that the reported performance
reflectsreal model generalization rather than memorization or
accidental information leakage.
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C. Baseline Architecture: MobileNetV2

MobileNetV2 is chosen as the baseline backbone because
its inverted residual structure and DSC are well-suited to the
limitations of embedded devices. The architecture has:

e An initial convolution block,

e A series of inverted residual bottlenecks with expansion
layers,

e Depthwise and pointwise convolutions for channel-wise
factorization, and

e The last convolutional layer that goes into a global
average pooling operation.

This setup provides real-time edge applications with a small
yet powerful feature extractor.

D. Proposed Architecture: Attention-Guided Lightweight
MobileNetV2

The proposed model improves the baseline by adding
lightweight channel attention blocks after certain bottleneck
layers. These modules are meant to make leaming
discriminative features easier without using too much
processing power. Fig. 2 shows what each SE attention block
does:

e Global Average Pooling to capture global channel
descriptors,

e Fully Connected (FC) + ReLU to learn intermediate
channel relations,

e FC + Sigmoid to generate channel-wise attention
weights, and

o This setup provides real-time edge applications with a
small yet powerful feature extractor.

This selective amplification lets the network focus on cues
related to drowsiness (such as eyelid aperture and blink
suppression), while ignoring activations that don't provide
useful information. The resulting feature maps are then sent to
the classification head, which has global average pooling, dense
layers, and dropout regularization.

Inpit Final Conv Block Hyrid Attention Module (SE
150 x 150 x 3 (Conv_1, BN, ReLU) Conv2d, GAP, Dense, Multiply
Output 5 x5 x 1280 Output 5 X 5 X 256
Initial Conv Inverted Res, Blocks x1 Classification Head
(Conv1, BN, ReLU) (block_16) (GAP, Dense, Dropout, Dense)

Output 75 x 75 32 Output 5x 5 x 320

| 1 |

Bottleneck Block Inverted Res, Blocks x3
(expanded_conv, ....) (block_13 - block_15)
Output 75x 75 16 Output 5x 5 x 160

l I

Inverted Res, Blocks x2 Inverted Res, Blocks x3
(block_1, block_2) (block_10 - block_12)
Output 38 x 38 x 24 Output 10 x 10 x 96

! I

Inverted Res, Blocks x3
block_3, block_4, block_5)] —
Output 19 x 19 x 32

Output 128 - 2

Output
2 classes

Inverted Res, Blocks x4
(block_6 - block_9)
Output 10 x 10 x 64

Fig. 2. Proposed model architecture.
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E. Training Procedure

The same setup was used to train both baseline and SE-
enhanced models:

e Optimizer: Adam

e Learningrate: 0.001

e Batch size: 32

e Epochs: 30 with early stopping (patience = 10)

e Loss function: Binary cross-entropy

e Weight initialization: ImageNet

e Regularization: Dropout (0.5), BatchNormalization, and

early stopping.

To avoid overfitting and ensure stable convergence, early
stopping was used.
F. Evaluation Metrics

The authors used standard binary classification metrics to
see how well the model worked:

e Accuracy

e Precision (drowsy / non-drowsy)

e Recall (drowsy / non-drowsy)

e Fl-score (drowsy / non-drowsy)

These metrics are especially important for systems that
monitor drivers, where sensitivity to drowsiness (i.e., the
positive class) is critical for safety-critical applications.

G. Statistical Validation

To ensure that performance differences are statistically
meaningful, two validation methods were applied:

e This study employs the two-proportion Z-test as a valid
statistical method for comparing classifier performance
across independent sample sets—the Z-test tests
whether thedifferences in accuracy between two models
are statistically significant. A p-value less than 0.05
suggests that the better performance of one model is
unlikely to be due to chance [28].

¢ Confidence Intervals (CI 95%), calculated utilizing the
Wilson interval to assess the reliability of accuracy and
Fl-score estimates [29].

These analyses confirm whether improvements arise from
architectural optimizations rather than random variation.

IV. RESULTS

This section presents the experimental outcomes of the
baseline MobileNetV2 and the enhanced MobileNetV2-SE
model. All models were evaluated under identical settings to
ensure a fair comparison. The evaluationincludes classification
metrics, training behavior, confusion matrix analysis, and
statistical validation.
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A. Baseline MobileNetV2 Performance

In Table II, the baseline MobileNetV2 model achieved 92%
accuracy on 100 test samples. It produced a precision of 0.98
for the drowsy class, while the recall was much lower at 0.86.
This means that many drowsy cases were mislabeled as
nondrowsy. The nondrowsy class had the opposite pattern: high
recall (0.98) but low precision (0.88). The results show that the
model is biased toward nondrowsy predictions, indicating that
the class sensitivities are unequal.

TABLEII. BASELINE MOBILENETV2 PERFORMANCE
Precision Recall F1-score Support
Drowsy 0.98 0.86 091 50
Nondrowsy 0.88 0.98 0.92 50
Accuracy 0.92 100
Macro avg 0.93 0.92 0.92 100
Weighted avg 093 0.92 0.92 100

B. Performance of MobileNetV2 + DSC + Bottleneck +
Expansion

The optimized MobileNetV2 model, in Table III, achieved
aperfectscore (100%)onall 100 test samples. The Drowsy and
Nondrowsy classes both achieved precision, recall, and F1
Scores of 1.00. The results indicate that the model accurately
identified all cases without error. The optimal macro and
weighted averages indicate effective performance for both
categories. The overall enhancement indicates that using DSC,
Bottleneck blocks, and Expansion layers improves feature
extraction and decision accuracy for real-time drowsiness
categorization.

C. Performance of MobileNetV2-SE

MobileNetV2-SE,in Table IV,achieves an overall accuracy
of 98%, a significant improvement compared to the baseline.
The Drowsy class had a perfect recall rate of 1.00 and a
precision rate of 0.96. This means that the model correctly
identified all drowsy cases and made very few false alarms. On
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the other hand, the nondrowsy classhad a perfect precision of
1.00 and a recall of 0.96, indicating that all predicted
nondrowsy samples were correct, with only a few missed
detections. The balanced macro and weighted averages (0.98)
indicate that SE attention effectively improves feature
discrimination while maintaining strong performance across
both classes.

TABLE III. PERFORMANCE OF MOBILENETV2 + DSC + BOTTLENECK +
EXPANSION

Precision Recall Fl-score Support
Drowsy 1.00 1.00 1.00 46
Nondrowsy 1.00 1.00 1.00 54
Accuracy 1.00 100
Macro avg 1.00 1.00 1.00 100
Weighted avg 1.00 1.00 1.00 100

TABLEIV. PERFORMANCE OF MOBILENETV2-SE

Precision Recall F1-score Support
Drowsy 0.96 1.00 0.98 46
Nondrowsy 1.00 0.96 0.98 54
Accuracy 0.98 100
Macro avg 0.98 0.98 0.98 100
Weighted avg 0.98 0.98 0.98 100

D. Performance Model

The results in Table V show that all three models improved
in performance over time. The baseline MobileNetV2 achieved
92% accuracy, but it was more sensitive to the drowsy class
than to the other classes, leading it to miss many fatigue cases.
Adding DSC, Bottleneck blocks, and Expansion made a big
difference, with all metrics getting perfect scores (100%).
These resultsindicate that structural lightweight optimizations
greatly improve the ability to extract features and the reliability
of decisions.

TABLE V. CLASSIFICATION PERFORMANCE OF BASELINE VS. SE-ENHANCED MOBILENETV2
Precision (Drowsy / Recall (Drowsy / F1-score (Drowsy / o
Model Nondrowsy) Nondrowsy) Nondrowsy) Accuracy (%)
MobileNetV2 (Baseline) 0.98/0.88 0.86/0.98 0.91/0.92 92
MobileNetV2 + DSC + Bottleneck + Expansion 1.00/1.00 1.00/1.00 1.00/1.00 100
MobileNetV2-SE (Proposed) 0.96/1.00 1.00/0.96 0.98/0.98 98

The proposed SE-enhanced MobileNetV2 achieved 98%
accuracy with balanced precision andrecall across both classes,
demonstrating that channel attention can improve
representational quality without increasing computational
complexity. MobileNetV2-SE is a great balance between
accuracy and efficiency. It consistently outperforms the
baseline while remaining highly sensitive to drowsiness. It
doesn't beat the structurally optimized model, though.

The DSC-Bottleneck—Expansion variant performs better
because it directly improves the extraction of spatial and
depthwise features, helpingthe model capture small visual cues

related to drowsiness. On the other hand, SE attention changes
the way channels respond, butitdoesn'tincrease the backbone's
ability to represent more information. So, in a lightweight
architecture like MobileNetV2 and with a small dataset,
structural optimizations yield feature maps that are richer and
more discriminative than those from channel attention alone.
This makes classification more accurate.

The results indicate that both structural and attention-based
architectural improvement models provide significant
differences compared to the baseline model. Structural
optimization delivers the most accurate results, while SE
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attention provides strong, well-balanced performance that is
ideal for real-time Edge-loT deployment.

E. Training Stability

The training stability analysis shown in Fig. 3 reveals
different behaviors among the three models. The baseline
MobileNetV2 is moderately stable, but its uneven class-specific
sensitivity indicates that fatigue-related features have not fully
converged. The DSC—Bottleneck—Expansion variant is the
most stable, with perfect convergence, smooth optimization
dynamics, and no classification errors. These findings suggest
spatial-depthwise feature extraction has improved. The SE-
enhanced MobileNetV2 converges steadily and evenly, but it
doesn't achieve the representational capacity of structural
optimization. Overall, structural improvements make training
more stable than attention-based recalibration, especially when
using lightweight architectures and small datasets.

Training and validation loss Training and validation accuracy

24 —— Taining accurac
E — Taining Loss 084 nng ¥
s - — Validation accuracy
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(c) MobilNetV2 SE.

Fig. 3. Training stability.

F. Confusion Matrix Analysis

The confusion matrix in Fig. 4 shows that the three models
make errors in very different ways. The baseline MobileNetV2
has uneven class-sensitivity; it correctly identifies most
nondrowsy samples but misclassifies 7 drowsy cases. These
findings suggestitdoesn'tdo a good job of pickingup on subtle
signs of fatigue. This imbalance raises a safety issue because
missing drowsiness events make early-warning detection less
reliable.

Vol. 17, No. 1, 2026
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Fig. 4. Confusion Matrix: a) MobileNetV2 Baseline, b) MobileNetV2 + DSC
+ Bottleneck + Expansion, ¢c) MobileNetV2 SE.

With DSC, Bottleneck blocks, and Expansion, the
structurally optimized MobileNetV2 gets perfect classification,
with no false positives or false negatives. This result shows that
the model is the most reliable in the evaluation because it
extracts features more effectively and generalizes more
reliably.

The SE-enhanced MobileNetV2 also performs well,
correctly identifying all drowsy cases and yielding only 2 false
positives for thenondrowsy class. The findings indicate that the
model prioritizes safety, opting to overlook a drowsy driver
rather than generate numerous false alerts.

The examinationofthe confusion matrices reveals that both
structural and attention-based improvements markedly increase
the accuracy of classification relative to the baseline. Structural
optimization ensures flawless performance, while SE attention
offers robust, balanced sensitivity, ideal for real-time Edge-loT
deployment.

G. Ablation Study

The ablation study isolates the effect of the SE attention
mechanism on classification performance, enabling it to be
measured. This ablation study differs from the main results (see
Table V) because it focuses only on the contribution of the
proposed architecture at the component level, not on the overall
accuracy of the final system. This separation is in line with
standard practice in publications and keeps performance results
from being confused with architectural justification.

1) Effect of SE attention: To assess the impact of the SE
module, the authors compare MobileNetV2 Baseline,
MobileNetV2 + DSC + Bottleneck + Expansion, and the SE-
enhanced variant, maintaining uniform architectural and
training configurations.
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TABLE VI. COMPONENT-LEVEL ABLATION ON SE ATTENTION INTEGRATION
Variant Attention Structural Enhancement? (DSC / Accuracy Recall Macro F1-
Module Bottleneck / Expansion) (%) (Drowsy) Score
MobileNetV2 (Baseline) No No 92 0.86 0.92
MobileNetV2 + DSC + Bottleneck + Expansion | No Yes 100 1.00 1.00
MobileNetV2 + SE (Proposed) Yes No 98 0.98 0.98

Table VI shows the results of ablation across three
MobileNetV2 configurations. The baseline model achieved a
drowsy recall of 0.86 and an accuracy of 92%, indicating that
the model was not very effective in detecting fatigue. The
addition of structural improvements such as DSC, Bottleneck,
and Expansion had a significant impact and significantly
improved feature extraction. The improvement with SE was
significantly greater than the baseline model, with a drowsy
recall 0f 0.98 and an accuracy of 98%. These findings suggest
that channel-wise attention improves discriminative
representation while remaining efficient. Both enhancement
strategies improve performanceoverall. Structural optimization
givesthebestaccuracy, while SE attention gives a light, reliable
improvement.

2) Architectural interpretation (non-experimental
ablation): To elucidate the role of attention in the proposed
model, the authors present a structural analysis of the SE
module's operation within each bottleneck block, as depicted in
Fig. 5. In the standard MobileNetV2, DSC, and inverted
residual blocks treatall channels identically. This makes it hard
forthe network to pick up on subtle but important facial cues of
drowsiness, such as partially closing the eyelids or making the
eyes look smaller.

Channel Attention
Weights

l

Global Average
Pooling

Bottleneck Block | | || Output Feature
(DWConv + PWConv)[™> FO+Rell) Maps

Input
!

FC + Sigmoid

SE Block®

Fig. 5. Architectural interpretation.

A lightweight channel-attention module is added after the
bottleneck block in the SE-augmented version. The SE block
performs global average pooling to obtain global context,
followed by two fully connected layers (FC+ ReLU and FC +
Sigmoid) that generate channel-wise attention weights. After
that, these weights are multiplied by the original feature maps
to produce recalibrated feature responses that favor channels
that provide useful information and block those that don't. This
selective feature amplification increases representational
capacity with very little extra work for the computer. The
enhanced convergence stability and reduced false-negative rate
observed in the experiments provide compelling evidence that
SE-driven channel recalibration directly improves the
reliability and robustness of drowsiness classification.

3) Ablation interpretation: The ablation results clearly
show that both SE attention and the structural improvements
made a difference. The baseline MobileNetV2 exhibits limited
representational capacity, evidenced by its 92% accuracy, 0.86
drowsy recall, and 0.92 macro F1-score. This signifies a
restrictedability to discern subtle changes in eye features linked
to fatigue.

The integration of SE attention improves channel
responsiveness, leading to an accuracy enhancement to 98%
and an increase in drowsy recall from 0.86 to 0.98. The macro
F1-score increases from 0.92 to 0.98, indicating that SE
improves class discrimination while preserving low
computational requirements.

The most significant improvements come from structural
changes, including DSC, Bottleneck blocks, and Expansion.
These modifications resulted in complete accuracy, a recall of
1.00, and a macro F1-score of 1.00. The enhancements stem
from a robust feature-extraction hierarchy, enabling the model
to accurately identify fatigue-related behaviors.

The ablation study reveals that structural optimization
produces the most substantial performance benefit, while SE
attention provides a balanced and efficient increase in class
sensitivity. Both mechanisms add to the baseline, making it
easier to detect drowsiness in real-time Edge-loT applications.

H. Computational Cost and Efficiency Analysis

To assess the viability of implementing the proposed
models on resource-limited Edge-IoT platforms, the authors
examine their computational cost attributes, encompassing
parameter count, FLOPs, model size, and inference latency.

TABLE VII. COMPUTATIONAL COST AND EFFICIENCY ANALYSIS
Metric MobileNet'VZ-SE MobileNetV2 + DSC + Bottleneck
(Attention) + Expansion (Structural)
Parameters | 2,628,562 2,620,098
FLOPs 315,874,140 Ops 315,844,684 Ops
Model Size | 13.39 MB 13.12 MB
Latency 206.27 ms 143.65 ms

Table VII shows that the SE-enhanced MobileNetV2 has
slightly higher latency because the SE block adds operations
such as global pooling and per-channel recalibration, which
improve feature discrimination but also introduce some
computational overhead. Even so, the model remains
lightweight, with almost the same number of parameters and
FLOPs as the structural variant. However, it is more sensitive
to small facial cues. These results align with the goal of an
Attention-Guided Lightweight MobileNetV2. They show that
channel attention improves the accuracy of drowsiness
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detection while remaining feasible for real-time Edge-loT
systems.

1. Statistical Validation

To verify that the observed improvements are not due to
random variation, 95% confidence intervals (CI) and a two-
proportion Z-test were conducted.

Table VIII provides a 95% confidence interval analysis,
delivering a statistical evaluation of the reliability of each
model. The baseline MobileNetV2 demonstrates the broadest
accuracy range (0.867-0.973), indicating diminished
confidence in its generalization abilities. The SE-enhanced
MobileNetV2 exhibits a reduced range (0.953-1.000),
indicating more stability and diminished performance
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variability. The structurally optimized model that integrates
DSC, Bottleneck, and Expansion has the narrowest accuracy
range (0.964—1.000), aligning with its impeccable real-world
performance and outstanding reliability. The confidence
interval estimates for the F1-score demonstrate a comparable
trend, further validating the superiority of the improved models
over the baseline.

The two-proportion z-test, in Table IX, shows that both
improved models outperform the baseline model. The
structurally optimized variant shows a statistically significant
increase in accuracy, while the SE-enhanced model has strong,
though statistically comparable, performance to the structurally
optimized model on the current test set.

TABLE VIII. STATISTICAL VALIDATION USING 95% CI
Model Accuracy CI 95% (Accuracy) F1-Score CI 95% (F1-Score) Reliable?
MobileNetV2 (Baseline) 92% 0.867-0.973 0915 0.86-0.95 Yes
MobileNetV2-SE (Attention) 98% 0.953 - 1.000 0.98 0.96 —0.995 Highly Reliable
MobileNetV2 + DSC + Bottleneck + Expansion | 100% 0.964 — 1.000 1.00 0.98 -1.00 Extremely Reliable
TABLEIX. TWO-PROPORTION Z-TEST
Comparison Accuracy (Model 1 vs 2) z-statistic p-value Interpretation
Baseline vs. SE 0.92 vs 0.98 -1.95 0.0516 Borderline; trend favoring SE, not significant
Baseline vs. DSC + Bottleneck + Expansion | 0.92 vs 1.00 -2.89 0.0039 Significant improvement of structural model
SE vs. DSC + Bottleneck + Expansion 0.98 vs 1.00 -1.42 0.1552 No statistically significant difference

V. DISCUSSION

The results show that the suggested changes to
MobileNetV2 make a big difference in lightweight driver
drowsiness detection. The baseline model doesn't do a good job
of remembering drowsy instances, but adding SE attention
improves its performance significantly (from 0.86 to 0.98) and
overall accuracy (from 92% to 98%). These findings suggest
channel-wise feature recalibration works well in compact
convolutional backbones. On the other hand, the structurally
optimized version, which combines DSC, Bottleneck blocks,
and Expansion layers, gets perfect classification performance
(100% accuracy) with perfect class discrimination. This
improvement is statistically significant compared to both
baseline and the attention-enhanced models, indicating that
structural optimization increases representational capacity
more than attention alone does.

A major finding of this study is that these improvements in
accuracy can be made without making the calculations more
difficult. Both improved models remain light, with about 2.6
million parameters and 315 million FLOPs. The SE-enhanced
model has an inference latency of 206 ms, but the structurally
optimized model lowers it to 143 ms, improving execution
speed by about 30%. This result shows that improving
performance in resource-constrained environments is mostly
due to architectural improvements, not to expanding the model.

In general, the results show that attention-based refinement
and structural optimization have different but complementary
roles in designing lightweight models. Channel attention

enhances class sensitivity and equilibrium, whilst structural
optimization elevates correctness and reduces delay. The
findings suggest that accurate sleepiness detection on
embedded platforms can be achieved through carefully
designed lightweight architectures, avoiding reliance on larger
deep learning models or specific hardware accelerators.
Consequently, the proposed method is an effective and scalable
approach for real-time monitoring of drivers in Edge-loT
systems.

A. Limitations

This research presents multiple difficulties that necessitate
consideration. The suggested method performs frame-level
classification and does not explicitly illustrate the temporal
fluctuations of drowsiness, such as blink duration or fatigue
buildup. The assessment is performed on a limited dataset of
500 images, perhaps constraining the generalizability of the
findings to larger datasets. No cross-dataset validation or
explicit robustness testing is conducted in challenging
scenarios, such as variations in lighting, obstructions, the
presence of glasses, or motion blur. Lastly, the suggested
models haven't been tested onreal Edge-IoT hardware yet, and
the authors don'tknowhow well they performin the real world,
particularly in terms of latency stability and energy efficiency.

VI. CONCLUSION

This study offers design-focused insights into the creation
of lightweight vision models for real-time driver drowsiness
detection on resource-limited Edge-IoT platforms. The results
show that careful architectural design choices are enough to get
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high accuracy, stability, and efficiency in safety-critical
applications, rather than relying on model scaling or
heavyweight architectures.

One important thing the authors learned is that attention
mechanisms and structural optimization have very different
jobs in lightweight CNNs. Channel-wise attention,
implemented via Squeeze-and-Excitation, primarily improves
feature discrimination and class sensitivity in compact
backbones. This is a balanced and low-overhead way to
improve performance. Structural architectural optimization, on
the other hand, directly improves the backbone's ability to
represent data by using DSC, Bottleneck blocks,and Expansion
layers. This makes feature extraction more reliable and robust.
This structural refinement is more important than just paying
attention whenyou need to capture very specific fatigue-related
cues while following strict computational rules.

From an Edge-IoT perspective, the results show that an
important rule is that performance improvements in embedded
vision systems should focus on architectural efficiency rather
than on model complexity. Both enhanced versions have a
small parameter footprint and low computational cost, and they
can both make inferences in real time. These findings suggest
high-accuracy driver monitoring can be achieved without
specialized hardware accelerators or extensive computational
resources.

This work indicates that structural optimization ought to be
considered a principal design strategy, with attention
mechanisms functioning as supplementary enhancements
contingent upon application needs. These insights provide
practical guidance for researchers and practitioners developing
lightweight, dependable, and deployable vision-based driver
monitoring systems for real-world Edge-loT contexts.

VII. FUTURE WORK

Subsequent research will concentrate on enhancing the
proposed lightweight architecture to achieve wider real-world
applicability on Edge-loT platforms. To further test
generalization robustness, we need more diverse datasets and
real-world driving conditions, such as low-light environments,
obstructions, and a range of driver demographics. Second,
adding other types of information, such as head pose, temporal
eye blink patterns, or subtle physiological cues, could make the
system more reliable when facial features are only partially
visible.

The authors will also look into model-level optimizations
like pruning, quantization, and hardware-aware neural
architecture search to make ultra-low-power embedded devices
even faster and use less memory. Finally, testing deployment
on real Edge-loT hardware such as Jetson Nano, Coral Edge
TPU, and ARM-based systems will provide useful information
on how well it performs over time, how much energy it
consumes, and how it operates in real-time. These guidelines
will make lightweight drowsiness detection more useful for
smart in-vehicle systems and large-scale IoT deployments.
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