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Abstract—Dentistry is a medical branch that diagnoses and
treats oral diseases, helps maintain oral function, and improves
oral aesthetics. Dental casts are three-dimensional models of a
patient’s oral tissues that can be used to study oral anatomy,
assess occlusal relationships, and determine tooth alignment.
Traditionally, they were made of gypsum, an impression material
used to pour into the patient’s mouth molds. Meanwhile, digital
ones are three-dimensional models generated virtually using
modern digital imaging and intraoral scanners. Unlike physical
models, which require a lot of manual work and ample storage
space, digital models can be produced rapidly, easily modified,
and stored for long-term usage. In this study, we present Denta-
RecGAN, a novel approach based on Generative Adversarial
Networks (GANs) that maps a two-dimensional dental cast image
into a volumetric latent space and projects it back into a two-
dimensional output. The proposed approach employs a 2D en-
coder to process dental cast images as input, enabling the extrac-
tion of spatial features. The structural depth is modelled, and
noise is suppressed using volumetric 3D latent space denoising
models; a 2D decoder then reconstructs a high-quality image.
The model is trained under an adversarial learning approach
using the I0150K dataset. The proposed architecture achieved
Mean Absolute Error (MAE) of 0.0128, 0.0127, 0.0128; Structur-
al Similarity Index Measure (SSIM) of 0.9450, 0.9452, 0.9453;
and Peak Signal-to-Noise Ratio (PSNR) of 28.84, 28.85,
28.84 decibels across training, validation, and testing sets. These
results demonstrate the effectiveness of volumetric feature learn-
ing in enhancing the accuracy of 2D image reconstruction and
preserving fine structural details.

Keywords—Dental image reconstruction; generative adversari-
al networks; latent space representation; two-dimensional to three-
dimensional mapping; volumetric deep learning

L INTRODUCTION

Orthodontists and prosthodontists use dental casts to detect
oral diseases, determine the appropriate treatment for each pa-
tient, and help manufacture a precisely suitable appliance that
is comfortable for patients. These casts are three-dimensional
representations of the patient’s oral structures, including teeth,
gingiva, and other oral tissues. Dental casts can be physical or
digital, depending on the method of creation [1]. These models
can be used to demonstrate tooth alignment and to evaluate
treatment results. The digital model can facilitate communica-
tion between dentists and dental laboratories that manufacture
custom dental models for comfort [2].

*Corresponding author.

In the past, dentists made dental casts using sticky materials
called alginate or polyvinyl siloxane. They would place these
materials in the patient’s mouth to get the shape of the patient's
teeth. Then they made an impression, called a stone model, by
pouring plaster or resin into a mold [3]. Although widely used,
this method can cause some problems. The materials may
shrink or change shape, making it uncomfortable for the person
taking the impression [4]. Physical models can break easily and
take up a lot of space [5].

Digital technologies have replaced conventional stone
models with virtual counterparts, enhancing precision and effi-
ciency. Digital models help ensure measurements are accurate
and reduce human mistakes [6]. They can use intraoral scan-
ners, computed tomography (CT) scanners, or other imaging
devices to produce detailed digital images that closely resem-
ble real braces [7], [8]. These digital models can be seamlessly
integrated into computer-aided design and manufacturing
(CAD/CAM) workflows for the design of restorations, surgical
guides, and orthodontic appliances [9]. However, high-end 3D
scanners remain expensive and technically demanding, limiting
their use in low-resource clinical environments [10].

With recent advances in artificial intelligence, particularly
deep learning, there has been a growing interest in the use of
neural networks for digital dental reconstruction models de-
pending on utilizing Convolutional Neural Networks (CNNs)
or employing transformers or using Generative Adversarial
Networks (GANs) have shown high accuracy in reconstructing
both dental and craniofacial structures from two-dimensional
(2D) data [11],[12]. These methods enable the use of limited
2D inputs to infer both structural and volumetric depth, thereby
reducing reliance on expensive 3D imaging systems.

This study proposes Denta-RecGAN, leveraging volumetric
reasoning via a novel hybrid 2D-3D convolutional neural net-
work designed to reconstruct 2D grayscale dental cast images.
Volumetric reasoning is incorporated by combining three main
components: a 2D encoder, a 3D latent space denoiser, and a
2D decoder. This combination allows us to capture both the
spatial and structural relationships within the data. The spatial
features were initially extracted from the input images using
2D convolutional layers, which were then reshaped into a 5D
volumetric tensor, and the 3D convolutional layers were then
processed together. The structural depth and inter-slice correla-
tions were captured through the network at the volumetric pro-
cessing stage. We look at flat (two-dimensional) images and
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understand their properties. Then we visualize them in three-
dimensional space to enhance them. After that, we revert them
to flat images, taking care to preserve their details.

This study demonstrates a new method for dentists to create
better images of teeth and jaws. This method combines precise
spatial reasoning (how three-dimensional objects occupy
space) with two-dimensional photos (such as photographs or
X-rays).

This research contributes to the growing field of Al-driven
digital dentistry, without the need for complex scanning hard-
ware. It also establishes a foundation for future applications,
such as single-view 3D estimation, clinical maxillofacial re-
construction, and digital prosthesis design.

The evaluation of our proposed architecture (Denta-
RecGAN) is performed using three standard quantitative met-
rics. The average deviation between a guess and the true an-
swer was measured by the Mean Absolute Error (MAE). It
considers all guesses, determines how different they are from
the real numbers, ignores whether they are too high or too low,
and then calculates the average of these differences, which
measures perceptual similarity and is captured by calculating
the Structural Similarity Index Measure (SSIM). To understand
how sharp and detailed an image is after editing or modifica-
tion, we used the peak signal-to-noise ratio (PSNR). Further-
more, the proposed network does not need explicit three-
dimensional supervision, reducing dependence on complex 3D
ground truth datasets, and it is capable of learning volumetric
cues.

The remainder of our research is divided into the following
sections: Section II provides an overview of current studies on
two-dimensional-to-three-dimensional and the reverse recon-
struction approaches. Then Section III explains how to train a
computer. It covers data preparation, cleaning, computer train-
ing, setting training rules, and verifying mastery of the learning
process. Section IV compares the proposed architecture with
other relevant work. Section V presents the study's conclu-
sions, and Section VI discusses potential directions for future
research to improve the clinical accuracy of three-dimensional
model reconstruction.

II. LITERATURE REVIEW

The main advantage of deep learning in maxillofacial pros-
thetics is the reconstruction of three-dimensional (3D) models
from two-dimensional (2D) inputs, such as images or videos.
Various deep learning architectures play an essential role in the
medical domain, especially the dental one, which categorizes
studies into sections. Some studies use Generative Adversarial
Networks (GANSs), transformers, and Convolutional Neural
Networks (CNNs) as basic building blocks. The first section
presents studies that focus on converting two-dimensional in-
puts into three-dimensional outputs, and the second section
presents studies that concentrate on reverse reconstruction,
converting three-dimensional input data into two-dimensional
outputs:
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A. Two-Dimensional (2D) -To-Three-Dimensional (3D)
Reconstructions

Recently, deep neural networks have led to the emergence
of 3D models or meshes from single-view two-dimensional
(2D) images. We use these deep neural networks to generate
3D volumes from 2D images. However, these methods often
require synthetic datasets and 3D supervision. X. Zhang et al.
[13] used Convolutional Neural Networks (CNNs) by introduc-
ing PX2Tooth, which is a model that uses a one panoramic
image to create a three-dimensional point cloud of a tooth. The
proposed architecture consists of two fundamental stages. The
first stage uses a single panoramic X-ray (PX) image to seg-
ment two permanent teeth. To enhance the generation quality,
particularly in the root apex region, the Tooth Generation Net-
work (TGNet) is utilized to create 3D teeth from point clouds.
The authors also used a dataset that they created themselves.
This dataset consists of 499 CBCT and panoramic X-ray pairs.
They split their dataset into three subsets with an 8:1:1 ratio for
training, validation, and testing, respectively. They achieved an
intersection over union (IoU) of 0.793 with their model but
could improve results by increasing reconstruction accuracy.

Many studies have reconstructed three-dimensional (3D)
models using single or multiple 2D images. Fathallah et al.
[14] used a model architecture based on Graph Convolutional
Networks (GCNs) as a key component. A lightweight GCN-
based discriminator was used to improve the accuracy. The
authors used the 300 W-LP and AFLW2000-3D datasets for
the evaluation. Their architecture is divided into two funda-
mental stages: preprocessing and three-dimensional reconstruc-
tion. First, the preprocessing stage reduces Noise and augments
the data. Then, the three-dimensional reconstruction stage per-
forms the following main functions: triangulation, running the
GCN-IGAN model, and outputting the final three-dimensional
facial mesh. Their model achieved 0.0075 and 0.120, repre-
senting the chamfer distance and earth mover’s distance, re-
spectively. Their model can be improved by adding additional
features and using evolutionary algorithms. The need to em-
ploy evolutionary algorithms and integrate additional face fea-
tures still limits the applicability of their model.

Chenfan Xu et al. [15] introduced a framework using Con-
volutional Neural Networks (CNNs) to reconstruct both the
upper and lower teeth using five intraoral photographs per
case. They used 3,200 cases for their approach, as they used
3,000,100 and 100 for training, validation, and testing, respec-
tively. Their model achieved 18.85, 0.8347, 0.0114, 2.1126,
0.1670 and 04122 representing PSNR, SSIM, LPIPS,
Hausdorff distance, chamfer distance, and Intersection over
Union (IOU) respectively. Their model showed promising
quantitative results and can be further improved by extracting
low-level features, such as edges. Their model suffered from
reduced precision and a long reconstruction process time.

X. Wang et al. [16] used Convolutional Neural Networks
(CNNs) to focus on maxillary segmentation and defect refine-
ment. They also created their own dataset using CBCT scans of
60 patients, including 39 males and 21 females, with an aver-
age age ranging between 11 and 52 years.
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Their model achieved 0.92 £0.01 and 0.77 +0.06, represent-
ing the Dice Similarity Coefficients for the maxilla and the
Dice Similarity Coefficients for the defect, respectively. These
results show strong segmentation performance and a correla-
tion between the defect parameters and the maxillary cleft side.
This automatic segmentation requires orthodontic refinement,
as it takes approximately 5 minutes per CBCT image.

Marek Wodzinski et al. [17] used Convolutional Neural
Networks (CNNs) to develop a 3D printing pipeline for model
cranial implants using a U-Net architecture to reconstruct de-
fects and refine implants through iterative procedures. Their
pipeline consisted of five stages: data loading, preprocessing,
defect reconstruction, defect refinement, and 3D printing prep-
aration. They used the SkullBreak, real cranial defect, and
SkullFix datasets for evaluation. Their model achieved 091,
0.94, and 1.53 mm representing Dice Coefficient, Boundary
Dice Coefficient, and 85th percentile Hausdorff Distance, re-
spectively. Their model accurately reconstructed cranial de-
fects, but they could further enhance it by integrating mixed
reality, real defect data, and multiple implant reconstructions.

T. C. Nifio-Sandoval et al. [18] employed a Procrustes fit
on 55 tomographs to obtain the 3D mandibular shape, using
convolutional neural networks (CNNs) to analyze the images.
The software developers also collected 629 X-ray images to
train the computer. When tested, the software performed ex-
ceptionally well at matching the photos, with error rates rang-
ing from 0.0033 to 0.0059. These results showed that the mod-
el could infer the shape of the lower jaw. It has high accuracy,
but it still faces challenges, including difficulty handling signif-
icant bone defects and extensive mandibular deformities.

Y. Liang et al. [19] designed an oral viewer as an educa-
tional tool with interactive 3D visualizations, using Convolu-
tional Neural Networks (CNNs) and two-dimensional dental
panoramic X-rays to reconstruct three-dimensional models of
teeth, gums, and the jawbone. Their dataset was collected from
patients at an orthodontic hospital and consisted of panoramic
X-rays and cone-beam CT (CBCT) scans. Their model
achieved an Intersection Over Union (IOU) of 0.771, repre-
senting reconstruction accuracy. The authors proposed several
future methods to enhance their tool, including two approaches
for modeling the root canal: augmenting existing solid tooth
models with artificial canals and incorporating canal structures
into the convolutional network training process, and adding
additional virtual instruments to improve surgical simulation.

B. Three-Dimensional (3D) -To-Two-Dimensional (2D)
Reconstructions

Autoencoders are used in image processing tasks, including
image denoising, image compression, and generation. Variants
of autoencoders, such as U-Nets and convolutional autoencod-
ers, can preserve spatial details useful for medical imaging.

Some methods use volumetric or geometric reasoning for a
three-dimensional (3D) shape. Our idea is to develop this tech-
nique by adding a special three-dimensional twisted block to a
simple two-dimensional encryption and decryption process,
making it more secure. Our approach builds on this idea, em-
bedding a 3D convolutional block within a 2D encoder-
decoder pipeline.
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Melas-Kyriazi et al. [20] presented a novel method, called
Projection-Conditioned Point Cloud Diffusion (PC2), for sin-
gle-image three-dimensional reconstruction. The shapes can be
represented as point clouds by their framework. They started
with a collection of tiny dots floating in space, which came
together to form a three-dimensional shape, much like a jigsaw
puzzle. First, they cleaned the dots to ensure their accuracy.
Then, they examined small parts of the image to make sure
everything looked correct, which helped them build a better
three-dimensional model. They also guessed the proper colors
for the dots to make the model look more realistic. Sometimes,
they created several possible shapes and used a special method
to choose the best one. Their method proved more successful
than others, and their model showed qualitative improvements
on real-world datasets such as Co3D. However, their method
depends on ground-truth point clouds for training. The recon-
struction quality can be affected because multi-view methods,
like COLMAP, can be noisy and incomplete in real-world sce-
narios.

Peng et al. [21] introduced a graph-based framework for
detecting changes in buildings using bitemporal remote sensing
images. The spatial dependencies between neighboring build-
ings and the temporal relationships between image pairs are
modelled using spatial-temporal graph neural networks (ST-
GNNs). They constructed a graph by representing building
instances as nodes and the contextual relationships as edges.
Their method of tracking building changes was superior to
other methods that relied on analyzing small image fragments.
It was more accurate when using numerous city images and
more effective in complex urban areas where buildings overlap
or are constructed in unusual ways. However, their model suf-
fers from a significant limitation: dependence on accurate
building footprint extraction. A preprocessing step error can
negatively affect detection performance, and any mistake in
footprint delineation can be propagated during graph construc-
tion.

C. Generative Adversarial Networks-Based Architecture in
Dental Imaging

Toscano et al. [22] proposed a hybrid point cloud comple-
tion framework for dental molds that integrates symmetry-
based data augmentation, iterative latent-space GANSs, and a
hybrid AE-RL GAN completion strategy. The dataset consisted
of 45-point clouds of real lower-jaw teeth. This dataset is
downsampled to 2048 points. These training data were expand-
ed using mirroring and point cloud recombination. It also ex-
panded using iterative IGAN augmentation, yielding 49 addi-
tional high-quality samples. They used Chamfer Distance (CD)
as a metric. This metric showed the importance of each mod-
ule, as after removing data filtering, the average Chamfer Dis-
tance increased by 38.34%. The Chamfer Distance increases by
43.20% after removing iterative I-GAN augmentation. Then, it
increased by 13.42% after removing the RL-GAN module, and
then increased by 5.34% after removing hybrid selection. The
increasing Chamfer Distance indicates a reduction in geometric
error, particularly in high-missing-rate scenarios. This ap-
proach still suffers from an inability to generalize to non-
symmetric anatomical structures. It also suffers from being
computationally expensive and still depends on bilateral sym-
metry assumptions.

506 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Kim et al. [23] proposed a GAN-based framework. It can
enhance the accuracy of tooth segmentation, especially in full-
arch intraoral scans that are affected by occlusal artifacts. Their
framework contains 3 main steps. The first step is to manually
remove the occluded interdental regions from the 3D scan data.
The second step is to slice the cleaned scan at 0.1 mm intervals,
then complete the 2D image using an Edge Connect-based
GAN. The third step is to reconstruct the missing 3D geometry
by stacking and remeshing the completed slices. They used a
dataset of intraoral scans from 10 orthodontic patients acquired
with a Trios 3 scanner. The ground truth is generated by a
technician. The dataset consists of 10,000 cropped 256 X 256
images. They achieved 0.921 and 26.68 Db representing SSIM
and PSNR, respectively. In tooth segmentation evaluation,
their model achieved 0.027 £ 0.007 mm, representing the aver-
age mean surface distance. Previous boundary- and region-
based segmentation methods suffer from inaccuracies due to
occlusions. However, their approach reconstructs the missing
interdental geometry while reducing operator dependency.
However, their model incurs a high computational cost due to
manual mask detection. Generalization is limited, especially in
severe occlusion patterns.

Minhas et al. [24] proposed a deep learmning-based frame-
work for 3D reconstruction from a single 2D panoramic X-ray
to assess maxillary impacted canines. They proposed a GAN-
based architecture (Pan2CBCT) derived from X2CT-GAN,
which expands 2D panoramic images into pseudo-3D volumet-
ric images. They used a dataset comprising 123 pre-treatment
CBCT scans of individuals aged 11-18 years. The 2D pano-
ramic X-rays with their pseudo-3D images. The distribution of
impacted canines is divided into 36, 12, 26, 65, and 9, repre-
senting buccal, middle, lingual, mesial, and distal cases, re-
spectively. Their model achieved 0.71, 41%, and 55% for mean
SSIM, accuracy of buccal/middle/lingual position, and accura-
cy of mesial/distal position, respectively. The previous related
work clinically ignores complex cases, as impacted canines are
evaluated. Their SSIM values indicate insufficient reliability
for orthodontic diagnosis. However, their model suffers from
several limitations. The first limitation is the use of a small,
imbalanced dataset. Another limitation is that it depends on a
single image modality. The third limitation is the decrease in
performance in lingual positions.

Galba et al. [25] proposed HoloDent3D, a dental imaging
system that uses single-view panoramic radiographs for 3D
reconstruction. The first stage is to acquire and preprocess the
standard orthopantomogram (OPG) to optimize the input im-
age. In the second stage, the reconstruction module is trained
on large datasets of paired 2D radiographs and corresponding
3D jaw models, inferring a volumetric mesh of teeth, roots, and
bone. The third stage involves rendering a high-speed LED
holographic fan display with gesture control, enabling visuali-
zation of multi-angle anatomy. Their model achieved volumet-
ric Intersection Over Union (IOU) values ranging from 0.65 to
0.79, showing an n improvement over earlier voxel-based ap-
proaches such as X2Teeth. However, HolodENT3D remains at
a theoretical stage and faces challenges, including a lack of
paired 2D-3D training datasets, variability in generalization
across patients, and no clinical validation.
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IIl. METHODOLOGY

This section explains the full methodology implemented in
TensorFlow/Keras for grayscale image reconstruction using a
2D encoder, a 3D latent space denoiser, and a 2D decoder,
trained under an adversarial framework. The methodology of
this study was divided into six main phases: dataset prepara-
tion, data pipeline, model architecture, training strategy, and
evaluation metrics.

A. Data Preparation

Using the I0150K dataset [22], the dataset consisted of
single-channel (grayscale) images. It is a publicly available
dataset of 2D intraoral images that can be used for different
purposes, such as instance segmentation and semantic labeling.
The dataset includes over 150,000 2D intraoral images. It con-
sists of 3 subsets: challenge80k, plaster 70k images, and ren-
dered 2D images generated from 1800 3D intraoral scans. Its
main source is the 3D Teeth Segmentation and Labeling Chal-
lenge 2023. The data acquisition methods for the challenge,
which generate 3D dental scans, project them into multiple 2D
views. Plaster 70k images are collected by photographing real
dental plaster casts, thereby capturing realistic tooth morpholo-
gy, including spacing, crowding, and missing teeth. Clinical
RGB photography is acquired using DCLR or mobile cameras,
with reflections. Preprocessing steps are performed on the da-
taset, including standardization, patch embedding preparation,
foreground-background separation, localization, segmentation,
and labeling. All the photos were set to a fixed spatial resolu-
tion of 128 * 128 pixels. Image files were collected recursively
with valid extensions (.jpg, .jpeg, .png) and then shuffled. The
dataset was divided into 70%, 10%, and 20% for the training,
validation, and test sets, respectively. The weights are updated
using the training subset, while the validation subset is used to
refine hyperparameters and determine when to stop training.
The test subset is then used to assess the model's final perfor-
mance. Table I describes the dataset's distribution.

TABLE I. DATASET SPLITS FOR TRAINING, VALIDATION, AND TESTING
Subset Number of images Percentage

Training Set 49612 70%

Validation Set 7087 10%

Testing Set 14176 20%

B. Data Pipeline

Images were read from the disk and decoded into single-
channel tensors; each image was then resized to 128 x 128 pix-
els. Normalization is applied to stabilize gradients during op-
timization. Normalization was also used, as pixel intensities
are scaled to [0,1]. The dataset then maps each image to an
(input, target) tuple. The training data were shuffled, and
batched prefetching is used as an asynchronous prefetch that
overlaps I/O with GPU computing.

C. Model Architecture

The proposed framework is a hybrid encoder—decoder sys-
tem that integrates 2D and 3D learning in a generative adver-
sarial setting. Our architecture comprises three main compo-
nents for several reasons. The procedure starts with the encoder
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receiving a black-and-white photograph of teeth, which is ex-
amined to pinpoint key details, such as edges and lines.

[ |

Input Encoder Output
Image Feature
Extraction

Image
(Grayscale
256x256)

Denoiser3D
3D Denoising
Network
(3D CNN Layers)

Decoder

Image
Reconstruction

Generator Loss Discriminator
U PatchGAN

Fig. 1. This is a general overview of the proposed model.

Fig. 1 shows the overall architecture, including the 2D en-
coder, 3D latent-space denoiser, and 2D decoder, as well as the
adversarial training loop that improves reconstruction accuracy
while preserving dental structural details. Fig. 2 to Fig. 4 illus-
trate the detailed network architectures of the proposed frame-
work. Fig. 2 presents the 2D encoder, which progressively
downsamples the input grayscale dental image to a compact
latent representation. Fig. 3 depicts the 3D latent-space denoi-
ser, which operates on the reshaped volumetric latent represen-
tation to model inter-slice dependencies and suppress latent
noise. Fig. 4 shows the 2D decoder, which reconstructs the
final image by gradually restoring spatial resolution through
transposed convolutions. Together, these components form an
end-to-end pipeline for robust dental image reconstruction. Let
x € R *W denote an input grayscale dental image with H=W
= 128. The 2D encoder E4(.), implemented using convolution-
al layers, extracts hierarchical spatial features from the input
image and maps it to a compact latent representation, as in:

Zyp=Eq¢(x) ,Zyp € RIXWXC €Y

To enable volumetric reasoning without requiring explicit
3D input data, the 2D latent representation is reshaped and
expanded along a depth dimension to form a volumetric latent
tensor, as in:

Zsp = :R(ZZD)sZ3D S RdXhXWXé (2)

A 3D latent-space denoiser N, (), composed of 3D convo-

lutional operations, is applied to the volumetric latent tensor to
suppress noise and enforce inter-slice consistency, as in:

Z3p = Ny(Z3p) (3)

The denoised volumetric representation is then collapsed
and decoded back into the image domain using a 2D decod-
er Gy,(), as in:

X =G, (Z3p) %)

where, £ € RF*W denotes the reconstructed dental im-
age. The discriminator receives both real dental images and
reconstructed outputs, providing adversarial feedback that en-
courages perceptually realistic and structurally accurate recon-
structions.

We enhanced our architecture, discarding any noise and
unwanted distortion. The decoder module further improves
image quality. Both authentic dental images and the generator's
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outputs serve as inputs to the discriminator architecture. The
generator is motivated to produce increasingly compelling vis-
ual and numerical reconstructions by receiving adversarial
feedback. To create more transparent, more realistic images,
the denoiser module works in tandem with the main architec-
ture to remove noise and minor imperfections.

input_layer (InputLayer)

Qutput shape: (None, 128, 128, 1)

Input shape: (None, 128, 128, 1) Output shape: (None, 64, 64, 32)

batch_normalization (BatchNormalization)

Input shape: (None, 64, 64, 32) | Output shape: (None, 64, 64, 32)

leaky re lu (LeakyRelLU)

Input shape: (None, 64, 64, 32) | Output shape: (None, 64, 64, 32)

Input shape: (None, 64, 64, 32) | Output shape: (None, 32, 32, 64)

batch_normalization_1 (BatchNormalization)

Input shape: (None, 32, 32, 64) | Output shape: (None, 32, 32, 64)

leaky_re_lu_1 (LeakyRelLU)

Input shape: (None, 32, 32, 64) | Output shape: (None, 32, 32, 64)

Input shape: (None, 32, 32, 64) Output shape: (None, 16, 16, 128)

batch_normalization_2 (BatchNormalization)

Input shape: (None, 16, 16, 128) Qutput shape: (None, 16, 16, 128)

Input shape: (None, 16, 16, 128)

Output shape: (None, 16, 16, 128)

Fig.2. This is a 2D encoder architecture for extractinga compact latent
representation from a grayscale input image.
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input_layer_1 (InputLayer)

Output shape: (None, None, None, 8, 16)

conv3d (Conv3D)

Input shape: (None, None, None, 8, 16) Output shape: (None, None, None, 8, 32)

batch_normalization_3 (BatchNormalization)

Input shape: (None, None, None, 8, 32) Output shape: (None, None, None, 8, 32)

Input shape: (None, None, None, 8, 32) Output shape: (None, None, None, 8, 32)

Input shape: (None, None, None, 8, 32) Output shape: (None, None, None, 8, 32)

batch_normalization_4 (BatchNormalization)

Input shape: (None, None, None, 8, 32) Output shape: (None, None, None, 8, 32)

Input shape: (None, None, None, 8, 32) Output shape: (None, None, None, 8, 32)

Input shape: (None, None, None, 8, 32)

Output shape: (None, None, None, 8, 16)

Fig.3. This is a 3D latent-space denoiser operating on the reshaped
volumetric latent representation.

D. Training Strategy

All experiments were conducted on the Kaggle platform.
Training the proposed model on the I0150K dataset for 50
epochs with a batch size of 8 required approximately 2 hours,
58 minutes, and 58 seconds using two NVIDIA Tesla T4
GPUs. Training time and inference speed were empirically
measured on the same hardware. Inference was evaluated by
timing end-to-end forward passes with a batch size of 1, yield-
ing an average latency of 341 ms per image (or 27.29 ms per
batch), demonstrating near—real-time performance suitable for
practical deployment.

Both accuracy and efficiency are balanced during training.
Overfitting is also prevented during training. Table II lists the
training hyperparameters used in our work.

The primary reconstruction loss function is the Mean Abso-
lute Error (MAE). It was chosen for its robustness in penalizing
deviations between the result produced by the architecture and
the actual target output.

We used the Adam optimizer in our architecture because it
can adapt the leaming rate. A dynamically adaptable learning
rate. Batch size carefully balances GPU memory constraints
and convergence speed; smaller batch sizes enhance generali-
zation capabilities, while larger batches may speed up training
but sometimes compromise model robustness.
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input_layer_2 (InputlLayer)

Output shape: (None, 16, 16, 128)

conv2d_transpose (Conv2DTranspose)

Input shape: (None, 16, 16, 128) Output shape: (None, 32, 32, 128)

batch_normalization_5 (BatchNormalization)

Input shape: (None, 32, 32, 128) Output shape: (None, 32, 32, 128)

re_lu_3 (RelLU)

Input shape: (None, 32, 32, 128) Output shape: (None, 32, 32, 128)

convad_transpose_1 (Conv2DTranspose)

Input shape: (None, 32, 32, 128) Output shape: (None, 64, 64, 64)

batch_normalization_6 (BatchNormalization)

Input shape: (None, 64, 64, 64) Output shape: (None, 64, 64, 64)

re_lu_4 (RelLU)

Input shape: (None, 64, 64, 64) Output shape: (None, 64, 64, 64)

conv2d_transpose_2 (Conv2DTranspose)

Input shape: (None, 64, 64, 64) Output shape: (None, 128, 128, 32)

batch_normalization_7 (BatchNormalization)

Input shape: (None, 128, 128, 32) Output shape: (None, 128, 128, 32)

re_lu_5 (RelLU)

Input shape: (None, 128, 128, 32) Output shape: (None, 128, 128, 32)

Input shape: (None, 128, 128, 32)

Qutput shape: (None, 128, 128, 1)

Fig. 4. This is a 2D decoder architecture for reconstructing the output image
from the denoised latent features.
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HYPERPARAMETERS USED FOR TRAINING THE GAN-BASED

DENTAL IMAGE RECONSTRUCTION MODEL STYLES

Hyperparameter

Value

Input image size

128x128(grayscale)

Batch size 8
Epochs(max) 50
Optimizer Adam
Initial learning rate 2x107*

Learning Rate Reduction

Factor 0.5 on plateau

Vol. 17, No. 1, 2026

training or evaluation. Moreover, the close alignment between
the training and validation MAE curves in Fig. 5 indicates sta-
ble learning behavior without divergence, as the model gener-
alizes well, rather than overfitting to the training data. Fig. 5
shows the mean absolute error curves obtained during training
and validation. These curves show how the model's prediction
error evolves over epochs. The decreasing trend in the training
curve indicates the model's ability to leam from the training
data, while the validation curve shows the model’s generaliza-
tion performance on unseen data. These two curves are com-
pared to assess the potential overfitting or underfitting.

- . i

Min Leaming Rate 1x10 TABLEIII. EVALUATION METRICS USED FOR ASSESSING THE GAN-

Early Stopping Patience 8 epochs (val MAE) BASED DENTAL IMAGE RECONSTRUCTION

Train/Val/Test split 70%/10%/20% Metric Range Interpretation

Latent volume Depth 8 slices MAE [0, o) Lower is better (0 = perfect reconstruction)

Random seed 42 SSIM [0, 1] Higher is better (1 = perfect perceptual
’ match)

Base channels(encoder/decoder) 32 Higher is better (>30 decibels = high-

Early stopping was performed to avoid overfitting. The
training was halted once the validation loss stopped improving
after a predefined number of epochs. This strategy prevents
unnecessary over-training and ensures computational efficien-

cy.
IV. DISCUSSION AND EVALUATION

In the standard model, the choice of evaluation metrics is
crucial for assessing model effectiveness by measuring pixel-
level accuracy and perceptual visual similarity, thereby ensur-
ing a comprehensive evaluation of quantitative performance
and visual quality.

The first evaluation metric quantifies the average difference
between the reconstructed and original images. This difference
is measured by the Mean Absolute Error (MAE) metric. This
metric helps capture the overall pixel-level accuracy. The sec-
ond metric is the Structural Similarity Index (SSIM), which
measures perceptual similarity by considering the contrast,
luminance, and structural information between two images.
The SSIM aligns more closely with human visual perception.
Peak Signal-to-Noise Ratio (PSNR), serving as the third evalu-
ation metric, quantifies reconstruction fidelity as the ratio of
the maximum signal power to the generated noise power dur-
ing reconstruction. This measures the ratio between the maxi-
mum possible signal power and the power of the reconstruction
noise, expressed in decibels.

Table III summarizes the three key performance indicators.
The results are presented in Table IV, which lists the metrics
for training, validation, and testing. Table IV shows results that
may appear similar at first glance but, upon closer inspection of
the numerical values, reveal small but consistent differences
across the three splits. Specifically, MAE values vary between
0.0127 and 0.0128, the SSIM values increase slightly from
0.9450 (training) to 0.9453 (testing), and PSNR values range
from 28.8430 dB to 28.8595 dB, so the variations occur at the
third and fourth decimal places and may appear identical when
rounded, but they confirm that the results are not exactly the
same. The dataset was partitioned into non-overlapping subsets
prior to training, so no data leakage occurred during either

PSNR (0, ) decibels

quality image)

TABLEIV. EVALUATING PERFORMANCE METRICS OF THE GAN-BASED
DENTAL IMAGE RECONSTRUCTION MODEL ON TRAIN, VALIDATION, AND

TEST SETS
Set MAE SSIM PSNR
Train 0.0128 0.9450 28.844700 decibels
Validation 0.0127 0.9452 28.859501 decibels
Test 0.0128 0.9453 28.843000 decibels

Fig. 6 to Fig. 10 illustrate various key aspects of the study.
It presents quantitative evaluation metrics, including the Struc-
tural Similarity Index Measure (SSIM) and Peak Signal-to-
Noise Ratio (PSNR), used to assess the quality and fidelity of
the reconstructed images. These figures highlight interactions
and contributions of the main components of the proposed ar-
chitecture involving the generator, discriminator, and noise
module, so by combining these architectural elements and per-
formance metrics. These figures offer a comprehensive over-
view of the system's effectiveness in achieving high-quality
image reconstruction.

MAE

—— Train
Validation

0.06 -

0.01

=L,

1 11 21 26 31 36 41 46 50

Epochs

Fig. 5. The two curves represent mean absolute error results during training
and validation.

The proposed 2D-to-3D denoising GAN achieved strong
reconstruction performance, with average scores of
MAE=0.0128, SSIM=0.9453, and PSNR=28.84 dB on the test
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set. The reconstruction of grayscale dental casts demonstrates
accuracy and high structural similarity. There are three figures,

Discriminator Loss
namely Fig. 11, Fig. 12, and Fig. 13, representing the input
image, the generated output image, and the latent 3D mesh, 4
respectively, at the last epoch (50) after training. Specifically,
Fig. 11 shows the original input image used by the model, 031
providing a reference for comparison. Fig. 12 shows the mod-
el's output image, demonstrating its reconstruction effective- 8.,
ness. Finally, Fig. 13 shows the network's learned latent 3D
mesh representation, which encodes internal 3D features.
These figures present a visual summary of the system’s per- *1
formance, showing the quality of the generated images and the AA
underlying structure of the latent 3D representations after full 00
training. 1 6 1 16 21 26 31 3% 4 % %0
Epochs
SSIM
T : T e | Fig.9. The curve represents the discriminator loss.
...... ANy | NPT froav™S S o5
0.9 / \/ \ /
0.8 \ f \ \/ Denoiser MSE (train)
0.7 4 \/ .16
¥
= 06 0.15
v 0.5 0.14
e 013
# A
012
0.3 ——
+— Train 1 -
0.2 V;Indalmn ¥ o \//'/
. Ty 0.10
1 6 11 16 21 26 31 36 41 a6 50
Epochs
0.09
Fig. 6. The two curves represent structural similarity index results during T o 11 16 21 26 n 3% a % %0
training and validation. Spachs
B Fig. 10. The curve represents the denoiser.
30 . ~ ~ s
L NN ’
28 PZVAN [ \/ 3t { \
|

PSNR (d8)

18 \ ( \/
16 | —— Train 9\
Validation
v v v v v v v v ,
1 6 11 16 21 26 31 36 41 46 50

Epochs

Fig. 7. The two curves represent peak signal-to-noise ratio results during

Fig. 11. An example of the input image.
training and validation.

Generator Loss

25

1 6 11 16 21 26 31

36 41 a6 50
Epochs

Fig. 12. An example of the generated output image.

Fig. 8. The curve represents the generator loss.
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Fig. 13. An example of the three-dimensional latent mesh.

Compared to existing studies, the proposed framework ex-
hibits competitive advantages. Li et al. [27] developed a U-
CPML-Net for 3D lung image reconstruction based on CT-
pixel-matrix leamning and electrical impedance tomography.
Their method achieved SSIM values between 0.80 and 0.85,
depending on the case complexity. In contrast, the proposed
framework produced higher SSIM values and lower MAE val-
ues, suggesting that volumetric reasoning integrated into a 2D-
to-3D pipeline can outperform conventional matrix learning—
based strategies in terms of structural fidelity.

Vol. 17, No. 1, 2026

Tan et al. [28] presented an Edge-Aware Reconstruction
(EAR) network for reconstructing 3D vertebral structures from
biplanar X-ray images. Their method improved edge and local
structural detail detection by integrating two modules into the
autoencoder, which serves as the backbone of their architec-
ture. A combination of four loss terms—reconstruction, edge,
frequency, and projection losses were used to guide the train-
ing process. The EAR was evaluated on three public datasets
and compared against four cutting-edge methods, demonstrat-
ing improvements of 25.32%, 15.32%, 86.44%, 80.13%,
23.76%, and 0.30% in MSE, MAE, Dice, SSIM, PSNR, and
frequency distance, respectively. Although this approach effec-
tively improved edge preservation, challenges remain due to
information loss from X-ray projection processes, particularly
in maintaining. Asymmetrical vertebral structures. Compared
with EAR, the proposed denoising GAN focuses less on edge-
aware reconstruction but achieves a higher SSIM (0.943) and
stable PSNR. Volumetric features effectively compensate for
the limitations inherent in projection-based approaches in im-
aging and analysis. Tables V and VI present the results of other
papers and compare them with those of our study, respectively.

TABLE V. SUMMARY OF RELATED WORKS AND THEIR RESULTS

Paper Work Results
Developed U-CPML-Net for 3D lung image reconstruc- . . .
Lietal [27] tion based on CT pixel matrices leaming with electrical Their method achieved SSIM values between 0.80 and 0.85, depending on case

impedance tomography.

complexity.

Presented the Edge-Aware Reconstruction (EAR) network
Tan et al. [28] for reconstructing 3D vertebrae structures from bi-planar
X-ray images.

EAR was evaluated on three publicly available datasets and compared against
four state-of-the-art methods, demonstrating improvements of 25.32%, 15.32%,
86.44%, 80.13%, 23.76%, and 0.30% with respect to MSE, MAE, Dice, SSIM,
PSNR, and frequency distance, respectively.

TABLE VI. COMPARISON OF THE PROPOSED GAN-BASED DENTAL IMAGE RECONSTRUCTION MODEL WITH RESULTS FROM RELATED WORKS

Paper Work Description MAE SSIM PSNR
Proposed 2D-to-3D | Reconstruction of grayscale dental cast images using volumetric feature reasoning (Encod- 00128 0.9453 28 84
Denoising GAN er — 3D Denoiser — Decoder + Discriminator). ) ) )
Lietal [27] Deve.loped. U-CPM.L-Net for 3D lung image reconstruction based on CT pixel matrix | 080:085 | cores

learning with electrical impedance tomography.
Tan et al. [28] Introduced Edge-Aware Reconstruction (EAR) network for 3D vertebrae reconstruction | ~0.94 ~28.0

from bi-planar X-ray images using edge and frequency enhancement modules.

V. CONCLUSION

This study presented a two-dimensional-to-three-
dimensional denoising generative adversarial network designed
to improve the quality of reconstruction, to address the limita-
tions in grayscale image reconstruction of traditional 2D mod-
els by incorporating volumetric reasoning within the latent
space. We capture both spatial and structural relationships by
integrating three main components: a 2D encoder, a 3D de-
noising block, and a 2D decoder. These spatial and structural
relationships exist across the different feature depths. The key
advantages of this architecture are a computationally light-
weight design and the ability to learn complex spatial depend-
encies. These advantages make it suitable for medical applica-
tions, especially in dentistry. Another key contribution of this
study is its adaptable training strategy, which balances between
three perspectives: reconstruction accuracy, efficiency, and
stability. The model’s design enables easy integration with
other architectures, allowing extensions to multimodal data.
This method can also be widely used, such as for larger image

resolutions and domain-specific adaptations. In addition, the
adversarial training paradigm can generalize to unseen samples
by using a generator that produces structurally consistent out-
puts under discriminator supervision.

Overall, this study highlights directions for the digital re-
construction of dental cast images in clinical imaging. By inte-
grating advanced volumetric and two-dimensional techniques,
it offers promising applications in diagnostic procedures, tissue
repair, and various medical interventions. These innovative
approaches aim to enhance accuracy, improve patient out-
comes, and advance the overall capabilities of modern medical
imaging technologies.

VI.  FUTURE WORK

Several directions can be pursued to expand the two-
dimensional-to-three-dimensional generative adversarial net-
work further. A future perspective is to use multiple input da-
tasets simultaneously to improve resolution and achieve gener-
alization by training across a variety of datasets.
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Another promising enhancement is to integrate different
ways of focusing attention, such as visual space or channels,
which also works well with communication systems. This im-
proves overall accuracy and helps build stronger, more effi-
cient structures.

Another direction is to explore more appropriate loss func-
tions. Perceptual or feature-based losses can be combined with
conventional objectives. This combination can lead to a better
balance between structural accuracy and perceptual realism.

These directions highlight a future pathway for advancing
image reconstruction by pushing the boundaries of hybrid 2D-
to-3D-to-2D learning strategies.

Future studies can use adaptive strategies to determine the
depth. This depth may be adapted to the complexity of the in-
put, which leads to more effective feature representations while
maintaining computational efficiency. The precision of the
anatomical structures and texture representation can be im-
proved by refining the denoising process.

This approach shows promise for advancing image restora-
tion methods in fields such as medical imaging, dental diagno-
sis, industrial inspection, and others where both accuracy and
perceptual quality are critical. It can also be extended to real-
world applications.
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