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Abstract—Deep learning (DL) has become a transformative
approach in medical image analysis, offering superior accuracy
and automation in image segmentation tasks. In reproductive
imaging, transvaginal ultrasound (TVUS) serves as a crucial
modality for evaluating the endometrial condition, which plays a
critical role in assessing ovarian health. Although many studies
have applied deep learning to the segmentation of pathological
endometrial conditions, research focusing on non-pathological
endometrium segmentation remains critically limited. This study
presents a comprehensive review of deep learning methods for
endometrium segmentation in TVUS, with a focus on non-
pathological conditions, including endometrial thickness
measurement, morphology analysis, and endometrium receptivity
assessment. Following PRISMA guidelines, research articles
published between 2015 and 2025 were identified from major
scientific databases. The selected studies were analyzed in terms of
image processing methods, deep learning architectures, and
performance metrics, such as Dice coefficient, Jaccard index,
precision, recall, and Hausdorff distance. Although foundational
architectures, such as U-Net and its variants, achieve impressive
Dice coefficients (up to 0.977), the results often rely on small and
single-center datasets, proving limited generalizability across
imaging settings. Recent advancements demonstrate the efficacy
of hybrid architectures, such as the Deep Learned Snake
algorithm and Transformer-based models like SAIM, in
optimizing segmentation precision within noisy transvaginal
ultrasound images. This review highlights the lack of attention to
non-pathological endometrium segmentation and guides future
research directions in self-supervised learning, transformer-based
architectures, and interpretable deep learning to achieve robust
and clinically applicable models for enhancing endometrium
receptivity assessment and supporting ovarian health in assisted
reproduction technology.

Keywords—Endometrium segmentation; deep learning; image
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I.  INTRODUCTION

Fertility is a crucial aspect of reproductive health, with
individuals seeking medical assistance to conceive. Due to this,
in vitro fertilization (IVF) has emerged as one of the most
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effective assisted reproductive technologies (ART). Research
showed thatthe success rate of [VF remains below optimal, due
to multiple limiting factors such as embryo quality and
endometrial receptivity [1]. Transvaginal ultrasound (TVUS) is
the primary imaging modality in reproductive medicine to
measure endometrial thickness and structure because of its real-
time, non-invasive nature, cost-effectiveness, and portable data
management [2].

In the context of IVF, accurate segmentation of the
endometrium in TVUS images is essential for reliable
measurement of endometrial thickness, which is a key
biomarker for predicting endometrial receptivity and IVF
outcomes [3], [4], [5]. Clinicians often rely on TVUS to
measure endometrial thickness and detect abnormalities that
may impact implantation. However, manual segmentation of
the endometrium thickness from ultrasound images is highly
subjective, time-consuming, and prone to inter-observer
variability. This variability can affect clinical decision-making
and IVF outcomes. Therefore, there is a growing need for
automated and accurate segmentation of ultrasound images to
assist in clinical decision-making [6].

Current efforts towards automation are primarily focused on
automating pathological endometrial conditions, such as
cancers and endometriosis. Meanwhile, the assessment of
endometrial receptivity in healthy women undergoing IVF
remains largely overlooked [7]. This disparity highlights a
critical research gap in the field. Although accurate
endometrium segmentation for pathological diagnosis is
essential, it is equally vital to evaluate endometrial receptivity
to improve IVF success [8], [9].

Deep learning models have demonstrated remarkable
abilities in tackling a diverse array of medical imaging tasks,
spanning classification, detection, segmentation, and
registration [6], [10]. While deep learning has shown
remarkable success in detecting endometrial pathology, current
models largely neglect the detailed analysis for assessing
healthy endometrium receptivity. Moreover, the limited
generalizability across TVUS devices and protocols is due to
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small, single-center datasets lacking in diversity in acquisition
settings [11].

Other than that, existing models predominantly focus on
anatomical features, such as thickness, while overlooking
functional biomarkers that correlate with implantation potential
[12]. These challenges escalated because researchers haven’t
agreed on the best deep learning model for endometrium
segmentation and a standard method to assess these tools in
real-timeclinical use. Although experimental studies report that
segmentation accuracy meets the required clinical standard, the
results have not been translated into clinical application. The
gap between research achievements and practical
implementation highlights the need for comprehensive
solutions that address both technical and clinical requirements
for endometrial receptivity assessment.

Therefore, to systematically evaluate these challenges and
opportunities, this literature review addresses the following
central research question: How can deep learning segmentation
of TVUS images improve objective assessment of endometrial
receptivity? To accurately address this question, there are four
sub-questions:
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e What are the predominant deep learning model
architectures applied to TVUS endometrium
segmentation?

e Which deep learning architecture achieves a high
accuracy in endometrium segmentation?

e  Which evaluation metrics best validate segmentation
quality for clinical receptivity assessment?

e What technical and clinical gaps persist in translating
these models to the ART workflow?

By addressing these questions through synthesized
evidence, this study aims to establish methodological best
practices while identifying priority areas for future research at
the intersection of deep learning and reproductive medicine.
Fig. 1illustratesthe central research questionand sub-questions
guiding the systematic review. The novelty of this review
bridges the gap by focusing specifically on how deep learning
can segment healthy endometrium for receptivity assessment,
which is a clinical need often overlooked in prior reviews of
gynecological imaging.

Central Research Question:

How can deep learning segmentation of TVUS image improve objective assessment of endometrial
receptivity?

Fig. 1. Overview of the central research question, with research questions that guide this literature review.

This study is organized firstto provide a brief overview of
related reviews on deep learning for medical, specifically for
women's reproductive health system. Later, this study provides
brief information on endometrial receptivity and the role of
transvaginal ultrasound for assessing and monitoring the
endometrium. Next, the study will provide a brief explanation
aboutadeep learningmodel for image segmentation in medical
image analysis. The methodology section outlines the rigorous
selection process used to identify relevant studies included in
this review. Following this section, the results section
synthesizes and presents the selected studies to address the
defined research questions. In the future direction section, this
study discusses the potential for integrations and clinical
applications to improve receptivity assessment. Lastly, the
conclusion summarized key insights, identified current gaps in
the literature, and outlined actionable future research
trajectories. The list ofabbreviations used in this study is listed
in Table L.

TABLEI. LIST OF ABBREVIATIONS
Word Abbreviations
ART Assisted Reproductive Technology
CNN Convolutional Neural Network
DDRNet Deep Dual-Resolution Networks
DLS Deep Learned Snake
ERA Endometrium Receptivity Assessment
ET Endometrial Thickness
ET Endometrium Thickness
FCN Fully Convolutional Network
ToU Intersection of Union
IVF In Vitro Fertilization
MAE Mean Absolute Error
NLP Natural Language Processing
ResNet Residual Network
RSME Root Square Mean Error
SAIM Segment Anything with Inception Module
SAM Segment Anything Module
TVUS Transvaginal Ultrasound
U-Net U-Shaped Convolutional Neural Network
VGG Visual Geometry Group
WOI Window of Implantation
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II. RELATED WORKS

Several review articles have surveyed the application of
deep learning in medical imaging, including specific analyses
of gynecological structures. However, a critical examination of
these reviews reveals a consistent focus on pathological
diagnosis and hasrarely addressed the segmentation ofthenon-
pathological endometrium for receptivity assessment.

Broad systematic reviews in medical imaging, such as those
by Litjens etal [10] and Gao et al.[13], highlighted that while
deep learning has transformed tasks like classification and
segmentation across various anatomical regions, gynecological
applications are often overlooked by more extensively
researched regions, like the brain, chest, and musculoskeletal
system. Furthermore, comprehensive segmentation reviews
primarily utilize pathological benchmarks to evaluate model
performance. This leaves a significant gap in the synthesized
knowledge regarding the automated mapping of healthy
anatomical structures.

Within the gynecological field, the existingreviews focused
on pathological conditions, particularly oncological
diagnostics. For instance, Swarnkar et al. conducted a
systematic review of deepleamingfor the diagnosis of cervical,
ovarian, and endometrial malignancies. The review identified
50 relevant studies, including 16 focused specifically on
endometrial cancer [14].

Similarly, Aparna and Libish concentrated on research
specifically aimed at identifying abnormal and malignant cells
in the uterus to discover endometrial cancer [15]. Meanwhile,
Piedimonte focused on using machine learning to incorporate
clinical and radiologic parameters to pre-operatively stratify
high-risk cancer patients [16]. These reviews evaluate the
efficacy of models in discriminating between benign and
malignant masses or predicting the depth of myometrial
invasion, which are tasks inherently different from delineating
a healthy endometrial lining [13].

This pathological emphasis persists even in modality-
specific reviews. Jiang synthesized the research on deep
learning-based imaging for endometrial cancer management
across ultrasound, MRI, and hysteroscopy, with a focus on
tumor morphology and molecular typing [17]. Zhang evaluated
models for classifying common endometrial lesions, including
hyperplasia and polyps, but did not address the segmentation of
baseline healthy structures [18]. In a comprehensive review,
Meiburger highlighted that while automated localization and
segmentation techniques represent a developing ‘hot topic’,
gynecological applications remain largely focused on uterine
fibroids or follicular monitoring for disease identification [19].

This technical focus on disease is particularly evident in the
assessment of female reproductive function. Chen highlighted
that while ultrasound is essential for evaluating ovarian reserve
and endometrial receptivity (ER), systematic reviews
specifically focusing on Al-aided ultrasound for these
functional assessments are absent from the literature [7].
Current studies on reproductive segmentation focus primarily
on ovarian follicles to diagnose conditions like polycystic
ovarian syndrome (PCOS), while the foundational task of
segmenting healthy endometrial remains overlooked.
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Consequently, a clear gap exists between the technical
literature and clinical application. In addition to cancer
diagnosis studies from Swarnkar, a few more studies have
explored deep learning segmentation for endometrial
hyperplasia and endometriosis [20], [21], [22], [23], [24], [25],
[26].

Fig. 2 presentsa stacked bar chart visualizing the focus of
endometrial image analysis research over the past decade. The
data reveals a significant disparity. While deep leaming
applications are extensively utilized for diagnosing
pathological conditions, their application in evaluating healthy
endometrial receptivity (healthy endometrium) remainsnotably
overlooked.

The absence of a dedicated synthesis for non-pathological
endometrium segmentation represents a significant limitation
in translating deep leaming from research to clinical practice in
assisted reproduction. Therefore, this review systematically
addresses this gap by examining deep learning architectures,
performance metrics, and clinical translation challenges
specifically in the context of endometrial receptivity
assessment, thereby providing a focused foundation for the
methodological analysis that follows.
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B Cancer Endometriosis Hyperplasia © Healthy

Fig.2. Comparative analysis of research volume identifying the disparity
between endometrial disease diagnosis and healthy assessment.

III. ENDOMETRIUM RECEPTIVITY AND TRANSVAGINAL
ULTRASOUND

The endometrium, which forms in the uterine lining, is a
dynamic tissue essential for female fertility and reproductive
health. Throughout the menstrual cycle, the endometrial lining
undergoes a series of dynamic changes. The changes include
shedding during menstruation, followed by thickening during
the proliferative phase and eventually transitioning into the
secretory phase to prepare for potential embryo implantation.
The condition when the endometrium is ready for embryo
implantation is called endometrial receptivity (ET).

Endometrialreceptivity refers to a specific period during the
menstrual cycle when the endometrium is optimally prepared
to facilitate embryo attachment and subsequent pregnancy [27],
[28]. This specific period is known as the window of
implantation (WOI). An accurate assessment of endometrial
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thickness and structure is crucial during WOI for improving
IVF outcomes [29]. This is because inadequate endometrial
development could lead to implantation failure and pregnancy
loss, even with high-quality embryos [30], [31].

During in-vitro fertilization (IVF) procedures, ET plays a
crucial role in embryo implantation. A receptive endometrial
environment is essential for successful implantation and a
healthy pregnancy [12].

Endometrial receptivity occurs in a brief period known as
the window of implantation (WOI). This period typically
occurs between 20 and 24 days of a regular 28-day menstrual
cycle. During this critical period, within 3-5 days, the
endometrium undergoes changes in molecular and structural
modifications to support embryo implantation [32]. Thus,
proper timing of embryo transfer within this window is crucial
to ensure the success of implantation. Failure synchronization,
displaced implantation window, of embryo transfer during this
period could lead to implantation failure. The displaced
implantation window is one of the causes of recurring
implantation failure [33]. The percentage of women with
recurrent implantation failure showing displaced implantation
windowsranges from 17.7%to 80% [32],[34],[35]. Therefore,
the need for an accurate assessment of endometrial receptivity
is evident, and transvaginal ultrasound (TVUS) serves as a
reliable tool in evaluating the endometrial receptivity for
implantation.

The key parameters evaluated through TVUS include
endometrial thickness, endometrial pattern, and vascular
characteristics [36], [37]. These parameters provide valuable
insights intothe endometrium’s readiness for implantation [38],
[39]. A general rule suggests that a thin endometrium reduces
implantation success, while an overly thick endometrium may
also lower pregnancy rates. However, the optimal endometrial
thickness for successful implantation remains inconclusive
within the medical community [40]. A study demonstrated that
embryo implantation, clinical, and ongoing pregnancy rates
were significantly higher in patients with an endometrial
thickness greater than 9 mm compared with those less than 9
mm [41]. A few other studies have concluded that the critical
threshold of 7-14 mm is the optimal endometrial thickness for
embryo transfer [5],[28],[42],[43]. Asystematic review found
that implantation rates tend to decrease when endometrial
thicknessisless than 7 mm, whereas a thickness greater than 14
mm does not significantly impact pregnancy outcomes
compared to amedium endometrial thickness of 7—14 mm [44].
These inconsistencies underscore the need for additional
research to establish a definitive range of endometrial thickness
for successful implantation.

In addition to endometrial thickness, theendometrial pattern
is a critical parameter for determining endometrial receptivity.
Endometrial pattern assessment involves evaluating the
endometrial echo pattern using ultrasound imaging. Several
studies have demonstrated that the triple-line endometrial
pattern is associated with higher implantation and pregnancy
rates [12], [44], [45], [46]. Conversely, when the functional
layer is non-uniform (heterogeneous), and the central line echo
isunclear,receptivityislow[12]. While theendometrial pattern
is not entirely overlooked, it tends to receive less attention than
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other parameters, such as endometrial thickness, especially in
studies involving deep learning-based image analysis.

Despite TVUS being the gold standard tool to help medical
practitioners monitor and assess endometrial receptivity, it has
some limitations. TVUSimages oftensuffer fromnoiseand low
resolution, particularly due to speckle noise. Due to this reason,
images need to go through a pre-processing step called
despeckling of ultrasound images [47]. Additionally, manual
interpretation of ultrasound scans is highly operator-dependent,
leading to variations in endometrial thickness measurements
[4]. Using TVUS imaging, medical practitioners would freeze
the screen and measure the endometrial thickness while
monitoring the endometrial pattern. This manual segmentation
process is tedious, laborious, and time-consuming. In addition,
manual segmentation is influenced by the experience and
knowledge of medical practitioners. To improve accuracy and
consistency, computer-aided segmentation models are crucial
for precisely analyzing the endometrium in TVUS images and
assessing key endometrial receptivity biomarkers, including
thickness and pattern.

IV. IMAGE PROCESSING FOR ENDOMETRIUM
SEGMENTATION

In 1995, Pierson and Adams concluded that the
development of computer-aided image analysis was a
significant achievement for improving clinical management of
ovarian health [48]. This promise was particularly compelling
for the challenging domain of TVUS, where manual
segmentation of the endometrium is operator-dependent,
tedious, and time-consuming. In the years since, researchers
have been exploring and developing image processing
techniques to automate this critical task. This is because image
analysis is essential for diagnosing pathologies and planning
treatments. Primarily, the image processing techniques rely on
pixel-level intensity information, spatial relationships, and
mathematical morphological operationsto delineate anatomical
structures. Researchers have categorized these fundamental
techniques into several groups:

e Thresholdingandregion-based methods, which segment
based on pixel intensity and spatial homogeneity;

e Edge and contour-based approaches, such as active
contour, which delineate anatomical boundaries;

e Morphological operations, used to refine segmented
structures, and

e Classical machine learning classifiers, which leverage
hand-crafted features.

Together, these techniques laid the foundational toolkit for
automated analysis, establishing the feasibility of computer-
assisted analysis. These techniques dominated the field until
deep learningbecame superior. While computationally efficient
and interpretable, traditional methods face significant
challenges, including sensitivity to initialization, manual
parameter tuning requirements, limited generalization across
imaging conditions, and difficulty handling the inherent noise
and ambiguous boundaries characteristic of ultrasound images.
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A. Thresholding

Thresholding techniques, while computationally efficient
and straightforward, operate by classifying pixels into
foreground and background based on a predefined intensity
value [49], [50]. This technique is particularly useful for tasks
like pre-segmentation or initial region of interest generation,
but often requires further refinement due to noise inclusion and
aninability to adapt to a variety of image qualities. For instance,
segmenting follicles in ultrasound images frequently utilizes
thresholding, but the method often deals with noise, thereby
needing additional refinement to achieve acceptable accuracy
[51]. To address these issues, various thresholding methods
were developed, and for medical imaging applications, multi-
level thresholding methods were developed to handle complex
anatomical structures from medical imaging [52], [53], [54],
[55], [56]. Nevertheless, their application to complex
anatomical structures, such as the endometrium in TVUS
images thatare often affected by high noise, lowresolution, and
unclear boundaries, thresholding techniques remain inadequate
for achieving robust and clinically reliable delineation [57],
[58].

B. Region-Based Techniques

These techniques focus on grouping neighboring pixels
with similar intensity or texture characteristics to overcome the
limitation of edge detectors in anoisy environment. Techniques
like region growing, for instance, initiate from a seed point and
iteratively expand by incorporating neighboring pixels that
meet specific homogeneity criteria to construct a
comprehensive endometrial region [57]. However, this
technique often requires manual seed-point initialization,
making it less suitable for fully automated pipelines, especially
given the inherent variability in ultrasound image quality and
anatomical presentation [59]. Consequently, the reliance on
manual seed-point selection introduces subjectivity and can
lead to inconsistencies across different medical practitioners,
highlighting the need for automated or semi-automated
initialization strategies [60].

C. Edge and Contour-Based Techniques

Edge-based and contour-cased techniques have been widely
explored for medical image segmentation due to their ability to
delineate structural boundaries. Edge detection methods
identify discontinuities in image intensity that correspond to
tissue interfaces [61], [62], [63]. In contrast, contour-based
methods, such as active contours, evolve deformable curves to
conform to these boundaries under the influence of internal and
external forces [64],[65],[66],[67], [68]. The active contour
model, often called snakes, utilizes energy functional
minimization to guide the contour towards desired boundaries.
This approach offers improvements in adaptability and
robustness for complex anatomical structures. However, these
techniques require manual initialization and remain highly
sensitive to blurred or weak edges and noise, particularly
prevalent in ultrasound images, where variations in lesion
morphology canfurther complicateaccurate segmentation [ 19].

D. Morphological Operations

Morphological operations use structuringelements to refine
segmented masks, remove small artifacts, and enforce shape
constraints. Typically, morphological operation is used to
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improve defects thatare recognized during segmentation [69].
Two basic morphology operations are dilation and erosion.
Dilation expands the boundaries of the foreground objects,
while erosion shrinks them. Often, the combination of these
operations, such as openingand closing, can effectively smooth
contours, fill small holes, and remove isolated pixels, thereby
enhancing the quality of the endometrial segmentation [70].
Despite their utility in post-processing, morphological
operations are primarily refinement tools and do not
independently perform segmentation, often requiring other
methods to produce an initial segmentation mask.

While these traditional segmentation techniques have laid
the foundation for computer-aided image analysis for ovarian
health, their performance varies depending on image quality
and anatomical complexity. As imaging complexity increased
and clinical demand for reliability grew, the limitations of these
techniques became apparent. Table Il provides a summary of
each technique with its strengths and weaknesses.

TABLE II. SUMMARY OF TRADITIONAL SEGMENTATION METHODS

Techniques

Strengths

Weaknesses

Thresholding

e  Simple to implement

e Fails  with low
contrast image

[49],[50] ;te Fast  preprocessing e  Sensitive to noise
P o Fixed threshold
e  Capture spatial | e  Manual seed
Region-Based continuity initialization

[71]

e Adapts to the region's
shape

e Leakage in
regions

noisy

e  Precise boundary | e Requires a good edge
Edge & | localization contrast image
Contour Based [ e  Can handle complex | ¢ Manualinitialization
shapes .
e Capable of removing | © Tendency to over-
Morphology small artifacts smooth fine structures in
Operation [69], | ¢ Capable to smooth | theimage
[701,[72] and filling holes in the | e Dependent on

element size

image

The early attempts of automation in endometrium
segmentation relied on basic algorithms, such as thresholding,
active contours, and region-growing methods [6], [10]. Despite
their usefulness, these approaches often struggle to address the
fundamental challenges of ultrasound imaging, such as low
contrast, speckle noise, and anatomical variability [58]. While
these traditional methods provided the foundation, their limited
robustness and generalizability eventually drove a shift toward
more advanced solutions. Over the past decades, as this article
was written, researchers have extensively explored and
investigated the application of automated segmentation of
ultrasound images, evolving into the application of deep
learning-based approaches.

V. DEEP LEARNING MODELS FOR ENDOMETRIUM
SEGMENTATION

In recent years, extensive literature reviews have been
conducted on deep learning approaches to medical image
analysis, highlighting methodologies, technical progress, and
clinical translation limitations [10],[73],[74],[75]1,[76], [77].
These efforts have shown deep learning as a transformative
paradigm, demonstrating superior performance in image
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processing across diverse medical imaging modalities. Despite
the various studies and reviews in deep learning for medical
images, only a few studies have focused on deep leaming
segmentation of the endometrium in TVUS images for
endometriumreceptivity assessment (ERA). This highlights the
need to explore alternative deep learning models for ERA to
ensure repeatability and high segmentation accuracy in clinical
applications. To address this issue, recent research has applied
a range of deep learning architectures aiming to improve
segmentation accuracy, robustness, and clinical applicability
specifically for endometrium analysis.

A. Foundation: Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is the baseline for
deep learning in medical image analysis due to its ability to
capture spatial features and patterns effectively [78],[79], [80].
These networks leverage convolutional layers to automatically
learn hierarchical representations from raw image data,
eliminating the need for manual feature identification and
extraction. This ability is crucial in medical imaging for tasks
such as identifying anatomical structures of the endometrium,
where subtle textural and morphological cues are vital for
accurate segmentation and subsequent analysis [81]. The
strength of CNNGs lies in their capacity to capture local spatial
features, such as edges, textures, and patterns, through
convolutional filters. In the context of endometrium
segmentation, CNNs have shown potential in learning
discriminative features from TVUS. However, a fundamental
limitation of CNNs is their reliance on local context, which
constrains their ability to model long-range dependencies and
global context within an image [82]. Fig. 3 below shows the
basic architecture of a convolutional neural network.

Convolutianal and pooling layers repeated N times

Fully
Iaput Comnecied Ouipat
i - Pooling i -
Convolutional Layer Ayt
Layer

Fig. 3. Basic architecture of a convolutional neural network.

1) U-NET and its variant: Among CNN-based
architectures, the U-Net architecture is the most prominent in
medical image segmentation. This is due to its iconic encoder-
decoder structure and skip connections. The architecture
effectively combines multi-scale feature extraction with precise
spatial localization [83].

From this fundamental design, numerous adaptations have
emerged for medical image segmentation, in which annotated
datasets are limited. In endometrium segmentation, U-Net-
based architectures have been widely used due to their
efficiency in learning from small TVUS datasets. Variants such
as VGG-based U-Net [3], ResNet50-U-Net [84], and 3D U-Net
[57] have been developed to enhance feature extraction and
volumetric analysis. Fig. 4 is the architecture of the ResNet50-
UNet model.
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ot
Encoder ._';_ Decoder

Fig. 4. Schematic diagram of the architecture ResNet50-UNet model from
the study [79].

For instance, the VCG-based U-Net achieved a Dice score
ranging from 0.83 to 0.9, with a mean absolute error of 1.23
mm and 1.38 mm across two datasets based on [3]. Liu et al.
(2022) proposed a ResNet50-SegNet deep learning model for
endometrial segmentation, achieving a Dice coefficient of 0.82
with thickness errors within +2 mm. However, a major
limitation of this method was its low segmentation accuracy for
endometrial linings <3 mm, with an accuracy rate of only
55.3% [4]. In comparison to the previous architecture, Fig. 5
below shows the architecture of ResNet50-SegNet.

ResNet50-SegNet

Fig. 5. ResNet50-SegNet architecture [4].

Meanwhile, the 3D U-Net has been successfully applied to
volumetric TVUS data, capturing inter-slice contextual
information, achieving a 0.91 Dice score with 94.20% of
automatic thickness measurements falling within clinically
accepted error margins [57]. These variants collectively
demonstrate the adaptability and effectiveness of the U-Net
models. Despite these achievements, these architectures are still
facing challenges in capturing long-range dependencies and
global contextual information.

B. Transformer-Based Application

In recent years, transformer-based architectureshave gained
attention in medical image segmentation dueto their ability to
overcome the key limitation of CNNs, modeling long-range
dependencies and global contextual relationships. Originally,
this architecture was introduced in natural language processing
(NLP) [85]. Its self-attention mechanism allows the network to
capture inter-pixel relationships across the entire image,
building a holistic understanding of image structure [86]. This
capability is particularly beneficial in medical imaging, where
global context is often critical for accurate segmentation of
complex anatomical structures like the endometrium [1]. Fig, 6
shows the transformer model overview.
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Vision Transformer (ViT) Transformer Encoder

Class

Bird MLP
Ball "
. Head

Transformer Encoder

Multi-Head
Attention

[

Norm

|
@) &) 96 )

Embedded
Patches

Fig. 6. Vision Transformer (ViT) overview [86].

C. Hybrid and Adversarial Architectures

To overcome the limitations of CNNs, researchers have
developed hybrid and adversarial learning frameworks to
enhance the segmentation performance. Hybrid models
integrate the feature extraction capabilities with other
computational approaches or architectural innovations. A
prominentexample is the Deep Learned Snake model proposed
by Singhal [87], which incorporated an active contour model
with a deep learning model for curve evolution. From this
approach, Park etal. 2019 introduced a key-point discriminator
that used endometrial boundary detections from an FCN to
guide the active contour model and achieved a Dice score of
82.76%.[58]. These frameworks effectively mimic human
experts' analysis, allowing the segmentation to learn more
precise delineations. While these approaches demonstrated a
significant enhancement in boundary detection, challenges
persist in managing the architectural complexity and
dependence on large annotated datasets for optimal
performance.

D. Emergence Models and Foundational Architectures

The latest phase of advancement in endometrium
segmentation research has witnessed the emergence of
innovative architectures that emphasize generalizability,
computational efficiency, and reduced reliance on large
annotated datasets. Deep Dual-Resolution Networks (DDRNet)
represent an approach employing parallel branches to
efficiently process both high- and low-resolution features,
while combining contextual and spatial information [60]. This
design allows for a more nuanced understanding of complex
endometrial morphology, combining fine-grained details with
broader anatomical context.

Building on the evolution of foundation models, recent
studies have explored adaptation of the segment anything
model (SAM) for medical image segmentation. For example,
Qiu introduced a segment anything with inception module
(SAIM), which integrates inception-based encoders and point
prompts to improve segmentation precision in the noisy
ultrasound data [88]. The study utilizes an open-source SAM
and introduces enhancements to the image encoder structure.
Fig. 7 shows the SAIM architecture.

Another notable method, MultiStudentNet, leverages the
weights of multiple models to facilitate feature sharing. This
method employs multiple student models to integrate labeled
and unlabeled data to improve reliability and model robustness
[89]. Fig. 8 shows the framework for MultiStudentNet.
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Fig. 8. MultiStudentNet architecture [89].

VI. METHODOLOGY

Following established methodological guidelines for a
systematic literature review [90], this review was conducted in
accordance with the Preferred Reporting Items for Systematic
Review and Meta-Analysis (86). The review process
encompasses five key stages: 1) search strategy development,
2) study selection and screening, 3) data extraction, 4) quality
assessment, and 5) narrative synthesis. Each of these stages is
explained in the subsections.

A. Search Strategy and Information Resources

The literature search began in April 2025. This search
employed Google Scholar as the primary search database to
identify and extract relevant primary research studies. The
primary database is complemented by manual cross-checking
in IEEE Xplore, Semantic Scholar, Springer Link, and
ScienceDirect to ensure coverage of the study. The search
strategy for this study used a Boolean operator and a
combination of keywords related to endometrium
segmentation, deep learning, and transvaginal ultrasound. The
Boolean query string was (“endometrium segment” OR
“endometrial segmentation”) AND (“deep learning”) AND
(“TVUS” OR “Transvaginal Ultrasound”).

B. Eligibility Criteria

In the initial search, 453 papers were found in Google
Scholar, 139 in Springer Link, 36 in Semantic Scholar, 24 in
ScienceDirect,4 in PubMed, and 3 in [EEE Xplore, totaling 659
papers. The inclusion and exclusion criteria for the paper
selection in this review are as follows:

Inclusion Criteria:

e Paper published in English between 2015 and 2025.
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e Application related to endometrium receptivity

assessment, thickness measurement.

e Studies with mixed cohorts (pathological and healthy)
were included if receptivity-related outcomes were
reported.

Exclusion Criteria:
e Duplicate papers between the databases
e Paper published before 2015

e Inaccessible paper

e Non-English paper

exclusively

e Studies focusing pathological

segmentation

on

The exclusion criteria narrowed down the papersto a total
0f 210 papers. Then, a total of 190 papers were discarded from
the keywords, title, and abstract screening. After that, the
exclusion criteria for non-pathological disease of segmentation
were selected, and a total of 10 papers were analyzed. Fig. 9
below shows the simplified visual of the search methods
conducted for the literature review based on the PRISMA
guideline [91].

C. Data Extraction

Data extraction for this review was guided by the four
research questions raised in the introduction. For each included
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study, relevant information was systematically extracted to
address these questions. This structured approach ensured all
extracted data directly supported the analytical aim of this
review.

To address RQ1, the types of deep learning models,
backbones, and any hybrid or custom modifications were
documented and categorized. This included recording
architectures such as U-Net variants, Transformers, and hybrid
frameworks like SAIM to identify the most frequently
employed architecture in TVUS endometrium segmentation.

For RQ2 and RQ3, quantitative performance metrics and
evaluation approaches were extracted. Segmentation metrics
and thickness-measurement errors were recorded to facilitate
accuracy comparisons across deep learning models. All
reported evaluation metrics and assessments were further
examined for their alignment with clinical standards, such as
the acceptance rate of thickness-measurement within +-2mm,
to determine which metrics are regarded as gold-standard for
receptivity assessment in ART.

Finally, to answer RQ4, author-reported limitations and
clinical translation hindrances were recorded. This included
documenting issues related to dataset size, single-center bias,
model generalizability, and clinical-integration challenges.
These insights were synthesized to identify the gaps and to
guide future research directions in the translation of deep
learning models into ART workflows.

Semantic Scholar
n=36

Google Scholar
n=453

Springer Link
n=139

Science Direct

n=24 n=23

IEEE Xplore
n=4

‘ PubMed

Total Paper

n =659

Y

Excluding paper with exclusion criteria

- (n = 449 rejected)

Paper for review
n=210

‘ Paper discarded from keyword, titles and abstract

A

‘ (n = 190 rejected)

Paper selected for review
20

n=

y

Paper with pathological endometrium
(n = 10 rejected)

Finalized paper selected for literature review
n=10

Fig. 9. PRISMA flow diagram of included studies.
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VII. RESULTS

A. RQI: Predominant Deep Learning Architectures for TVUS
Endometrium Segmentation

Endometrium segmentation in medical imaging is a critical
yet challenging task for quantitative diagnostic analysis. Based
on the literature, the most common approaches for endometrial
image segmentation have increasingly relied on deep learning
(DL) techniques, particularly in Convolutional Neural
Networks (CNNs) as the foundation architecture. This is due to
the proven effectiveness of the models in medical image
analysis [3]. Accordingly, researchers have adapted and
modified core CNNs to develop various segmentation network
architecturesspecifically aimed at delineating the boundaries of
the endometrium lining.

Built upon CNN architectures, the U-Net architecture and
its numerous variants are most frequently cited as the
benchmark for this specific segmentation task. U-Net variants
have been established as the backbone of segmentation
methodologies[92],[93],[94]. The classical U-Net architecture
has been widely adapted into diverse variants, such as the
VGG-based U-Net, which utilizes the VGG16 network as its
encoder for hierarchical feature extraction to enhance spatial
representation [3]. In comparative evaluations, a pure U-Net
model was tested for endometrium segmentation [57], [58],
[84]. Furthermore, the use of ResNet-based U-Net and SegNet
models shows the importance of deep residual networks, pre-
trained on large-scale datasets such as ImageNet, in mitigating
vanishing gradient problems and improving feature depth [4],
[84],[95]. For volumetric analysis, the 3D U-Net extension is
employed to process three-dimensional transvaginal ultrasound
(3D TVUS) images, thereby capturing crucial inter-slice
structural information [57].

Beyond U-Net, other general frameworks such as Deep
Dual-Resolution Networks (DDRNet) and SegNet are also
commonly utilized for this purpose. One comparative study
evaluated six different models based on these architectures,
specialized combinations such as ResNet50 U-Net, ResNet50
SegNet, U-Net mini, VGG SegNet, alongside pure U-Net and
DDRNet. The result fromthis comparison found that DDRNets
showed the best endometrium segmentation with a Dice score
0f0.895 [84]using 1050 images. Each architecture, while built
on CNNs, employs a different architecture to optimize
performance for medical image segmentation.

Innovative approaches have also emerged through the
development of hybrid variational models. The hybrid models
combine data-driven and energy-based techniques. One notable
exampleis the Deep Learned Snake (DLS) model proposed in
2019 [87]. In the research, the hybrid model integrates the
robustness of a Fully Convolutional Network (FCN) with the
mathematical rigor of a variational level-set method forcurve
propagation. In this framework, the FCN generates a deep-
learned endometrium probability map that acts as a sof,
adaptive shape into the level-set functional for curve
propagation. This model combined the robustness of learned
features with the interpretability of deformable models. The
efficacy of this hybrid method is demonstrated by its
performance, yielding approximately 30% improvement over
standalone supervised learning methods and producing
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endometrial thickness measurements within a clinical tolerance
of 2mm in 87% of cases.

Additionally, recent research explores adversarial learning
frameworks to further refine segmentation precision. In 2019,
Park et al. proposed a key-point discriminator, informed by
anatomical landmarks and spatial features, to strategically
guide the segmentation network towards more accurate
boundary delineation in the presence of ultrasound artifacts
[58]. The discriminator trained the segmentation network to
predictaccurate boundaries, to ensure robust segmentation for
unclear edgesand heterogeneoustexture. This method achieved
a Dice score of 8§2.67% and a Jaccard index of 70.46%.

More recently, the architectural evolution in endometrial
segmentation is shifting into utilizing Transformers, which are
uniquely capable of capturing long-range, global image context
in comparisonto pure CNNs. A leadingexample is the Segment
Anything with Inception Module (SAIM) [88]. This method
utilizes a dual-branch encoder that comprises of Vision
Transformer (ViT) for global context and an Inception-based
CNN for multi-scale feature extraction. This architecture is
critically dependent on clinician-guided point prompts to
isolate the endometrium. This approach achieved a
segmentationresultof Dice Score 76.31% and Intersection over
Union of 63.71% using a single-point prompt. Furthermore, its
performance improved with additional prompts, reaching a
Dice score of 81.30% with five-point prompts [88].

While U-Net-based models form a common foundation, the
formation of their variants shows that the U-Net model requires
significant task-specific modifications. As the literature
affirms, an effective solution must be customized to overcome
specific limitations, especially in TVUS. Thus, the shift
towards currentand advanced hybrid systems, such as SAIM,
shows that the most performed models are hybrid systems,
which integrate multiple network architectures.

Table III synthesizes the architectural landscape and key
characteristics of each model reviewed. The table illustrated the
predominance of U-Net variants, while documenting the
emergence of hybrid and transformer-based architectures. The
domination of UNet variants is driven by three core factors: the
ability to preserve critical boundaries, the capacity to capture
global and local, and reliable performance on small datasets.

U-Netvariants canpreserve critical boundaries through skip
connections that transfer high-resolution features from the
encoder directly to the decoder. This mechanism endures that
local spatial information, which typically lost during the down
sampling process, is retained to facilitate precise localization of
the endometrial lining. Consequently, the architecture
effectively integrates spatial and contextual information across
its symmetrical path to achieve accurate pixel-level predictions.
This precision is vital foridentifying the thin, echogenic line of
endometrium, especially in cases where boundaries are blurred
or highly irregular.

Furthermore, U-Net is celebrated for its reliable
performance and robustness when trained on small datasets, a
common limitation in clinical reproductive research. This is
because medical datasets often consist of only a few hundred
images and often are not shareable. U-Net’s lightweight and
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simple structure makes it inherently less prone to overfitting,
These characteristics make U-Net particularly suited to the
challenges of endometrium segmentation in TVUS images,

Vol. 17, No. 1, 2026

where boundary clarity is low, anatomical information is
essential, and annotated data are limited.

TABLE III. SUMMARY OF DEEP LEARNING ARCHITECTURES IN INCLUDED STUDIES
No Study (Author, Year) Architecture Family Specnflc.Model / Backbone / Key Da.taset Key Architectural Notes
Variant Components Size
1 Hu etal, 2019 [3] CNN-based (U-Net) VGG-based U-Net | VGG16 encoder 73 Skip connections,
encoder-decoder
. Key-point . . Adversarial learning  for
2 Park etal.,, 2019 [58] Hybrid e FCN + adversarial guidance 320 .
Discriminator boundary refinement
. . . Combines DL with
3 Singhaletal,, 2017 [87] Hybrid Deep Learned Snake | FCN +active contour 110 variational methods
4 Wanget al, 2022 [57] CNN-based (U-Net) 3D U-Net 3D convolutional blocks 113 Volumetric segmentation
5 Liuetal, 2022 [4] CNN-based ResNet50-SegNet ResNet50 encoder 1050 En.coder—decodef with
residual connections
ResNet50, Vanilla CNN,
6 | Liuetal, 2022 [84] CNN-based (U-Net & | U-Net Vanilla Mini, VGG 16, DDR- | 840 U-Net with residualbackbone
SegNet) SegNet Net
7 | Qiuetal, 2024 [88] Transformer-based SAIM VAT + Inception-CNN 180 Hybrid  transformer-CNN
with prompting
8 | Pengetal,2024 [89] Advanced "1 MultiStudentNet Ensemble of CNNs 215 Semi-supervised,
Semi-supervised multi-model
9 Ithaniet al., 2024 [96] CNN-based (U-Net) Classic U-Net Basic encoder-decoder 25 Small-scale feasibility study
10 | Yanetal,2024 [95] CNN-based (U-Net) S:f;‘;‘? UNet | ot specified 180 Clinical receptivity-focused
U-Net ]
( Convolutional Neural
SegNet ]
Network (CNN)
DDRNet ]
Endometrium Segmentation
via Deep Learning Transformer Networks ]——{ SAIM ]

Adversarial Learning (Key-Point
Guidance)

Deep Learned Snake

Key-Point Discriminator ]

Fig. 10. Taxonomy of current deep learning architectures for healthy endometrium segmentation.

Fig. 10 shows the simplified taxonomy of the deep learning
architecture models for endometrium segmentation, illustrating
the evolution from CNN-based foundations towards hybrid and
transformer-integrated architectures. The following section,
which answers RQ2, examines whether this architectural
prevalence correlates with superior segmentation accuracy or if
emerging models offer a competitive advantage under specific
clinical or dataset conditions.

B. RQ2: High Accuracy Deep Learning Architectures

Determining a singular superior method for endometrial
segmentationis challenging because segmentation performance
highly depends on various conditions, including dataset size,
image quality, and evaluation metrics. Nevertheless, recent
studies highlight several deep learning architectures that have
demonstrated notably high accuracy, though these results must
be interpreted considering dataset characteristics and clinical
applicability.

For example, the foundational U-Net architecture achieved
a remarkable Dice coefficient of 0.977 in one study. However,
this result was achieved on a limited dataset of only 20 training
and 5 testimages [96]. This highlights an important point where

simpler models like U-Net can perform well due to a small
datasetavailable. Consequently, while this result is numerically
high, its generalizability using larger and more diverse clinical
datasets remains uncertain.

For volumetric analysis, the extension to 3D U-Net has
proven significantly more effective than its 2D counterpart for
processing three-dimensional transvaginal ultrasound (3D
TVUS) images [57]. In a dedicated study, the 3D U-Net
achieved a Dice coefficient of 90.83%, a metric value higher
than the results obtained from 2D segmentation approaches on
the same volumetric data. This performance [57] is attributed
to the model's capacity to capture crucial inter-slice contextual
information and spatial relationships within the full volume.
Therefore, for applications requiring holistic anatomical
assessment, 3D convolutional approaches represent a highly
accurate solution.

Beyond standard supervised learning, semi-supervised
frameworks such as Multi-StudentNet are designed to enhance
accuracy by leveraging both labeled and unlabeled data. Thus,
it reduces the heavy reliance on manual annotations. This
architecture reported an overall Dice score of 0.81, with its
performance further increasing to 92.33% for polyp cases and
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90.20% for cancer cases [89]. This indicates a particular
robustness in segmenting pathologically altered endometria,
which often present more complex imaging characteristics. The
model's design utilizes an ensemble of student models, which
has effectively improved segmentation reliability and
performance across varied clinical presentations.

Among architectures designed for efficient and contextual
feature extraction, Deep Dual-Resolution Networks
(DDRNets) have demonstrated leading performance in
comparative analyses with an average Dice score 0f0.895 [84].
This high accuracy is facilitated by its design of two parallel
branches operating at different resolutions, which enables
effective multi-scale information fusion. The architecture’s
efficiency also suggests strong potential for real-time semantic
segmentation applications in clinical settings.

Other deep learning models have also achieved competitive
results by using different design improvements. The VGG16-
based U-Net,employed in an automated measurement pipeline,
achieved a Dice score 0of 0.83, performing better at 0.853 in the
proliferative phase compared to 0.796 in the secretory phase.
Similarly, a key-point discriminator framework significantly
improved results compared to the standard U-Net of 58.69%,
achieving a Dice score of 82.67% [58]. Furthermore, the
Segment Anything with Inception Module (SAIM) adaptation
recorded a Dice score of 76.31% and increased to 81.30% with
multiple point prompts [88]. The comparative performance of
the reviewed architecture is summarized in TableIll. The table
also highlights the influence of dataset size and clinical
applicability.

TABLEIV. LIST OF METHODS AND RESULTS FOR ENDOMETRIUM

SEGMENTATION

No. Method Result

1 DLS DLS 85%-87% tolerance limit compared to U-
Net with 60%-70% tolerance limit.
DSC 0.83 Thickness  measurement:-

5 VGG-Based U- | MAE/RMSE: 1.23/1.79 on 27 DL test cases-

Net MAE/RMSE: 1.38/1.85 on 46 Thickness test

cases
DSC 82.67%, Jaccard 70.46%

DDRNets is the highest average of DSC,Recall,
Precision, and Specificity with 0.895, 0.884,

0.910,and 0.998.
ResNet50-based
5 SeNet Average DSC: 0.82

6 3D U-Net

3 Key-discriminator

4 6 Different U-Net

DSC 90.83%, Jaccard 83.35%, Sensitivity 90.85

7 Multi StudentNet | DSC 0.81, specificity 0.99, sensitivity 0.87

DSC 76.31% and IoU 63.71%, a higher

8 SAIM multipoint prompt receives a higher result in
metrics DSC and ToU.
9 gj;smmer " | U-Net DSC 0.977, Transformer DSC 0.956

10 ResNet-50 AUC 0.853

In conclusion, while a classic U-Net excels on minimal data,
the most accurate and generalizable models for broader clinical
application appear to be the 3D U-Net, Multi-StudentNet, and
DDRNet, as evidenced by their consistently high Dice scores
across more substantial datasets. However, to draw a definitive
conclusion about which network is highly accurate is
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challengingand potentially misleadingbecause allthese studies
used different datasets with varying characteristics and sizes.
This is due to the limited availability of common datasets for
healthy endometrium TVUS images. For example, the study
using the 3D U-Net had a total of 113 images [89], in
comparison to the study comparing six networks that had a total
of 1050 images [84]. To address this limitation, the
MultiStudentNet specifically uses a semi-supervised approach
[89].

C. RQ3: Metrics and Validation for Deep Learning in

Endometrium Segmentation

The evaluation of deep learning models for endometrium
segmentationrequires a comprehensive approach that reflects
both technical segmentationaccuracy and clinical measurement
reliability. To achieve this, researchers commonly employ a
range of quantitative and statistical metrics to assess
segmentationaccuracy and endometrial thickness measurement
performance. Table IV presents the list of methods and results
for endometrium segmentation.

1) Segmentation evaluation metrics: For endometrium
segmentation, the objective is to measure how close the
automated segmentation overlaps with the ground-truth
annotation. One of the most used metrics is the Dice Similarity
Coefficient (DSC). The values range from 0 to 1, with 1 as a
perfectoverlap between the segmented region and the ground
truth. In different literatures, DSC is also known as Dice Score,
Dicecoefficient,and F1 Score. The formula formeasuring DSC
is defined as:

DSC = 2l4nBl

|Al+]B|

(M

where, A is the segmented region to be assessed, and B is
the corresponding ground truth.

The recoded DSC values were reported in most of the main
literature for this study. 9 out of 10 papers used DSC values as
a metric to evaluate segmentation performance. The recorded
DSC values for healthy endometrium segmentation using deep
learning range from 0.76 to 0.98. The highest DSC was
observed in the U-Net with 0.977 on a limited dataset of 25
images [96]. This indicates that while DSC is a useful
benchmark for general overlap, it can be sensitive to dataset
size, and a high DSC does not automatically mean an excellent
segmentation result.

A recent deep learning model also measured a high DSC at
0.895 for a Deep Dual-Resolution Network (DDRNet) in a
comparative analysis [84]. However, while proposing the key-
point discriminator method, the DSC value recorded was
82.67%, outperforming conventional methods like U-Net
(58.69%) and FCN (78.39%) [58]. This shows that a little
tuning in the model architecture can improve segmentation
results, especially if the model is designed to better identify
boundaries.

Another commonly used metric for segmentation
evaluation is the Jaccard Index, also known as Intersection over
Union (IoU). The DSC and IoU are proportional to the number
of spatial overlaps between the segmented and ground truth
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images. The value ranges from 0 to 1, with 1 as the perfect
matching [97]. The formula of loU is defined as:
|anB|
|AUB|

IoU =

)

However, the Jaccard index was reported far less frequently
than DSCin the included papers. For this review, out of 10 main
literature papers, only 3 studies use the Jaccard index as a
performance metric. Values reported include 70.46% using the
key-point discriminator method [58] and 83.35% using the 3D
U-Netmethod [57]. This lownumber of adoptions in evaluation
may be attributed to the Jaccard index’s mathematical property
of generally resulting in lower numerical values compared to
Dice for the same segmentation quality. However, for clinical
applications such as endometrial thickness measurement,
Jaccard index sensitivity to boundary intersection may be
helpful in a realistic assessment.

This pattern of selective metric reporting extendsto a few
other complementary metrics for segmentation evaluation. For
example, another commonly used metric is accuracy. The
accuracy value is calculated through precision and recall, which
quantify the model's ability to correctly identify endometrial
pixels while minimizing false positives and negatives. In
certain papers, recall is also known as sensitivity, which
measures the proportion of relevant instances of true positive
pixels that are retrieved by the model and focuses on how well
the model avoids false negatives. The formulas for accuracy,
precision, and recall are defined below:

TP+FN
Accuracy = NN )
Precision = —= 4)
TP+FP
Recall (Sensitivity) = i ®)]

TP+FN

where, TP- True Positive, FP - False Positive, TN - True
Negative, FN — False Negative.

In a comparative study, a DDRNet demonstrated superior
performance, achieving a precision of 0.910 and a recall of
0.884, the highest among the evaluated deep learning models.
This review revealed that these complementary metrics are
infrequently documented, with only 3 outof 10 papersreporting
precisionand 2 out of 10 papers reporting recall (sensitivity).
This indicates that while precision and recall provide distinct
and complementary insights in quantifying false positive and
false negative rates, the Dice score continues to be the favored
standard metric for overall segmentation evaluation.

Beyond the mentioned metrics, specificity is another
segmentation metric that measures the proportion of correctly
identified negative pixels out of all actual negative pixels. This
metric is also known as the true negative rate, as it indicates the
model’s ability to minimize false positives [84], [89]. The
formula for specificity is written as:

TN
TN+FP

Specificity = (6)

These metrics were reportedin a study comparing variations
of CNN architectures and evaluation in the developing Multi-
StudentNet model. The reported specificity value is generally
0.99 [84], which is high, indicating robust performance in
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excluding non-endometrial regions. In medical image
segmentation, specificity is important because the background
makes up most of the image. High specificity shows the model
is good at not mistakenly labelling normal tissue as
endometrium. This helps prevent false alarms and builds trust
in the tool for clinical application. Although specificity
provides valuable information about background exclusion, it
is less frequently reported because the aim is to detect the
endometrium boundary, the foreground region of interest, and
not to verify the background classification.

Another underrated metric is the 95th percentile Hausdorff
Distance (HD95). This metric measures the maximum
boundary between a predicted segmentation and the ground
truth. While Dice scores calculate overall overlap pixels, the
HD9S5 specifically targets the worst-case alignment errors by
using the 95th percentile to ignore extreme outliers. In this
study, this metric was explicitly used in only one paper [57].
The 3D U-Net model achieved the best HD95 score of
12.75mm when using the Enhanced Augmented Data (EAD)
method.

From this information, a boundary-focused metric like
HD95 is more clinically informative than a general overlap
metric like DSC because it directly relates to measurement
accuracy. Since clinical decisions are based on measurements
like endometrial thickness, a minor boundary error can lead to
a significant measurement error. HD95 assesses this specific
risk. Thus, the HD95 provides a more direct assessment of a
model's utility in a clinical setting, where the +2 mm tolerance
is critical.

2) Thickness measurement performance metrics: As
established, endometrial thicknessserves as a critical biomarker
for assessing reproductive health, guiding clinical decisions in
areas such as fertility treatments and screening. Consequently,
evaluating the performance of thickness measurement moves
beyond overlap metrics. The performance of this measurement
requires rigorous evaluation against the clinical gold standard
of manual expert measurement. This is to ensure that the
automated results are reliable and clinically acceptable. Among
the relevant metrics are Acceptance Rate, Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE).

The reliability of the evaluation is benchmarked against a
well-defined clinical tolerance. Clinical tolerancerepresents the
acceptable error range, which, for endometrial thickness, is
consistently set at £2mm based on clinical guidelines [3], [87].
Based on the clinical tolerance, the acceptance rate measures
the percentage of a model’s measurements that fall within the
range. Thus, model efficacy is primarily reported through
Acceptance Rate. The definition of Acceptance Rate in
mathematical expression is:

iy lyi—x|<2mm

Acceptance Rate = X 100% (7)

where, y is the endometrial thickness measured by deep
learningmethods, x is the ground truth,and# is the totalnumber
of validation images or cases.

By achieving a high acceptance rate, such as 89.3% [4] or
94.20% [57], the deep learning methods demonstrate their
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potential to provide a reliable measurement that aligns with
clinical requirements. Notably, 4 out of 10 papers measure the
acceptance rate of the thickness measurements.

While the Acceptance Rate indicates clinical applicability,
the MAE and RSME provide deeperinsight of the measurement
errors. The MAE calculates the average absolute difference, a
straightforward measure of typical error magnitude [4], [57]. In
contrast, RSME is mathematically structured to evaluate error
magnitude, serves as a sensitive indicator for inconsistent
measurement, andthe presenceof significant outliers [57],[98].
The formulas of MAE and RSME are written as follows:

MAE = H=bexl )

1
RSME = |- (i — x)? )

Reported MAE values demonstrate model accuracy, with
methods like VGG-based U-Net pipeline achieving MAEs of
1.23mm for the deep learning test set and 1.38mm for the
thicknesstestset[3]. The results are considered as it falls within
the clinical tolerance of £2mm. The 3D U-Net segmentation
method reported an even lower MAE of 0.75 mm with a
corresponding RSME of 1.07mm [57]. For comparison, the
ResNet50-SegNet model reported an overall MAE of 2.3mm
across all validation data, although performance improved to an
MAE of 2.0mm when analyzing cases where endometrial
thickness is more than 3mm [4].

The evaluation of endometrial thickness measurement
remains overlooked in the current included papers. The most
critical metric, the acceptance rate, was reported on 40%. The
fact that 60% of the included papers did not report this value
may suggest that most studies are technically focused rather
than clinically validated. This shows a great hindrance for
clinical translation.

Table V presents the performance metrics used for both
segmentation and thickness measurement evaluation from the
literature. Current metric reporting in endometrium
segmentation prioritizes technical overlap, especially DSC
value, abundantly, but does not sufficiently validate clinical
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applicability. This focus overlooks critical metrics, such as
acceptance rate, which directly assess whether automated
thickness measurements fall within clinically permissible rate
margins. Consequently, this condition limits the assessment for
practicality in real-life assessment, specifically for clinical
integration. In conclusion, to ensure clinical readiness, future
work must standardize metric reporting that prioritizes
measurement accuracy and reliability for an effective
integration into ART workflows. The inconsistency and
underutilization of clinical decision metrics are direct
symptoms of broader limitations to clinical applications, which
are explored in RQ4.

D. RQ4: Technical and Clinical Gaps to Translate Deep
Learning Model into Art

Translating promising deep learning segmentation and
measurement performance into reliable and adoptable tools for
ART requires addressing significant technical and clinical gaps
that compromise reliability and clinical utility. Although most
models demonstrate high accuracy on internal test sets, there
are limitations regarding data diversity, integration of complex
clinical features, and performance on diagnostically
challenging cases.

One major limitation is ensuring that models perform
reliably across diverse patient populations and clinical settings,
addressingissuesofdatascarcity and single-source dependency
[95]. Many studies rely on retrospective data. The models’
ability to generalize can be compromised if the original dataset
is not sufficiently large or diverse [4],[88], [89]. Furthermore,
the results from small sample sizes cannot be guaranteed to
generalize to other segmentation tasks [4].

In addition, models are often trained and tested on data
collected from a single manufacturer or institution. This fact
may affect the robustness of the model when deployed
elsewhere [95]. External validation using datasets outside the
source institution has not always been carried out.
Consequently, the performance of some deep learning models,
such as those predicting WOI, is acknowledged to require
greater diversification, specifically needing a greater
representation of cases with thin endometrial thickness
(<7mm).

TABLE V. DISTRIBUTION OF EVALUATION METRICS IN ENDOMETRIUM SEGMENTATION LITERATURE
Method Segmentation Performance Metrics Thickness Measurement Performance Metrics
DSC Jaccard Sensitivity Specificity Accuracy Precision HD95 MAE RMSE Acceptance Rate SDE
DLS /
ng-Based U- / / / / /
Key-discriminator | / /
6 Different U-Net | / / / /
IS{:gsgzttSO-based / / / / /
3D U-Net / / / / / / / /
Multi StudentNet | / / / /
SAIM / /
Transformer -1y
CNN
ResNet-50 / / / /
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While endometrial thickness is a crucial biomarker, relying
solely on it is incomplete to predict ART outcomes. Future
models must be designed to assess a broader range of complex
physiological variations of other critical features of endometrial
receptivity, such as endometrial pattern. The evolution towards
multiple parameter assessment requires a more sophisticated
approach for validation. Furthermore, adequate differentiation
across various pathological conditions, such as cancer and
hyperplasia, is needed, as these conditions are known to impact
echo pattern and segmentation [3], [4], [95].

Another setback for deep learning systems is the poor
performance on thin endometria. There’sone study that showed
that for cases with endometrial thickness less than 3 mm, the
acceptance rate was significantly lower at only 54.5%,
compared to nearly 98.3% for thicker endometria (ET>10 mm)
[4]. This inaccuracy in thin endometria could lead to false
positive diagnoses, leading to unnecessary invasive
examinations for patients.

As discussedin the introduction, the technical limitations of
ultrasound remain a fundamental obstacle, with issues such as
low contrast and speckle noise complicating the precise
delineation of the endometrial boundary to measure the
endometrial thickness effectively [89]. Most models fail in
cases where the endometrium boundary is blurred or has a
slightly irregular shape [3], [4].

To translate these technically advanced models into a
clinical application, these models should be integrated into
user-friendly interfaces for seamless routine ART screening
protocols [95]. To this end, researchers areactively exploring
and developing novel architectures, such as semi-supervised
and key-point guided adversarial networks, to enhance
segmentationrobustness. This enhancement is critical to ensure
a reliable endometrial receptivity assessment for clinical
application.

The identified limitations and gaps reveal that clinical
translation is hindered by clinical validation. To progress,
research must shift from proof-of-concept or technical
evaluation studies to rigorous development. To bridge the
identified gaps, future research should adopt three key actions.
First, the establishment of large, multi-center, and prospectively
collecteddatasetsis essential to ensure models are robust across
diverse populations and critically challenging subgroups, such
as thin endometria. Second, to adapt clinical validation,
evaluation must adopt a mandatory and standardized set of
metrics that are highly reliable in medical practice. Third,
model development should evolve beyond endometrium
segmentation to thickness measurement and other ultrasound
biomarkers, such as echo pattern and volume. By addressing
these actions, it can transform deep learning beyond technical
research into a reliable clinical translation to aid in improving
ART in the future.

VIII. CONCLUSION

This review systematically investigated the role of deep
learning in TVUS image segmentation for the objective
assessment of endometrial receptivity. The analysis provides
clear answers for the research questions, revealing both the
significant progress and the critical path forward.
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In finding the predominant architectures for the deep
learning segmentation (RQ1), it is found that the field is not
dominated by a single model but is built upon a U-Net-based
foundation, with a clear evolution towards sophisticated hybrid
systems, such as SAIM, and tailored variants like 3D U-Net.
When evaluating which of these models achieve high accuracy
(RQ2), models such as the 3D U-Net, DDRNet, and Multi-
StudentNet demonstrated superior performance. However, a
definitive ranking is impossible due to a major problem, which
is the lack of a common, large-scale dataset. This problem
prevents fair comparison and highlights a fundamental need for
the community.

Subsequently, this review also identifies the metrics used to
validate segmentation quality (RQ3). It is revealed that not all
metrics are equally meaningful for clinical translation. While
the Dice score is mostused, a hierarchy of clinical utility exists.
The most critical metrics are the Acceptance Rate, supported by
error magnitude metrics, which are MAE and RMSE. These
metrics work together best to validate a model's readiness for
clinical receptivity assessment.

Despite these advancements, significant technical and
clinical limitations (RQ4) were revealed to prevent the
integration ofthe models into ART workflows. Thesepersistent
limitations include poor model performance on thin
endometria, inadequate validation across the menstrual cycle
and various pathological conditions, and a narrow focus on
thickness over a holistic, multi-parametric receptivity
assessment.

In conclusion, while deep learning offers a powerful
pathway to standardize and objectify endometrial evaluation, its
full potential for clinical application has not yet been utilized.
The transition from a promising algorithmto a trusted clinical
tool hinges on future work that prioritizes robust, multi-
parametric models, rigorous and stratified clinical validation,
and the development of standardized benchmarks and datasets.
By focusing on these challenges, the field can finally translate
computational promise into enhanced diagnostic precision and
improved outcomes in assisted reproduction.
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