
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

460 | P a g e  
www.ijacsa.thesai.org 

Deep Learning for Endometrium Segmentation in 

Transvaginal Ultrasound: A Systematic Review 

Towards Receptivity Assessment 

Asma Amirah Nazarudin1, Siti Salasiah Mokri2*, Noraishikin Zulkarnain3, Aqilah Baseri Huddin4,  

Mohd Faizal Ahmad5, Ashrani Aizzuddin Abd Rani6, Seri Mastura Mustaza7, Huiwen Lim8 

Department of Electrical, Electronic and Systems, Universiti Kebangsaan Malaysia, 
43600 Bangi, Selangor, Malaysia1, 2, 3, 4, 6, 7 

Hospital Canselor Tunku Muhriz UKM, Jalan Yaacob Latiff, Bandar Tun Razak, 
56000 Cheras, Kuala Lumpur, Malaysia5 

Advanced Reproductive Center-Hospital Canselor Tunku Mukhriz, Jalan Yaacob Latiff, 
Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia8 

 
 

Abstract—Deep learning (DL) has become a transformative 

approach in medical image analysis, offering superior accuracy 

and automation in image segmentation tasks. In reproductive 

imaging, transvaginal ultrasound (TVUS) serves as a crucial 

modality for evaluating the endometrial condition, which plays a 

critical role in assessing ovarian health. Although many studies 

have applied deep learning to the segmentation of pathological 

endometrial conditions, research focusing on non-pathological 

endometrium segmentation remains critically limited. This study 

presents a comprehensive review of deep learning methods for 

endometrium segmentation in TVUS, with a focus on non-

pathological conditions, including endometrial thickness 

measurement, morphology analysis, and endometrium receptivity 

assessment. Following PRISMA guidelines, research articles 

published between 2015 and 2025 were identified from major 

scientific databases. The selected studies were analyzed in terms of 

image processing methods, deep learning architectures, and 

performance metrics, such as Dice coefficient, Jaccard index, 

precision, recall, and Hausdorff distance. Although foundational 

architectures, such as U-Net and its variants, achieve impressive 

Dice coefficients (up to 0.977), the results often rely on small and 

single-center datasets, proving limited generalizability across 

imaging settings. Recent advancements demonstrate the efficacy 

of hybrid architectures, such as the Deep Learned Snake 

algorithm and Transformer-based models like SAIM, in 

optimizing segmentation precision within noisy transvaginal 

ultrasound images. This review highlights the lack of attention to 

non-pathological endometrium segmentation and guides future 

research directions in self-supervised learning, transformer-based 

architectures, and interpretable deep learning to achieve robust 

and clinically applicable models for enhancing endometrium 

receptivity assessment and supporting ovarian health in assisted 

reproduction technology. 
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I. INTRODUCTION 

Fertility is a crucial aspect of reproductive health, with 
individuals seeking medical assistance to conceive. Due to this, 
in vitro fertilization (IVF) has emerged as one of the most 

effective assisted reproductive technologies (ART). Research 
showed that the success rate of IVF remains below optimal, due 
to multiple limiting factors such as embryo quality and 
endometrial receptivity [1]. Transvaginal ultrasound (TVUS) is 
the primary imaging modality in reproductive medicine to 
measure endometrial thickness and structure because of its real-
time, non-invasive nature, cost-effectiveness, and portable data 
management [2]. 

In the context of IVF, accurate segmentation of the 
endometrium in TVUS images is essential for reliable 
measurement of endometrial thickness, which is a key 
biomarker for predicting endometrial receptivity and IVF 
outcomes [3], [4], [5]. Clinicians often rely on TVUS to 
measure endometrial thickness and detect abnormalities that 
may impact implantation. However, manual segmentation of 
the endometrium thickness from ultrasound images is highly 
subjective, time-consuming, and prone to inter-observer 
variability. This variability can affect clinical decision-making 
and IVF outcomes. Therefore, there is a growing need for 
automated and accurate segmentation of ultrasound images to 
assist in clinical decision-making [6]. 

Current efforts towards automation are primarily focused on 
automating pathological endometrial conditions, such as 
cancers and endometriosis. Meanwhile, the assessment of 
endometrial receptivity in healthy women undergoing IVF 
remains largely overlooked [7]. This disparity highlights a 
critical research gap in the field. Although accurate 
endometrium segmentation for pathological diagnosis is 
essential, it is equally vital to evaluate endometrial receptivity 
to improve IVF success [8], [9]. 

Deep learning models have demonstrated remarkable 
abilities in tackling a diverse array of medical imaging tasks, 
spanning classification, detection, segmentation, and 
registration [6], [10]. While deep learning has shown 
remarkable success in detecting endometrial pathology, current 
models largely neglect the detailed analysis for assessing 
healthy endometrium receptivity. Moreover, the limited 
generalizability across TVUS devices and protocols is due to 
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small, single-center datasets lacking in diversity in acquisition 
settings [11]. 

Other than that, existing models predominantly focus on 
anatomical features, such as thickness, while overlooking 
functional biomarkers that correlate with implantation potential 
[12]. These challenges escalated because researchers haven’t 
agreed on the best deep learning model for endometrium 
segmentation and a standard method to assess these tools in 
real-time clinical use. Although experimental studies report that 
segmentation accuracy meets the required clinical standard, the 
results have not been translated into clinical application. The 
gap between research achievements and practical 
implementation highlights the need for comprehensive 
solutions that address both technical and clinical requirements 
for endometrial receptivity assessment. 

Therefore, to systematically evaluate these challenges and 
opportunities, this literature review addresses the following 
central research question: How can deep learning segmentation 
of TVUS images improve objective assessment of endometrial 
receptivity? To accurately address this question, there are four 
sub-questions: 

• What are the predominant deep learning model 
architectures applied to TVUS endometrium 
segmentation? 

• Which deep learning architecture achieves a high 
accuracy in endometrium segmentation? 

• Which evaluation metrics best validate segmentation 
quality for clinical receptivity assessment? 

• What technical and clinical gaps persist in translating 
these models to the ART workflow? 

By addressing these questions through synthesized 
evidence, this study aims to establish methodological best 
practices while identifying priority areas for future research at 
the intersection of deep learning and reproductive medicine. 
Fig. 1 illustrates the central research question and sub-questions 
guiding the systematic review. The novelty of this review 
bridges the gap by focusing specifically on how deep learning 
can segment healthy endometrium for receptivity assessment, 
which is a clinical need often overlooked in prior reviews of 
gynecological imaging.

 
Fig. 1. Overview of the central research question, with research questions that guide this literature review. 

This study is organized first to provide a brief overview of 
related reviews on deep learning for medical, specifically for 
women's reproductive health system. Later, this study provides 
brief information on endometrial receptivity and the role of 
transvaginal ultrasound for assessing and monitoring the 
endometrium. Next, the study will provide a brief explanation 
about a deep learning model for image segmentation in medical 
image analysis. The methodology section outlines the rigorous 
selection process used to identify relevant studies included in 
this review. Following this section, the results section 
synthesizes and presents the selected studies to address the 
defined research questions. In the future direction section, this 
study discusses the potential for integrations and clinical 
applications to improve receptivity assessment. Lastly, the 
conclusion summarized key insights, identified current gaps in 
the literature, and outlined actionable future research 
trajectories. The list of abbreviations used in this study is listed 
in Table I. 

TABLE I.  LIST OF ABBREVIATIONS 

Word Abbreviations 

ART Assisted Reproductive Technology 

CNN Convolutional Neural Network 

DDRNet Deep Dual-Resolution Networks 

DLS Deep Learned Snake 

ERA Endometrium Receptivity Assessment 

ET Endometrial Thickness 

ET Endometrium Thickness 

FCN Fully Convolutional Network 

IoU Intersection of Union 

IVF In Vitro Fertilization 

MAE Mean Absolute Error 

NLP Natural Language Processing 

ResNet Residual Network 

RSME Root Square Mean Error 

SAIM Segment Anything with Inception Module 

SAM Segment Anything Module 

TVUS Transvaginal Ultrasound 

U-Net U-Shaped Convolutional Neural Network 

VGG Visual Geometry Group 

WOI Window of Implantation 

Central Research Question: 

How can deep learning segmentation of TVUS image improve objective assessment of endometrial 
receptivity?

Research Question 1:

What are the predominant 
deep learning architectures 

applied to TVUS 
endometrium 

segmentation?

Research Question 2:

Which deep learning 
architecture achieve a high 
accuracy in endometrium 

segmentation?

Research question 3:

Which evaluation metrics 
best validate segmentation 

quality for clinical 
receptivity assessment?

Research Question 4:

What technical and clinical 
limitation persist in 

translating these models to 
ART workflow?
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II. RELATED WORKS 

Several review articles have surveyed the application of 
deep learning in medical imaging, including specific analyses 
of gynecological structures. However, a critical examination of 
these reviews reveals a consistent focus on pathological 
diagnosis and has rarely addressed the segmentation of the non-
pathological endometrium for receptivity assessment. 

Broad systematic reviews in medical imaging, such as those 
by Litjens et al [10] and Gao et al.[13], highlighted that while 
deep learning has transformed tasks like classification and 
segmentation across various anatomical regions, gynecological 
applications are often overlooked by more extensively 
researched regions, like the brain, chest, and musculoskeletal 
system. Furthermore, comprehensive segmentation reviews 
primarily utilize pathological benchmarks to evaluate model 
performance. This leaves a significant gap in the synthesized 
knowledge regarding the automated mapping of healthy 
anatomical structures. 

Within the gynecological field, the existing reviews focused 
on pathological conditions, particularly oncological 
diagnostics. For instance, Swarnkar et al. conducted a 
systematic review of deep learning for the diagnosis of cervical, 
ovarian, and endometrial malignancies. The review identified 
50 relevant studies, including 16 focused specifically on 
endometrial cancer [14]. 

Similarly, Aparna and Libish concentrated on research 
specifically aimed at identifying abnormal and malignant cells 
in the uterus to discover endometrial cancer [15]. Meanwhile, 
Piedimonte focused on using machine learning to incorporate 
clinical and radiologic parameters to pre-operatively stratify 
high-risk cancer patients [16]. These reviews evaluate the 
efficacy of models in discriminating between benign and 
malignant masses or predicting the depth of myometrial 
invasion, which are tasks inherently different from delineating 
a healthy endometrial lining [13]. 

This pathological emphasis persists even in modality-
specific reviews. Jiang synthesized the research on deep 
learning-based imaging for endometrial cancer management 
across ultrasound, MRI, and hysteroscopy, with a focus on 
tumor morphology and molecular typing [17]. Zhang evaluated 
models for classifying common endometrial lesions, including 
hyperplasia and polyps, but did not address the segmentation of 
baseline healthy structures [18]. In a comprehensive review, 
Meiburger highlighted that while automated localization and 
segmentation techniques represent a developing ‘hot topic’, 
gynecological applications remain largely focused on uterine 
fibroids or follicular monitoring for disease identification [19]. 

This technical focus on disease is particularly evident in the 
assessment of female reproductive function. Chen highlighted 
that while ultrasound is essential for evaluating ovarian reserve 
and endometrial receptivity (ER), systematic reviews 
specifically focusing on AI-aided ultrasound for these 
functional assessments are absent from the literature [7]. 
Current studies on reproductive segmentation focus primarily 
on ovarian follicles to diagnose conditions like polycystic 
ovarian syndrome (PCOS), while the foundational task of 
segmenting healthy endometrial remains overlooked. 

Consequently, a clear gap exists between the technical 
literature and clinical application. In addition to cancer 
diagnosis studies from Swarnkar, a few more studies have 
explored deep learning segmentation for endometrial 
hyperplasia and endometriosis [20], [21], [22], [23], [24], [25], 
[26]. 

Fig. 2 presents a stacked bar chart visualizing the focus of 
endometrial image analysis research over the past decade. The 
data reveals a significant disparity. While deep learning 
applications are extensively utilized for diagnosing 
pathological conditions, their application in evaluating healthy 
endometrial receptivity (healthy endometrium) remains notably 
overlooked. 

The absence of a dedicated synthesis for non-pathological 
endometrium segmentation represents a significant limitation 
in translating deep learning from research to clinical practice in 
assisted reproduction. Therefore, this review systematically 
addresses this gap by examining deep learning architectures, 
performance metrics, and clinical translation challenges 
specifically in the context of endometrial receptivity 
assessment, thereby providing a focused foundation for the 
methodological analysis that follows. 

 
Fig. 2. Comparative analysis of research volume identifying the disparity 

between endometrial disease diagnosis and healthy assessment. 

III. ENDOMETRIUM RECEPTIVITY AND TRANSVAGINAL 

ULTRASOUND 

The endometrium, which forms in the uterine lining, is a 
dynamic tissue essential for female fertility and reproductive 
health. Throughout the menstrual cycle, the endometrial lining 
undergoes a series of dynamic changes. The changes include 
shedding during menstruation, followed by thickening during 
the proliferative phase and eventually transitioning into the 
secretory phase to prepare for potential embryo implantation. 
The condition when the endometrium is ready for embryo 
implantation is called endometrial receptivity (ET). 

Endometrial receptivity refers to a specific period during the 
menstrual cycle when the endometrium is optimally prepared 
to facilitate embryo attachment and subsequent pregnancy [27], 
[28]. This specific period is known as the window of 
implantation (WOI). An accurate assessment of endometrial 
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thickness and structure is crucial during WOI for improving 
IVF outcomes [29]. This is because inadequate endometrial 
development could lead to implantation failure and pregnancy 
loss, even with high-quality embryos [30], [31]. 

During in-vitro fertilization (IVF) procedures, ET plays a 
crucial role in embryo implantation. A receptive endometrial 
environment is essential for successful implantation and a 
healthy pregnancy [12]. 

Endometrial receptivity occurs in a brief period known as 
the window of implantation (WOI). This period typically 
occurs between 20 and 24 days of a regular 28-day menstrual 
cycle. During this critical period, within 3-5 days, the 
endometrium undergoes changes in molecular and structural 
modifications to support embryo implantation [32]. Thus, 
proper timing of embryo transfer within this window is crucial 
to ensure the success of implantation. Failure synchronization, 
displaced implantation window, of embryo transfer during this 
period could lead to implantation failure. The displaced 
implantation window is one of the causes of recurring 
implantation failure [33]. The percentage of women with 
recurrent implantation failure showing displaced implantation 
windows ranges from 17.7% to 80% [32], [34], [35]. Therefore, 
the need for an accurate assessment of endometrial receptivity 
is evident, and transvaginal ultrasound (TVUS) serves as a 
reliable tool in evaluating the endometrial receptivity for 
implantation. 

The key parameters evaluated through TVUS include 
endometrial thickness, endometrial pattern, and vascular 
characteristics [36], [37]. These parameters provide valuable 
insights into the endometrium’s readiness for implantation [38], 
[39]. A general rule suggests that a thin endometrium reduces 
implantation success, while an overly thick endometrium may 
also lower pregnancy rates. However, the optimal endometrial 
thickness for successful implantation remains inconclusive 
within the medical community [40]. A study demonstrated that 
embryo implantation, clinical, and ongoing pregnancy rates 
were significantly higher in patients with an endometrial 
thickness greater than 9 mm compared with those less than 9 
mm [41]. A few other studies have concluded that the critical 
threshold of 7-14 mm is the optimal endometrial thickness for 
embryo transfer [5], [28], [42], [43]. A systematic review found 
that implantation rates tend to decrease when endometrial 
thickness is less than 7 mm, whereas a thickness greater than 14 
mm does not significantly impact pregnancy outcomes 
compared to a medium endometrial thickness of 7–14 mm [44]. 
These inconsistencies underscore the need for additional 
research to establish a definitive range of endometrial thickness 
for successful implantation. 

In addition to endometrial thickness, the endometrial pattern 
is a critical parameter for determining endometrial receptivity. 
Endometrial pattern assessment involves evaluating the 
endometrial echo pattern using ultrasound imaging. Several 
studies have demonstrated that the triple-line endometrial 
pattern is associated with higher implantation and pregnancy 
rates [12], [44], [45], [46]. Conversely, when the functional 
layer is non-uniform (heterogeneous), and the central line echo 
is unclear, receptivity is low [12]. While the endometrial pattern 
is not entirely overlooked, it tends to receive less attention than 

other parameters, such as endometrial thickness, especially in 
studies involving deep learning-based image analysis. 

Despite TVUS being the gold standard tool to help medical 
practitioners monitor and assess endometrial receptivity, it has 
some limitations. TVUS images often suffer from noise and low 
resolution, particularly due to speckle noise. Due to this reason, 
images need to go through a pre-processing step called 
despeckling of ultrasound images [47]. Additionally, manual 
interpretation of ultrasound scans is highly operator-dependent, 
leading to variations in endometrial thickness measurements 
[4]. Using TVUS imaging, medical practitioners would freeze 
the screen and measure the endometrial thickness while 
monitoring the endometrial pattern. This manual segmentation 
process is tedious, laborious, and time-consuming. In addition, 
manual segmentation is influenced by the experience and 
knowledge of medical practitioners. To improve accuracy and 
consistency, computer-aided segmentation models are crucial 
for precisely analyzing the endometrium in TVUS images and 
assessing key endometrial receptivity biomarkers, including 
thickness and pattern. 

IV. IMAGE PROCESSING FOR ENDOMETRIUM 

SEGMENTATION 

In 1995, Pierson and Adams concluded that the 
development of computer-aided image analysis was a 
significant achievement for improving clinical management of 
ovarian health [48]. This promise was particularly compelling 
for the challenging domain of TVUS, where manual 
segmentation of the endometrium is operator-dependent, 
tedious, and time-consuming. In the years since, researchers 
have been exploring and developing image processing 
techniques to automate this critical task. This is because image 
analysis is essential for diagnosing pathologies and planning 
treatments. Primarily, the image processing techniques rely on 
pixel-level intensity information, spatial relationships, and 
mathematical morphological operations to delineate anatomical 
structures. Researchers have categorized these fundamental 
techniques into several groups: 

• Thresholding and region-based methods, which segment 
based on pixel intensity and spatial homogeneity; 

• Edge and contour-based approaches, such as active 
contour, which delineate anatomical boundaries; 

• Morphological operations, used to refine segmented 
structures, and 

• Classical machine learning classifiers, which leverage 
hand-crafted features. 

Together, these techniques laid the foundational toolkit for 
automated analysis, establishing the feasibility of computer-
assisted analysis. These techniques dominated the field until 
deep learning became superior. While computationally efficient 
and interpretable, traditional methods face significant 
challenges, including sensitivity to initialization, manual 
parameter tuning requirements, limited generalization across 
imaging conditions, and difficulty handling the inherent noise 
and ambiguous boundaries characteristic of ultrasound images. 
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A. Thresholding 

Thresholding techniques, while computationally efficient 
and straightforward, operate by classifying pixels into 
foreground and background based on a predefined intensity 
value [49], [50]. This technique is particularly useful for tasks 
like pre-segmentation or initial region of interest generation, 
but often requires further refinement due to noise inclusion and 
an inability to adapt to a variety of image qualities. For instance, 
segmenting follicles in ultrasound images frequently utilizes 
thresholding, but the method often deals with noise, thereby 
needing additional refinement to achieve acceptable accuracy 
[51]. To address these issues, various thresholding methods 
were developed, and for medical imaging applications, multi-
level thresholding methods were developed to handle complex 
anatomical structures from medical imaging [52], [53], [54], 
[55], [56]. Nevertheless, their application to complex 
anatomical structures, such as the endometrium in TVUS 
images that are often affected by high noise, low resolution, and 
unclear boundaries, thresholding techniques remain inadequate 
for achieving robust and clinically reliable delineation [57], 
[58]. 

B. Region-Based Techniques 

These techniques focus on grouping neighboring pixels 
with similar intensity or texture characteristics to overcome the 
limitation of edge detectors in a noisy environment. Techniques 
like region growing, for instance, initiate from a seed point and 
iteratively expand by incorporating neighboring pixels that 
meet specific homogeneity criteria to construct a 
comprehensive endometrial region [57]. However, this 
technique often requires manual seed-point initialization, 
making it less suitable for fully automated pipelines, especially 
given the inherent variability in ultrasound image quality and 
anatomical presentation [59]. Consequently, the reliance on 
manual seed-point selection introduces subjectivity and can 
lead to inconsistencies across different medical practitioners, 
highlighting the need for automated or semi-automated 
initialization strategies [60]. 

C. Edge and Contour-Based Techniques 

Edge-based and contour-cased techniques have been widely 
explored for medical image segmentation due to their ability to 
delineate structural boundaries. Edge detection methods 
identify discontinuities in image intensity that correspond to 
tissue interfaces [61], [62], [63]. In contrast, contour-based 
methods, such as active contours, evolve deformable curves to 
conform to these boundaries under the influence of internal and 
external forces [64], [65], [66], [67], [68]. The active contour 
model, often called snakes, utilizes energy functional 
minimization to guide the contour towards desired boundaries. 
This approach offers improvements in adaptability and 
robustness for complex anatomical structures. However, these 
techniques require manual initialization and remain highly 
sensitive to blurred or weak edges and noise, particularly 
prevalent in ultrasound images, where variations in lesion 
morphology can further complicate accurate segmentation [19]. 

D. Morphological Operations 

Morphological operations use structuring elements to refine 
segmented masks, remove small artifacts, and enforce shape 
constraints. Typically, morphological operation is used to 

improve defects that are recognized during segmentation [69]. 
Two basic morphology operations are dilation and erosion. 
Dilation expands the boundaries of the foreground objects, 
while erosion shrinks them. Often, the combination of these 
operations, such as opening and closing, can effectively smooth 
contours, fill small holes, and remove isolated pixels, thereby 
enhancing the quality of the endometrial segmentation [70]. 
Despite their utility in post-processing, morphological 
operations are primarily refinement tools and do not 
independently perform segmentation, often requiring other 
methods to produce an initial segmentation mask. 

While these traditional segmentation techniques have laid 
the foundation for computer-aided image analysis for ovarian 
health, their performance varies depending on image quality 
and anatomical complexity. As imaging complexity increased 
and clinical demand for reliability grew, the limitations of these 
techniques became apparent. Table II provides a summary of 
each technique with its strengths and weaknesses. 

TABLE II.  SUMMARY OF TRADITIONAL SEGMENTATION METHODS 

Techniques Strengths Weaknesses 

Thresholding 

[49], [50] 

• Simple to implement 

• Fast preprocessing 

step 

• Fails with low 

contrast image 

• Sensitive to noise 

• Fixed threshold 

Region-Based 

[71] 

• Capture spatial 

continuity 

• Adapts to the region's 

shape 

• Manual seed 

initialization 

• Leakage in noisy 

regions 

Edge & 

Contour Based 

• Precise boundary 

localization 

• Can handle complex 

shapes 

• Requires a good edge 

contrast image 

• Manual initialization 

•  

Morphology 

Operation [69], 

[70], [72] 

• Capable of removing 

small artifacts 

• Capable to smooth 

and filling holes in the 

image 

• Tendency to over-

smooth fine structures in 

the image 

• Dependent on 

element size 

The early attempts of automation in endometrium 
segmentation relied on basic algorithms, such as thresholding, 
active contours, and region-growing methods [6], [10]. Despite 
their usefulness, these approaches often struggle to address the 
fundamental challenges of ultrasound imaging, such as low 
contrast, speckle noise, and anatomical variability [58]. While 
these traditional methods provided the foundation, their limited 
robustness and generalizability eventually drove a shift toward 
more advanced solutions. Over the past decades, as this article 
was written, researchers have extensively explored and 
investigated the application of automated segmentation of 
ultrasound images, evolving into the application of deep 
learning-based approaches. 

V. DEEP LEARNING MODELS FOR ENDOMETRIUM 

SEGMENTATION 

In recent years, extensive literature reviews have been 
conducted on deep learning approaches to medical image 
analysis, highlighting methodologies, technical progress, and 
clinical translation limitations [10], [73], [74], [75], [76], [77]. 
These efforts have shown deep learning as a transformative 
paradigm, demonstrating superior performance in image 
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processing across diverse medical imaging modalities. Despite 
the various studies and reviews in deep learning for medical 
images, only a few studies have focused on deep learning 
segmentation of the endometrium in TVUS images for 
endometrium receptivity assessment (ERA). This highlights the 
need to explore alternative deep learning models for ERA to 
ensure repeatability and high segmentation accuracy in clinical 
applications. To address this issue, recent research has applied 
a range of deep learning architectures aiming to improve 
segmentation accuracy, robustness, and clinical applicability 
specifically for endometrium analysis. 

A. Foundation: Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is the baseline for 
deep learning in medical image analysis due to its ability to 
capture spatial features and patterns effectively [78], [79], [80]. 
These networks leverage convolutional layers to automatically 
learn hierarchical representations from raw image data, 
eliminating the need for manual feature identification and 
extraction. This ability is crucial in medical imaging for tasks 
such as identifying anatomical structures of the endometrium, 
where subtle textural and morphological cues are vital for 
accurate segmentation and subsequent analysis [81]. The 
strength of CNNs lies in their capacity to capture local spatial 
features, such as edges, textures, and patterns, through 
convolutional filters. In the context of endometrium 
segmentation, CNNs have shown potential in learning 
discriminative features from TVUS. However, a fundamental 
limitation of CNNs is their reliance on local context, which 
constrains their ability to model long-range dependencies and 
global context within an image [82]. Fig. 3 below shows the 
basic architecture of a convolutional neural network. 

 
Fig. 3. Basic architecture of a  convolutional neural network. 

1) U-NET and its variant: Among CNN-based 

architectures, the U-Net architecture is the most prominent in 

medical image segmentation. This is due to its iconic encoder-

decoder structure and skip connections. The architecture 

effectively combines multi-scale feature extraction with precise 

spatial localization [83]. 

From this fundamental design, numerous adaptations have 
emerged for medical image segmentation, in which annotated 
datasets are limited. In endometrium segmentation, U-Net-
based architectures have been widely used due to their 
efficiency in learning from small TVUS datasets. Variants such 
as VGG-based U-Net [3], ResNet50-U-Net [84], and 3D U-Net 
[57] have been developed to enhance feature extraction and 
volumetric analysis. Fig. 4 is the architecture of the ResNet50-
UNet model. 

 
Fig. 4. Schematic diagram of the architecture ResNet50-UNet model from 

the study [79]. 

For instance, the VCG-based U-Net achieved a Dice score 
ranging from 0.83 to 0.9, with a mean absolute error of 1.23 
mm and 1.38 mm across two datasets based on [3]. Liu et al. 
(2022) proposed a ResNet50-SegNet deep learning model for 
endometrial segmentation, achieving a Dice coefficient of 0.82 
with thickness errors within ±2 mm. However, a major 
limitation of this method was its low segmentation accuracy for 
endometrial linings ≤3 mm, with an accuracy rate of  only 
55.3% [4]. In comparison to the previous architecture, Fig. 5 
below shows the architecture of ResNet50-SegNet. 

 
Fig. 5. ResNet50-SegNet architecture [4]. 

Meanwhile, the 3D U-Net has been successfully applied to 
volumetric TVUS data, capturing inter-slice contextual 
information, achieving a 0.91 Dice score with 94.20% of 
automatic thickness measurements falling within clinically 
accepted error margins [57]. These variants collectively 
demonstrate the adaptability and effectiveness of the U-Net 
models. Despite these achievements, these architectures are still 
facing challenges in capturing long-range dependencies and 
global contextual information. 

B. Transformer-Based Application 

In recent years, transformer-based architectures have gained 
attention in medical image segmentation due to their ability to 
overcome the key limitation of CNNs, modeling long-range 
dependencies and global contextual relationships. Originally, 
this architecture was introduced in natural language processing 
(NLP) [85].  Its self-attention mechanism allows the network to 
capture inter-pixel relationships across the entire image, 
building a holistic understanding of image structure [86]. This 
capability is particularly beneficial in medical imaging, where 
global context is often critical for accurate segmentation of 
complex anatomical structures like the endometrium [1]. Fig. 6 
shows the transformer model overview. 
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Fig. 6. Vision Transformer (ViT) overview [86]. 

C. Hybrid and Adversarial Architectures 

To overcome the limitations of CNNs, researchers have 
developed hybrid and adversarial learning frameworks to 
enhance the segmentation performance. Hybrid models 
integrate the feature extraction capabilities with other 
computational approaches or architectural innovations. A 
prominent example is the Deep Learned Snake model proposed 
by Singhal [87], which incorporated an active contour model 
with a deep learning model for curve evolution. From this 
approach, Park et al. 2019 introduced a key-point discriminator 
that used endometrial boundary detections from an FCN to 
guide the active contour model and achieved a Dice score of 
82.76%.[58]. These frameworks effectively mimic human 
experts' analysis, allowing the segmentation to learn more 
precise delineations. While these approaches demonstrated a 
significant enhancement in boundary detection, challenges 
persist in managing the architectural complexity and 
dependence on large annotated datasets for optimal 
performance. 

D. Emergence Models and Foundational Architectures 

The latest phase of advancement in endometrium 
segmentation research has witnessed the emergence of 
innovative architectures that emphasize generalizability, 
computational efficiency, and reduced reliance on large 
annotated datasets. Deep Dual-Resolution Networks (DDRNet) 
represent an approach employing parallel branches to 
efficiently process both high- and low-resolution features, 
while combining contextual and spatial information [60]. This 
design allows for a more nuanced understanding of complex 
endometrial morphology, combining fine-grained details with 
broader anatomical context. 

Building on the evolution of foundation models, recent 
studies have explored adaptation of the segment anything 
model (SAM) for medical image segmentation. For example, 
Qiu introduced a segment anything with inception module 
(SAIM), which integrates inception-based encoders and point 
prompts to improve segmentation precision in the noisy 
ultrasound data [88]. The study utilizes an open-source SAM 
and introduces enhancements to the image encoder structure. 
Fig. 7 shows the SAIM architecture. 

Another notable method, MultiStudentNet, leverages the 
weights of multiple models to facilitate feature sharing. This 
method employs multiple student models to integrate labeled 
and unlabeled data to improve reliability and model robustness 
[89]. Fig. 8 shows the framework for MultiStudentNet.  

 
Fig. 7. SAIM architecture [88]. 

 
Fig. 8. MultiStudentNet architecture [89]. 

VI. METHODOLOGY 

Following established methodological guidelines for a 
systematic literature review [90], this review was conducted in 
accordance with the Preferred Reporting Items for Systematic 
Review and Meta-Analysis (86). The review process 
encompasses five key stages: 1) search strategy development, 
2) study selection and screening, 3) data extraction, 4) quality 
assessment, and 5) narrative synthesis. Each of these stages is 
explained in the subsections. 

A. Search Strategy and Information Resources 

The literature search began in April 2025. This search 
employed Google Scholar as the primary search database to 
identify and extract relevant primary research studies. The 
primary database is complemented by manual cross-checking 
in IEEE Xplore, Semantic Scholar, Springer Link, and 
ScienceDirect to ensure coverage of the study. The search 
strategy for this study used a Boolean operator and a 
combination of keywords related to endometrium 
segmentation, deep learning, and transvaginal ultrasound. The 
Boolean query string was (“endometrium segment” OR 
“endometrial segmentation”) AND (“deep learning”) AND 
(“TVUS” OR “Transvaginal Ultrasound”). 

B. Eligibility Criteria 

In the initial search, 453 papers were found in Google 
Scholar, 139 in Springer Link, 36 in Semantic Scholar, 24 in 
ScienceDirect, 4 in PubMed, and 3 in IEEE Xplore, totaling 659 
papers. The inclusion and exclusion criteria for the paper 
selection in this review are as follows: 

Inclusion Criteria: 

• Paper published in English between 2015 and 2025. 
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• Application related to endometrium receptivity 
assessment, thickness measurement. 

• Studies with mixed cohorts (pathological and healthy) 
were included if receptivity-related outcomes were 
reported. 

Exclusion Criteria: 

• Duplicate papers between the databases 

• Paper published before 2015 

• Inaccessible paper 

• Non-English paper 

• Studies focusing exclusively on pathological 
segmentation 

The exclusion criteria narrowed down the papers to a total 
of 210 papers. Then, a total of 190 papers were discarded from 
the keywords, title, and abstract screening. After that, the 
exclusion criteria for non-pathological disease of segmentation 
were selected, and a total of 10 papers were analyzed. Fig. 9 
below shows the simplified visual of the search methods 
conducted for the literature review based on the PRISMA 
guideline [91]. 

C. Data Extraction 

Data extraction for this review was guided by the four 
research questions raised in the introduction. For each included 

study, relevant information was systematically extracted to 
address these questions. This structured approach ensured all 
extracted data directly supported the analytical aim of this 
review. 

To address RQ1, the types of deep learning models, 
backbones, and any hybrid or custom modifications were 
documented and categorized. This included recording 
architectures such as U-Net variants, Transformers, and hybrid 
frameworks like SAIM to identify the most frequently 
employed architecture in TVUS endometrium segmentation. 

For RQ2 and RQ3, quantitative performance metrics and 
evaluation approaches were extracted. Segmentation metrics 
and thickness-measurement errors were recorded to facilitate 
accuracy comparisons across deep learning models. All 
reported evaluation metrics and assessments were further 
examined for their alignment with clinical standards, such as 
the acceptance rate of thickness-measurement within +-2mm, 
to determine which metrics are regarded as gold-standard for 
receptivity assessment in ART. 

Finally, to answer RQ4, author-reported limitations and 
clinical translation hindrances were recorded. This included 
documenting issues related to dataset size, single-center bias, 
model generalizability, and clinical-integration challenges. 
These insights were synthesized to identify the gaps and to 
guide future research directions in the translation of deep 
learning models into ART workflows. 

 
Fig. 9. PRISMA flow diagram of included studies.
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VII. RESULTS 

A. RQ1: Predominant Deep Learning Architectures for TVUS 

Endometrium Segmentation 

Endometrium segmentation in medical imaging is a critical 
yet challenging task for quantitative diagnostic analysis. Based 
on the literature, the most common approaches for endometrial 
image segmentation have increasingly relied on deep learning 
(DL) techniques, particularly in Convolutional Neural 
Networks (CNNs) as the foundation architecture. This is due to 
the proven effectiveness of the models in medical image 
analysis [3]. Accordingly, researchers have adapted and 
modified core CNNs to develop various segmentation network 
architectures specifically aimed at delineating the boundaries of 
the endometrium lining. 

Built upon CNN architectures, the U-Net architecture and 
its numerous variants are most frequently cited as the 
benchmark for this specific segmentation task. U-Net variants 
have been established as the backbone of segmentation 
methodologies [92], [93], [94]. The classical U-Net architecture 
has been widely adapted into diverse variants, such as the 
VGG-based U-Net, which utilizes the VGG16 network as its 
encoder for hierarchical feature extraction to enhance spatial 
representation [3]. In comparative evaluations, a pure U-Net 
model was tested for endometrium segmentation [57], [58], 
[84]. Furthermore, the use of ResNet-based U-Net and SegNet 
models shows the importance of deep residual networks, pre-
trained on large-scale datasets such as ImageNet, in mitigating 
vanishing gradient problems and improving feature depth [4], 
[84], [95]. For volumetric analysis, the 3D U-Net extension is 
employed to process three-dimensional transvaginal ultrasound 
(3D TVUS) images, thereby capturing crucial inter-slice 
structural information [57]. 

Beyond U-Net, other general frameworks such as Deep 
Dual-Resolution Networks (DDRNet) and SegNet are also 
commonly utilized for this purpose. One comparative study 
evaluated six different models based on these architectures, 
specialized combinations such as ResNet50 U-Net, ResNet50 
SegNet, U-Net mini, VGG SegNet, alongside pure U-Net and 
DDRNet. The result from this comparison found that DDRNets 
showed the best endometrium segmentation with a Dice score 
of 0.895 [84] using 1050 images. Each architecture, while built 
on CNNs, employs a different architecture to optimize 
performance for medical image segmentation. 

Innovative approaches have also emerged through the 
development of hybrid variational models. The hybrid models 
combine data-driven and energy-based techniques. One notable 
example is the Deep Learned Snake (DLS) model proposed in 
2019 [87]. In the research, the hybrid model integrates the 
robustness of a Fully Convolutional Network (FCN) with the 
mathematical rigor of a variational level-set method for curve 
propagation. In this framework, the FCN generates a deep-
learned endometrium probability map that acts as a soft, 
adaptive shape into the level-set functional for curve 
propagation. This model combined the robustness of learned 
features with the interpretability of deformable models. The 
efficacy of this hybrid method is demonstrated by its 
performance, yielding approximately 30% improvement over 
standalone supervised learning methods and producing 

endometrial thickness measurements within a clinical tolerance 
of 2mm in 87% of cases. 

Additionally, recent research explores adversarial learning 
frameworks to further refine segmentation precision. In 2019, 
Park et al. proposed a key-point discriminator, informed by 
anatomical landmarks and spatial features, to strategically 
guide the segmentation network towards more accurate 
boundary delineation in the presence of ultrasound artifacts 
[58]. The discriminator trained the segmentation network to 
predict accurate boundaries, to ensure robust segmentation for 
unclear edges and heterogeneous texture. This method achieved 
a Dice score of 82.67% and a Jaccard index of 70.46%. 

More recently, the architectural evolution in endometrial 
segmentation is shifting into utilizing Transformers, which are 
uniquely capable of capturing long-range, global image context 
in comparison to pure CNNs. A leading example is the Segment 
Anything with Inception Module (SAIM) [88]. This method 
utilizes a dual-branch encoder that comprises of Vision 
Transformer (ViT) for global context and an Inception-based 
CNN for multi-scale feature extraction. This architecture is 
critically dependent on clinician-guided point prompts to 
isolate the endometrium. This approach achieved a 
segmentation result of Dice Score 76.31% and Intersection over 
Union of 63.71% using a single-point prompt. Furthermore, its 
performance improved with additional prompts, reaching a 
Dice score of 81.30% with five-point prompts [88]. 

While U-Net-based models form a common foundation, the 
formation of their variants shows that the U-Net model requires 
significant task-specific modifications. As the literature 
affirms, an effective solution must be customized to overcome 
specific limitations, especially in TVUS. Thus, the shift 
towards current and advanced hybrid systems, such as SAIM, 
shows that the most performed models are hybrid systems, 
which integrate multiple network architectures. 

Table III synthesizes the architectural landscape and key 
characteristics of each model reviewed. The table illustrated the 
predominance of U-Net variants, while documenting the 
emergence of hybrid and transformer-based architectures. The 
domination of UNet variants is driven by three core factors: the 
ability to preserve critical boundaries, the capacity to capture 
global and local, and reliable performance on small datasets. 

U-Net variants can preserve critical boundaries through skip 
connections that transfer high-resolution features from the 
encoder directly to the decoder. This mechanism endures that 
local spatial information, which typically lost during the down 
sampling process, is retained to facilitate precise localization of 
the endometrial lining. Consequently, the architecture 
effectively integrates spatial and contextual information across 
its symmetrical path to achieve accurate pixel-level predictions. 
This precision is vital for identifying the thin, echogenic line of 
endometrium, especially in cases where boundaries are blurred 
or highly irregular. 

Furthermore, U-Net is celebrated for its reliable 
performance and robustness when trained on small datasets, a 
common limitation in clinical reproductive research. This is 
because medical datasets often consist of only a few hundred 
images and often are not shareable. U-Net’s lightweight and 
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simple structure makes it inherently less prone to overfitting. 
These characteristics make U-Net particularly suited to the 
challenges of endometrium segmentation in TVUS images, 

where boundary clarity is low, anatomical information is 
essential, and annotated data are limited. 

TABLE III.  SUMMARY OF DEEP LEARNING ARCHITECTURES IN INCLUDED STUDIES 

No Study (Author, Year) Architecture Family 
Specific Model / 

Variant 

Backbone / Key 

Components 

Dataset 

Size 
Key Architectural Notes 

1 Hu et al., 2019 [3] CNN-based (U-Net) VGG-based U-Net VGG16 encoder 73 
Skip connections, 

encoder-decoder 

2 Park et al., 2019 [58] Hybrid 
Key-point 

Discriminator 
FCN + adversarial guidance 320 

Adversarial learning for 

boundary refinement 

3 Singhal et al., 2017 [87] Hybrid Deep Learned Snake FCN + active contour 110 
Combines DL with 

variational methods 

4 Wang et al., 2022 [57] CNN-based (U-Net) 3D U-Net 3D convolutional blocks 113 Volumetric segmentation 

5 Liu et al., 2022 [4] CNN-based ResNet50-SegNet ResNet50 encoder 1050 
Encoder-decoder with 

residual connections 

6 Liu et al., 2022 [84] 
CNN-based (U-Net & 

SegNet) 

U-Net 

SegNet 

ResNet50, Vanilla CNN, 

Vanilla Mini, VGG 16, DDR-

Net 

840 U-Net with residual backbone 

7 Qiu et al., 2024 [88] Transformer-based SAIM ViT + Inception-CNN 180 
Hybrid transformer-CNN 

with prompting 

8 Peng et al., 2024 [89] 
Advanced / 

Semi-supervised 
MultiStudentNet Ensemble of CNNs 215 

Semi-supervised, 

multi-model 

9 Ithani et al., 2024 [96] CNN-based (U-Net) Classic U-Net Basic encoder-decoder 25 Small-scale feasibility study 

10 Yan et al., 2024 [95] CNN-based (U-Net) 
Custom U-Net 

variant 
Not specified 180 Clinical receptivity-focused 

 
Fig. 10. Taxonomy of current deep learning architectures for healthy endometrium segmentation. 

Fig. 10 shows the simplified taxonomy of the deep learning 
architecture models for endometrium segmentation, illustrating 
the evolution from CNN-based foundations towards hybrid and 
transformer-integrated architectures. The following section, 
which answers RQ2, examines whether this architectural 
prevalence correlates with superior segmentation accuracy or if 
emerging models offer a competitive advantage under specific 
clinical or dataset conditions. 

B. RQ2: High Accuracy Deep Learning Architectures 

Determining a singular superior method for endometrial 
segmentation is challenging because segmentation performance 
highly depends on various conditions, including dataset size, 
image quality, and evaluation metrics. Nevertheless, recent 
studies highlight several deep learning architectures that have 
demonstrated notably high accuracy, though these results must 
be interpreted considering dataset characteristics and clinical 
applicability. 

For example, the foundational U-Net architecture achieved 
a remarkable Dice coefficient of 0.977 in one study. However, 
this result was achieved on a limited dataset of only 20 training 
and 5 test images [96]. This highlights an important point where 

simpler models like U-Net can perform well due to a small 
dataset available. Consequently, while this result is numerically 
high, its generalizability using larger and more diverse clinical 
datasets remains uncertain. 

For volumetric analysis, the extension to 3D U-Net has 
proven significantly more effective than its 2D counterpart for 
processing three-dimensional transvaginal ultrasound (3D 
TVUS) images [57]. In a dedicated study, the 3D U-Net 
achieved a Dice coefficient of 90.83%, a metric value higher 
than the results obtained from 2D segmentation approaches on 
the same volumetric data. This performance [57] is attributed 
to the model's capacity to capture crucial inter-slice contextual 
information and spatial relationships within the full volume. 
Therefore, for applications requiring holistic anatomical 
assessment, 3D convolutional approaches represent a highly 
accurate solution. 

Beyond standard supervised learning, semi-supervised 
frameworks such as Multi-StudentNet are designed to enhance 
accuracy by leveraging both labeled and unlabeled data. Thus, 
it reduces the heavy reliance on manual annotations. This 
architecture reported an overall Dice score of 0.81, with its 
performance further increasing to 92.33% for polyp cases and 
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90.20% for cancer cases [89]. This indicates a particular 
robustness in segmenting pathologically altered endometria, 
which often present more complex imaging characteristics. The 
model's design utilizes an ensemble of student models, which 
has effectively improved segmentation reliability and 
performance across varied clinical presentations. 

Among architectures designed for efficient and contextual 
feature extraction, Deep Dual-Resolution Networks 
(DDRNets) have demonstrated leading performance in 
comparative analyses with an average Dice score of 0.895 [84]. 
This high accuracy is facilitated by its design of two parallel 
branches operating at different resolutions, which enables 
effective multi-scale information fusion. The architecture’s 
efficiency also suggests strong potential for real-time semantic 
segmentation applications in clinical settings. 

Other deep learning models have also achieved competitive 
results by using different design improvements. The VGG16-
based U-Net, employed in an automated measurement pipeline, 
achieved a Dice score of 0.83, performing better at 0.853 in the 
proliferative phase compared to 0.796 in the secretory phase. 
Similarly, a key-point discriminator framework significantly 
improved results compared to the standard U-Net of 58.69%, 
achieving a Dice score of 82.67% [58]. Furthermore, the 
Segment Anything with Inception Module (SAIM) adaptation 
recorded a Dice score of 76.31% and increased to 81.30% with 
multiple point prompts [88]. The comparative performance of 
the reviewed architecture is summarized in Table III. The table 
also highlights the influence of dataset size and clinical 
applicability. 

TABLE IV.  LIST OF METHODS AND RESULTS FOR ENDOMETRIUM 

SEGMENTATION 

No. Method Result 

1 DLS 
DLS 85%-87% tolerance limit compared to U-

Net with 60%-70% tolerance limit. 

2 
VGG-Based U-

Net 

DSC 0.83 Thickness measurement:- 

MAE/RMSE: 1.23/1.79 on 27 DL test cases- 

MAE/RMSE: 1.38/1.85 on 46 Thickness test 

cases 

3 Key-discriminator DSC 82.67%, Jaccard 70.46% 

4 6 Different U-Net 

DDRNets is the highest average of DSC, Recall, 

Precision, and Specificity with 0.895, 0.884, 

0.910, and 0.998. 

5 
ResNet50-based 

SegNet 
Average DSC: 0.82 

6 3D U-Net DSC 90.83%, Jaccard 83.35%, Sensitivity 90.85 

7 Multi StudentNet DSC 0.81, specificity 0.99, sensitivity 0.87 

8 SAIM 

DSC 76.31% and IoU 63.71%, a higher 

multipoint prompt receives a higher result in 

metrics DSC and IoU. 

9 
Transformer - 

CNN 
U-Net DSC 0.977, Transformer DSC 0.956 

10 ResNet-50 AUC 0.853 

In conclusion, while a classic U-Net excels on minimal data, 
the most accurate and generalizable models for broader clinical 
application appear to be the 3D U-Net, Multi-StudentNet, and 
DDRNet, as evidenced by their consistently high Dice scores 
across more substantial datasets. However, to draw a definitive 
conclusion about which network is highly accurate is 

challenging and potentially misleading because all these studies 
used different datasets with varying characteristics and sizes. 
This is due to the limited availability of common datasets for 
healthy endometrium TVUS images. For example, the study 
using the 3D U-Net had a total of 113 images [89], in 
comparison to the study comparing six networks that had a total 
of 1050 images [84]. To address this limitation, the 
MultiStudentNet specifically uses a semi-supervised approach 
[89]. 

C. RQ3: Metrics and Validation for Deep Learning in 

Endometrium Segmentation 

The evaluation of deep learning models for endometrium 
segmentation requires a comprehensive approach that reflects 
both technical segmentation accuracy and clinical measurement 
reliability. To achieve this, researchers commonly employ a 
range of quantitative and statistical metrics to assess 
segmentation accuracy and endometrial thickness measurement 
performance. Table IV presents the list of methods and results 
for endometrium segmentation. 

1) Segmentation evaluation metrics: For endometrium 

segmentation, the objective is to measure how close the 

automated segmentation overlaps with the ground-truth 

annotation. One of the most used metrics is the Dice Similarity 

Coefficient (DSC). The values range from 0 to 1, with 1 as a 

perfect overlap between the segmented region and the ground 

truth. In different literatures, DSC is also known as Dice Score, 

Dice coefficient, and F1 Score. The formula for measuring DSC 

is defined as: 

 𝐷𝑆𝐶 =  
2|𝐴∩𝐵|

|𝐴|+|𝐵|
                              () 

where, A is the segmented region to be assessed, and B is 
the corresponding ground truth. 

The recoded DSC values were reported in most of the main 
literature for this study. 9 out of 10 papers used DSC values as 
a metric to evaluate segmentation performance. The recorded 
DSC values for healthy endometrium segmentation using deep 
learning range from 0.76 to 0.98. The highest DSC was 
observed in the U-Net with 0.977 on a limited dataset of 25 
images [96]. This indicates that while DSC is a useful 
benchmark for general overlap, it can be sensitive to dataset 
size, and a high DSC does not automatically mean an excellent 
segmentation result. 

A recent deep learning model also measured a high DSC at 
0.895 for a Deep Dual-Resolution Network (DDRNet) in a 
comparative analysis [84]. However, while proposing the key-
point discriminator method, the DSC value recorded was 
82.67%, outperforming conventional methods like U-Net 
(58.69%) and FCN (78.39%) [58]. This shows that a little 
tuning in the model architecture can improve segmentation 
results, especially if the model is designed to better identify 
boundaries. 

Another commonly used metric for segmentation 
evaluation is the Jaccard Index, also known as Intersection over 
Union (IoU). The DSC and IoU are proportional to the number 
of spatial overlaps between the segmented and ground truth 
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images. The value ranges from 0 to 1, with 1 as the perfect 
matching [97]. The formula of IoU is defined as: 

𝐼𝑜𝑈 = 
|𝐴∩𝐵|

|𝐴∪𝐵|
                           () 

However, the Jaccard index was reported far less frequently 
than DSC in the included papers. For this review, out of 10 main 
literature papers, only 3 studies use the Jaccard index as a 
performance metric. Values reported include 70.46% using the 
key-point discriminator method [58] and 83.35% using the 3D 
U-Net method [57]. This low number of adoptions in evaluation 
may be attributed to the Jaccard index’s mathematical property 
of generally resulting in lower numerical values compared to 
Dice for the same segmentation quality. However, for clinical 
applications such as endometrial thickness measurement, 
Jaccard index sensitivity to boundary intersection may be 
helpful in a realistic assessment. 

This pattern of selective metric reporting extends to a few 
other complementary metrics for segmentation evaluation. For 
example, another commonly used metric is accuracy. The 
accuracy value is calculated through precision and recall, which 
quantify the model's ability to correctly identify endometrial 
pixels while minimizing false positives and negatives. In 
certain papers, recall is also known as sensitivity, which 
measures the proportion of relevant instances of true positive 
pixels that are retrieved by the model and focuses on how well 
the model avoids false negatives. The formulas for accuracy, 
precision, and recall are defined below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          () 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   () 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
             () 

where, TP- True Positive, FP - False Positive, TN - True 
Negative, FN – False Negative. 

In a comparative study, a DDRNet demonstrated superior 
performance, achieving a precision of 0.910 and a recall of 
0.884, the highest among the evaluated deep learning models. 
This review revealed that these complementary metrics are 
infrequently documented, with only 3 out of 10 papers reporting 
precision and 2 out of 10 papers reporting recall (sensitivity). 
This indicates that while precision and recall provide distinct 
and complementary insights in quantifying false positive and 
false negative rates, the Dice score continues to be the favored 
standard metric for overall segmentation evaluation. 

Beyond the mentioned metrics, specificity is another 
segmentation metric that measures the proportion of correctly 
identified negative pixels out of all actual negative pixels. This 
metric is also known as the true negative rate, as it indicates the 
model’s ability to minimize false positives [84], [89]. The 
formula for specificity is written as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                    () 

These metrics were reported in a study comparing variations 
of CNN architectures and evaluation in the developing Multi-
StudentNet model. The reported specificity value is generally 
0.99 [84], which is high, indicating robust performance in 

excluding non-endometrial regions. In medical image 
segmentation, specificity is important because the background 
makes up most of the image. High specificity shows the model 
is good at not mistakenly labelling normal tissue as 
endometrium. This helps prevent false alarms and builds trust 
in the tool for clinical application. Although specificity 
provides valuable information about background exclusion, it 
is less frequently reported because the aim is to detect the 
endometrium boundary, the foreground region of interest, and 
not to verify the background classification. 

Another underrated metric is the 95th percentile Hausdorff 
Distance (HD95). This metric measures the maximum 
boundary between a predicted segmentation and the ground 
truth. While Dice scores calculate overall overlap pixels, the 
HD95 specifically targets the worst-case alignment errors by 
using the 95th percentile to ignore extreme outliers. In this 
study, this metric was explicitly used in only one paper [57]. 
The 3D U-Net model achieved the best HD95 score of 
12.75mm when using the Enhanced Augmented Data (EAD) 
method. 

From this information, a boundary-focused metric like 
HD95 is more clinically informative than a general overlap 
metric like DSC because it directly relates to measurement 
accuracy. Since clinical decisions are based on measurements 
like endometrial thickness, a minor boundary error can lead to 
a significant measurement error. HD95 assesses this specific 
risk. Thus, the HD95 provides a more direct assessment of a 
model's utility in a clinical setting, where the ±2 mm tolerance 
is critical. 

2) Thickness measurement performance metrics: As 

established, endometrial thickness serves as a critical biomarker 

for assessing reproductive health, guiding clinical decisions in 

areas such as fertility treatments and screening. Consequently, 

evaluating the performance of thickness measurement moves 

beyond overlap metrics. The performance of this measurement 

requires rigorous evaluation against the clinical gold standard 

of manual expert measurement. This is to ensure that the 

automated results are reliable and clinically acceptable. Among 

the relevant metrics are Acceptance Rate, Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE). 

The reliability of the evaluation is benchmarked against a 
well-defined clinical tolerance. Clinical tolerance represents the 
acceptable error range, which, for endometrial thickness, is 
consistently set at ±2mm based on clinical guidelines [3], [87]. 
Based on the clinical tolerance, the acceptance rate measures 
the percentage of a model’s measurements that fall within the 
range. Thus, model efficacy is primarily reported through 
Acceptance Rate. The definition of Acceptance Rate in 
mathematical expression is: 

 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =  
∑ |𝑦𝑖−𝑥𝑖|<2𝑚𝑚𝑛

𝑖=1

𝑛
 × 100%    () 

where, y is the endometrial thickness measured by deep 
learning methods, x is the ground truth, and n is the total number 
of validation images or cases. 

By achieving a high acceptance rate, such as 89.3% [4] or 
94.20% [57], the deep learning methods demonstrate their 
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potential to provide a reliable measurement that aligns with 
clinical requirements. Notably, 4 out of 10 papers measure the 
acceptance rate of the thickness measurements. 

While the Acceptance Rate indicates clinical applicability, 
the MAE and RSME provide deeper insight of the measurement 
errors. The MAE calculates the average absolute difference, a 
straightforward measure of typical error magnitude [4], [57]. In 
contrast, RSME is mathematically structured to evaluate error 
magnitude, serves as a sensitive indicator for inconsistent 
measurement, and the presence of significant outliers [57], [98]. 
The formulas of MAE and RSME are written as follows: 

 𝑀𝐴𝐸 = 
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
                  () 

𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1             () 

Reported MAE values demonstrate model accuracy, with 
methods like VGG-based U-Net pipeline achieving MAEs of 
1.23mm for the deep learning test set and 1.38mm for the 
thickness test set [3]. The results are considered as it falls within 
the clinical tolerance of ±2mm. The 3D U-Net segmentation 
method reported an even lower MAE of 0.75 mm with a 
corresponding RSME of 1.07mm [57]. For comparison, the 
ResNet50-SegNet model reported an overall MAE of 2.3mm 
across all validation data, although performance improved to an 
MAE of 2.0mm when analyzing cases where endometrial 
thickness is more than 3mm [4]. 

The evaluation of endometrial thickness measurement 
remains overlooked in the current included papers. The most 
critical metric, the acceptance rate, was reported on 40%. The 
fact that 60% of the included papers did not report this value 
may suggest that most studies are technically focused rather 
than clinically validated. This shows a great hindrance for 
clinical translation. 

Table V presents the performance metrics used for both 
segmentation and thickness measurement evaluation from the 
literature. Current metric reporting in endometrium 
segmentation prioritizes technical overlap, especially DSC 
value, abundantly, but does not sufficiently validate clinical 

applicability. This focus overlooks critical metrics, such as 
acceptance rate, which directly assess whether automated 
thickness measurements fall within clinically permissible rate 
margins. Consequently, this condition limits the assessment for 
practicality in real-life assessment, specifically for clinical 
integration.   In conclusion, to ensure clinical readiness, future 
work must standardize metric reporting that prioritizes 
measurement accuracy and reliability for an effective 
integration into ART workflows. The inconsistency and 
underutilization of clinical decision metrics are direct 
symptoms of broader limitations to clinical applications, which 
are explored in RQ4. 

D. RQ4: Technical and Clinical Gaps to Translate Deep 

Learning Model into Art 

Translating promising deep learning segmentation and 
measurement performance into reliable and adoptable tools for 
ART requires addressing significant technical and clinical gaps 
that compromise reliability and clinical utility. Although most 
models demonstrate high accuracy on internal test sets, there 
are limitations regarding data diversity, integration of complex 
clinical features, and performance on diagnostically 
challenging cases. 

One major limitation is ensuring that models perform 
reliably across diverse patient populations and clinical settings, 
addressing issues of data scarcity and single-source dependency 
[95]. Many studies rely on retrospective data. The models’ 
ability to generalize can be compromised if the original dataset 
is not sufficiently large or diverse [4], [88], [89]. Furthermore, 
the results from small sample sizes cannot be guaranteed to 
generalize to other segmentation tasks [4]. 

In addition, models are often trained and tested on data 
collected from a single manufacturer or institution. This fact 
may affect the robustness of the model when deployed 
elsewhere [95]. External validation using datasets outside the 
source institution has not always been carried out. 
Consequently, the performance of some deep learning models, 
such as those predicting WOI, is acknowledged to require 
greater diversification, specifically needing a greater 
representation of cases with thin endometrial thickness 
(<7mm). 

TABLE V.  DISTRIBUTION OF EVALUATION METRICS IN ENDOMETRIUM SEGMENTATION LITERATURE 

Method 
Segmentation Performance Metrics Thickness Measurement Performance Metrics 

DSC Jaccard Sensitivity Specificity Accuracy Precision HD95 MAE RMSE Acceptance Rate SDE 

DLS          /  

VGG-Based U-

Net 
/       / / / / 

Key-discriminator / /          

6 Different U-Net /  / /  /      

ResNet50-based 

SegNet 
/       / / / / 

3D U-Net / / /    / / / / / 

Multi StudentNet /  / /  /      

SAIM / /          

Transformer - 

CNN 
/           

ResNet-50 /  /  / /      
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While endometrial thickness is a crucial biomarker, relying 
solely on it is incomplete to predict ART outcomes. Future 
models must be designed to assess a broader range of complex 
physiological variations of other critical features of endometrial 
receptivity, such as endometrial pattern. The evolution towards 
multiple parameter assessment requires a more sophisticated 
approach for validation. Furthermore, adequate differentiation 
across various pathological conditions, such as cancer and 
hyperplasia, is needed, as these conditions are known to impact 
echo pattern and segmentation [3], [4], [95]. 

Another setback for deep learning systems is the poor 
performance on thin endometria. There’s one study that showed 
that for cases with endometrial thickness less than 3 mm, the 
acceptance rate was significantly lower at only 54.5%, 
compared to nearly 98.3% for thicker endometria (ET>10 mm) 
[4]. This inaccuracy in thin endometria could lead to false 
positive diagnoses, leading to unnecessary invasive 
examinations for patients. 

As discussed in the introduction, the technical limitations of 
ultrasound remain a fundamental obstacle, with issues such as 
low contrast and speckle noise complicating the precise 
delineation of the endometrial boundary to measure the 
endometrial thickness effectively [89]. Most models fail in 
cases where the endometrium boundary is blurred or has a 
slightly irregular shape [3], [4]. 

To translate these technically advanced models into a 
clinical application, these models should be integrated into 
user-friendly interfaces for seamless routine ART screening 
protocols [95]. To this end, researchers are actively exploring 
and developing novel architectures, such as semi-supervised 
and key-point guided adversarial networks, to enhance 
segmentation robustness. This enhancement is critical to ensure 
a reliable endometrial receptivity assessment for clinical 
application. 

The identified limitations and gaps reveal that clinical 
translation is hindered by clinical validation. To progress, 
research must shift from proof-of-concept or technical 
evaluation studies to rigorous development. To bridge the 
identified gaps, future research should adopt three key actions. 
First, the establishment of large, multi-center, and prospectively 
collected datasets is essential to ensure models are robust across 
diverse populations and critically challenging subgroups, such 
as thin endometria. Second, to adapt clinical validation, 
evaluation must adopt a mandatory and standardized set of 
metrics that are highly reliable in medical practice. Third, 
model development should evolve beyond endometrium 
segmentation to thickness measurement and other ultrasound 
biomarkers, such as echo pattern and volume. By addressing 
these actions, it can transform deep learning beyond technical 
research into a reliable clinical translation to aid in improving 
ART in the future. 

VIII. CONCLUSION 

This review systematically investigated the role of deep 
learning in TVUS image segmentation for the objective 
assessment of endometrial receptivity. The analysis provides 
clear answers for the research questions, revealing both the 
significant progress and the critical path forward. 

In finding the predominant architectures for the deep 
learning segmentation (RQ1), it is found that the field is not 
dominated by a single model but is built upon a U-Net-based 
foundation, with a clear evolution towards sophisticated hybrid 
systems, such as SAIM, and tailored variants like 3D U-Net. 
When evaluating which of these models achieve high accuracy 
(RQ2), models such as the 3D U-Net, DDRNet, and Multi-
StudentNet demonstrated superior performance. However, a 
definitive ranking is impossible due to a major problem, which 
is the lack of a common, large-scale dataset. This problem 
prevents fair comparison and highlights a fundamental need for 
the community. 

Subsequently, this review also identifies the metrics used to 
validate segmentation quality (RQ3). It is revealed that not all 
metrics are equally meaningful for clinical translation. While 
the Dice score is most used, a hierarchy of clinical utility exists. 
The most critical metrics are the Acceptance Rate, supported by 
error magnitude metrics, which are MAE and RMSE. These 
metrics work together best to validate a model's readiness for 
clinical receptivity assessment. 

Despite these advancements, significant technical and 
clinical limitations (RQ4) were revealed to prevent the 
integration of the models into ART workflows. These persistent 
limitations include poor model performance on thin 
endometria, inadequate validation across the menstrual cycle 
and various pathological conditions, and a narrow focus on 
thickness over a holistic, multi-parametric receptivity 
assessment. 

In conclusion, while deep learning offers a powerful 
pathway to standardize and objectify endometrial evaluation, its 
full potential for clinical application has not yet been utilized. 
The transition from a promising algorithm to a trusted clinical 
tool hinges on future work that prioritizes robust, multi-
parametric models, rigorous and stratified clinical validation, 
and the development of standardized benchmarks and datasets. 
By focusing on these challenges, the field can finally translate 
computational promise into enhanced diagnostic precision and 
improved outcomes in assisted reproduction. 
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