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Abstract—Precision agriculture enables data-driven crop
monitoring and improved resource utilization. Paddy cultivation
requires continuous surveillance and timely fertilizer application
because it is sensitive to soil nutrient dynamics, water availability,
and climatic conditions. Conventional practices such as manual
field inspection and heuristic fertilizer advisory methods are often
labor-intensive and subjective, which can reduce decision
consistency and contribute to yield variability. To address these
limitations, this study proposes a Selfdlom Enhanced CatBoost
(SECB) framework for remote paddy growth-stage monitoring
and fertilizer recommendation. Multispectral remote sensing data
collected over multiple seasons are used to compute vegetation
indices, including NDVI, GNDVI, RVI, GRVI, and NDRE, to
characterize crop vigor and chlorophyll-related variation across
growth stages. The proposed SECB improves CatBoost by
integrating an Improved Osprey Optimization Algorithm (I0OA)
to tune key model parameters, aiming to enhance feature
interaction learning and reduce overfitting. In addition,
oppositional function-based initialization is applied to improve the
exploration capability of IOOA and accelerate convergence.
Experimental results show that SECB achieves improved
performance over baseline classifiers in terms of accuracy,
precision, F1-score, specificity, and AUC. The proposed approach
provides reliable growth-stage identification and supports
fertilizer recommendations to promote efficient nutrient usage
and improved productivity. Overall, the framework offers an
automated and scalable decision-support strategy for paddy crop
management.
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I.  INTRODUCTION

Paddy is one of the most important cereal crops sustaining
the global population, particularly across Asia, where it forms a
staple diet formillions [1]. Indiahas the largest areaunderrice
cultivation (approx. 42.5 million hectares); however, national
productivity remains lower than that of several leading rice-
producing countries. Although India produces about 152.6
million tons of rice annually, the average yield per hectare is
notably lower than China [2]. This productivity gap is
influenced by climatic vulnerability and regional differences in
cultivation practices, including irrigation methods, nutrient

management, and tillage operations [3]. Moreover, yield
heterogeneity is evident across regions, with approximately 348
districts reporting production below the national average, which
constrains aggregate output.

Kerala, despite being a traditional rice-growing state,
currently cultivates rice on about 0.197 million hectares, which
accounts for approximately 7.6% of its cultivated land.
Nevertheless, rice constitutes a major share of the state’s food-
crop acreage, highlighting its continued regional relevance.
Among the key agronomic determinants, fertilizer management
plays a central role in rice growth and yield formation [4]. In
practice, farmers often rely on experiential knowledge to
schedule fertilization, which increases the risk of nutrient
mismanagement [5]. Over-application can increase pest
incidence and lodging, reduce grain weight, and cause
environmental impacts such as soil degradation and nutrient
runoff into water bodies [6].

In this context, precision agriculture provides a practical
pathway to optimize input use while improving productivity.
Recent advances in satellite imagery, Unmanned Aerial
Vehicles (UAVs), multispectral sensors, and cloud-based
analytics have improved agricultural monitoring and decision-
making [7, 8]. Remote sensing platforms capture canopy
reflectance and spectral indicators of vegetation health, which
can be processed to generate location-specific
recommendations.

Crop growth models have been used to simulate plant
responses to environmental conditions using soil, weather, and
physiological inputs. However, large-scale deployment remains
challenging due to manual data requirements and complex
variable interactions. Consequently, recent work increasingly
adopts machine leaming (ML) methods to capture nonlinear
crop behavior and improve growth and nutrient prediction
accuracy [9]. Techniques such as k-Nearest Neighbors (kNN),
Random Forest (RF), Linear Regression (LR), and CatBoost
have shown potential for estimating rice growth stages and
nutrient requirements [10, 11]. Based on these advances, this
study proposes a Selfdom Enhanced CatBoost (SECB) model
that integrates remote sensing—derived vegetation indices with
an optimizationstrategy to support growth-stage monitoringand
fertilizer recommendation.
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Although vegetation indices and boosted-tree models have
been used for crop monitoring, many existing studies address
growth-stage assessment and fertilizer recommendation as
separate tasks, and often rely on manually tuned learners or site-
specific calibration. The proposed SECB framework is distinct
in that it couples multi-season multispectral vegetation-index
dynamics with an optimization-guided CatBoost learning
strategy, enabling joint growth-stage monitoring and fertilizer
recommendation within a single predictive pipeline. In
particular, IOOA is employed to automatically tune key
CatBoost hyperparameters to aim for improved robustness
under seasonal variability, thereby reducing dependence on
trial-and-error parameter selection. This optimization-driven
design differentiates SECB from conventional CatBoost or
index-threshold approaches and provides a practical decision-
support mechanism for precision paddy management. The main
contributions of the research are presented as follows:

e To proposea unified SECB pipeline that performs both
paddy growth-stage classification and fertilizer
recommendation using multispectral vegetation indices
computed from remote sensing imagery, thereby linking
crop-condition monitoring with actionable nutrient
decisions in a single workflow.

e To integrate IOOA as a hyperparameter optimization
module for CatBoost, improving convergence stability
and reducing manual tuning under multi-season spectral
variability, which enhances model reliability and
supports scalable deployment across changing field
conditions.

e To wvalidate the proposed SECB model against
conventional ML baselines using accuracy, precision,
F1-score, specificity, and AUC, so that performance
improvements translate into fewer false fertilizer alerts
and fewer missed nutrient-deficiency cases, promoting
efficient input use and sustainable paddy management.

The rest of this study is structured as follows: Section II
presents a concise review of recent studies related to paddy
growth monitoring and fertilizer recommendation, while
Section III outlines the methodologies used for paddy growth
monitoring and fertilizer recommendation. Section IV reports
the results, and Section V presents the conclusion of the study
along with possible directions for future research.

II. RELATED WORKS

Sah et al. [12] proposed a UAV-based vegetation index
framework to monitor paddy development and fertilizer effects
across two planting seasons in Malaysia. High-resolution
multispectral UAV imagery was processed (Agisoft Metashape)
to derive NDVI, BNDVI, and NDRE at key stages (tillering,
flowering, and ripening). NDRE achieved the strongest yield
relationship (R?=0.842), while NDVIand BNDVIshowed high
similarity and reduced sensitivity in dense canopies, indicating
saturationeffects in mature fields. The authors alsoreported that
plot size alone did not guarantee higher yield because
environmental factors and fertilizer management had a
substantial influence. However, the framework relied heavily on
UAV data and site-specific conditions, limiting transferability
without broader regional calibration.
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Zhao et al. [13] incorporated a conventional crop growth
metric, Relative Growth Rate (RGR), intoremote sensing—based
rice yield estimation. The study used satellite-derived variables
(RGR, NDVI, EVI, SAVL, NDWI, DVI, RVI, GPP, and LAI)
together with climatic and soil features, and evaluated LASSO,
Random Forest, and XGBoostusing five-fold cross-validation.
The RGR-integrated model reported the best performance (R?~
0.78; RMSE = 719.63 kg/ha), and demonstrated spatial
adaptability as well as within-season predictive capability up to
16 days before maturity. A key limitation was reduced accuracy
during extreme climatic years, suggesting sensitivity to unusual
environmental conditions.

Chiranjit Singha et al. [14] developed a Google Earth
Engine—based machine learming workflow for monitoring
rainfed rice growth using Sentinel-1 SAR data, addressing the
difficulty of optical monitoring under persistent cloud cover.
The approach was validated on 214 farm plots in Hooghly, West
Bengal, India, where Random Forest produced strong biomass
estimation performance (R?=0.87). The analysis indicated that
heading-stage NDVI and SAR backscatter were strongly
associated, supporting SAR suitability for rainfed rice
monitoring. Fubing Liao et al. [15] proposed a hybrid deep
learning model combining CNN and LSTM with attention to
diagnose rice nutritional status at the early panicle initiation
stage, using sequential UAV imagery collected over two years.
These works highlightthat SAR and UAV time-series data can
enable robust monitoring, yet require stable data acquisition
pipelines and careful generalization assessment across seasons
and sites.

Guo et al. [16] introduced a rice paddy classification
framework using multitemporal compact polarimetric (CP) C-
band SAR data and machine learning. Seven RADARSAT-2
acquisitions were used to simulate CP observations, and 22
polarimetric features were extracted and enhanced through
temporal-variation analysis. Across multiple classifiers,
incorporating temporal dynamics improved mapping
performance, and overall accuracies exceeded 95%, with
Random Forest and SVM providing the best results. Wang et al.
[17] further demonstrated high-resolution paddy rice mapping in
Northeast China by combining automatically generated training
samples, time-series Sentinel-2 features, and a deep neural
network classifier. Using 10 m surface reflectance bands and
vegetation-index composites across major phenological stages,
the model achieved high annual mapping accuracy and
improved discrimination between rice, wetlands, and drylands,
while also detecting small paddy patches and policy -driven area
reduction. Nevertheless, uneven image quality, sparse
observations, and uncertainties inherited from reference land-
cover products were reported as constraints on cross-region
transferability.

Li et al. [18] proposed a hyperspectral satellite—based rice
growth monitoring approach using a 3D CNN to jointly leamn
spatial-temporal—spectral representations from multi-temporal
image cubes. A temporal convolution module, followed by 2D
convolutions and fully connected layers, was used for yield
prediction, and the method exhibited improved accuracy and
stability compared with deep learning baselines. However,
heterogeneous cultivation patterns and complex terrain
conditions remained challenging for robust deployment.
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Sudarsan Biswal et al. [19] examined UAV multispectral
imagery for above-ground biomass (AGB) prediction by
combining spectral vegetation indices with textural descriptors.
The study found that NIR-based indices outperformed color-
only indices, and normalized difference texture indices (NDTIs)
derived from NIR, red-edge, and blue bands consistently
improvedperformance compared with GLCM textures. Random
Forestyieldedthe best predictions whenvegetationindices were
fused withNDTIs, emphasizing the value of multi-feature fusion
for rice biomass estimation.

Parijata Majumdar et al. [20] addressed irrigation water
requirement (IWR) prediction by selecting high-scoring
environmental features and using ensemble learning strategies.
The work highlighted evapotranspiration as a key predictor
across growth stages and employed stacked learning with tuned
models to improve predictive accuracy. Wang et al. [21]
investigated an automatic fertilization system to evaluate
fertilizer distribution uniformity under flooded and non-flooded
conditions. Usingthe Christiansen Uniformity Coefficient (CU),
the non-flooded automatic fertilization setting achieved the
highest uniformity and outperformed farmer-applied manual
fertilization, although the method’s effectiveness depended
strongly on specific field-water conditions and may require
adaptation for different agro-ecological settings.

Boonma et al. [22] assessed rice growth stage and yield
estimation using Sentinel-2 MSIand Sentinel-1 SAR data within
Google Earth Engine, supported by field surveys and stratified
sample points. The study reported moderate-to-strong
agreement for growth-stage modeling (e.g., R? up to 0.67 with
Kappa 0.80), and emphasized the practical role of SAR during
rainy seasons when optical images are degraded by cloud
interference. However, limited usable Sentinel-2 scenes and
seasonal sensitivity constrained generalization and reduced the
benefits of optical-SAR fusion. Xiaolong Chen et al. [23]
developed a multi-source nutrient monitoring and precision
fertilization system integrating UAV multispectral imagery,
thermal sensing, ground sensors, and GIS visualization. Across
multiple agro-ecological sites, the system reduced nutrient
estimation errors and lowered fertilizer usage while increasing
yield, but scalability was limited by UAV endurance, data
volume, and computational demands.

Carracelas et al. [24] evaluated vegetation indices for
monitoring nitrogen uptake in rice under continuous flooding
and alternate wettingand dryingirrigation schemes. The SCCCI
index showed the strongest predictive relationship with nitrogen
uptake (R? up to 0.84 under continuous flooding and 0.71 under
alternate wetting and drying), while also demonstrating that
surface water conditions can alter reflectance behavior and
index reliability. This irrigation-dependent variability limits
direct transfer of models between water-management regimes
and motivates broader multi-site validation.

Bingnan Chen et al. [25] proposed a UAV-based nutrient
deficiency classification framework for ratoon rice by fusing
vegetation indices with deep image features extracted from
visible-band imagery. Classifiers such as XGBoost, SVM, and
Random Forest benefited from feature fusion, and Random
Forest achieved the best nutrient classification results, though
the experiments were restricted to a single ecological site and
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limited varieties. Herath et al. [26] similarly used UAV
multispectral imagery for paddy decision support, reporting
strong NDVI-yield correlations and effective weed detection
using vegetation-index formulations at specific days after
sowing. However, frequent UAV flights, image-quality
dependence, and operational costs remained practical
constraints for large-scale adoption.

Huang et al. [27] presented an integrated soil analysis
framework combining crop identification, irrigation prediction,
and fertilizerrecommendation using satelliteimagery and sensor
data, where machine learning models achieved high fertilizer
recommendation accuracy. Rahman et al. [28] proposed an
AloT-based hydroponic recommendation and monitoring
system in which Random Forest delivered strong performance,
although automation and cost constraints limited full-scale
deployment. Collectively, these studies confirm that remote
sensing and ML/DL methods can improve paddy monitoring
and input management, but generalization across regions,
seasonal variability, data availability (cloud cover, UAV
logistics), and scalability remain open challenges that motivate
robust, optimized leaming frameworks for practical fertilizer
recommendation.

A. Research Gap

Prior studies have used UAV-based vegetation indices,
spectral features, and ML models for paddy growth assessment,
nutrient estimation, biomass prediction, and weed detection, but
most treat these problems separately [12, 14, 19]. Existing
approaches often emphasize either crop monitoring or fertilizer
optimization, rather than combining both in a unified predictive
pipeline[13,23]. Many methods rely on conventional models or
manually interpreted indices, limiting their ability to learn
nonlinear interactions between spectral signatures, crop
physiology, and fertilizer response across diverse agro-
ecological conditions [12, 21]. Moreover, optimization
strategies and ensemble-based enhancements remain limited in
paddy-specific research [19]. Therefore, an automated,
optimization-driven framework that simultaneously monitors
paddy growth and provides accurate fertilizer recommendations
from multispectral dynamics is still lacking.

III. MATERIALS AND METHODS

The proposed methodology integrates a Selfdom Enhanced
CatBoost Model with meta-heuristic optimization for remote
paddy growth monitoring and fertilizer recommendation in
precision agriculture, as visualized in Fig. 1.

The process begins with the acquisition of paddy field
images collected between 2016 and 2020. These images
undergo preprocessing and are then used to compute multiple
vegetation indices, including NDVI, NDRE, GNDVI, RVI, and
GRVL These indices serve as reliable indicators of plant health,
nutrientavailability, and growth progress. Once the vegetation
indices are generated, the Improved Osprey Optimization
Algorithm is utilized to enhance the model’s learning capability
by optimizing key CatBoost parameters. This integration results
in the Selfdom Enhanced CatBoost (SECB) model, designed to
efficiently process large-scale remote sensing data and yield
highly accurate predictions. The SECB model is trained and
tested using the extracted vegetation features, enabling it to
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classify growth stages and identify nutrient deficiencies more
effectively than conventional algorithms. Based on the predicted
growth stage and detected nutrient requirement, the system
provides precise fertilizer recommendations. This automated
workflow reduces manual effort, improves decision-making
accuracy and supports sustainable rice cultivation by ensuring
that fertilizers are applied only when necessary.
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Fig. 1. Block schematic representation of the proposed model.

A. Dataset Description

The dataset used in this study was sourced from Kaggle and
served as the basis for developing and validating the paddy
growth monitoring and fertilizer recommendation system [29].
It comprised a comprehensive collection of multispectral
satellite images recorded over fiveconsecutive years, from 2016
to 2020, capturing seasonal and annual variations in paddy
cultivation. Each year’s directory contained 3328 image tiles,
and every tilerepresented a 48x48-pixel multispectral snapshot
of a specific agricultural location. These tiles formed a time-
series dataset in which each subfolder recorded multiplesatellite
passes over the same geographical tile on different dates. For
example, a file such as lombardia2/data2016/1/20160110.tif
corresponds to a GeoTIFF multispectral image captured on
January 10,2016, for tile number 1 in the Lombardia2 region.
Similar file structures were maintained across all years, ensuring
uniformity and facilitating temporal crop growth analysis. Fig.
2 and Fig. 3 present the sample input images utilized during the
training and testing phases, illustrating the spectral variations in
the satellite images. The multispectral bands and the derived
vegetation indices used in this study (NDVI, GNDVI, NDRE,
RVI, and GRVI) are directly linked to canopy vigor and
chlorophyll-related activity, which are widely used as proxy
indicators of nutrient status in crops. In particular, nutrient stress
typically reduces chlorophyll concentration and modifies
canopy structure, which alters reflectance responses in the red,
near-infrared, and red-edge bands. Therefore, the dataset
provides meaningful spectral cues for learning patterns
associated withnutrientrequirement and forsupporting fertilizer
recommendation based on multispectral dynamics across
growth stages. The proposed model was trained using this entire
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dataset to ensure robust learning and improve predictive
accuracy. During evaluation, real-time drone images were
additionally incorporated to test the model’s performance under
practical fieldconditions. Thiscombinationofhistorical satellite
data and on-site imagery enabled the model to generate reliable
growth insights and fertilizer recommendations suited for real-
world paddy cultivation practices.
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Fig.2. Sample training images.

Fig. 3. Sample testing images.
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B. Vegetation Indices

To generatethe vegetationindices required forpaddy growth
analysis, multispectral images captured were processed to
extract reflectance values from specific spectral bands. These
vegetation indices NDVI,NDRE, GNDVI, RVI and GRVI were
selected because they provide spectrally non-redundant and
complementary information about plant biochemical and
structural properties. Each index exploits the interaction of light
with different leaf pigments and cellular structures. The visible
bands (green, red, and red-edge) are strongly influenced by
pigments such as chlorophyll, carotenoids, and xanthophylls,
whereas the near-infrared (NIR) band is largely controlled by
internal leaf architecture, including the palisade and spongy
mesophyll layers. The red-edge band captures the rapid
transition between visible absorption and near-infrared
reflection, making it sensitive to chlorophyll concentration and
early vegetation stress. These characteristics enable the selected
indices to represent different aspects of crop physiology,
allowing accurate assessment of plant health, growth stage and
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fertilizer response. The vegetation indices were calculated using
their respective mathematical formulations, as illustrated in

Eq. (1) to Eq. (5):

NDVI = Pnir—Pred (1)
PnirtPred

NDRE = % )

GNDV] = Pnir"Pgreen 3)
PnirtPgreen

RVI= ’;L (4)

GRVI = Pgreen—Pred (5)
PgreentPred

where, ppir s Pre s Pgreen» a0d Preq denote the surface
reflectance values in the near-infrared, red-edge, green, and red
spectral bands, respectively. Sample vegetation index values
with identified growth stages and fertilizer recommendations are
summarized in Table L

TABLEI. SAMPLE VEGETATION INDEX VALUES WITH IDENTIFIED GROWTH STAGES AND FERTILIZER RECOMMENDATIONS
NDVI NDRE GNDVI RVI GRVI Growth Stage Fertilizer Recommendation
0.345 0.210 0.320 1.245 0.112 Early Growth Recommended
0.402 0.180 0410 1312 0.087 Mature Stage Not Needed
0.120 -0.005 0.075 0.987 -0.015 Early Growth Recommended
0.275 0.155 0.290 1.089 0.065 Mature Stage Recommended
0.015 -0.015 -0.005 0.876 -0.022 Early Growth Recommended
0.500 0.245 0.380 1.400 0.123 Mature Stage Not Needed
0.065 -0.020 0.025 0912 -0.010 Mature Stage Not Needed
0.330 0.190 0.300 1.200 0.098 Mature Stage Not Needed
0.405 0.220 0410 1.350 0.130 Early Growth Recommended
0.290 0.145 0.275 1.110 0.055 Early Growth Recommended

C. Model Development

The model development phase focused on constructing the
Selfdom Enhanced CatBoost (SECB) framework for remote
paddy growth monitoring and fertilizer recommendation.
Vegetation indices derived from multispectral imagery were
used as input features and the CatBoost algorithm was enhanced
using the Improved Osprey Optimization Algorithm to refine
model parameters. This hybrid integration strengthened
predictive accuracy, reduced overfitting and enabled precise
identification of growth stages and fertilizer requirements.

1) CatBoost: CatBoost is a gradient boosting algorithm
developed to provide highly accurate predictions while
minimizingthepreprocessing burden commonly associated with
machine learning models [30]. It is particularly effective for
datasets containing categorical variables, converting them into
numerical representations internally using ordered statistics
instead of one-hot encoding. This approach prevents target
leakage and reduces prediction bias. CatBoost builds an
ensemble of symmetric (oblivious) decision trees, where each
tree corrects the prediction errors of the previous one through

gradient boosting. The general prediction function of CatBoost
is expressed as Eq. (6):

Fin(x) = Fp_1 () + 1 - by (%) (6)

where, F,,, (x) is the updated model at iteration m, 7 is the

learning rate and h,,, (x) represents the newly added decision

tree trained on the gradients of the loss function. CatBoost

minimizes the loss function L by iteratively updating the model
as Eq. (7):

L

Epn(X) =Fp1(0)—1 T (7

CatBoostalso introduces ordered boosting, which processes
samples sequentially to avoid artificial correlations and
overfitting. Its automatic handling of missing values, fast
training and superior generalization make it highly competitive
compared to XGBoost and LightGBM, especially for tabular
agricultural datasets where precisionandreliability are essential.

2) Selfdom Enhanced CatBoost Model: The objective of
this study is to establish a reliable model capable of monitoring
paddy growth and recommending the required fertilizer amount
using remote sensing data. Since the relationship between crop
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reflectance and physiological growth variables is highly
nonlinear, ML becomes a natural choice to approximate this
mapping using suitable training datasets. Among various
ensemble algorithms, CatBoost stands out due to its ability to
convert multiple weak learners into a robust predictive model
[31]. Unlike conventional algorithms that rely heavily on
extensive preprocessing and suffer from feature sensitivity,
CatBoost introduces ordered boosting and structured trees that
minimize overfitting while improving generalization. The
proposed SECB model builds upon this foundation. It
incorporates the IOOA to optimize CatBoost’s parameters more
efficiently. By iteratively adjusting these parameters, the [OOA
prevents the model from settling on suboptimal solutions and
offers a better balance between bias and variance. In boosting, a
series of weak predictors is trained sequentially, where each
stage emphasizes observations misclassified in the previous
iteration. The model updates the error weights so that
subsequent predictors gradually reduce the accumulated
deviations. After training, the regression output of all weak
learners is aggregated through a weighted combination, forming
a strong predictive learner.

CatBoost’s core is an oblivious decision tree (DT), a
symmetric full binary tree where identical splitting conditions
apply at each level. The parameters at the leaf nodes are
represented as floating-point vectors, enabling efficient
representation and easy extraction during prediction. The
gradient boosting formulation in CatBoost is expressed as

Eq. (8):
H, = argmin{Heh}%Z{zl(—G“(XI -Y) - H(XI))Z ®)

However, using the same training set repeatedly introduces
gradient bias, which results in prediction drift and overfitting.
This bias, represented as offset size Q, as Eq. (9):

Q= ) ©)

The Selfdom component addresses this limitation by
employing the IOOA, a heuristic optimization method inspired
by the dynamic behavior of ospreys while capturing prey. IOOA
incorporates randomness into the parameter search process,
enabling the model to escape local minima. In certain iterations,
a slightly inferior solution is intentionally accepted with a
defined probability, allowing the algorithm to jump towards a
globally optimal configuration. This mechanism significantly
enhances CatBoost’s learning ability and improves robustness
under noisy or diverse spectral inputs.

1
(N-1)C;

3) Improved Osprey Optimization Algorithm: The
Improved Osprey Optimization Algorithm refinesthe traditional
Osprey Optimization Algorithm by integrating a gradient-based
lifting strategy to determine optimal weight parameters more
efficiently. In this enhancement, the IOOA combines the
standard OOA framework with an objective function (OF),
enabling a more informed search process. By incorporating the
OF during initialization, the algorithm begins its optimization
from higher-quality solution points rather than randomly,
leading to faster convergence and superior outcomes [32].
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The osprey also known as the fish hawk, sea hawk or river
hawk is a predatory bird renowned for its precision hunting
abilities,adaptivenavigationandstrategic pursuit of prey. These
natural behaviors form the inspiration for the algorithm’s two
core computational phases: explorationand exploitation. During
exploration, the IOOA simulates the osprey’s wide-range
scanning of its environment to identify potential opportunities,
ensuring that the search space is thoroughly examined. In the
exploitation phase, the algorithm imitates the osprey’s focused
dive toward its target, refining the solution through local
adjustments and leveraging valuable information gained from
previous iterations. By merging the original OOA mechanism
with the gradient-oriented OF, the improved algorithm avoids
stagnation at local optima andadvances toward globally optimal
solutions, making it highly suitable for complex parameter
optimization tasks such as tuning the CatBoost model in this
study.

Step 1: Initialization stage

The proposed IOOA is a population-related technique that
provides solutions related to the search power of its population
memberships in the problem-solving area finished an iteration-
related procedure. Each osprey determines parameters for the
problem depending on its location in the search space and OF,
as it is a member of the IOOA population. Each osprey thus
symbolizes a possible vector-based mathematical solution to the
issue. Ospreys collectively comprise the IOOA population,
which is generated using a matrix linked to the following
equation. During the initialization phase of IOOA, the ospreys’
positions within the search space are generated randomly as
Eq. (10) and Eq. (11):

[pl] P = Py Pia]
p=|P1| =|PI'1 B P,,Mi (10)
., [Pvr o Py Puml .,

P, =LB +R,,.(UB,—LB),I =12,..N,] =12,..,M (11)

where, UB; and LB, is the upper bound and lower bound,
R;; israndomstatistics in theintermission[0,1], M is defined as
the count of problem parameters, N is the number of ospreys,
Py ; is the dimensionand P is the population matrix of osprey’s
locations.

Step 2: Oppositional Function (OF)

The oppositional function is widely adopted because it
effectively strengthens the intensification-diversification
balance, thereby improving the overall efficiency of the
optimization search. This process is used in two phases: first,
when the initial population is established and then, after the
evaluation and computation of the optimal agent, when a novel
population is generated. For each produced agent, an additional
one is made for the opposite dimension of the traditional search
agent in order to empower OF initialization as Eq. (12):

P£X=LP+UP_PS,X (12)

where, P, x is an original agent, P{y is a search agent for the
opposite parameter dimension X.
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Step 3: Fitness Evaluation

In the method, the fitness function is considered for
enhancing the training of the proposed classifier. The gradient
lifting formulation is presented as Eq. (13):

; 1 2
H,= argmln{Heh}72{=1(—G“(X1 —-Y)—HX))" (13)

Based on the MSE, the optimal weighting parameter is
selected with the consideration of the IOOA algorithm.

Step 4: Exploration phase (fish hunting and position
detection)

In the exploration phase, ospreys exhibit strong hunting
proficiency, using their remarkable visual acuity to locate fish
underwater and identify target positions within the search
region. After they have located the fish, they dive underwater to
attack and huntit. The design of the initial population upgrade
step in OOA is based on the simulation of this general osprey
feature. For every osprey in the OOA framework, the locations
of the remaining ospreys in the search space are determined
underwater fishes using an optimal objective function
parameter. The pair of fish is specified as follows for every
osprey as Eq. (14):

for = {P¢|Ke{12, .., N}Afix < fi3U{Ppesr}  (14)

where, fp, is the pair of fish locations aimed at the osprey
and P, is the optimal candidate explanation. The osprey finds
one of these fish at chance and then hits it. The updated position
of the corresponding osprey is computed using Eq. (15) to
Eq. (17), representing its movement toward the targeted fish.

PP =P, +R,,.(sfi;— 1)) (15)
P1 P1
P,_] ,LB] < P,J < UB]
PAl = LB],P,’,’]1 < LB, (16)
UB,, P}t > UB,
PP1 fPl < f
po=q1 I 17
I { P, Else a7

where, [;; is a random numbers from the pair {1,2}, R, ; is
the haphazard count in the interval [0,1], sf; ; is the dimension,
sfy is the chosen for osprey, P/} is the dimension, P! is the

new location of the osprey related on the initial phase. The
algorithm for pseudocode of the IOOA is given below:
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Combine original and opposite solutions, then select top N based on
fitness.
Step 3: Optimization Loop
» Foriterationt=1to T:
3.1 Update each weight vector:

W = Update_Position (W;,Best_W, t)
3.2 Evaluate fitness for updated weights:
Fit(W;"®") = MSE(CatBoost (W;"*"),y a1
3.3 Update Best W:
Best W =Weight vector with lowest MSE
Step 4: Return Best Solution
»  Output Best W as the optimal weight vector.
End

Algorithm: Pseudocode of the IOOA

Input: Dataset (Xtrain'YIrain)'Xval'Y\/al
CatBoost parameters (excluding weights)
Population size (N), Max iterations (T)

Output: Optimal weight vector (Wop()

Start:
Step 1: Initialize Population
»  Generate N random weight vectors (W;), one for each
individual.
» Evaluate fitness for each weight vector using:
Fit(W;) = MSE(CatBoost (W), Vya)
Step 2: Oppositional Learning
»  For each weight vector Wj:
W, = Oppositional _Function (W)

Step 5: Taking advantage of the fish to move it to a better
location

The osprey catches a fish and then moves it to the proper
spotto consumeit. The simulation ofthese broad osprey features
is the basis for the next phase of population upgrading in OOA.
The design of conveying the fish to the best possible location
contributes to the creation of minor changes in the osprey’s
position within the search location, which increases the OOA’s
manipulation power in local search then leads to conjunction to
optimal solutions close the solutionsthat are found. The updated
position of each osprey during this exploitation process is
computed as Eq. (18):

PP7= Py + PRuUBIE) 5 N =
12,.,MT=12,..,t (18

To ensure feasibility, boundary conditions are applied as
Eq. (19):

P,’,’IZ,LB] < P,’ff < UB]
Pff=4 LB, P/} <LB, (19)
UB,;,PF? > UB,

Finally, a greedy selection mechanism ensures that the fitter
solution is retained for subsequent iterations as Eq. (20):

_ PIPerIPZ < fI
b _{ P, Else (20)

where, t isthe totalcount ofrepetitions, T is described as the
iteration counter of the algorithm, R, ; is the random statistics in
the range [0,1], f;°? is the objective function parameter, P°? is
the dimension, PF?2 is the novel location of the osprey related on
the next phase of OOA. Based on this algorithm, the optimal
weight parameter is designated and sentto the classifier which
enhance the prediction of growth and provide efficient fertilizer
recommendation.

4) Proposed Selfdom Enhanced CatBoost Model: The
SECB algorithm integrates multispectral vegetation information
with an optimized boosting framework to perform precise paddy
growth monitoring and fertilizer recommendation. As shown in
Fig. 4, the process begins with preparing the training and testing
image datasets, from which key vegetation indices such as
NDVI, NDRE, GNDVI, RVI, and GRVI are computed. These
indices capture spectral variations related to crop vigor,

521 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

chlorophyll concentration, and canopy structure, providing
discriminative features for stage-wise growth assessment.
CatBoost serves as the core predictive engine, where multiple
decisiontreesaresequentially constructed. Eachtree learns from
the residual errors of its predecessors, allowing the model to
capture nonlinear interactions amongspectralindices. To further
improve learning efficiency, the Improved Osprey Optimization
Algorithm (IOOA) adjusts the internal weight parameters of the
boosting process. Through exploration (fish searching) and
exploitation (position refinement), IOOA identifies optimal
parameter configurations that enhance model accuracy and
stability. The optimized predictors collectively estimate early
and mature growth stages with high reliability. These stage
predictions are then interpreted to generate fertilizer
recommendations tailored to the crop’s current physiological
needs. By combining CatBoost’s structured boosting with
IO0OA’s adaptive parameter optimization, the SECB algorithm
provides a robust, data-driven framework suitable for precision
agriculture decision-making.

Selfdom Enhanced
CatBoost model

|

Training and Testing set of
Images

v

Vegetation Indices

_____________ 1 samphes
Treet Treet L Tree T
° ©
*® o° e® ,° 0% o°
®e °® e} °® ®e o®
e o e LN ® _©°
e o° e o° ° o®

Weight
Parameter] Weight
100A l parameter 1

Growth monitoring (Early growth and
s Mature stage) J

Fertilizer Recommendation

Fig. 4. Proposed Self Enhanced CatBoost Algorithm.

D. Simulation Setup

The SECB model was developed and executed entirely on a
cloud-based simulation environment to ensure efficient training
and scalability. Python served as the primary development
platform, utilizing Pandas and NumPy for data preprocessing
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and scikit-learn for computing evaluation metrics. Model
training and IOOA-based optimization were performed on
Google Colaboratory with GPU acceleration, enabling faster
computation of boosting iterations and optimized parameter
tuning. CatBoost was employed as the core classifier, while the
IOOA algorithm refined model weights to improve predictive
stability. This cloud-based setup ensured consistent
performance, rapid experimentation, and reliable validation of
the proposed paddy growth monitoring and fertilizer
recommendation framework.

The main simulation parameters adopted for training the
proposed SECB model are summarized in Table II. The
configuration includes 1000 boosting iterations to ensure stable
learning and convergence, with a tree depth of 8 to effectively
capture nonlinear relationshipsamong vegetation indices. A step
size 0f0.03 wasselected to balancelearningspeed and accuracy,
while an L2 regularization coefficient of 3 was applied to
prevent overfitting. Controlled randomness in tree splits was
maintained atlevel 1 to enhance generalization. To addressclass
imbalance, balancing weights of (1, 5) were used. A fixed
randomseed of42 ensuredreproducibility, and training progress
was reported every 100 iterations.

TABLE II. SIMULATION VARIABLES OF THE PROPOSED MODEL
Description Parameters
Number of boosting iterations (trees) 1000
Depth of the trees 8
Step size during optimization 0.03
L2 regularization coefficient for leaf values 3
Level of randomization in tree splits 1
Balancing weights for imbalanced classes [1, 5]
Seed for reproducibility 42
Print progress during training 100
Oppositional initialization for optimization FALSE

The overall runtime of the SECB-IOOA framework is
primarily influenced by the optimization stage, since IOOA
evaluates multiple candidate hyperparameter settings and each
evaluation requires training and validating the CatBoost model.
Vegetation-index computation is performed once during
preprocessing and contributes relatively minor overhead
compared to optimization. After training, inference remains
efficient because CatBoost prediction involves evaluating a
fixed set of symmetric decision trees, enabling fast tile-wise
prediction and supporting large-scale deployment under
practical monitoring conditions.

IV. RESULTS AND DISCUSSION

This section analyzes the performance of the proposed
Selfdom Enhanced CatBoost model for remote paddy growth
monitoring and fertilizer recommendation. The vegetation
indices GRVI, RVI, NDVI, GNDVI, and NDRE were extracted
from multispectral images and normalized during preprocessing
to ensure uniform scale across features. The IOOA was
incorporated duringtrainingto fine-tune CatBoost’s parameters,
enabling faster convergence and improved prediction capability.
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The effectiveness of the SECB model was measured using key
performance indicators such as recall, precision, accuracy, F1
score and specificity. These metrics, defined in Eq. (21) to
Eq. (25) and computed from false negatives (FN), false positives
(FP), true positives (TP), and true negatives (TN), collectively
validate the model’s ability to interpret spectral signatures,
classify paddy growth stages accurately, and generate precise
fertilizer recommendations.

TP+TN

Accuracy = m (21)
Recall = —= (22)
TP+FN
Precision = —— 23)
TP+FP
F1 — score = 2 « Prectistioanecall (24)
Precision+Recall
c e TN
Specificity = NP 25)

Recent studies emphasize the need for data-driven tools that
can support sustainable rice growth monitoring and fertilization
decisions. Compared with earlier approaches such as fuzzy
MCDM, SMART, AHP, and other knowledge-based fertilizer

NDRE
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recommendation techniques [4—6,20,23], the proposed SECB
framework integrates multispectral vegetation indices with
IOOA-optimized CatBoost learning to enhance classification
performance and improve the reliability of fertilizer-related
decision-making. This design aligns with current precision
agriculture trends by linking remote sensing—based crop
condition assessment with robust, automated model
optimization for practical field deployment.

To demonstrate its superiority, the SECB model was
compared against widely used baseline classifiers, including
Naive Bayes, RF, DT and LR under similar experimental
conditions. The SECB model consistently outperformed these
approachesdue to its optimized boosting structure and enhanced
parameter tuning provided by the IOOA. The main simulation
parameters used for model training are listed in Table II, which
includes the numberofboostingiterations (1000), tree depth (8),
step size (0.03), L2 regularization coefficient (3) and balancing
weights for handling class imbalances. The results validate that
the SECB model is an efficient and reliable framework for
paddy growth monitoring and fertilizer recommendation in
precision agriculture settings.

Fig. 5. Vegetation Index: a) NDVI, b) GNDVI, c¢) NDRE, d) RVI, and ¢) GRVI.
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The temporal behavior of vegetation indices provides
comprehensive insight into the paddy crop lifecycle across
multiple seasons. Fig. 5 summarizes the evolution of crop vigor
and canopy conditions from January 2016 to January 2020,
enabling continuous monitoring of phenological transitions. In
Fig. 5(a), NDVI captures overall canopy greenness and density,
with peaks corresponding to active vegetative growth and sharp
drops reflecting post-harvest or land preparation periods. A
notablerise inearly 2018 indicates particularly favorable growth
conditions, which may be linked to improved irrigation or
nutrientavailability. Fig. 5(b) shows GNDVItrends, which are
generally consistent with NDVI but offer increased sensitivity
to chlorophyll-related variation in the green band. Fig. 5(c)
presents NDRE dynamics, highlighting chlorophyll activity
using the red-edge region and providing better discrimination of
subtle stress during certain stages. Fig. 5(d) illustrates RVI
variations, where higher ratios typically correspond to dense
canopies, while lower values align with sparse vegetation or
non-growing phases. Fig. 5(e) depicts GRVI behavior, which
reflectsshiftsbetween germination, vegetative growth, and post-
harvest periods and provides complementary information on
canopy color dynamics.

Overall, the observed NDVI, GNDVI, NDRE, RVI, and
GRVI trajectories (2016—-2020)are consistent with priorsatellite
studies that use multispectral/hyperspectral indices to monitor
paddy development, biomass, and yield. The recurring seasonal
rises during active growth and declines during post-harvest or
stress periods support the use of VI time-series patterns as
reliableindicatorsofricephenology. Thislong-term consistency
strengthens the rationale for using these indices as inputs to the
SECB framework for robust monitoring and fertilizer decision
support across multiple seasons.

1 T T
0.95
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Accuracy

08

Training Accuracy
Validation Accuracy
I I

. . . . I
0 10 20 30 40 50 60 70 80 90 100
Epochs

Fig. 6. Accuracy plot of the proposed model.

Fig. 6 depicts the validation and training accuracy trends of
the SECB model over 100 epochs. Both curves demonstrate a
consistent upward trajectory, indicating that the model learns
effectively from the input vegetation indices and progressively
improves its predictive capability. At the initial stages, the
model exhibits moderate accuracy values, reflecting the early
learning phase where parameters are still being optimized. As
epochs increase, the training accuracy steadily rises and
converges close to 0.98, illustrating strong fitting of the model
to the training data. The validation accuracy follows a similar
pattern, closely trailing the training curve with minor
oscillations around epochs 40—80. These fluctuations are due to
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the dynamic nature of unseen data during validation and the
model’s effort to generalize across different crop growth
scenarios. Importantly, the validation accuracy stabilizes near
the training accuracy towards the end of the training period,
confirming that the SECB model does not encounter overfitting
and maintains excellent generalization capabilities. The
accuracy behavior verifies the robustness of the proposed SECB
architecture. The close alignment between the two curves
highlights the model’s stability, efficient learning mechanism
and strong capability in predicting paddy growth stages and
fertilizer needs with high reliability.
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Fig. 7. ROC plot of the proposed model.

Fig. 7 illustrates the Receiver Operating Characteristic
(ROC) curve for the proposed SECB model, which evaluates the
model’s discriminative capability in classifying paddy growth
conditions based on vegetation indices. The curve demonstrates
a steep rise toward the upper-left section ofthe graph, indicating
that the classifier identifies true positives effectively while
generating minimal false positives. This behavior reflects the
model’s ability to correctly identify healthy or nutrient-deficient
crop conditions without generating excessive false alarms. The
calculated AreaUnderthe Curve (AUC) value 0f0.946 confirms
excellent classification power. An AUC close to 1 indicates that
the model makes highly reliable decisions with minimal
misclassification, outperforming typical threshold-based or non-
boosting algorithms. The smooth progression and high
asymptotic value of the ROC curve show that the SECB model
retains strong generalization ability even when tested on unseen
datasets. This robust performance underscores the effectiveness
of integrating the Improved Osprey Optimization Algorithm
with CatBoost for precision agricultural monitoring, enabling
accurate fertilizer recommendation and timely intervention to
enhance crop productivity.

Fig. 8 illustrates the ROC curves of different ML models
used for paddy growth monitoring. The curves showhow well
each model distinguishes between growth stages based on
vegetation index patterns. The proposed Selfdom Enhanced
CatBoost (SECB) model clearly outperforms all the baseline
techniques. The blue curve, representing the SECB model,
shows the highest AUC value of 0.946, indicating excellent
classification capability and very low misclassification. This
means the model consistently made correct predictions even
when the input conditions were complex or varied across
seasons. The DT [33] (AUC = 0.926) and RF [34] (AUC =
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0.923) also performed well but could not match the SECB
model’s precision. Logistic Regression (LR) [35] (AUC =
0.914) and Naive Bayes [36] (AUC = 0.911) delivered lower
discrimination power because they struggled to capture the
nonlinear behavior of paddy crop growth. The ROC comparison
confirms that adding the IOOA to CatBoost significantly
strengthened its learning ability. This enhancement enabled the
SECB model to make more confident decisions, making it the
most reliable approach for crop growth analysis and fertilizer
recommendation in precision agriculture.
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Fig.9. Comparison of accuracy.

Fig. 9 compares the accuracy of five ML models, such as
Naive Bayes, DT, LR, RF and the proposed SECB method using
different proportions of training data (20%, 40%, 60% and
80%). At 20% training data, all models performed modestly;
however, the SECB method already demonstrated a clear
advantage,achievingan accuracy ofaround0.75, whereas Naive
Bayes lagged significantly with an accuracy closeto 0.55. DT,
LR and RF clustered around mid-range values, indicating
limited leamning capability with sparse data. When the training
data increased to 40% and 60%, all models showed gradual
improvement, but the SECB method continued to maintain a
noticeable performance lead. This highlights its superior ability
to extract meaningful patterns even from partially available
vegetation index data. The most significant performance gap
appeared at 80% training data, where the SECB method reached
an impressive accuracy of nearly 0.95. In contrast, RF achieved
about 0.88, DT stabilized around 0.74 and LR settled near 0.65,
while Naive Bayes improved only marginally to approximately
0.57. The comparison confirms thatthe proposed SECB model
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consistently outperformed every traditional algorithm across all
training partitions. The more data available to the model, the
more pronounced its superiority became, proving its strong
generalization ability and robust performance for paddy growth
monitoring and fertilizer recommendation.

10 0
Training Data (%)

Fig. 10. Comparison of precision.

Fig. 10 illustrates the precision comparison of five models:
Naive Bayes, DT, LR, RF, and the proposed method across
varying proportions of training data. At 20% training data, the
proposed method already achieves the highest precision of
approximately 0.76, outperforming RF and DT, while Naive
Bayes records the lowest valuenear 0.60. As the training data
increases to 40% and 60%, all models show gradual
improvement; however, the proposed method consistently
maintains a noticeable lead, reflecting its superior capability to
distinguish relevant patterns. At 80%, the proposed method
attains a precision close to 0.91, higher than RF at 0.87 and
considerably above Naive Bayes at 0.67. These results clearly
demonstrate the enhanced decision reliability of the proposed
SECB model.

20 10 0 80
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Fig. 11. Comparison of specificity.

Fig. 11 presents the specificity comparison among Naive
Bayes, DT, LR, RF and the proposed method at different
training data proportions. At 20% training data, the proposed
method already demonstratesa strongspecificity of around 0.78,
outperforming all baseline models, where Naive Bayes, DT and
LR remainbelow0.65 and RFreaches only 0.69. As the training
percentage increases, all methods show gradual improvement;
however, the proposed method continues to lead consistently.
When trained with 80% of the data, it attains an impressive
specificity of approximately 0.96, significantly exceeding the
other models. This superior performance highlights its
robustness in accurately identifying negative cases and reducing
false positives.
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Training Data (%)

Fig. 12. Comparison of F1 score.

Fig. 12 compares the F1-score performance of different
models Naive Bayes, DT, LR, RF and the proposed model
across increasing proportions of training data. At 20% training
data, the proposed method already records an impressive F1-
score of around 0.78, surpassing all other models, with Naive
Bayes showing the weakest value near 0.58. As the training data
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increases, all models improve gradually; however, the margin of
superiority for the Proposed Method becomes more evident.
With 80% training data, it achieves an F1-score above 0.93,
outperforming RF and DT. This consistent dominance
highlights the effectiveness of the proposed approach in
maintaining a balanced precision-recall trade-off.

To further validate the robustness of the proposed SECB
framework, a comparative evaluation was performed against
conceptually similar metaheuristic-optimized boosting models,
including Genetic Algorithm-tuned XGBoost (GA-XGBoost),
Particle Swarm Optimization-based LightGBM (PSO-
LightGBM), Grey Wolf Optimizer-enhanced CatBoost (GWO-
CatBoost), and Honey Badger Algorithm-optimized XGBoost
(HBA-XGBoost). These variants were implemented following
optimization principles established in prior metaheuristic-
boosting studies, where GA [37], PSO [38], GWO [39], and
HBA [40] have been used to enhance model convergence and
generalization.

TABLE III. COMPARATIVE PERFORMANCE OF METAHEURISTIC-OPTIMIZED BOOSTING MODELS
Model Accuracy Precision Recall F1-Score Specificity AUC
GA-XGBoost 0.928 0915 0.904 0.909 0.932 0.938
PSO-LightGBM 0.931 0918 0912 0915 0.936 0.941
GWO-CatBoost 0.935 0.920 0.918 0.919 0.940 0.943
HBA-XGBoost 0.939 0.926 0.922 0.924 0.944 0.945
SECB (Proposed) 0.951 0.934 0.930 0.932 0.952 0.946

Table Il summarizes the comparative performance of these
optimization-guided boosting strategies. The SECB model
achieves the highest performance across all metrics, surpassing
all other metaheuristic-based approaches. The observed
improvement in accuracy (0.951) and AUC (0.946) highlights
the effectiveness of integrating the IOOA with CatBoost. The
Selfdom mechanism further enhances the exploration—
exploitation balance through oppositional initialization and
adaptive acceptance, allowing SECB to avoid premature
convergence commonly observed in GA and PSO-based
models.

These findings confirm that SECB achieves superior
learning stability and predictive reliability for spectral-index-
driven paddy monitoring. Moreover, its strong performance
generalizes across diverse environmental conditions,
demonstrating potential for large-scale implementation in real-
world precision agriculture systems.

V. CONCLUSION

This research introduced the Selfdom Enhanced CatBoost
model as an effective solution for remote paddy growth
monitoring and fertilizer recommendation, addressing key
limitations of conventional agricultural practices. By integrating
multispectral UAV imagery with vegetation indices such as
NDRE, GNDVI, RVI, GRVI and NDVI, the proposed model
enabled a comprehensive evaluation of crop health and
developmental stages. The incorporation of the IOOA further
enhanced the CatBoost framework by optimizing feature
weights and reducing training errors, resulting in more reliable
predictions. Comparative analysis against widely used ML

models, including LR, DT, RF, and Naive Bayes, demonstrated
that the SECB model consistently delivered superior
performance across crucial metrics. Its improved accuracy in
identifying growth stages and recommending precise fertilizer
inputs highlights its potential to support sustainable and data-
driven agricultural management. The findings of this study
reaffirm the growing importance of integrating remote sensing,
machine learning, and optimization techniques for modem
precision farming. By minimizing resource wastage and
improving crop productivity, the SECB model offers a scalable
and intelligent decision-supporttool that can significantly assist
farmers and policymakers. Future work may extend this
framework to other crop varieties and integrate real-time field
data fromIoT sensors, enabling more dynamic and autonomous
agricultural decision-making systems. Additionally, exploring
edge computing and cloud-based deployment could further
enhance its usability in large-scale smart farming environments.
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