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Abstract—Driver drowsiness is a major cause of traffic 

accidents, so Edge-IoT platforms with limited resources need to be 

able to accurately and quickly detect when drivers are drowsy. 

This study examines attention-guided lightweight CNN design 

predicated on MobileNetV2 for real-time driver drowsiness 

detection. The authors compare a SE-enhanced MobileNetV2 to 

the baseline model and a structurally optimized version that uses 

Depthwise Separable Convolution (DSC), Bottleneck blocks, and 

Expansion layers. Experiments on 500 images demonstrate that 

channel attention enhances feature discrimination, whereas 

structural optimization yields the most resilient trade-off between 

accuracy and latency. Statistical validation employing 95% 

confidence intervals and two-proportion Z-tests substantiates the 

significance of these enhancements. The proposed models support 

real-time inference despite their small size (about 2.6 million 

parameters and 315 million FLOPs). These findings suggest 

structural optimization is more important than attention 

mechanisms in designing lightweight CNNs for embedded driver 

monitoring. 
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I. INTRODUCTION 

Drowsy driving remains one of the leading causes of car 
accidents worldwide. This is mostly because it slows reaction 
time, reduces alertness, and makes decision-making harder [1]. 
Recent research underscores the substantial influence of fatigue 
on traffic incidents and stresses the necessity for automated, 
vision-based detection systems proficient in recognizing ocular 
signs of diminished alertness [2]. Vision-based driver 
monitoring has emerged as a predominant research focus, as it 
facilitates the identification of fatigue-related facial 
behaviors—such as blinking patterns, eyelid closure, yawning, 
and head movements—that are significantly associated with the 
progression of drowsiness [3] [4]. 

As more and more cars adopt artificial intelligence, there is 
a growing need for lightweight, real-time, and reliable fatigue-
detection models that can run effectively on Edge-IoT 
platforms with limited computing power [5]. Recent real-time 
applications, such as MobileNet-based drowsiness detectors, 

further demonstrate the utility and efficiency of lightweight 
architectures for embedded deployment [5]. 

Deep learning has significantly advanced driver-state 
analysis by enabling image-based models to learn complex, 
subtle visual patterns that are difficult to capture with 
handcrafted features [6]. High-capacity CNN and transformer-
based models, such as EffRes-DrowsyNet and MG-YOLOv8, 
exhibit robust benchmark performance [3], yet their 
computational complexity restricts deployment on embedded 
devices. Recent studies in lightweight visual recognition 
emphasize diminishing model complexity via depthwise 
separable convolutions, inverted bottlenecks, and fast feature 
recalibration [7], with hybrid attention architectures that 
selectively amplify relevant features without significant 
processing burden [8]. Studies such as SCAT, which integrates 
spatial and channel-enhanced self-attention, show that 
combining local and global feature representations significantly 
improves accuracy while maintaining efficiency—
demonstrating the importance of attention-guided lightweight 
designs [9]. 

Nguyen et al. showed that DSC with dilated filters makes 
embedded inference on limited hardware more efficient [10]. 
Lightweight CNNs can perform well when used to support 
users in real-time fatigue detection, even with limited training 
data in driver monitoring applications [11]. Nonetheless, 
despite their efficacy, lightweight CNNs sometimes encounter 
difficulties in detecting nuanced fatigue-related micro-
expressions—such as partial eyelid closure and micro-blinks—
which are essential for the early identification of drowsiness in 
practical driving situations. To address this problem, attention 
mechanisms such as SE, CBAM, ECA, and their hybrid 
variants have been shown to effectively improve channel 
selectivity and spatial focus in vision tasks. Hybrid attention, 
especially, has led to big improvements in fine-grained 
classification tasks with small texture changes. For example, 
hybrid-attention Xception models for brain tumor analysis [12] 
show that lightweight architectures gain significant benefit 
from attention-based improvements. SE is well-suited to 
lightweight architectures because it adds channel recalibration 
with very little extra computational cost, unlike spatial attention 
or hybrid multi-branch attention mechanisms. 

*Corresponding author. 
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Even with these improvements, the authors still don't fully 
understand how attention mechanisms work in lightweight 
CNN-based driver drowsiness classification, especially when 
compared directly to structural lightweight optimizations. 
There has not been a systematic, statistically validated study to 
determine whether channel attention mechanisms, such as 
Squeeze-and-Excitation, offer benefits similar to or 
complementary to architectural changes in Edge-IoT settings, 
especially for MobileNetV2, a popular backbone for 
environments with limited resources. 

This research introduces an Attention-Guided Lightweight 
MobileNetV2 to facilitate real-time driver drowsiness 
classification on Edge-IoT systems, addressing the identified 
gap. More importantly, the study conducts a controlled, 
statistically sound comparison of attention-based refinement 
and structural lightweight optimization within the same 
MobileNetV2 backbone. This framework offers empirical 
insights into the impact of various lightweight enhancement 
strategies on fine-grained fatigue-feature recognition, 
computational efficiency, and deployment suitability in 
resource-constrained environments. 

II. RELATED WORK 

Driver drowsiness detection has been widely explored 
across three primary categories: facial-feature–based methods, 
physiological-signal–based approaches, and vehicle-behavior 
analysis [13], [14], [15]. Vision-based facial-feature methods 
are still the most useful and widely used of these. They use cues 
like how often someone blinks, how their eyelids close, how 
often they yawn, and how their head moves [3], [5], [2]. But 
classical methods often don't perform as well when lighting 
changes, there are obstructions, or the appearance of different 
drivers varies, which is why the authors need to use strong deep 
learning models that can work in real driving situations [16] 
[17]. 

Deep learning–based methods have substantially improved 
fatigue detection by learning hierarchical facial representations 
[18]. Lightweight CNNs such as MobileNet, DenseNet, 
ResNet50V2, and VGG19 have been applied to eye-state 
classification and driver-monitoring tasks. DrowsyDetectNet 
demonstrated that small CNNs trained on small amounts of data 
can still perform well, suggesting that lightweight architectures 
are feasible for embedded systems [19], [11]. Hu et al. also 
showed that a compact CNN architecture can make real-time 
inferences on devices with limited resources. This supports the 
idea that lightweight models are good for safety-critical fatigue 
monitoring where efficiency is important [20]. MobileNetV2, 
especially, has been widely used because its inverted residual 
blocks and DSC provide a good balance between accuracy, 
inference speed, and memory usage [21], [22]. Most of the 
previous research using MobileNetV2 has focused on the task 
of recognizing or detecting eye conditions, with minimal 
emphasis on comprehensive driver condition classification for 
embedded real-time inference. 

Lightweight CNNs are efficient but often lack expressive 
power,  limiting  their effectiveness at detecting subtle signs of 

fatigue, such as microblinks or subtle eyelid contractions. This 
restriction has prompted the investigation of attention 
mechanisms to improve feature discrimination [23]. Hassan et 
al. showed that adding attention to VGG19 increases accuracy 
from 96.3% to 98.85%. Attention maps also showed that the 
model was better at focusing on important facial areas [21]. 
Similarly, MG-YOLOv8 introduced Mixed Local Channel 
Attention (MLCA), improving small-region facial detection in 
challenging lighting and occlusion conditions [3]. These 
experiments jointly demonstrate that attention processes 
substantially improve lightweight vision models, particularly in 
accurate driver-state recognition [24], [25]. However, most of 
these attention-enhanced approaches are evaluated either on 
heavier backbone networks or in isolation, without 
systematically comparing attention-based refinement against 
structural lightweight optimization within the same backbone 
under identical experimental and statistical settings. 

Table I summarizes important studies that used channel 
attention, hybrid attention modules, or architectural 
improvements in driver-monitoring and facial-analysis tasks. 
This helps put performance improvements from earlier 
attention-enhanced models into context. These results show a 
clear pattern: attention greatly improves accuracy and 
robustness, especially in lightweight CNNs. 

Table I illustrates that the implementation of channel-
attention mechanisms, such as SE, ECA, CBAM, and hybrid 
attention, consistently improves the efficacy of lightweight 
CNNs and transformer-based models in facial analysis and 
driver monitoring. Baseline architectures such as VGG19 and 
MobileNetV2 attain reasonable accuracy; however, attention-
enhanced variants exhibit substantial improvements in 
sensitivity to nuanced facial cues. Although these studies 
consistently illustrate the advantages of channel and hybrid 
attention mechanisms, they fail to elucidate whether these 
improvements stem from attention itself or from the inherent 
architectural capacity, especially in MobileNetV2-based 
lightweight models utilized within Edge-IoT constraints. 

Despite these advances, some significant shortcomings 
remain. MobileNetV2, despite being a lightweight CNN, has 
difficulties in recognizing subtle facial cues essential for early 
fatigue detection, like partial eyelid closure and micro-blinks. 
Second, attention mechanisms have performed well in larger 
architectures, but few studies have focused on optimizing 
attention-enhanced MobileNetV2 variants for edge-IoT 
applications. Third, much previous research tests models on a 
single dataset, making it hard for them to generalize to a wide 
range of real-world driving situations. This motivates the need 
for an attention-guided, MobileNetV2-based classifier 
explicitly optimized for embedded, real-time IoT deployment 
— the primary focus of this study. 

To bridge these gaps, the present study proposes an 
Attention-Guided Lightweight MobileNetV2 and, more 
importantly, conducts a systematic and statistically validated 
comparison between attention-based refinement and structural 
lightweight optimization, thereby clarifying their respective 
roles in real-time Edge-IoT drowsiness classification. 
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TABLE I.  SUMMARIZES KEY STUDIES APPLYING CHANNEL ATTENTION 

Ref. Model / Study Attention / Enhancement Accuracy Precision Recall F1 Score 

[21] VGG19 – 96.30 96 93 95 

[21] VGG19 + Attention Channel Attention (MLP-based) 98.85 99 99 99 

[3] MG-YOLOv8 MLCA (Mixed Local Channel Attention) 
Improved 

robustness 
– – – 

[20] MobileNetV2 Baseline – 94.09 ± 0.41 – – – 

[20] MobileNetV2 + ECA (MobiLiteNet) ECA (Efficient Channel Attention) 96.10 ± 0.34 – – – 

[21] Swin Transformer Hierarchical Window Attention 98.76 – 100 99 – 100 99 – 100 99 – 100 

[21] ViT Transformer Global Self-Attention 99.15 – 99.52 99 99 – 100 99 

[21] VGG19 + Attention Channel Attention 98.17 97 97 97 

[21] MobileNetV2 Fine-Tuned – 97.99 98 98 98 

[12] Hybrid Xception SE + CBAM Hybrid Channel Attention 99.21 99 99 99 

[26] Efficient Lightweight Attention Network Lightweight Channel Attention (GAP+1D Conv) 98.5–99.3 – – – 

[9] 
SCAT (Spatial–Channel Enhanced 

Transformer) 
Spatial & Channel Coupled Self-Attention 99.4–99.8 – – – 

[9] Lightweight ViT Spatial + Channel Enhanced Attention 98.7–99.5 – – – 

[27] EffRes-DrowsyNet 
Deep Feature Fusion + Multi-level Convolutional 

Attention 
97.71 – – – 

[11] DrowsyDetectNet Lightweight Feature Attention 94–96 – – – 

Notes: – indicates metrics not reported in the original study

III. METHODOLOGY 

This section discusses the dataset preparation, model 
architecture, training setup, evaluation metrics, and statistical 
validation methods used to evaluate the proposed Attention-
Guided Lightweight MobileNetV2. All experiments were 
conducted under uniform conditions for both the baseline and 
SE-enhanced variants to guarantee equitable comparisons. 

 
Fig. 1. Research pipeline. 

Fig. 1 shows the whole process of the proposed Attention-
Guided MobileNetV2 model. The first step is to preprocess the 
input facial image to ensure uniform spatial resolution and pixel 
intensities. The MobileNetV2 feature extractor then processes 
the image. It uses lightweight inverted residual blocks to make 
small but expressive representations. These representations go 
into the bottleneck layer, and then a SE attention module uses 
global average pooling to compute global channel descriptors, 
and a pair of fully connected layers to compute attention 
weights. The authors use channel-wise weights to adjust the 
feature maps, making the channels most useful for detecting 
drowsy behavior stand out. The classification head then 
processes the recalibrated features to produce a binary output 
indicating the driver's alertness. Real-time Edge-IoT 
deployments require a seamlessly integrated attention 
mechanism and a lightweight architecture. 

A. Dataset Preparation and Preprocessing 

The authors collected 500 labeled face images from three 
well-known driver-monitoring datasets: YawDD, NTHU-

DDD, and DDD. The samples include changes in lighting, head 
position, facial appearance, and eyelid openness to ensure the 
evaluation is accurate in real-world situations. 

Preprocessing includes: 

• Resizing all images to: (150×150) pixels 

• Pixel normalization to: [0, 1]. 

• Random augmentation: Rotation (20), Horizontal flip, 
Width Shift (0.1), Height Shift (0.1), Shear (0.1), and 
Zoom (0.1). 

• Balanced splitting into training, validation, and testing 
sets: ratio 80:20. 

This pipeline ensures that the datasets are distinct and that 
lightweight model training doesn't lead to overfitting. 

B. Data Integrity and Leakage Prevention 

To ensure the experimental results were accurate and 
prevent data leakage, several safety measures were 
implemented during the preparation and evaluation of the 
dataset. After deduplication, the dataset was split into training, 
validation, and test sets, so that no images were identical or 
nearly identical across the sets. Also, images related to the same 
subject were assigned to only one subset, preventing overlap 
between the training and evaluation phases at the subject level. 

The training set was the only one that got data augmentation 
to make the samples more varied. The validation and test sets 
stayed the same. There was no test-time augmentation or model 
tuning after the fact. Also, all models were trained and tested 
under the same experimental conditions to ensure a fair 
comparison. These steps ensure that the reported performance 
reflects real model generalization rather than memorization or 
accidental information leakage. 
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C. Baseline Architecture: MobileNetV2 

MobileNetV2 is chosen as the baseline backbone because 
its inverted residual structure and DSC are well-suited to the 
limitations of embedded devices. The architecture has: 

• An initial convolution block, 

• A series of inverted residual bottlenecks with expansion 
layers, 

• Depthwise and pointwise convolutions for channel-wise 
factorization, and 

• The last convolutional layer that goes into a global 
average pooling operation. 

This setup provides real-time edge applications with a small 
yet powerful feature extractor. 

D. Proposed Architecture: Attention-Guided Lightweight 

MobileNetV2 

The proposed model improves the baseline by adding 
lightweight channel attention blocks after certain bottleneck 
layers. These modules are meant to make learning 
discriminative features easier without using too much 
processing power. Fig. 2 shows what each SE attention block 
does: 

• Global Average Pooling to capture global channel 
descriptors, 

• Fully Connected (FC) + ReLU to learn intermediate 
channel relations, 

• FC + Sigmoid to generate channel-wise attention 
weights, and 

• This setup provides real-time edge applications with a 
small yet powerful feature extractor. 

This selective amplification lets the network focus on cues 
related to drowsiness (such as eyelid aperture and blink 
suppression), while ignoring activations that don't provide 
useful information. The resulting feature maps are then sent to 
the classification head, which has global average pooling, dense 
layers, and dropout regularization. 

 
Fig. 2. Proposed model architecture. 

E. Training Procedure 

The same setup was used to train both baseline and SE-
enhanced models: 

• Optimizer: Adam 

• Learning rate: 0.001 

• Batch size: 32 

• Epochs: 30 with early stopping (patience = 10) 

• Loss function: Binary cross-entropy 

• Weight initialization: ImageNet 

• Regularization: Dropout (0.5), BatchNormalization, and 
early stopping. 

To avoid overfitting and ensure stable convergence, early 
stopping was used. 

F. Evaluation Metrics 

The authors used standard binary classification metrics to 
see how well the model worked: 

• Accuracy 

• Precision (drowsy / non-drowsy) 

• Recall (drowsy / non-drowsy) 

• F1-score (drowsy / non-drowsy) 

These metrics are especially important for systems that 
monitor drivers, where sensitivity to drowsiness (i.e., the 
positive class) is critical for safety-critical applications. 

G. Statistical Validation 

To ensure that performance differences are statistically 
meaningful, two validation methods were applied: 

• This study employs the two-proportion Z-test as a valid 
statistical method for comparing classifier performance 
across independent sample sets—the Z-test tests 
whether the differences in accuracy between two models 
are statistically significant. A p-value less than 0.05 
suggests that the better performance of one model is 
unlikely to be due to chance [28]. 

• Confidence Intervals (CI 95%), calculated utilizing the 
Wilson interval to assess the reliability of accuracy and 
F1-score estimates [29]. 

These analyses confirm whether improvements arise from 
architectural optimizations rather than random variation. 

IV. RESULTS 

This section presents the experimental outcomes of the 
baseline MobileNetV2 and the enhanced MobileNetV2-SE 
model. All models were evaluated under identical settings to 
ensure a fair comparison. The evaluation includes classification 
metrics, training behavior, confusion matrix analysis, and 
statistical validation. 
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A. Baseline MobileNetV2 Performance 

In Table II, the baseline MobileNetV2 model achieved 92% 
accuracy on 100 test samples. It produced a precision of 0.98 
for the drowsy class, while the recall was much lower at 0.86. 
This means that many drowsy cases were mislabeled as 
nondrowsy. The nondrowsy class had the opposite pattern: high 
recall (0.98) but low precision (0.88). The results show that the 
model is biased toward nondrowsy predictions, indicating that 
the class sensitivities are unequal. 

TABLE II.  BASELINE MOBILENETV2 PERFORMANCE 

 Precision Recall F1-score Support 

Drowsy 0.98 0.86 0.91 50 

Nondrowsy 0.88 0.98 0.92 50 

Accuracy   0.92 100 

Macro avg 0.93 0.92 0.92 100 

Weighted avg 0.93 0.92 0.92 100 

B. Performance of MobileNetV2 + DSC + Bottleneck + 

Expansion 

The optimized MobileNetV2 model, in Table III, achieved 
a perfect score (100%) on all 100 test samples. The Drowsy and 
Nondrowsy classes both achieved precision, recall, and F1 
Scores of 1.00. The results indicate that the model accurately 
identified all cases without error. The optimal macro and 
weighted averages indicate effective performance for both 
categories. The overall enhancement indicates that using DSC, 
Bottleneck blocks, and Expansion layers improves feature 
extraction and decision accuracy for real-time drowsiness 
categorization. 

C. Performance of MobileNetV2-SE 

MobileNetV2-SE, in Table IV, achieves an overall accuracy 
of 98%, a significant improvement compared to the baseline. 
The Drowsy class had a perfect recall rate of 1.00 and a 
precision rate of 0.96. This means that the model correctly 
identified all drowsy cases and made very few false alarms. On 

the other hand, the nondrowsy class had a perfect precision of 
1.00 and a recall of 0.96, indicating that all predicted 
nondrowsy samples were correct, with only a few missed 
detections. The balanced macro and weighted averages (0.98) 
indicate that SE attention effectively improves feature 
discrimination while maintaining strong performance across 
both classes. 

TABLE III.  PERFORMANCE OF MOBILENETV2 + DSC + BOTTLENECK + 

EXPANSION 

 Precision Recall F1-score Support 

Drowsy 1.00 1.00 1.00 46 

Nondrowsy 1.00 1.00 1.00 54 

Accuracy   1.00 100 

Macro avg 1.00 1.00 1.00 100 

Weighted avg 1.00 1.00 1.00 100 

TABLE IV.  PERFORMANCE OF MOBILENETV2-SE 

 Precision Recall F1-score Support 

Drowsy 0.96 1.00 0.98 46 

Nondrowsy 1.00 0.96 0.98 54 

Accuracy   0.98 100 

Macro avg 0.98 0.98 0.98 100 

Weighted avg 0.98 0.98 0.98 100 

D. Performance Model 

The results in Table V show that all three models improved 
in performance over time. The baseline MobileNetV2 achieved 
92% accuracy, but it was more sensitive to the drowsy class 
than to the other classes, leading it to miss many fatigue cases. 
Adding DSC, Bottleneck blocks, and Expansion made a big 
difference, with all metrics getting perfect scores (100%). 
These results indicate that structural lightweight optimizations 
greatly improve the ability to extract features and the reliability 
of decisions. 

TABLE V.  CLASSIFICATION PERFORMANCE OF BASELINE VS. SE-ENHANCED MOBILENETV2 

Model 
Precision (Drowsy / 

Nondrowsy) 

Recall (Drowsy / 

Nondrowsy) 

F1-score (Drowsy / 

Nondrowsy) 
Accuracy (%) 

MobileNetV2 (Baseline) 0.98 / 0.88 0.86 / 0.98 0.91 / 0.92 92 

MobileNetV2 + DSC + Bottleneck + Expansion  1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 100 

MobileNetV2-SE (Proposed) 0.96 / 1.00 1.00 / 0.96 0.98 / 0.98 98 

 

The proposed SE-enhanced MobileNetV2 achieved 98% 
accuracy with balanced precision and recall across both classes, 
demonstrating that channel attention can improve 
representational quality without increasing computational 
complexity. MobileNetV2-SE is a great balance between 
accuracy and efficiency. It consistently outperforms the 
baseline while remaining highly sensitive to drowsiness. It 
doesn't beat the structurally optimized model, though. 

The DSC–Bottleneck–Expansion variant performs better 
because it directly improves the extraction of spatial and 
depthwise features, helping the model capture small visual cues 

related to drowsiness. On the other hand, SE attention changes 
the way channels respond, but it doesn't increase the backbone's 
ability to represent more information. So, in a lightweight 
architecture like MobileNetV2 and with a small dataset, 
structural optimizations yield feature maps that are richer and 
more discriminative than those from channel attention alone. 
This makes classification more accurate. 

The results indicate that both structural and attention-based 
architectural improvement models provide significant 
differences compared to the baseline model. Structural 
optimization delivers the most accurate results, while SE 
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attention provides strong, well-balanced performance that is 
ideal for real-time Edge-IoT deployment. 

E. Training Stability 

The training stability analysis shown in Fig. 3 reveals 
different behaviors among the three models. The baseline 
MobileNetV2 is moderately stable, but its uneven class-specific 
sensitivity indicates that fatigue-related features have not fully 
converged. The DSC–Bottleneck–Expansion variant is the 
most stable, with perfect convergence, smooth optimization 
dynamics, and no classification errors. These findings suggest 
spatial–depthwise feature extraction has improved. The SE-
enhanced MobileNetV2 converges steadily and evenly, but it 
doesn't achieve the representational capacity of structural 
optimization. Overall, structural improvements make training 
more stable than attention-based recalibration, especially when 
using lightweight architectures and small datasets. 

 
(a) MobileNetV2 Baseline. 

  
(b) MobileNetV2 + DSC + Bottleneck + Expansion. 

   
(c) MobilNetV2 SE. 

Fig. 3. Training stability. 

F. Confusion Matrix Analysis 

The confusion matrix in Fig. 4 shows that the three models 
make errors in very different ways. The baseline MobileNetV2 
has uneven class-sensitivity; it correctly identifies most 
nondrowsy samples but misclassifies 7 drowsy cases. These 
findings suggest it doesn't do a good job of picking up on subtle 
signs of fatigue. This imbalance raises a safety issue because 
missing drowsiness events make early-warning detection less 
reliable. 

 
(a)                                              (b) 

 
(c) 

Fig. 4. Confusion Matrix: a) MobileNetV2 Baseline, b) MobileNetV2 + DSC 

+ Bottleneck + Expansion, c) MobileNetV2 SE. 

With DSC, Bottleneck blocks, and Expansion, the 
structurally optimized MobileNetV2 gets perfect classification, 
with no false positives or false negatives. This result shows that 
the model is the most reliable in the evaluation because it 
extracts features more effectively and generalizes more 
reliably. 

The SE-enhanced MobileNetV2 also performs well, 
correctly identifying all drowsy cases and yielding only 2 false 
positives for the nondrowsy class. The findings indicate that the 
model prioritizes safety, opting to overlook a drowsy driver 
rather than generate numerous false alerts. 

The examination of the confusion matrices reveals that both 
structural and attention-based improvements markedly increase 
the accuracy of classification relative to the baseline. Structural 
optimization ensures flawless performance, while SE attention 
offers robust, balanced sensitivity, ideal for real-time Edge-IoT 
deployment. 

G. Ablation Study 

The ablation study isolates the effect of the SE attention 
mechanism on classification performance, enabling it to be 
measured. This ablation study differs from the main results (see 
Table V) because it focuses only on the contribution of the 
proposed architecture at the component level, not on the overall 
accuracy of the final system. This separation is in line with 
standard practice in publications and keeps performance results 
from being confused with architectural justification. 

1) Effect of SE attention: To assess the impact of the SE 

module, the authors compare MobileNetV2 Baseline, 

MobileNetV2 + DSC + Bottleneck + Expansion, and the SE-

enhanced variant, maintaining uniform architectural and 

training configurations. 
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TABLE VI.  COMPONENT-LEVEL ABLATION ON SE ATTENTION INTEGRATION 

Variant 
Attention 

Module 

Structural Enhancements (DSC / 

Bottleneck / Expansion) 

Accuracy 

(%) 

Recall 

(Drowsy) 

Macro F1-

Score 

MobileNetV2 (Baseline) No No 92 0.86 0.92 

MobileNetV2 + DSC + Bottleneck + Expansion No Yes 100 1.00 1.00 

MobileNetV2 + SE (Proposed) Yes No 98 0.98 0.98 

 

Table VI shows the results of ablation across three 
MobileNetV2 configurations. The baseline model achieved a 
drowsy recall of 0.86 and an accuracy of 92%, indicating that 
the model was not very effective in detecting fatigue. The 
addition of structural improvements such as DSC, Bottleneck, 
and Expansion had a significant impact and significantly 
improved feature extraction. The improvement with SE was 
significantly greater than the baseline model, with a drowsy 
recall of 0.98 and an accuracy of 98%. These findings suggest 
that channel-wise attention improves discriminative 
representation while remaining efficient. Both enhancement 
strategies improve performance overall. Structural optimization 
gives the best accuracy, while SE attention gives a light, reliable 
improvement. 

2) Architectural interpretation (non-experimental 

ablation): To elucidate the role of attention in the proposed 

model, the authors present a structural analysis of the SE 

module's operation within each bottleneck block, as depicted in 

Fig. 5. In the standard MobileNetV2, DSC, and inverted 

residual blocks treat all channels identically. This makes it hard 

for the network to pick up on subtle but important facial cues of 

drowsiness, such as partially closing the eyelids or making the 

eyes look smaller. 

 
Fig. 5. Architectural interpretation. 

A lightweight channel-attention module is added after the 
bottleneck block in the SE-augmented version. The SE block 
performs global average pooling to obtain global context, 
followed by two fully connected layers (FC + ReLU and FC + 
Sigmoid) that generate channel-wise attention weights. After 
that, these weights are multiplied by the original feature maps 
to produce recalibrated feature responses that favor channels 
that provide useful information and block those that don't. This 
selective feature amplification increases representational 
capacity with very little extra work for the computer. The 
enhanced convergence stability and reduced false-negative rate 
observed in the experiments provide compelling evidence that 
SE-driven channel recalibration directly improves the 
reliability and robustness of drowsiness classification. 

3) Ablation interpretation: The ablation results clearly 

show that both SE attention and the structural improvements 

made a difference. The baseline MobileNetV2 exhibits limited 

representational capacity, evidenced by its 92% accuracy, 0.86 

drowsy recall, and 0.92 macro F1-score. This signifies a 

restricted ability to discern subtle changes in eye features linked 

to fatigue. 

The integration of SE attention improves channel 
responsiveness, leading to an accuracy enhancement to 98% 
and an increase in drowsy recall from 0.86 to 0.98. The macro 
F1-score increases from 0.92 to 0.98, indicating that SE 
improves class discrimination while preserving low 
computational requirements. 

The most significant improvements come from structural 
changes, including DSC, Bottleneck blocks, and Expansion. 
These modifications resulted in complete accuracy, a recall of 
1.00, and a macro F1-score of 1.00. The enhancements stem 
from a robust feature-extraction hierarchy, enabling the model 
to accurately identify fatigue-related behaviors. 

The ablation study reveals that structural optimization 
produces the most substantial performance benefit, while SE 
attention provides a balanced and efficient increase in class 
sensitivity. Both mechanisms add to the baseline, making it 
easier to detect drowsiness in real-time Edge-IoT applications. 

H. Computational Cost and Efficiency Analysis 

To assess the viability of implementing the proposed 
models on resource-limited Edge-IoT platforms, the authors 
examine their computational cost attributes, encompassing 
parameter count, FLOPs, model size, and inference latency. 

TABLE VII.  COMPUTATIONAL COST AND EFFICIENCY ANALYSIS 

Metric 
MobileNetV2-SE 

(Attention) 

MobileNetV2 + DSC + Bottleneck 

+ Expansion (Structural) 

Parameters 2,628,562 2,620,098 

FLOPs 315,874,140 Ops 315,844,684 Ops 

Model Size 13.39 MB 13.12 MB 

Latency 206.27 ms 143.65 ms 

Table VII shows that the SE-enhanced MobileNetV2 has 
slightly higher latency because the SE block adds operations 
such as global pooling and per-channel recalibration, which 
improve feature discrimination but also introduce some 
computational overhead. Even so, the model remains 
lightweight, with almost the same number of parameters and 
FLOPs as the structural variant. However, it is more sensitive 
to small facial cues. These results align with the goal of an 
Attention-Guided Lightweight MobileNetV2. They show that 
channel attention improves the accuracy of drowsiness 
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detection while remaining feasible for real-time Edge-IoT 
systems. 

I. Statistical Validation 

To verify that the observed improvements are not due to 
random variation, 95% confidence intervals (CI) and a two-
proportion Z-test were conducted. 

Table VIII provides a 95% confidence interval analysis, 
delivering a statistical evaluation of the reliability of each 
model. The baseline MobileNetV2 demonstrates the broadest 
accuracy range (0.867–0.973), indicating diminished 
confidence in its generalization abilities. The SE-enhanced 
MobileNetV2 exhibits a reduced range (0.953–1.000), 
indicating more stability and diminished performance 

variability. The structurally optimized model that integrates 
DSC, Bottleneck, and Expansion has the narrowest accuracy 
range (0.964–1.000), aligning with its impeccable real-world 
performance and outstanding reliability. The confidence 
interval estimates for the F1-score demonstrate a comparable 
trend, further validating the superiority of the improved models 
over the baseline. 

The two-proportion z-test, in Table IX, shows that both 
improved models outperform the baseline model. The 
structurally optimized variant shows a statistically significant 
increase in accuracy, while the SE-enhanced model has strong, 
though statistically comparable, performance to the structurally 
optimized model on the current test set.

TABLE VIII.  STATISTICAL VALIDATION USING 95% CI 

Model Accuracy CI 95% (Accuracy) F1-Score CI 95% (F1-Score) Reliable? 

MobileNetV2 (Baseline) 92% 0.867 – 0.973 0.915 0.86 – 0.95 Yes 

MobileNetV2-SE (Attention) 98% 0.953 – 1.000 0.98 0.96 – 0.995 Highly Reliable 

MobileNetV2 + DSC + Bottleneck + Expansion 100% 0.964 – 1.000 1.00 0.98 – 1.00 Extremely Reliable 

TABLE IX.  TWO-PROPORTION Z-TEST 

Comparison Accuracy (Model 1 vs 2) z-statistic p-value Interpretation 

Baseline vs. SE 0.92 vs 0.98 -1.95 0.0516 Borderline; trend favoring SE, not significant 

Baseline vs. DSC + Bottleneck + Expansion  0.92 vs 1.00 -2.89 0.0039 Significant improvement of structural model 

SE vs. DSC + Bottleneck + Expansion  0.98 vs 1.00 -1.42 0.1552 No statistically significant difference 

 

V. DISCUSSION 

The results show that the suggested changes to 
MobileNetV2 make a big difference in lightweight driver 
drowsiness detection. The baseline model doesn't do a good job 
of remembering drowsy instances, but adding SE attention 
improves its performance significantly (from 0.86 to 0.98) and 
overall accuracy (from 92% to 98%). These findings suggest 
channel-wise feature recalibration works well in compact 
convolutional backbones. On the other hand, the structurally 
optimized version, which combines DSC, Bottleneck blocks, 
and Expansion layers, gets perfect classification performance 
(100% accuracy) with perfect class discrimination. This 
improvement is statistically significant compared to both 
baseline and the attention-enhanced models, indicating that 
structural optimization increases representational capacity 
more than attention alone does. 

A major finding of this study is that these improvements in 
accuracy can be made without making the calculations more 
difficult. Both improved models remain light, with about 2.6 
million parameters and 315 million FLOPs. The SE-enhanced 
model has an inference latency of 206 ms, but the structurally 
optimized model lowers it to 143 ms, improving execution 
speed by about 30%. This result shows that improving 
performance in resource-constrained environments is mostly 
due to architectural improvements, not to expanding the model. 

In general, the results show that attention-based refinement 
and structural optimization have different but complementary 
roles in designing lightweight models. Channel attention 

enhances class sensitivity and equilibrium, whilst structural 
optimization elevates correctness and reduces delay. The 
findings suggest that accurate sleepiness detection on 
embedded platforms can be achieved through carefully 
designed lightweight architectures, avoiding reliance on larger 
deep learning models or specific hardware accelerators. 
Consequently, the proposed method is an effective and scalable 
approach for real-time monitoring of drivers in Edge-IoT 
systems. 

A. Limitations 

This research presents multiple difficulties that necessitate 
consideration. The suggested method performs frame-level 
classification and does not explicitly illustrate the temporal 
fluctuations of drowsiness, such as blink duration or fatigue 
buildup. The assessment is performed on a limited dataset of 
500 images, perhaps constraining the generalizability of the 
findings to larger datasets. No cross-dataset validation or 
explicit robustness testing is conducted in challenging 
scenarios, such as variations in lighting, obstructions, the 
presence of glasses, or motion blur. Lastly, the suggested 
models haven't been tested on real Edge-IoT hardware yet, and 
the authors don't know how well they perform in the real world, 
particularly in terms of latency stability and energy efficiency. 

VI. CONCLUSION 

This study offers design-focused insights into the creation 
of lightweight vision models for real-time driver drowsiness 
detection on resource-limited Edge-IoT platforms. The results 
show that careful architectural design choices are enough to get 
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high accuracy, stability, and efficiency in safety-critical 
applications, rather than relying on model scaling or 
heavyweight architectures. 

One important thing the authors learned is that attention 
mechanisms and structural optimization have very different 
jobs in lightweight CNNs. Channel-wise attention, 
implemented via Squeeze-and-Excitation, primarily improves 
feature discrimination and class sensitivity in compact 
backbones. This is a balanced and low-overhead way to 
improve performance. Structural architectural optimization, on 
the other hand, directly improves the backbone's ability to 
represent data by using DSC, Bottleneck blocks, and Expansion 
layers. This makes feature extraction more reliable and robust. 
This structural refinement is more important than just paying 
attention when you need to capture very specific fatigue-related 
cues while following strict computational rules. 

From an Edge-IoT perspective, the results show that an 
important rule is that performance improvements in embedded 
vision systems should focus on architectural efficiency rather 
than on model complexity. Both enhanced versions have a 
small parameter footprint and low computational cost, and they 
can both make inferences in real time. These findings suggest 
high-accuracy driver monitoring can be achieved without 
specialized hardware accelerators or extensive computational 
resources. 

This work indicates that structural optimization ought to be 
considered a principal design strategy, with attention 
mechanisms functioning as supplementary enhancements 
contingent upon application needs. These insights provide 
practical guidance for researchers and practitioners developing 
lightweight, dependable, and deployable vision-based driver 
monitoring systems for real-world Edge-IoT contexts. 

VII. FUTURE WORK 

Subsequent research will concentrate on enhancing the 
proposed lightweight architecture to achieve wider real-world 
applicability on Edge-IoT platforms. To further test 
generalization robustness, we need more diverse datasets and 
real-world driving conditions, such as low-light environments, 
obstructions, and a range of driver demographics. Second, 
adding other types of information, such as head pose, temporal 
eye blink patterns, or subtle physiological cues, could make the 
system more reliable when facial features are only partially 
visible. 

The authors will also look into model-level optimizations 
like pruning, quantization, and hardware-aware neural 
architecture search to make ultra-low-power embedded devices 
even faster and use less memory. Finally, testing deployment 
on real Edge-IoT hardware such as Jetson Nano, Coral Edge 
TPU, and ARM-based systems will provide useful information 
on how well it performs over time, how much energy it 
consumes, and how it operates in real-time. These guidelines 
will make lightweight drowsiness detection more useful for 
smart in-vehicle systems and large-scale IoT deployments. 
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