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Abstract—Dentistry is a medical branch that diagnoses and 

treats oral diseases, helps maintain oral function, and improves 

oral aesthetics. Dental casts are three-dimensional models of a 

patient’s oral tissues that can be used to study oral anatomy, 

assess occlusal relationships, and determine tooth alignment. 

Traditionally, they were made of gypsum, an impression material 

used to pour into the patient’s mouth molds. Meanwhile, digital 

ones are three-dimensional models generated virtually using 

modern digital imaging and intraoral scanners. Unlike physical 

models, which require a lot of manual work and ample storage 

space, digital models can be produced rapidly, easily modified, 

and stored for long-term usage. In this study, we present Denta-

RecGAN, a novel approach based on Generative Adversarial 

Networks (GANs) that maps a two-dimensional dental cast image 

into a volumetric latent space and projects it back into a two-

dimensional output. The proposed approach employs a 2D en-

coder to process dental cast images as input, enabling the extrac-

tion of spatial features. The structural depth is modelled, and 

noise is suppressed using volumetric 3D latent space denoising 

models; a 2D decoder then reconstructs a high-quality image. 

The model is trained under an adversarial learning approach 

using the IO150K dataset. The proposed architecture achieved 

Mean Absolute Error (MAE) of 0.0128, 0.0127, 0.0128; Structur-

al Similarity Index Measure (SSIM) of 0.9450, 0.9452, 0.9453; 

and Peak Signal-to-Noise Ratio (PSNR) of 28.84, 28.85, 

28.84 decibels across training, validation, and testing sets. These 

results demonstrate the effectiveness of volumetric feature learn-

ing in enhancing the accuracy of 2D image reconstruction and 

preserving fine structural details. 

Keywords—Dental image reconstruction; generative adversari-

al networks; latent space representation; two-dimensional to three-

dimensional mapping; volumetric deep learning 

I. INTRODUCTION 

Orthodontists and prosthodontists use dental casts to detect 
oral diseases, determine the appropriate treatment for each pa-
tient, and help manufacture a precisely suitable appliance that 
is comfortable for patients. These casts are three-dimensional 
representations of the patient’s oral structures, including teeth, 
gingiva, and other oral tissues. Dental casts can be physical or 
digital, depending on the method of creation [1]. These models 
can be used to demonstrate tooth alignment and to evaluate 
treatment results. The digital model can facilitate communica-
tion between dentists and dental laboratories that manufacture 
custom dental models for comfort [2]. 

In the past, dentists made dental casts using sticky materials 
called alginate or polyvinyl siloxane. They would place these 
materials in the patient’s mouth to get the shape of the patient's 
teeth. Then they made an impression, called a stone model, by 
pouring plaster or resin into a mold [3]. Although widely used, 
this method can cause some problems. The materials may 
shrink or change shape, making it uncomfortable for the person 
taking the impression [4]. Physical models can break easily and 
take up a lot of space [5]. 

Digital technologies have replaced conventional stone 
models with virtual counterparts, enhancing precision and effi-
ciency. Digital models help ensure measurements are accurate 
and reduce human mistakes [6]. They can use intraoral scan-
ners, computed tomography (CT) scanners, or other imaging 
devices to produce detailed digital images that closely resem-
ble real braces [7], [8]. These digital models can be seamlessly 
integrated into computer-aided design and manufacturing 
(CAD/CAM) workflows for the design of restorations, surgical 
guides, and orthodontic appliances [9]. However, high-end 3D 
scanners remain expensive and technically demanding, limiting 
their use in low-resource clinical environments [10]. 

With recent advances in artificial intelligence, particularly 
deep learning, there has been a growing interest in the use of 
neural networks for digital dental reconstruction models de-
pending on utilizing Convolutional Neural Networks (CNNs) 
or employing transformers or using Generative Adversarial 
Networks (GANs) have shown high accuracy in reconstructing 
both dental and craniofacial structures from two-dimensional 
(2D) data [11],[12]. These methods enable the use of limited 
2D inputs to infer both structural and volumetric depth, thereby 
reducing reliance on expensive 3D imaging systems. 

This study proposes Denta-RecGAN, leveraging volumetric 
reasoning via a novel hybrid 2D-3D convolutional neural net-
work designed to reconstruct 2D grayscale dental cast images. 
Volumetric reasoning is incorporated by combining three main 
components: a 2D encoder, a 3D latent space denoiser, and a 
2D decoder. This combination allows us to capture both the 
spatial and structural relationships within the data. The spatial 
features were initially extracted from the input images using 
2D convolutional layers, which were then reshaped into a 5D 
volumetric tensor, and the 3D convolutional layers were then 
processed together. The structural depth and inter-slice correla-
tions were captured through the network at the volumetric pro-
cessing stage. We look at flat (two-dimensional) images and 
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understand their properties. Then we visualize them in three-
dimensional space to enhance them. After that, we revert them 
to flat images, taking care to preserve their details. 

This study demonstrates a new method for dentists to create 
better images of teeth and jaws. This method combines precise 
spatial reasoning (how three-dimensional objects occupy 
space) with two-dimensional photos (such as photographs or 
X-rays). 

This research contributes to the growing field of AI-driven 
digital dentistry, without the need for complex scanning hard-
ware. It also establishes a foundation for future applications, 
such as single-view 3D estimation, clinical maxillofacial re-
construction, and digital prosthesis design. 

The evaluation of our proposed architecture (Denta-
RecGAN) is performed using three standard quantitative met-
rics. The average deviation between a guess and the true an-
swer was measured by the Mean Absolute Error (MAE). It 
considers all guesses, determines how different they are from 
the real numbers, ignores whether they are too high or too low, 
and then calculates the average of these differences, which 
measures perceptual similarity and is captured by calculating 
the Structural Similarity Index Measure (SSIM). To understand 
how sharp and detailed an image is after editing or modifica-
tion, we used the peak signal-to-noise ratio (PSNR). Further-
more, the proposed network does not need explicit three-
dimensional supervision, reducing dependence on complex 3D 
ground truth datasets, and it is capable of learning volumetric 
cues. 

The remainder of our research is divided into the following 
sections: Section II provides an overview of current studies on 
two-dimensional-to-three-dimensional and the reverse recon-
struction approaches. Then Section III explains how to train a 
computer. It covers data preparation, cleaning, computer train-
ing, setting training rules, and verifying mastery of the learning 
process. Section IV compares the proposed architecture with 
other relevant work. Section V presents the study's conclu-
sions, and Section VI discusses potential directions for future 
research to improve the clinical accuracy of three-dimensional 
model reconstruction. 

II. LITERATURE REVIEW 

The main advantage of deep learning in maxillofacial pros-
thetics is the reconstruction of three-dimensional (3D) models 
from two-dimensional (2D) inputs, such as images or videos. 
Various deep learning architectures play an essential role in the 
medical domain, especially the dental one, which categorizes 
studies into sections. Some studies use Generative Adversarial 
Networks (GANs), transformers, and Convolutional Neural 
Networks (CNNs) as basic building blocks. The first section 
presents studies that focus on converting two-dimensional in-
puts into three-dimensional outputs, and the second section 
presents studies that concentrate on reverse reconstruction, 
converting three-dimensional input data into two-dimensional 
outputs: 

A. Two-Dimensional (2D) -To-Three-Dimensional (3D) 

Reconstructions 

Recently, deep neural networks have led to the emergence 
of 3D models or meshes from single-view two-dimensional 
(2D) images. We use these deep neural networks to generate 
3D volumes from 2D images. However, these methods often 
require synthetic datasets and 3D supervision. X. Zhang et al. 
[13] used Convolutional Neural Networks (CNNs) by introduc-
ing PX2Tooth, which is a model that uses a one panoramic 
image to create a three-dimensional point cloud of a tooth. The 
proposed architecture consists of two fundamental stages. The 
first stage uses a single panoramic X-ray (PX) image to seg-
ment two permanent teeth. To enhance the generation quality, 
particularly in the root apex region, the Tooth Generation Net-
work (TGNet) is utilized to create 3D teeth from point clouds. 
The authors also used a dataset that they created themselves. 
This dataset consists of 499 CBCT and panoramic X-ray pairs. 
They split their dataset into three subsets with an 8:1:1 ratio for 
training, validation, and testing, respectively. They achieved an 
intersection over union (IoU) of 0.793 with their model but 
could improve results by increasing reconstruction accuracy. 

Many studies have reconstructed three-dimensional (3D) 
models using single or multiple 2D images. Fathallah et al. 
[14] used a model architecture based on Graph Convolutional 
Networks (GCNs) as a key component. A lightweight GCN-
based discriminator was used to improve the accuracy. The 
authors used the 300 W-LP and AFLW2000-3D datasets for 
the evaluation. Their architecture is divided into two funda-
mental stages: preprocessing and three-dimensional reconstruc-
tion. First, the preprocessing stage reduces Noise and augments 
the data. Then, the three-dimensional reconstruction stage per-
forms the following main functions: triangulation, running the 
GCN-IGAN model, and outputting the final three-dimensional 
facial mesh. Their model achieved 0.0075 and 0.120, repre-
senting the chamfer distance and earth mover’s distance, re-
spectively. Their model can be improved by adding additional 
features and using evolutionary algorithms. The need to em-
ploy evolutionary algorithms and integrate additional face fea-
tures still limits the applicability of their model. 

Chenfan Xu et al. [15] introduced a framework using Con-
volutional Neural Networks (CNNs) to reconstruct both the 
upper and lower teeth using five intraoral photographs per 
case. They used 3,200 cases for their approach, as they used 
3,000,100 and 100 for training, validation, and testing, respec-
tively. Their model achieved 18.85, 0.8347, 0.0114, 2.1126, 
0.1670 and 0.4122 representing PSNR, SSIM, LPIPS, 
Hausdorff distance, chamfer distance, and Intersection over 
Union (IOU) respectively. Their model showed promising 
quantitative results and can be further improved by extracting 
low-level features, such as edges. Their model suffered from 
reduced precision and a long reconstruction process time. 

X. Wang et al. [16] used Convolutional Neural Networks 
(CNNs) to focus on maxillary segmentation and defect refine-
ment. They also created their own dataset using CBCT scans of 
60 patients, including 39 males and 21 females, with an aver-
age age ranging between 11 and 52 years. 
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Their model achieved 0.92 ±0.01 and 0.77 ±0.06, represent-
ing the Dice Similarity Coefficients for the maxilla and the 
Dice Similarity Coefficients for the defect, respectively. These 
results show strong segmentation performance and a correla-
tion between the defect parameters and the maxillary cleft side. 
This automatic segmentation requires orthodontic refinement, 
as it takes approximately 5 minutes per CBCT image. 

Marek Wodzinski et al. [17] used Convolutional Neural 
Networks (CNNs) to develop a 3D printing pipeline for model 
cranial implants using a U-Net architecture to reconstruct de-
fects and refine implants through iterative procedures. Their 
pipeline consisted of five stages: data loading, preprocessing, 
defect reconstruction, defect refinement, and 3D printing prep-
aration. They used the SkullBreak, real cranial defect, and 
SkullFix datasets for evaluation. Their model achieved 0.91, 
0.94, and 1.53 mm representing Dice Coefficient, Boundary 
Dice Coefficient, and 85th percentile Hausdorff Distance, re-
spectively. Their model accurately reconstructed cranial de-
fects, but they could further enhance it by integrating mixed 
reality, real defect data, and multiple implant reconstructions. 

T. C. Niño-Sandoval et al. [18] employed a Procrustes fit 
on 55 tomographs to obtain the 3D mandibular shape, using 
convolutional neural networks (CNNs) to analyze the images. 
The software developers also collected 629 X-ray images to 
train the computer. When tested, the software performed ex-
ceptionally well at matching the photos, with error rates rang-
ing from 0.0033 to 0.0059. These results showed that the mod-
el could infer the shape of the lower jaw. It has high accuracy, 
but it still faces challenges, including difficulty handling signif-
icant bone defects and extensive mandibular deformities. 

Y. Liang et al. [19] designed an oral viewer as an educa-
tional tool with interactive 3D visualizations, using Convolu-
tional Neural Networks (CNNs) and two-dimensional dental 
panoramic X-rays to reconstruct three-dimensional models of 
teeth, gums, and the jawbone. Their dataset was collected from 
patients at an orthodontic hospital and consisted of panoramic 
X-rays and cone-beam CT (CBCT) scans. Their model 
achieved an Intersection Over Union (IOU) of 0.771, repre-
senting reconstruction accuracy. The authors proposed several 
future methods to enhance their tool, including two approaches 
for modeling the root canal: augmenting existing solid tooth 
models with artificial canals and incorporating canal structures 
into the convolutional network training process, and adding 
additional virtual instruments to improve surgical simulation. 

B. Three-Dimensional (3D) -To-Two-Dimensional (2D) 

Reconstructions 

Autoencoders are used in image processing tasks, including 
image denoising, image compression, and generation. Variants 
of autoencoders, such as U-Nets and convolutional autoencod-
ers, can preserve spatial details useful for medical imaging. 

Some methods use volumetric or geometric reasoning for a 
three-dimensional (3D) shape. Our idea is to develop this tech-
nique by adding a special three-dimensional twisted block to a 
simple two-dimensional encryption and decryption process, 
making it more secure. Our approach builds on this idea, em-
bedding a 3D convolutional block within a 2D encoder-
decoder pipeline. 

Melas-Kyriazi et al. [20] presented a novel method, called 
Projection-Conditioned Point Cloud Diffusion (PC2), for sin-
gle-image three-dimensional reconstruction. The shapes can be 
represented as point clouds by their framework. They started 
with a collection of tiny dots floating in space, which came 
together to form a three-dimensional shape, much like a jigsaw 
puzzle. First, they cleaned the dots to ensure their accuracy. 
Then, they examined small parts of the image to make sure 
everything looked correct, which helped them build a better 
three-dimensional model. They also guessed the proper colors 
for the dots to make the model look more realistic. Sometimes, 
they created several possible shapes and used a special method 
to choose the best one. Their method proved more successful 
than others, and their model showed qualitative improvements 
on real-world datasets such as Co3D. However, their method 
depends on ground-truth point clouds for training. The recon-
struction quality can be affected because multi-view methods, 
like COLMAP, can be noisy and incomplete in real-world sce-
narios. 

Peng et al. [21] introduced a graph-based framework for 
detecting changes in buildings using bitemporal remote sensing 
images. The spatial dependencies between neighboring build-
ings and the temporal relationships between image pairs are 
modelled using spatial–temporal graph neural networks (ST-
GNNs). They constructed a graph by representing building 
instances as nodes and the contextual relationships as edges. 
Their method of tracking building changes was superior to 
other methods that relied on analyzing small image fragments. 
It was more accurate when using numerous city images and 
more effective in complex urban areas where buildings overlap 
or are constructed in unusual ways. However, their model suf-
fers from a significant limitation: dependence on accurate 
building footprint extraction. A preprocessing step error can 
negatively affect detection performance, and any mistake in 
footprint delineation can be propagated during graph construc-
tion. 

C. Generative Adversarial Networks-Based Architecture in 

Dental Imaging 

Toscano et al. [22] proposed a hybrid point cloud comple-
tion framework for dental molds that integrates symmetry-
based data augmentation, iterative latent-space GANs, and a 
hybrid AE-RL GAN completion strategy. The dataset consisted 
of 45-point clouds of real lower-jaw teeth. This dataset is 
downsampled to 2048 points. These training data were expand-
ed using mirroring and point cloud recombination. It also ex-
panded using iterative IGAN augmentation, yielding 49 addi-
tional high-quality samples. They used Chamfer Distance (CD) 
as a metric. This metric showed the importance of each mod-
ule, as after removing data filtering, the average Chamfer Dis-
tance increased by 38.34%. The Chamfer Distance increases by 
43.20% after removing iterative I-GAN augmentation. Then, it 
increased by 13.42% after removing the RL-GAN module, and 
then increased by 5.34% after removing hybrid selection. The 
increasing Chamfer Distance indicates a reduction in geometric 
error, particularly in high-missing-rate scenarios. This ap-
proach still suffers from an inability to generalize to non-
symmetric anatomical structures. It also suffers from being 
computationally expensive and still depends on bilateral sym-
metry assumptions. 
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Kim et al. [23] proposed a GAN-based framework. It can 
enhance the accuracy of tooth segmentation, especially in full-
arch intraoral scans that are affected by occlusal artifacts. Their 
framework contains 3 main steps. The first step is to manually 
remove the occluded interdental regions from the 3D scan data. 
The second step is to slice the cleaned scan at 0.1 mm intervals, 
then complete the 2D image using an Edge Connect-based 
GAN. The third step is to reconstruct the missing 3D geometry 
by stacking and remeshing the completed slices. They used a 
dataset of intraoral scans from 10 orthodontic patients acquired 
with a Trios 3 scanner. The ground truth is generated by a 
technician. The dataset consists of 10,000 cropped 256 X 256 
images. They achieved 0.921 and 26.68 Db representing SSIM 
and PSNR, respectively. In tooth segmentation evaluation, 
their model achieved 0.027 ± 0.007 mm, representing the aver-
age mean surface distance. Previous boundary- and region-
based segmentation methods suffer from inaccuracies due to 
occlusions. However, their approach reconstructs the missing 
interdental geometry while reducing operator dependency. 
However, their model incurs a high computational cost due to 
manual mask detection. Generalization is limited, especially in 
severe occlusion patterns. 

Minhas et al. [24] proposed a deep learning-based frame-
work for 3D reconstruction from a single 2D panoramic X-ray 
to assess maxillary impacted canines. They proposed a GAN-
based architecture (Pan2CBCT) derived from X2CT-GAN, 
which expands 2D panoramic images into pseudo-3D volumet-
ric images. They used a dataset comprising 123 pre-treatment 
CBCT scans of individuals aged 11-18 years. The 2D pano-
ramic X-rays with their pseudo-3D images. The distribution of 
impacted canines is divided into 36, 12, 26, 65, and 9, repre-
senting buccal, middle, lingual, mesial, and distal cases, re-
spectively. Their model achieved 0.71, 41%, and 55% for mean 
SSIM, accuracy of buccal/middle/lingual position, and accura-
cy of mesial/distal position, respectively. The previous related 
work clinically ignores complex cases, as impacted canines are 
evaluated. Their SSIM values indicate insufficient reliability 
for orthodontic diagnosis. However, their model suffers from 
several limitations. The first limitation is the use of a small, 
imbalanced dataset. Another limitation is that it depends on a 
single image modality. The third limitation is the decrease in 
performance in lingual positions. 

Galba et al. [25] proposed HoloDent3D, a dental imaging 
system that uses single-view panoramic radiographs for 3D 
reconstruction. The first stage is to acquire and preprocess the 
standard orthopantomogram (OPG) to optimize the input im-
age. In the second stage, the reconstruction module is trained 
on large datasets of paired 2D radiographs and corresponding 
3D jaw models, inferring a volumetric mesh of teeth, roots, and 
bone. The third stage involves rendering a high-speed LED 
holographic fan display with gesture control, enabling visuali-
zation of multi-angle anatomy. Their model achieved volumet-
ric Intersection Over Union (IOU) values ranging from 0.65 to 
0.79, showing an n improvement over earlier voxel-based ap-
proaches such as X2Teeth. However, HolodENT3D remains at 
a theoretical stage and faces challenges, including a lack of 
paired 2D-3D training datasets, variability in generalization 
across patients, and no clinical validation. 

III. METHODOLOGY 

This section explains the full methodology implemented in 
TensorFlow/Keras for grayscale image reconstruction using a 
2D encoder, a 3D latent space denoiser, and a 2D decoder, 
trained under an adversarial framework. The methodology of 
this study was divided into six main phases: dataset prepara-
tion, data pipeline, model architecture, training strategy, and 
evaluation metrics. 

A. Data Preparation 

Using the IO150K dataset [22], the dataset consisted of 
single-channel (grayscale) images. It is a publicly available 
dataset of 2D intraoral images that can be used for different 
purposes, such as instance segmentation and semantic labeling. 
The dataset includes over 150,000 2D intraoral images. It con-
sists of 3 subsets: challenge80k, plaster 70k images, and ren-
dered 2D images generated from 1800 3D intraoral scans. Its 
main source is the 3D Teeth Segmentation and Labeling Chal-
lenge 2023. The data acquisition methods for the challenge, 
which generate 3D dental scans, project them into multiple 2D 
views. Plaster 70k images are collected by photographing real 
dental plaster casts, thereby capturing realistic tooth morpholo-
gy, including spacing, crowding, and missing teeth. Clinical 
RGB photography is acquired using DCLR or mobile cameras, 
with reflections. Preprocessing steps are performed on the da-
taset, including standardization, patch embedding preparation, 
foreground-background separation, localization, segmentation, 
and labeling.  All the photos were set to a fixed spatial resolu-
tion of 128 * 128 pixels. Image files were collected recursively 
with valid extensions (.jpg, .jpeg, .png) and then shuffled. The 
dataset was divided into 70%, 10%, and 20% for the training, 
validation, and test sets, respectively. The weights are updated 
using the training subset, while the validation subset is used to 
refine hyperparameters and determine when to stop training. 
The test subset is then used to assess the model's final perfor-
mance. Table I describes the dataset's distribution. 

TABLE I.  DATASET SPLITS FOR TRAINING, VALIDATION, AND TESTING 

Subset Number of images Percentage 

Training Set 49612 70% 

Validation Set 7087 10% 

Testing Set 14176 20% 

B. Data Pipeline 

Images were read from the disk and decoded into single-
channel tensors; each image was then resized to 128 x 128 pix-
els.  Normalization is applied to stabilize gradients during op-
timization.  Normalization was also used, as pixel intensities 
are scaled to [0,1]. The dataset then maps each image to an 
(input, target) tuple. The training data were shuffled, and 
batched prefetching is used as an asynchronous prefetch that 
overlaps I/O with GPU computing. 

C. Model Architecture 

The proposed framework is a hybrid encoder–decoder sys-
tem that integrates 2D and 3D learning in a generative adver-
sarial setting. Our architecture comprises three main compo-
nents for several reasons. The procedure starts with the encoder 
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receiving a black-and-white photograph of teeth, which is ex-
amined to pinpoint key details, such as edges and lines. 

 
Fig. 1. This is a general overview of the proposed model. 

Fig. 1 shows the overall architecture, including the 2D en-
coder, 3D latent-space denoiser, and 2D decoder, as well as the 
adversarial training loop that improves reconstruction accuracy 
while preserving dental structural details. Fig. 2 to Fig. 4 illus-
trate the detailed network architectures of the proposed frame-
work. Fig. 2 presents the 2D encoder, which progressively 
downsamples the input grayscale dental image to a compact 
latent representation. Fig. 3 depicts the 3D latent-space denoi-
ser, which operates on the reshaped volumetric latent represen-
tation to model inter-slice dependencies and suppress latent 
noise. Fig. 4 shows the 2D decoder, which reconstructs the 
final image by gradually restoring spatial resolution through 
transposed convolutions. Together, these components form an 
end-to-end pipeline for robust dental image reconstruction. Let 
𝑥 ∈ 𝑅𝐻 𝑥 𝑊 denote an input grayscale dental image with H = W 
= 128. The 2D encoder 𝐸𝜃(. ), implemented using convolution-
al layers, extracts hierarchical spatial features from the input 
image and maps it to a compact latent representation, as in: 

𝑍2𝐷=𝐸𝜃(𝑥)           ,𝑍2𝐷 ∈ 𝑅ℎ 𝘹 𝑤 𝘹 𝑐                       (1) 

To enable volumetric reasoning without requiring explicit 
3D input data, the 2D latent representation is reshaped and 
expanded along a depth dimension to form a volumetric latent 
tensor, as in: 

𝑍3𝐷 = ℛ(𝑍2𝐷)𝑍3𝐷 ∈ 𝑅𝑑 𝘹 ℎ 𝘹 𝑤 𝘹 𝑐́                                 (2) 

A 3D latent-space denoiser 𝑁𝜑(. ), composed of 3D convo-

lutional operations, is applied to the volumetric latent tensor to 
suppress noise and enforce inter-slice consistency, as in: 

                    𝑧̃3𝐷 = 𝑁𝜓(𝑍3𝐷)                                      () 

The denoised volumetric representation is then collapsed 
and decoded back into the image domain using a 2D decod-
er 𝐺𝑤(.), as in: 

               𝑥  = 𝐺𝑤(𝑧̃3𝐷)                                                            (4) 

where, 𝑥  ∈ 𝑅𝐻 𝑥 𝑊  denotes the reconstructed dental im-
age. The discriminator receives both real dental images and 
reconstructed outputs, providing adversarial feedback that en-
courages perceptually realistic and structurally accurate recon-
structions. 

We enhanced our architecture, discarding any noise and 
unwanted distortion. The decoder module further improves 
image quality. Both authentic dental images and the generator's 

outputs serve as inputs to the discriminator architecture. The 
generator is motivated to produce increasingly compelling vis-
ual and numerical reconstructions by receiving adversarial 
feedback. To create more transparent, more realistic images, 
the denoiser module works in tandem with the main architec-
ture to remove noise and minor imperfections. 

 
Fig. 2. This is a 2D encoder architecture for extracting a compact latent 

representation from a grayscale input image. 
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Fig. 3. This is a 3D latent-space denoiser operating on the reshaped 

volumetric latent representation. 

D. Training Strategy 

All experiments were conducted on the Kaggle platform. 
Training the proposed model on the IO150K dataset for 50 
epochs with a batch size of 8 required approximately 2 hours, 
58 minutes, and 58 seconds using two NVIDIA Tesla T4 
GPUs. Training time and inference speed were empirically 
measured on the same hardware. Inference was evaluated by 
timing end-to-end forward passes with a batch size of 1, yield-
ing an average latency of 3.41 ms per image (or 27.29 ms per 
batch), demonstrating near–real-time performance suitable for 
practical deployment. 

Both accuracy and efficiency are balanced during training. 
Overfitting is also prevented during training. Table II lists the 
training hyperparameters used in our work. 

The primary reconstruction loss function is the Mean Abso-
lute Error (MAE). It was chosen for its robustness in penalizing 
deviations between the result produced by the architecture and 
the actual target output. 

We used the Adam optimizer in our architecture because it 
can adapt the learning rate. A dynamically adaptable learning 
rate. Batch size carefully balances GPU memory constraints 
and convergence speed; smaller batch sizes enhance generali-
zation capabilities, while larger batches may speed up training 
but sometimes compromise model robustness. 

 
Fig. 4. This is a 2D decoder architecture for reconstructing the output image 

from the denoised latent features. 
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TABLE II.  HYPERPARAMETERS USED FOR TRAINING THE GAN-BASED 

DENTAL IMAGE RECONSTRUCTION MODEL STYLES 

Hyperparameter Value 

Input image size 128x128(grayscale) 

Batch size 8 

Epochs(max) 50 

Optimizer Adam 

Initial learning rate 2×10−4 

Learning Rate Reduction Factor 0.5 on plateau 

Min Learning Rate 1×10−6 

Early Stopping Patience 8 epochs (val MAE) 

Train/Val/Test split 70%/10%/20% 

Latent volume Depth 8 slices 

Random seed 42 

Base channels(encoder/decoder) 32 

Early stopping was performed to avoid overfitting. The 
training was halted once the validation loss stopped improving 
after a predefined number of epochs. This strategy prevents 
unnecessary over-training and ensures computational efficien-
cy. 

IV. DISCUSSION AND EVALUATION 

In the standard model, the choice of evaluation metrics is 
crucial for assessing model effectiveness by measuring pixel-
level accuracy and perceptual visual similarity, thereby ensur-
ing a comprehensive evaluation of quantitative performance 
and visual quality. 

The first evaluation metric quantifies the average difference 
between the reconstructed and original images. This difference 
is measured by the Mean Absolute Error (MAE) metric. This 
metric helps capture the overall pixel-level accuracy. The sec-
ond metric is the Structural Similarity Index (SSIM), which 
measures perceptual similarity by considering the contrast, 
luminance, and structural information between two images. 
The SSIM aligns more closely with human visual perception. 
Peak Signal-to-Noise Ratio (PSNR), serving as the third evalu-
ation metric, quantifies reconstruction fidelity as the ratio of 
the maximum signal power to the generated noise power dur-
ing reconstruction. This measures the ratio between the maxi-
mum possible signal power and the power of the reconstruction 
noise, expressed in decibels. 

Table III summarizes the three key performance indicators. 
The results are presented in Table IV, which lists the metrics 
for training, validation, and testing. Table IV shows results that 
may appear similar at first glance but, upon closer inspection of 
the numerical values, reveal small but consistent differences 
across the three splits. Specifically, MAE values vary between 
0.0127 and 0.0128, the SSIM values increase slightly from 
0.9450 (training) to 0.9453 (testing), and PSNR values range 
from 28.8430 dB to 28.8595 dB, so the variations occur at the 
third and fourth decimal places and may appear identical when 
rounded, but they confirm that the results are not exactly the 
same. The dataset was partitioned into non-overlapping subsets 
prior to training, so no data leakage occurred during either 

training or evaluation. Moreover, the close alignment between 
the training and validation MAE curves in Fig. 5 indicates sta-
ble learning behavior without divergence, as the model gener-
alizes well, rather than overfitting to the training data. Fig. 5 
shows the mean absolute error curves obtained during training 
and validation. These curves show how the model's prediction 
error evolves over epochs. The decreasing trend in the training 
curve indicates the model's ability to learn from the training 
data, while the validation curve shows the model’s generaliza-
tion performance on unseen data. These two curves are com-
pared to assess the potential overfitting or underfitting. 

TABLE III.  EVALUATION METRICS USED FOR ASSESSING THE GAN-
BASED DENTAL IMAGE RECONSTRUCTION 

Metric Range Interpretation 

MAE [0, ∞) Lower is better (0 = perfect reconstruction) 

SSIM [0, 1] 
Higher is better (1 = perfect perceptual 

match) 

PSNR (0, ∞) decibels 
Higher is better (≥30 decibels = high-

quality image) 

TABLE IV.  EVALUATING PERFORMANCE METRICS OF THE GAN-BASED 

DENTAL IMAGE RECONSTRUCTION MODEL ON TRAIN, VALIDATION, AND 

TEST SETS  

Set MAE SSIM PSNR 

Train 0.0128 0.9450 28.844700 decibels 

Validation 0.0127 0.9452 28.859501 decibels 

Test 0.0128 0.9453 28.843000 decibels 

Fig. 6 to Fig. 10 illustrate various key aspects of the study. 
It presents quantitative evaluation metrics, including the Struc-
tural Similarity Index Measure (SSIM) and Peak Signal-to-
Noise Ratio (PSNR), used to assess the quality and fidelity of 
the reconstructed images. These figures highlight interactions 
and contributions of the main components of the proposed ar-
chitecture involving the generator, discriminator, and noise 
module, so by combining these architectural elements and per-
formance metrics. These figures offer a comprehensive over-
view of the system's effectiveness in achieving high-quality 
image reconstruction. 

 

Fig. 5. The two curves represent mean absolute error results during training 

and validation. 

The proposed 2D-to-3D denoising GAN achieved strong 
reconstruction performance, with average scores of 
MAE=0.0128, SSIM=0.9453, and PSNR=28.84 dB on the test 
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set. The reconstruction of grayscale dental casts demonstrates 
accuracy and high structural similarity. There are three figures, 
namely Fig. 11, Fig. 12, and Fig. 13, representing the input 
image, the generated output image, and the latent 3D mesh, 
respectively, at the last epoch (50) after training. Specifically, 
Fig. 11 shows the original input image used by the model, 
providing a reference for comparison. Fig. 12 shows the mod-
el's output image, demonstrating its reconstruction effective-
ness. Finally, Fig. 13 shows the network's learned latent 3D 
mesh representation, which encodes internal 3D features. 
These figures present a visual summary of the system’s per-
formance, showing the quality of the generated images and the 
underlying structure of the latent 3D representations after full 
training. 

 
Fig. 6. The two curves represent structural similarity index results during 

training and validation. 

 
Fig. 7. The two curves represent peak signal-to-noise ratio results during 

training and validation. 

 
Fig. 8. The curve represents the generator loss. 

 
Fig. 9. The curve represents the discriminator loss. 

 
Fig. 10. The curve represents the denoiser. 

 
Fig. 11. An example of the input image. 

 
Fig. 12. An example of the generated output image. 
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Fig. 13. An example of the three-dimensional latent mesh. 

Compared to existing studies, the proposed framework ex-
hibits competitive advantages. Li et al. [27] developed a U-
CPML-Net for 3D lung image reconstruction based on CT-
pixel-matrix learning and electrical impedance tomography. 
Their method achieved SSIM values between 0.80 and 0.85, 
depending on the case complexity. In contrast, the proposed 
framework produced higher SSIM values and lower MAE val-
ues, suggesting that volumetric reasoning integrated into a 2D-
to-3D pipeline can outperform conventional matrix learning–
based strategies in terms of structural fidelity. 

Tan et al. [28] presented an Edge-Aware Reconstruction 
(EAR) network for reconstructing 3D vertebral structures from 
biplanar X-ray images. Their method improved edge and local 
structural detail detection by integrating two modules into the 
autoencoder, which serves as the backbone of their architec-
ture. A combination of four loss terms—reconstruction, edge, 
frequency, and projection losses were used to guide the train-
ing process. The EAR was evaluated on three public datasets 
and compared against four cutting-edge methods, demonstrat-
ing improvements of 25.32%, 15.32%, 86.44%, 80.13%, 
23.76%, and 0.30% in MSE, MAE, Dice, SSIM, PSNR, and 
frequency distance, respectively. Although this approach effec-
tively improved edge preservation, challenges remain due to 
information loss from X-ray projection processes, particularly 
in maintaining. Asymmetrical vertebral structures. Compared 
with EAR, the proposed denoising GAN focuses less on edge-
aware reconstruction but achieves a higher SSIM (0.943) and 
stable PSNR. Volumetric features effectively compensate for 
the limitations inherent in projection-based approaches in im-
aging and analysis. Tables V and VI present the results of other 
papers and compare them with those of our study, respectively. 

TABLE V.  SUMMARY OF RELATED WORKS AND THEIR RESULTS 

Paper Work Results 

Li et al. [27] 

Developed U-CPML-Net for 3D lung image reconstruc-

tion based on CT pixel matrices learning with electrical 

impedance tomography. 

Their method achieved SSIM values between 0.80 and 0.85, depending on case 

complexity. 

Tan et al. [28] 

Presented the Edge-Aware Reconstruction (EAR) network  

for reconstructing 3D vertebrae structures from bi-planar 

X-ray images. 

EAR was evaluated on three publicly available datasets and compared against 

four state-of-the-art methods, demonstrating improvements of 25.32%, 15.32%, 

86.44%, 80.13%, 23.76%, and 0.30% with respect to MSE, MAE, Dice, SSIM, 

PSNR, and frequency distance, respectively. 

TABLE VI.  COMPARISON OF THE PROPOSED GAN-BASED DENTAL IMAGE RECONSTRUCTION MODEL WITH RESULTS FROM RELATED WORKS 

Paper Work Description MAE SSIM PSNR 

Proposed 2D-to-3D 

Denoising GAN 

Reconstruction of grayscale dental cast images using volumetric feature reasoning (Encod-

er → 3D Denoiser → Decoder + Discriminator). 
0.0128 0.9453 28.84 

Li et al. [27] 
Developed U-CPML-Net for 3D lung image reconstruction based on CT pixel matrix 

learning with electrical impedance tomography. 
--------------- 0.80:0.85 -------------- 

Tan et al. [28] 
Introduced Edge-Aware Reconstruction (EAR) network for 3D vertebrae reconstruction 

from bi-planar X-ray images using edge and frequency enhancement modules. 
--------- ≈0.94 ≈28.0 

 

V. CONCLUSION 

This study presented a two-dimensional-to-three-
dimensional denoising generative adversarial network designed 
to improve the quality of reconstruction, to address the limita-
tions in grayscale image reconstruction of traditional 2D mod-
els by incorporating volumetric reasoning within the latent 
space. We capture both spatial and structural relationships by 
integrating three main components: a 2D encoder, a 3D de-
noising block, and a 2D decoder. These spatial and structural 
relationships exist across the different feature depths.  The key 
advantages of this architecture are a computationally light-
weight design and the ability to learn complex spatial depend-
encies. These advantages make it suitable for medical applica-
tions, especially in dentistry. Another key contribution of this 
study is its adaptable training strategy, which balances between 
three perspectives: reconstruction accuracy, efficiency, and 
stability. The model’s design enables easy integration with 
other architectures, allowing extensions to multimodal data. 
This method can also be widely used, such as for larger image 

resolutions and domain-specific adaptations. In addition, the 
adversarial training paradigm can generalize to unseen samples 
by using a generator that produces structurally consistent out-
puts under discriminator supervision. 

Overall, this study highlights directions for the digital re-
construction of dental cast images in clinical imaging. By inte-
grating advanced volumetric and two-dimensional techniques, 
it offers promising applications in diagnostic procedures, tissue 
repair, and various medical interventions. These innovative 
approaches aim to enhance accuracy, improve patient out-
comes, and advance the overall capabilities of modern medical 
imaging technologies. 

VI. FUTURE WORK 

Several directions can be pursued to expand the two-
dimensional-to-three-dimensional generative adversarial net-
work further. A future perspective is to use multiple input da-
tasets simultaneously to improve resolution and achieve gener-
alization by training across a variety of datasets. 
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Another promising enhancement is to integrate different 
ways of focusing attention, such as visual space or channels, 
which also works well with communication systems. This im-
proves overall accuracy and helps build stronger, more effi-
cient structures. 

Another direction is to explore more appropriate loss func-
tions. Perceptual or feature-based losses can be combined with 
conventional objectives. This combination can lead to a better 
balance between structural accuracy and perceptual realism. 

These directions highlight a future pathway for advancing 
image reconstruction by pushing the boundaries of hybrid 2D-
to-3D-to-2D learning strategies. 

Future studies can use adaptive strategies to determine the 
depth. This depth may be adapted to the complexity of the in-
put, which leads to more effective feature representations while 
maintaining computational efficiency. The precision of the 
anatomical structures and texture representation can be im-
proved by refining the denoising process. 

This approach shows promise for advancing image restora-
tion methods in fields such as medical imaging, dental diagno-
sis, industrial inspection, and others where both accuracy and 
perceptual quality are critical. It can also be extended to real-
world applications. 
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