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Abstract—Industrial facilities operating with toxic and
explosive gases require continuous monitoring systems capable
not only of detecting threshold exceedances but also of
anticipating hazardous trends. Conventional IoT-based gas
monitoring solutions are primarily limited to real-time data
acquisition and alarm triggering, which restricts their ability to
prevent incidents proactively. This study presents the
architecture of an intelligent predictive analytics system for gas
environment monitoring that integrates sensor-series IoT gas
analyzers with advanced data analytics. The proposed system is
built on domestically developed SENSOR-Mine gas analyzers
supporting LoRaWAN and Wi-Fi communication, centralized
data storage in MS SQL Server, machine learning—based
analytics implemented in Python, and a web-based visualization
platform using ASP.NET MVC. Time-series forecasting models
and anomaly detection algorithms are jointly employed to
analyze gas concentration dynamics and identify potentially
dangerous situations at early stages. Experimental validation
using carbon monoxide measurements demonstrates the practical
applicability of the proposed architecture for industrial safety
monitoring. The presented approach provides a scalable
foundation for intelligent gas environment monitoring systems
aimed at reducing industrial risks and improving worker
protection.
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I.  INTRODUCTION

Ensuring industrial safety remains one of the most critical
challenges for modern manufacturing enterprises. At first
glance, this may seem like a well-studied issue; yet statistics
confirm that it remains highly relevant today. According to the
International Labor Organization, more than 2.3 million deaths
and over 300 million cases of injuries and occupational
diseases are recorded worldwide each year, directly or
indirectly linked to unsafe working conditions [1]. In countries
with a developed mining industry, such as Kazakhstan, a
significant share of incidents is associated with hazardous gas
leaks, which often lead to fires and explosions at industrial
sites.

The World Health Organization has revised the permissible
exposure limits for several hazardous substances, including
carbon monoxide, nitrogen dioxide, sulfur dioxide, and
particulate matter [2]. This update, introduced only a few years

ago, once again emphasizes the need for continuous air quality
monitoring, not only in urban environments but also within
industrial zones.

Recently, IoT-based intelligent sensor networks have been
gaining attention as one of the most effective approaches to
industrial monitoring [3, 4]. LoRaWAN, in particular, has
shown strong performance, offering long communication range
with minimal power consumption [4, 5]. Yet, sensors alone are
limited: they primarily gather information, which by itself
cannot guarantee safety. To address risks proactively,
predictive analytics must be applied, allowing trends within
time-series data to be analyzed and potential threats to be
forecasted in advance [6].

Machine leaming algorithms - such as LSTM, GRU, and
autoencoders - have demonstrated strong performance when
applied to the task of anomaly detection in streaming data
generated by IoT sensors [7, 8].

This study focuses on the architecture of an intelligent
predictive analytics system designed for gas environment
monitoring. The foundation of the system is built upon
domestically developed gas analyzer sensors-SENSOR-Mine
4Gl and SENSOR-Mine 4G2, created by KAB SYSTEMS.
The purpose of the research is not limited to presenting the
system’s architecture; it also aims to demonstrate its practical
applicability in ensuring continuous monitoring and the early
prediction of potentially hazardous situations.

Recent studies have actively explored loT-based solutions
for air quality and gas monitoring in both indoor and industrial
environments. Existing works demonstrate the effectiveness of
sensor networks combined with wireless communication
technologies, including LoRaWAN, for reliable long-range
data transmission and low-power operation. Several
approaches focus on real-time monitoring and alarm generation
based on predefined thresholds, while others investigate the
application of machine learning techniques for forecasting gas
concentration dynamics or detecting anomalies in sensor data.
However, in most reported solutions, predictive modeling and
anomaly detection are addressed separately and are rarely
integrated into a unified architecture designed for continuous
industrial deployment. Furthermore, many studies remain
limited to experimental setups and do not sufficiently consider
system scalability, communication redundancy, and integration
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with enterprise-level information systems. These gaps motivate
the development of an integrated architecture that jointly
combines loT sensing, hybrid communication, and intelligent
analytics for industrial gas environment monitoring.

Despite the significant progress in IoT-based gas
monitoring systems, most existing solutions primarily focus on
real-time data acquisition and threshold-based alarming,
offering limited capabilities for proactive risk prevention.
Many approaches lack integrated predictive analytics and are
not designed to jointly address long-term trend forecasting and
rare-event detection in industrial environments. Moreover, a
substantial portion of reported solutions remains at the
experimental or laboratory level and does not sufficiently
consider deployment constraints such as communication
reliability, scalability, and integration with industrial IT
infrastructures. In this context, the present study proposes an
architecture that combines distributed IoT gas analyzers with a
hybrid LoRaWAN/Wi-Fi communication layer and intelligent
data analytics. By integrating time-series forecasting models
with anomaly detection methods within a unified system, the
proposed approach extends conventional monitoring by
enabling early identification of hazardous trends. The
architecture is specifically designed for industrial deployment
and is validated using data obtained from SENSOR—Mine gas
analyzers, positioning this work as a practical and scalable
solution for intelligent gas environment monitoring.

II. METHODS AND MATERIALS

The hardware backbone of the gas monitoring system is
formed by the SENSOR series gas analyzers, developed as part
of a domestic project. These devices are designed to measure
the concentrations of various gases (CO, CHa, NOz, H2S, and
others), with detection ranges spanning from 0.1 ppm to 1000
ppm, depending on the sensor module used. The measurement
accuracy reaches +2%, while the minimum detection threshold
does not exceed +2 ppm.

The SENSOR-Mine 4GN gas analyzer is designed for
continuous monitoring of harmful and hazardous gases in the
air of both underground and surface industrial facilities. The
device serves as a tool for ensuring industrial safety, protecting
workers’ health, preventing accidents, and monitoring
compliance with permissible exposure limits (PEL) in
production and technological environments.

The 4GN model is configured to monitor up to four
different gases, where N denotes the specific gas set. Table I
presents the available models, each equipped with a defined
combination of sensors tailored to the particular needs of
industrial enterprises.

The gas analyzer is suitable for use in a wide variety of
facilities, including mining operations, tunnels, underground
storage units, ventilation shafts, as well as laboratory and
industrial settings. The detection range specifications of the
built-in sensors integrated into the SENSOR gas analyzer are
provided in Tables IT and III.

The key features of the developed gas analyzer include
modular sensor replacement, an integrated microcontroller for
primary data filtering, and support for wireless communication
via LoRa and Wi-Fi. The device is designed for low power
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consumption, reaching up to 200 mW in transmission mode,
while maintaining ease of use in industrial environments.

Similar solutions are already being applied in LoRaWAN-
based research systems for air quality monitoring [9].

Communication layer: LoRaWAN and Wi-Fi. Two
technologies were employed for transmitting data from the
sensors to the server. LoORaWAN provides a communication
range of up to 10 km with very low power consumption,
making it an optimal choice for distributed systems [10]. Wi-
Fi, in turn, is used as a backup channel and for local
debugging. This combination was selected as the primary
solution for mines, quarries, and industrial sites where large-
area coverage is essential.

In the present implementation, a significant advantage lies
in the networking capability between gas analyzers. Data
packets are transmitted based on the measurements obtained,
first exchanged among neighboring analyzers and then
forwarded to the central database server, where the aggregated
dataset undergoes further processing through predictive
analytics.

TABLE I. CONFIGURATIONS OF SENSOR-MINE 4GN
Configuration . .
Model Designation Measured Gases
Number
1 SENSOR — Mine 4G1 SOz, NO;, CO, O:
2 SENSOR — Mine 4G2 H-S, CHa4, CO, O:
TABLEII. SPECIFICATIONS OF SENSOR—-MINE 4G1
Alarm
Gas Mez:::;;glent Accuracy M(‘/;Eml}K Threshold
(ppm)
SO: | 0-20 ppm +2 ppm 34 3
NO: | 0-20 ppm +2 ppm 1.0 1
CO 0-200 ppm +20 ppm 17.4 20
0,
0. | 0-25% £ % of the | g 18% |
measured value
TABLEIII.  SPECIFICATIONS OF SENSOR—-MINE 4G2
Alarm
Gas Me&;::;el:ent Accuracy M?le?( Threshold
& PP (ppm)
H.S 0-100 ppm +10 ppm 10 10 ppm
0,
CH. | 0-100%LEL | =5 % of thelsy ypy 10% LEL
measured value
CO 0-200 ppm +20 ppm 17.4 20 ppm
=+ 0,
0 | 0-25% 4 % of thel gy 18% |
measured value

Wi-Fi is primarily applied in local industrial facilities and
laboratories, where high data transfer rates are critical.
However, its use in confined environments such as mines or
underground tunnels proves to be ineffective. Wi-Fi requires a
constant network connection, and in harsh conditions, physical
cables can ecasily be damaged by passing machinery or
rockfalls. For this reason, Wi-Fi is most effective in surface
applications, such as open industrial sites and quarries.
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The key advantage of the hybrid communication model is
its ability to combine the energy efficiency of LoRaWAN with
the high bandwidth of Wi-Fi, enabling reliable data
transmission under a variety of conditions. Considering these
parameters, together with the devices’ moisture, explosion, and
dust protection, the system is well-suited for deployment in
virtually any industrial environment.

Fig. 1 illustrates the alarm triggering algorithm in the gas
analyzer: once a hazardous concentration is detected, the data
are transmitted to the central database server, and an alarm
notification is displayed in the user interface. At the same time,
all analyzers located near the unit that raised the alarm
automatically receive the signal and activate their own warning
alerts, ensuring distributed safety awareness within the
network.

A. Data Storage and Processing System

The data collected by the gas analyzer in real-time is
transmitted to the server, where it is stored and further
processed in a SQL Server database. The data storage structure
is based on a relational model and contains fields for a unique
sensor identifier, gas type (CO, NO., SO, CHs, etc.),
timestamp of data acquisition, measured concentration value
expressed in ppm or mg/m?, and a status attribute indicating the
measurement level (normal, warning, or alarm).

This organization of data enables the formation of time
series, which are then used as the basis for machine learning
and predictive analytics algorithms. Fig. 1 shows the
architecture of the developed intelligent system, including
sensors, server infrastructure, and the user interface.

This data storage structure enables the generation of time-
series datasets, which can then be applied for training and
operating machine leamning algorithms. Fig. 1 presents the
architectural diagram of the intelligent system.
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Fig. 1. Architecture of the intelligent system.

Machine learning algorithms are employed to analyze time-
series data.

Specifically, Long Short-Term Memory (LSTM) networks
are used to predict gas concentrations based on historical
measurements, while Gated Recurrent Unit (GRU) models
provide a computationally efficient alternative to LSTM.

Isolation Forest is applied for detecting anomalies and
sudden spikes in gas concentrations, whereas One-Class SVM
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is suitable for identifying rare and potentially hazardous events
in scenarios where most observations correspond to normal
operating conditions.

These methods are widely adopted in predictive monitoring
tasks [6], [11].

B. Visualization and User Interface

The data are visualized using an ASP.NET MVC-based
platform. The user interface enables real-time visualization of
current gas concentrations on the facility map, time-series
representation with predictive trends, and dynamic highlighting
of detected anomalies. In addition, the system supports
automated reporting on the overall condition of the facility.

During the experiments conducted in the chemical
laboratory, data were collected using the SENSOR-Mine 4G2
gas analyzer, which measures carbon monoxide (CO)
concentrations in the range of 0-200 ppm. As reference values,
the regulatory limits of the Republic of Kazakhstan were
applied, as previously shown in Table III — SENSOR-Mine
4G2.

Fig. 2 illustrates the dynamics of CO concentration changes
over time [12]. It can be observed that within the interval of
120-130 minutes, concentration exceeded the permissible
exposure limit (PEL) and reached the alarm threshold.

To analyze the data and uncover hidden patterns, advanced
intelligent processing methods were applied, including the
Isolation Forest (IF) algorithm for anomaly detection and the
One-Class SVM method for identifying rare events and
outliers.

Fig. 3 demonstrates the application of the Isolation Forest
method. The red points highlight anomalous values
corresponding to a sharp increase in CO concentration, which
aligns with the incident detected by the gas analyzer.

Fig. 4 illustrates the identification of rare events with the
One-Class SVM algorithm. The orange markers indicate points
flagged as potentially hazardous. It is worth noting that this
method can capture outliers even with minor deviations from
the norm, which makes it valuable for early warning.

The effectiveness of different approaches was evaluated,
and the results are summarized in Table IV. The analysis
shows that recurrent neural networks such as LSTM and GRU
provide the most accurate results in forecasting CO
concentration dynamics. However, these models require
significantly higher computational resources, which may be a
limiting factor for industrial applications that have not yet
reached full digital maturity.

While Table IV summarizes qualitative trade-offs, a full
quantitative evaluation of anomaly detection performance (e.g.,
Precision, Recall, and F1-score) requires labeled ground truth
for abnormal events. In the current laboratory validation,
anomalies were identified based on threshold exceedance and
expert inspection; therefore, we report comparative behavior of
the methods and include quantitative benchmarking with
labeled data as a planned extension of this work.
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TABLEIV. COMPARISON OF MACHINE LEARNING ALGORITHMS APPLIED
TO GAS ANALYZER (CO) DATA
Industrial
Method Task Advantages Limitations Applicabilit
y
Hi .
. igh . Requires .
Forecasting accuracy; Suitable for
ncentration tur large datasets long-term
LSTM concentratio captures and high ong-te
s using time | long-term . leak
. . computationa e
series dependencie prediction
s 1 resources
Faster and Slightly .
. . lower Suitable for
GRU Similar to | lighter to Lti
LSTM train: fewer accuracy real-time
arameters compared to | systems
P LSTM
Performs
. well with | Does not | Effective for
. Detecting . .
Isolatio K outliers; forecast, only | instant
anomalies and .
n Forest . does not | detects accident
sudden spikes . . .
require large | anomalies detection
datasets
Capable of
One- Identifying detecting Sensitive  to Useful — for
. unusual early

Class rare events in . . parameter .

SVM normal data situations selection waming  of
with limited accidents
data
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Fig.2. Dynamics of CO concentration over time.
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Fig.3. CO anomaly detection using the Isolation Forest method.
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Fig. 4. Detection of rare CO events using the One-Class SVM method.

Fig. 5. The main functional components of the system.

On the other hand, anomaly detection methods such as
Isolation Forest and One-Class SVM performed better in
identifying hazardous episodes. This capability is particularly
important for real-time monitoring systems, where timely
detection of abnormal events is often more critical than precise
long-term trend prediction. Fig. 5 illustrates the main
functional components of the system and the alarm-triggering
process when either maximum permissible concentrations of
harmful substances or anomalies are detected.

Thus, the combination of forecasting models such as LSTM
and GRU with anomaly detection methods like Isolation Forest
and One-Class SVM provides a more comprehensive approach
to intelligent monitoring of the gas environment. This
integrated methodology not only records actual exceedances of
maximum allowable concentrations but also predicts the
development of hazardous trends. As a result, the overall level
of industrial safety can be significantly improved.

The relevance of this study is largely driven by the urgent
need to implement intelligent predictive analytics systems in
industrial enterprises of the Republic of Kazakhstan. In
environments where toxic and explosive gases are used, the
risks of emergencies remain objectively high, making such
solutions particularly valuable.

The scientific novelty of the work lies in the proposed
integration of time-series forecasting methods with algorithms
for detecting rare and anomalous events, based on data
obtained directly from SENSOR - Mine 4G2 gas analyzers
equipped with LoRa and Wi-Fi data transmission. This
combined approach is introduced in the context of industrial
safety tasks. Its application enhances the accuracy of analysis,
reliability of the system, and timeliness of detecting potentially
dangerous situations.

L. RESULTS

The developed architecture of the intelligent system
consists of five core layers. At the sensor level, SENSOR-
series gas analyzers provide continuous data collection. The
communication layer employs LoRaWAN and Wi-F
technologies for data transmission. On the server side, the
information is accumulated and stored in SQL Server before
being processed by the analytical module, implemented in
Python with machine learning methods. The final layer is the
user level, represented by a web interface built on ASP.NET
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MVC, which provides access to monitoring results and
analytics.

The proposed approach, tested through the analysis of CO
concentrations, can be adapted to other industrial environments
and facilities where the risk of hazardous gas accumulation
exists. Below are typical scenarios where the system may
prove especially useful.

For monitoring air quality in urban infrastructure, a
distributed network of sensors can be deployed, focusing on
the control of nitrogen dioxide (NO:) and fine particulate
matter (PM2.5). Integrating predictive model outputs with
existing environmental monitoring systems makes it possible
not only to record regulatory exceedances but also to provide
early wamings to the population about potential air quality
deterioration.

Fig. 6 illustrates air quality monitoring using SENSOR gas
analyzers, with a modeled scenario of hazardous substance
dispersion following an alarm event. The SENSOR devices are
positioned at specific coordinates and measure data in real-
time, transmitting results to a central control center. Based on
sensor readings and detected anomalies, information on
potential leakage sources is forwarded to local authorized
bodies, including the Department of Emergency Situations and
the Department of Industrial Safety. Subsequently,
notifications are issued to residents within the affected zone
through instant alerts delivered to their mobile devices. This
example demonstrates the applicability of the intelligent
predictive analytics system in an urban context.

In mines and quarries, monitoring methane (CHa) and
hydrogen sulfide (H:S) concentrations remains one of the most
critical tasks in underground operations. The use of LSTM
models enables forecasting of methane buildup 5-10 minutes
before reaching explosive thresholds. The Isolation Forest
algorithm demonstrates high sensitivity to sudden spikes in
hydrogen sulfide levels, which is crucial for preventing
unexpected emergencies.

In metallurgical production, the main parameters of
concern are carbon monoxide (CO) and sulfur dioxide (SOz)
concentrations. Recurrent neural networks, such as GRU,
provide rapid and reasonably accurate predictions of CO
dynamics in workshops, while the One-Class SVM method
makes it possible to timely detect rare SO emissions that often
go unnoticed with conventional monitoring tools.

Fig. 6. Simulation of hazardous substance dispersion.
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IV. DISCUSSION

A comparison with existing monitoring systems [3, 5, 9]
shows that the proposed architecture offers several advantages.
Unlike most solutions that primarily focus on data collection,
our system integrates LoRaWAN-based communication with
predictive analytics methods, enabling not only real-time
measurement but also forward-looking prediction. An
additional advantage is the use of Python-based modules,
which provide flexibility in applying different forecasting
algorithms. Moreover, the inclusion of a backup
communication channel via Wi-Fi enhances the system’s
reliability under conditions of primary channel instability.

Despite its advantages, any technical solution or system has
certain limitations. For machine learning models to function
correctly, a significant amount of data must be accumulated,
which may reduce prediction accuracy at the initial stages of
implementation. For laboratory validation, the dataset was
collected using the SENSOR-Mine 4G2 gas analyzer with a
sampling interval of 2 seconds. Measurements were performed
at three controlled concentration levels (10 ppm, 100 ppm, and
190 ppm), resulting in a time-series dataset consisting of
approximately 1,000-2,000 data points. Another challenge lies
in the proper calibration of sensors, especially in harsh
industrial environments. The sensitivity of algorithms to input
data quality also requires attention: noise or incomplete
measurements may lead to false alarms.

Nevertheless, the prospects for system development appear
highly promising. One potential direction is integration with
digital twins of industrial enterprises, enabling simulation of
asset behavior under various scenarios. Another opportunity is
the implementation of automated responses, such as automatic
activation of ventilation systems or emergency notifications
when maximum permissible concentrations are exceeded. In
the long term, it is advisable to enable data transmission to
state monitoring systems - including the Ministry of
Emergency Situations and the Ministry of Ecology - to
establish a unified infrastructure for industrial and
environmental safety.

V. CONCLUSION

This study presents the architecture of an intelligent
predictive analytics system for gas environment monitoring.
The system is based on SENSOR-series IoT sensors, with data
transmission via LoRa and Wi-Fi protocols, storage in SQL
Server, analysis using Python, and visualization in an
ASP.NET MVC web environment.

The developed solution enables early detection of
potentially hazardous situations and can be integrated into the
industrial infrastructure of enterprises in the Republic of
Kazakhstan.

Future research directions include expanding and
comparing various predictive analytics algorithms; developing
a digital twin of technological processes for integration with
safety ~management systems; and conducting pilot
implementations in the mining industry and territorial state
agencies.
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Thus, the proposed architecture lays the foundation for
establishing a national industrial safety system focused on
preventing emergencies and enhancing worker protection.
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