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Abstract—Precision agriculture enables data-driven crop 

monitoring and improved resource utilization. Paddy cultivation 

requires continuous surveillance and timely fertilizer application 

because it is sensitive to soil nutrient dynamics, water availability, 

and climatic conditions. Conventional practices such as manual 

field inspection and heuristic fertilizer advisory methods are often 

labor-intensive and subjective, which can reduce decision 

consistency and contribute to yield variability. To address these 

limitations, this study proposes a Selfdom Enhanced CatBoost 

(SECB) framework for remote paddy growth-stage monitoring 

and fertilizer recommendation. Multispectral remote sensing data 

collected over multiple seasons are used to compute vegetation 

indices, including NDVI, GNDVI, RVI, GRVI, and NDRE, to 

characterize crop vigor and chlorophyll-related variation across 

growth stages. The proposed SECB improves CatBoost by 

integrating an Improved Osprey Optimization Algorithm (IOOA) 

to tune key model parameters, aiming to enhance feature 

interaction learning and reduce overfitting. In addition, 

oppositional function-based initialization is applied to improve the 

exploration capability of IOOA and accelerate convergence. 

Experimental results show that SECB achieves improved 

performance over baseline classifiers in terms of accuracy, 

precision, F1-score, specificity, and AUC. The proposed approach 

provides reliable growth-stage identification and supports 

fertilizer recommendations to promote efficient nutrient usage 

and improved productivity. Overall, the framework offers an 

automated and scalable decision-support strategy for paddy crop 

management. 
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I. INTRODUCTION 

Paddy is one of the most important cereal crops sustaining 
the global population, particularly across Asia, where it forms a 
staple diet for millions [1]. India has the largest area under rice 
cultivation (approx. 42.5 million hectares); however, national 
productivity remains lower than that of several leading rice-
producing countries. Although India produces about 152.6 
million tons of rice annually, the average yield per hectare is 
notably lower than China [2]. This productivity gap is 
influenced by climatic vulnerability and regional differences in 
cultivation practices, including irrigation methods, nutrient 

management, and tillage operations [3]. Moreover, yield 
heterogeneity is evident across regions, with approximately 348 
districts reporting production below the national average, which 
constrains aggregate output. 

Kerala, despite being a traditional rice-growing state, 
currently cultivates rice on about 0.197 million hectares, which 
accounts for approximately 7.6% of its cultivated land. 
Nevertheless, rice constitutes a major share of the state’s food-
crop acreage, highlighting its continued regional relevance. 
Among the key agronomic determinants, fertilizer management 
plays a central role in rice growth and yield formation [4]. In 
practice, farmers often rely on experiential knowledge to 
schedule fertilization, which increases the risk of nutrient 
mismanagement [5]. Over-application can increase pest 
incidence and lodging, reduce grain weight, and cause 
environmental impacts such as soil degradation and nutrient 
runoff into water bodies [6]. 

In this context, precision agriculture provides a practical 
pathway to optimize input use while improving productivity. 
Recent advances in satellite imagery, Unmanned Aerial 
Vehicles (UAVs), multispectral sensors, and cloud-based 
analytics have improved agricultural monitoring and decision-
making [7, 8]. Remote sensing platforms capture canopy 
reflectance and spectral indicators of vegetation health, which 
can be processed to generate location-specific 
recommendations. 

Crop growth models have been used to simulate plant 
responses to environmental conditions using soil, weather, and 
physiological inputs. However, large-scale deployment remains 
challenging due to manual data requirements and complex 
variable interactions. Consequently, recent work increasingly 
adopts machine learning (ML) methods to capture nonlinear 
crop behavior and improve growth and nutrient prediction 
accuracy [9]. Techniques such as k-Nearest Neighbors (kNN), 
Random Forest (RF), Linear Regression (LR), and CatBoost 
have shown potential for estimating rice growth stages and 
nutrient requirements [10, 11]. Based on these advances, this 
study proposes a Selfdom Enhanced CatBoost (SECB) model 
that integrates remote sensing–derived vegetation indices with 
an optimization strategy to support growth-stage monitoring and 
fertilizer recommendation. 
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Although vegetation indices and boosted-tree models have 
been used for crop monitoring, many existing studies address 
growth-stage assessment and fertilizer recommendation as 
separate tasks, and often rely on manually tuned learners or site-
specific calibration. The proposed SECB framework is distinct 
in that it couples multi-season multispectral vegetation-index 
dynamics with an optimization-guided CatBoost learning 
strategy, enabling joint growth-stage monitoring and fertilizer 
recommendation within a single predictive pipeline. In 
particular, IOOA is employed to automatically tune key 
CatBoost hyperparameters to aim for improved robustness 
under seasonal variability, thereby reducing dependence on 
trial-and-error parameter selection. This optimization-driven 
design differentiates SECB from conventional CatBoost or 
index-threshold approaches and provides a practical decision-
support mechanism for precision paddy management. The main 
contributions of the research are presented as follows: 

• To propose a unified SECB pipeline that performs both 
paddy growth-stage classification and fertilizer 
recommendation using multispectral vegetation indices 
computed from remote sensing imagery, thereby linking 
crop-condition monitoring with actionable nutrient 
decisions in a single workflow. 

• To integrate IOOA as a hyperparameter optimization 
module for CatBoost, improving convergence stability 
and reducing manual tuning under multi-season spectral 
variability, which enhances model reliability and 
supports scalable deployment across changing field 
conditions. 

• To validate the proposed SECB model against 
conventional ML baselines using accuracy, precision, 
F1-score, specificity, and AUC, so that performance 
improvements translate into fewer false fertilizer alerts 
and fewer missed nutrient-deficiency cases, promoting 
efficient input use and sustainable paddy management. 

The rest of this study is structured as follows: Section II 
presents a concise review of recent studies related to paddy 
growth monitoring and fertilizer recommendation, while 
Section III outlines the methodologies used for paddy growth 
monitoring and fertilizer recommendation. Section IV reports 
the results, and Section V presents the conclusion of the study 
along with possible directions for future research. 

II. RELATED WORKS 

Sah et al. [12] proposed a UAV-based vegetation index 
framework to monitor paddy development and fertilizer effects 
across two planting seasons in Malaysia. High-resolution 
multispectral UAV imagery was processed (Agisoft Metashape) 
to derive NDVI, BNDVI, and NDRE at key stages (tillering, 
flowering, and ripening). NDRE achieved the strongest yield 
relationship (R2 = 0.842), while NDVI and BNDVI showed high 
similarity and reduced sensitivity in dense canopies, indicating 
saturation effects in mature fields. The authors also reported that 
plot size alone did not guarantee higher yield because 
environmental factors and fertilizer management had a 
substantial influence. However, the framework relied heavily on 
UAV data and site-specific conditions, limiting transferability 
without broader regional calibration. 

Zhao et al. [13] incorporated a conventional crop growth 
metric, Relative Growth Rate (RGR), into remote sensing–based 
rice yield estimation. The study used satellite-derived variables 
(RGR, NDVI, EVI, SAVI, NDWI, DVI, RVI, GPP, and LAI) 
together with climatic and soil features, and evaluated LASSO, 
Random Forest, and XGBoost using five-fold cross-validation. 
The RGR-integrated model reported the best performance (R2 ≈ 
0.78; RMSE ≈ 719.63 kg/ha), and demonstrated spatial 
adaptability as well as within-season predictive capability up to 
16 days before maturity. A key limitation was reduced accuracy 
during extreme climatic years, suggesting sensitivity to unusual 
environmental conditions. 

Chiranjit Singha et al. [14] developed a Google Earth 
Engine–based machine learning workflow for monitoring 
rainfed rice growth using Sentinel-1 SAR data, addressing the 
difficulty of optical monitoring under persistent cloud cover. 
The approach was validated on 214 farm plots in Hooghly, West 
Bengal, India, where Random Forest produced strong biomass 
estimation performance (R2 = 0.87). The analysis indicated that 
heading-stage NDVI and SAR backscatter were strongly 
associated, supporting SAR suitability for rainfed rice 
monitoring. Fubing Liao et al. [15] proposed a hybrid deep 
learning model combining CNN and LSTM with attention to 
diagnose rice nutritional status at the early panicle initiation 
stage, using sequential UAV imagery collected over two years. 
These works highlight that SAR and UAV time-series data can 
enable robust monitoring, yet require stable data acquisition 
pipelines and careful generalization assessment across seasons 
and sites. 

Guo et al. [16] introduced a rice paddy classification 
framework using multitemporal compact polarimetric (CP) C-
band SAR data and machine learning. Seven RADARSAT-2 
acquisitions were used to simulate CP observations, and 22 
polarimetric features were extracted and enhanced through 
temporal-variation analysis. Across multiple classifiers, 
incorporating temporal dynamics improved mapping 
performance, and overall accuracies exceeded 95%, with 
Random Forest and SVM providing the best results. Wang et al. 
[17] further demonstrated high-resolution paddy rice mapping in 
Northeast China by combining automatically generated training 
samples, time-series Sentinel-2 features, and a deep neural 
network classifier. Using 10 m surface reflectance bands and 
vegetation-index composites across major phenological stages, 
the model achieved high annual mapping accuracy and 
improved discrimination between rice, wetlands, and drylands, 
while also detecting small paddy patches and policy-driven area 
reduction. Nevertheless, uneven image quality, sparse 
observations, and uncertainties inherited from reference land-
cover products were reported as constraints on cross-region 
transferability. 

Li et al. [18] proposed a hyperspectral satellite–based rice 
growth monitoring approach using a 3D CNN to jointly learn 
spatial–temporal–spectral representations from multi-temporal 
image cubes. A temporal convolution module, followed by 2D 
convolutions and fully connected layers, was used for yield 
prediction, and the method exhibited improved accuracy and 
stability compared with deep learning baselines. However, 
heterogeneous cultivation patterns and complex terrain 
conditions remained challenging for robust deployment. 
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Sudarsan Biswal et al. [19] examined UAV multispectral 
imagery for above-ground biomass (AGB) prediction by 
combining spectral vegetation indices with textural descriptors. 
The study found that NIR-based indices outperformed color-
only indices, and normalized difference texture indices (NDTIs) 
derived from NIR, red-edge, and blue bands consistently 
improved performance compared with GLCM textures. Random 
Forest yielded the best predictions when vegetation indices were 
fused with NDTIs, emphasizing the value of multi-feature fusion 
for rice biomass estimation. 

Parijata Majumdar et al. [20] addressed irrigation water 
requirement (IWR) prediction by selecting high-scoring 
environmental features and using ensemble learning strategies. 
The work highlighted evapotranspiration as a key predictor 
across growth stages and employed stacked learning with tuned 
models to improve predictive accuracy. Wang et al. [21] 
investigated an automatic fertilization system to evaluate 
fertilizer distribution uniformity under flooded and non-flooded 
conditions. Using the Christiansen Uniformity Coefficient (CU), 
the non-flooded automatic fertilization setting achieved the 
highest uniformity and outperformed farmer-applied manual 
fertilization, although the method’s effectiveness depended 
strongly on specific field-water conditions and may require 
adaptation for different agro-ecological settings. 

Boonma et al. [22] assessed rice growth stage and yield 
estimation using Sentinel-2 MSI and Sentinel-1 SAR data within 
Google Earth Engine, supported by field surveys and stratified 
sample points. The study reported moderate-to-strong 
agreement for growth-stage modeling (e.g., R2 up to 0.67 with 
Kappa 0.80), and emphasized the practical role of SAR during 
rainy seasons when optical images are degraded by cloud 
interference. However, limited usable Sentinel-2 scenes and 
seasonal sensitivity constrained generalization and reduced the 
benefits of optical–SAR fusion. Xiaolong Chen et al. [23] 
developed a multi-source nutrient monitoring and precision 
fertilization system integrating UAV multispectral imagery, 
thermal sensing, ground sensors, and GIS visualization. Across 
multiple agro-ecological sites, the system reduced nutrient 
estimation errors and lowered fertilizer usage while increasing 
yield, but scalability was limited by UAV endurance, data 
volume, and computational demands. 

Carracelas et al. [24] evaluated vegetation indices for 
monitoring nitrogen uptake in rice under continuous flooding 
and alternate wetting and drying irrigation schemes. The SCCCI 
index showed the strongest predictive relationship with nitrogen 
uptake (R2 up to 0.84 under continuous flooding and 0.71 under 
alternate wetting and drying), while also demonstrating that 
surface water conditions can alter reflectance behavior and 
index reliability. This irrigation-dependent variability limits 
direct transfer of models between water-management regimes 
and motivates broader multi-site validation. 

Bingnan Chen et al. [25] proposed a UAV-based nutrient 
deficiency classification framework for ratoon rice by fusing 
vegetation indices with deep image features extracted from 
visible-band imagery. Classifiers such as XGBoost, SVM, and 
Random Forest benefited from feature fusion, and Random 
Forest achieved the best nutrient classification results, though 
the experiments were restricted to a single ecological site and 

limited varieties. Herath et al. [26] similarly used UAV 
multispectral imagery for paddy decision support, reporting 
strong NDVI–yield correlations and effective weed detection 
using vegetation-index formulations at specific days after 
sowing. However, frequent UAV flights, image-quality 
dependence, and operational costs remained practical 
constraints for large-scale adoption. 

Huang et al. [27] presented an integrated soil analysis 
framework combining crop identification, irrigation prediction, 
and fertilizer recommendation using satellite imagery and sensor 
data, where machine learning models achieved high fertilizer 
recommendation accuracy. Rahman et al. [28] proposed an 
AIoT-based hydroponic recommendation and monitoring 
system in which Random Forest delivered strong performance, 
although automation and cost constraints limited full-scale 
deployment. Collectively, these studies confirm that remote 
sensing and ML/DL methods can improve paddy monitoring 
and input management, but generalization across regions, 
seasonal variability, data availability (cloud cover, UAV 
logistics), and scalability remain open challenges that motivate 
robust, optimized learning frameworks for practical fertilizer 
recommendation. 

A. Research Gap 

Prior studies have used UAV-based vegetation indices, 
spectral features, and ML models for paddy growth assessment, 
nutrient estimation, biomass prediction, and weed detection, but 
most treat these problems separately [12, 14, 19]. Existing 
approaches often emphasize either crop monitoring or fertilizer 
optimization, rather than combining both in a unified predictive 
pipeline [13, 23]. Many methods rely on conventional models or 
manually interpreted indices, limiting their ability to learn 
nonlinear interactions between spectral signatures, crop 
physiology, and fertilizer response across diverse agro-
ecological conditions [12, 21]. Moreover, optimization 
strategies and ensemble-based enhancements remain limited in 
paddy-specific research [19]. Therefore, an automated, 
optimization-driven framework that simultaneously monitors 
paddy growth and provides accurate fertilizer recommendations 
from multispectral dynamics is still lacking. 

III. MATERIALS AND METHODS 

The proposed methodology integrates a Selfdom Enhanced 
CatBoost Model with meta-heuristic optimization for remote 
paddy growth monitoring and fertilizer recommendation in 
precision agriculture, as visualized in Fig. 1. 

The process begins with the acquisition of paddy field 
images collected between 2016 and 2020. These images 
undergo preprocessing and are then used to compute multiple 
vegetation indices, including NDVI, NDRE, GNDVI, RVI, and 
GRVI. These indices serve as reliable indicators of plant health, 
nutrient availability, and growth progress. Once the vegetation 
indices are generated, the Improved Osprey Optimization 
Algorithm is utilized to enhance the model’s learning capability 
by optimizing key CatBoost parameters. This integration results 
in the Selfdom Enhanced CatBoost (SECB) model, designed to 
efficiently process large-scale remote sensing data and yield 
highly accurate predictions. The SECB model is trained and 
tested using the extracted vegetation features, enabling it to 
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classify growth stages and identify nutrient deficiencies more 
effectively than conventional algorithms. Based on the predicted 
growth stage and detected nutrient requirement, the system 
provides precise fertilizer recommendations. This automated 
workflow reduces manual effort, improves decision-making 
accuracy and supports sustainable rice cultivation by ensuring 
that fertilizers are applied only when necessary.  

 
Fig. 1. Block schematic representation of the proposed model. 

A. Dataset Description 

The dataset used in this study was sourced from Kaggle and 
served as the basis for developing and validating the paddy 
growth monitoring and fertilizer recommendation system [29]. 
It comprised a comprehensive collection of multispectral 
satellite images recorded over five consecutive years, from 2016 
to 2020, capturing seasonal and annual variations in paddy 
cultivation. Each year’s directory contained 3328 image tiles, 
and every tile represented a 48×48-pixel multispectral snapshot 
of a specific agricultural location. These tiles formed a time-
series dataset in which each subfolder recorded multiple satellite 
passes over the same geographical tile on different dates. For 
example, a file such as lombardia2/data2016/1/20160110.tif 
corresponds to a GeoTIFF multispectral image captured on 
January 10, 2016, for tile number 1 in the Lombardia2 region. 
Similar file structures were maintained across all years, ensuring 
uniformity and facilitating temporal crop growth analysis. Fig. 
2 and Fig. 3 present the sample input images utilized during the 
training and testing phases, illustrating the spectral variations in 
the satellite images. The multispectral bands and the derived 
vegetation indices used in this study (NDVI, GNDVI, NDRE, 
RVI, and GRVI) are directly linked to canopy vigor and 
chlorophyll-related activity, which are widely used as proxy 
indicators of nutrient status in crops. In particular, nutrient stress 
typically reduces chlorophyll concentration and modifies 
canopy structure, which alters reflectance responses in the red, 
near-infrared, and red-edge bands. Therefore, the dataset 
provides meaningful spectral cues for learning patterns 
associated with nutrient requirement and for supporting fertilizer 
recommendation based on multispectral dynamics across 
growth stages. The proposed model was trained using this entire 

dataset to ensure robust learning and improve predictive 
accuracy. During evaluation, real-time drone images were 
additionally incorporated to test the model’s performance under 
practical field conditions. This combination of historical satellite 
data and on-site imagery enabled the model to generate reliable 
growth insights and fertilizer recommendations suited for real-
world paddy cultivation practices. 

 

 

Fig. 2. Sample training images. 

 
Fig. 3. Sample testing images. 
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B. Vegetation Indices 

To generate the vegetation indices required for paddy growth 
analysis, multispectral images captured were processed to 
extract reflectance values from specific spectral bands. These 
vegetation indices NDVI, NDRE, GNDVI, RVI and GRVI were 
selected because they provide spectrally non-redundant and 
complementary information about plant biochemical and 
structural properties. Each index exploits the interaction of light 
with different leaf pigments and cellular structures. The visible 
bands (green, red, and red-edge) are strongly influenced by 
pigments such as chlorophyll, carotenoids, and xanthophylls, 
whereas the near-infrared (NIR) band is largely controlled by 
internal leaf architecture, including the palisade and spongy 
mesophyll layers. The red-edge band captures the rapid 
transition between visible absorption and near-infrared 
reflection, making it sensitive to chlorophyll concentration and 
early vegetation stress. These characteristics enable the selected 
indices to represent different aspects of crop physiology, 
allowing accurate assessment of plant health, growth stage and 

fertilizer response. The vegetation indices were calculated using 
their respective mathematical formulations, as illustrated in 
Eq. (1) to Eq. (5):   

                                   𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
                                 (1) 

                              𝑁𝐷𝑅𝐸 =
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒
                                   (2) 

                             𝐺𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑔𝑟𝑒𝑒𝑛

𝜌𝑛𝑖𝑟+𝜌𝑔𝑟𝑒𝑒𝑛
                               (3) 

                                  𝑅𝑉𝐼 =
𝜌𝑛𝑖𝑟

𝜌𝑟𝑒
                                     (4) 

                               𝐺𝑅𝑉𝐼 =
𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑟𝑒𝑑

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑟𝑒𝑑
                                (5) 

where, 𝜌𝑛𝑖𝑟 , 𝜌𝑟𝑒 , 𝜌𝑔𝑟𝑒𝑒𝑛 , and 𝜌𝑟𝑒𝑑  denote the surface 

reflectance values in the near-infrared, red-edge, green, and red 
spectral bands, respectively. Sample vegetation index values 
with identified growth stages and fertilizer recommendations are 
summarized in Table I. 

TABLE I.  SAMPLE VEGETATION INDEX VALUES WITH IDENTIFIED GROWTH STAGES AND FERTILIZER RECOMMENDATIONS 

NDVI NDRE GNDVI RVI GRVI Growth Stage Fertilizer Recommendation 

0.345 0.210 0.320 1.245 0.112 Early Growth Recommended 

0.402 0.180 0.410 1.312 0.087 Mature Stage Not Needed 

0.120 -0.005 0.075 0.987 -0.015 Early Growth Recommended 

0.275 0.155 0.290 1.089 0.065 Mature Stage Recommended 

0.015 -0.015 -0.005 0.876 -0.022 Early Growth Recommended 

0.500 0.245 0.380 1.400 0.123 Mature Stage Not Needed 

0.065 -0.020 0.025 0.912 -0.010 Mature Stage Not Needed 

0.330 0.190 0.300 1.200 0.098 Mature Stage Not Needed 

0.405 0.220 0.410 1.350 0.130 Early Growth Recommended 

0.290 0.145 0.275 1.110 0.055 Early Growth Recommended 

 

C. Model Development 

The model development phase focused on constructing the 
Selfdom Enhanced CatBoost (SECB) framework for remote 
paddy growth monitoring and fertilizer recommendation. 
Vegetation indices derived from multispectral imagery were 
used as input features and the CatBoost algorithm was enhanced 
using the Improved Osprey Optimization Algorithm to refine 
model parameters. This hybrid integration strengthened 
predictive accuracy, reduced overfitting and enabled precise 
identification of growth stages and fertilizer requirements. 

1) CatBoost: CatBoost is a gradient boosting algorithm 

developed to provide highly accurate predictions while 

minimizing the preprocessing burden commonly associated with 

machine learning models [30]. It is particularly effective for 

datasets containing categorical variables, converting them into 

numerical representations internally using ordered statistics 

instead of one-hot encoding. This approach prevents target 

leakage and reduces prediction bias. CatBoost builds an 

ensemble of symmetric (oblivious) decision trees, where each 

tree corrects the prediction errors of the previous one through 

gradient boosting. The general prediction function of CatBoost 

is expressed as Eq. (6): 

                  𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂 ⋅ ℎ𝑚(𝑥)                        () 

where, 𝐹𝑚(𝑥) is the updated model at iteration 𝑚, 𝜂 is the 
learning rate and ℎ𝑚(𝑥) represents the newly added decision 
tree trained on the gradients of the loss function. CatBoost 
minimizes the loss function 𝐿 by iteratively updating the model 
as Eq. (7): 

            𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)− 𝜂 ⋅
∂𝐿

∂𝐹𝑚−1(𝑥)
                            () 

CatBoost also introduces ordered boosting, which processes 
samples sequentially to avoid artificial correlations and 
overfitting. Its automatic handling of missing values, fast 
training and superior generalization make it highly competitive 
compared to XGBoost and LightGBM, especially for tabular 
agricultural datasets where precision and reliability are essential. 

2) Selfdom Enhanced CatBoost Model: The objective of 

this study is to establish a reliable model capable of monitoring 

paddy growth and recommending the required fertilizer amount 

using remote sensing data. Since the relationship between crop 
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reflectance and physiological growth variables is highly 

nonlinear, ML becomes a natural choice to approximate this 

mapping using suitable training datasets. Among various 

ensemble algorithms, CatBoost stands out due to its ability to 

convert multiple weak learners into a robust predictive model 

[31]. Unlike conventional algorithms that rely heavily on 

extensive preprocessing and suffer from feature sensitivity, 

CatBoost introduces ordered boosting and structured trees that 

minimize overfitting while improving generalization. The 

proposed SECB model builds upon this foundation. It 

incorporates the IOOA to optimize CatBoost’s parameters more 

efficiently. By iteratively adjusting these parameters, the IOOA 

prevents the model from settling on suboptimal solutions and 

offers a better balance between bias and variance. In boosting, a 

series of weak predictors is trained sequentially, where each 

stage emphasizes observations misclassified in the previous 

iteration. The model updates the error weights so that 

subsequent predictors gradually reduce the accumulated 

deviations. After training, the regression output of all weak 

learners is aggregated through a weighted combination, forming 

a strong predictive learner. 

CatBoost’s core is an oblivious decision tree (DT), a 
symmetric full binary tree where identical splitting conditions 
apply at each level. The parameters at the leaf nodes are 
represented as floating-point vectors, enabling efficient 
representation and easy extraction during prediction. The 
gradient boosting formulation in CatBoost is expressed as 
Eq. (8): 

Hα = argmin{Hϵh}
1

J
∑ (−Gα(XI − YI) − H(XI))

2
  J

I=1        () 

However, using the same training set repeatedly introduces 
gradient bias, which results in prediction drift and overfitting. 
This bias, represented as offset size Q, as Eq. (9): 

                            Q =
1

(N−1)C2
(X2 −

1

2
)                              () 

The Selfdom component addresses this limitation by 
employing the IOOA, a heuristic optimization method inspired 
by the dynamic behavior of ospreys while capturing prey. IOOA 
incorporates randomness into the parameter search process, 
enabling the model to escape local minima. In certain iterations, 
a slightly inferior solution is intentionally accepted with a 
defined probability, allowing the algorithm to jump towards a 
globally optimal configuration. This mechanism significantly 
enhances CatBoost’s learning ability and improves robustness 
under noisy or diverse spectral inputs. 

3) Improved Osprey Optimization Algorithm: The 

Improved Osprey Optimization Algorithm refines the traditional 

Osprey Optimization Algorithm by integrating a gradient-based 

lifting strategy to determine optimal weight parameters more 

efficiently. In this enhancement, the IOOA combines the 

standard OOA framework with an objective function (OF), 

enabling a more informed search process. By incorporating the 

OF during initialization, the algorithm begins its optimization 

from higher-quality solution points rather than randomly, 

leading to faster convergence and superior outcomes [32]. 

The osprey also known as the fish hawk, sea hawk or river 
hawk is a predatory bird renowned for its precision hunting 
abilities, adaptive navigation and strategic pursuit of prey. These 
natural behaviors form the inspiration for the algorithm’s two 
core computational phases: exploration and exploitation. During 
exploration, the IOOA simulates the osprey’s wide-range 
scanning of its environment to identify potential opportunities, 
ensuring that the search space is thoroughly examined. In the 
exploitation phase, the algorithm imitates the osprey’s focused 
dive toward its target, refining the solution through local 
adjustments and leveraging valuable information gained from 
previous iterations. By merging the original OOA mechanism 
with the gradient-oriented OF, the improved algorithm avoids 
stagnation at local optima and advances toward globally optimal 
solutions, making it highly suitable for complex parameter 
optimization tasks such as tuning the CatBoost model in this 
study. 

Step 1: Initialization stage 

The proposed IOOA is a population-related technique that 
provides solutions related to the search power of its population 
memberships in the problem-solving area finished an iteration-
related procedure. Each osprey determines parameters for the 
problem depending on its location in the search space and OF, 
as it is a member of the IOOA population. Each osprey thus 
symbolizes a possible vector-based mathematical solution to the 
issue. Ospreys collectively comprise the IOOA population, 
which is generated using a matrix linked to the following 
equation. During the initialization phase of IOOA, the ospreys’ 
positions within the search space are generated randomly as 
Eq. (10) and Eq. (11): 

𝑃 =

[
 
 
 
 
𝑃1

…
𝑃𝐼

…
𝑃𝑁 ]

 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝑃1,1 … 𝑃1,𝐽 … 𝑃1,𝑀

… … … … …
𝑃𝐼.1 … 𝑃𝐼 ,𝐽 … 𝑃𝐼,𝑀

… … … … …
𝑃𝑁,1 … 𝑃𝑁,𝐽 … 𝑃𝑁,𝑀]

 
 
 
 

𝑁×𝑀

      () 

𝑃𝐼,𝐽 = 𝐿𝐵𝐽 + 𝑅𝐼,𝐽. (𝑈𝐵𝐽 − 𝐿𝐵𝐽), 𝐼 = 1,2, …𝑁, 𝐽 = 1,2, … ,𝑀 () 

where, 𝑈𝐵𝐽 and 𝐿𝐵𝐽  is the upper bound and lower bound, 

𝑅𝐼,𝐽 is random statistics in the intermission [0,1], 𝑀 is defined as 

the count of problem parameters, 𝑁 is the number of ospreys, 
𝑃𝐼,𝐽 is the dimension and 𝑃 is the population matrix of osprey’s 

locations. 

Step 2: Oppositional Function (OF) 

The oppositional function is widely adopted because it 
effectively strengthens the intensification-diversification 
balance, thereby improving the overall efficiency of the 
optimization search. This process is used in two phases: first, 
when the initial population is established and then, after the 
evaluation and computation of the optimal agent, when a novel 
population is generated. For each produced agent, an additional 
one is made for the opposite dimension of the traditional search 
agent in order to empower OF initialization as Eq. (12): 

          𝑃𝑆,𝑋
0 = 𝐿𝑃 + 𝑈𝑃 − 𝑃𝑠,𝑋                        () 

where, 𝑃𝑠,𝑋  is an original agent, 𝑃𝑆,𝑋
0  is a search agent for the 

opposite parameter dimension X. 
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Step 3: Fitness Evaluation 

In the method, the fitness function is considered for 
enhancing the training of the proposed classifier. The gradient 
lifting formulation is presented as Eq. (13): 

𝐻𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐻𝜖ℎ}
1

𝐽
∑ (−𝐺𝛼(𝑋𝐼 − 𝑌𝐼)− 𝐻(𝑋𝐼))

2𝐽
𝐼=1   () 

Based on the MSE, the optimal weighting parameter is 
selected with the consideration of the IOOA algorithm. 

Step 4: Exploration phase (fish hunting and position 
detection) 

In the exploration phase, ospreys exhibit strong hunting 
proficiency, using their remarkable visual acuity to locate fish 
underwater and identify target positions within the search 
region. After they have located the fish, they dive underwater to 
attack and hunt it. The design of the initial population upgrade 
step in OOA is based on the simulation of this general osprey 
feature. For every osprey in the OOA framework, the locations 
of the remaining ospreys in the search space are determined 
underwater fishes using an optimal objective function 
parameter. The pair of fish is specified as follows for every 
osprey as Eq. (14): 

𝑓𝑝𝐼 = {𝑃𝐾|𝐾𝜖{1,2,… ,𝑁} ∧ 𝑓𝐾 < 𝑓𝐼} ∪ {𝑃𝑏𝑒𝑠𝑡}       () 

where, 𝑓𝑝𝐼  is the pair of fish locations aimed at the osprey 
and 𝑃𝑏𝑒𝑠𝑡 is the optimal candidate explanation. The osprey finds 
one of these fish at chance and then hits it. The updated position 
of the corresponding osprey is computed using Eq. (15) to 
Eq. (17), representing its movement toward the targeted fish. 

        𝑃𝐼 ,𝐽
𝑃1 = 𝑃𝐼,𝐽 + 𝑅𝐼,𝐽 .(𝑠𝑓𝐼,𝐽 − 𝐼𝐼,𝐽 .𝑃𝐼 ,𝐽)                  () 

        𝑃𝐼 ,𝐽
𝑃1 = {

𝑃𝐼,𝐽
𝑃1,𝐿𝐵𝐽 ≤ 𝑃𝐼 ,𝐽

𝑃1 ≤ 𝑈𝐵𝐽

𝐿𝐵𝐽 , 𝑃𝐼,𝐽
𝑃1 < 𝐿𝐵𝐽

𝑈𝐵𝐽 , 𝑃𝐼,𝐽
𝑃1 > 𝑈𝐵𝐽

                     () 

                    𝑃𝐼 = {
𝑃𝐼

𝑃1, 𝑓𝐼
𝑃1 < 𝑓𝐼

𝑃𝐼 , 𝐸𝑙𝑠𝑒
                               () 

where, 𝐼𝐼,𝐽 is a random numbers from the pair {1,2}, 𝑅𝐼,𝐽 is 

the haphazard count in the interval [0,1], 𝑠𝑓𝐼,𝐽 is the dimension, 

𝑠𝑓𝐼  is the chosen for osprey,  𝑃𝐼,𝐽
𝑃1 is the dimension, 𝑃𝐼

𝑃1 is the 

new location of the osprey related on the initial phase. The 
algorithm for pseudocode of the IOOA is given below: 

Algorithm: Pseudocode of the IOOA 

Input:   Dataset (Xtrain ,ytrain),Xval ,yval         
             CatBoost parameters (excluding weights) 

             Population size (N), Max iterations (T) 

Output: Optimal weight vector (Wopt) 

Start: 

Step 1: Initialize Population  

➢ Generate N  random weight vectors (Wi) , one for each 

individual. 

➢ Evaluate fitness for each weight vector using: 

Fit(Wi) = MSE(CatBoost (Wi), yval) 
 Step 2: Oppositional Learning 

➢ For each weight vector Wi: 

Wi
′ = Oppositional_Function(Wi) 

Combine original and opposite solutions, then select top N based on 
fitness. 

Step 3: Optimization Loop 

➢ For iteration t = 1 to T: 

    3.1 Update each weight vector: 
 

Wi
new = Update_Position(Wi ,Best_W, t) 

    3.2 Evaluate fitness for updated weights: 
Fit(Wi

new) = MSE(CatBoost (Wi
new), yval) 

    3.3 Update Best_W: 

                         Best_W = Weight vector with lowest MSE 
Step 4: Return Best Solution 

➢ Output Best_W as the optimal weight vector. 

End 

Step 5: Taking advantage of the fish to move it to a better 
location 

The osprey catches a fish and then moves it to the proper 
spot to consume it. The simulation of these broad osprey features 
is the basis for the next phase of population upgrading in OOA. 
The design of conveying the fish to the best possible location 
contributes to the creation of minor changes in the osprey’s 
position within the search location, which increases the OOA’s 
manipulation power in local search then leads to conjunction to 
optimal solutions close the solutions that are found. The updated 
position of each osprey during this exploitation process is 
computed as Eq. (18): 

𝑃𝐼,𝐽
𝑃2 = 𝑃𝐼 ,𝐽 +

𝐿𝐵𝐽+𝑅𝐼,𝐽.(𝑈𝐵𝐽−𝐿𝐵𝐽)

𝑇
, 𝐼 = 1,2,… ,𝑁, 𝐽 =

1,2,… , 𝑀,𝑇 = 1,2,… , 𝑡            () 

To ensure feasibility, boundary conditions are applied as 
Eq. (19): 

          𝑃𝐼,𝐽
𝑃2 = {

𝑃𝐼,𝐽
𝑃2 ,𝐿𝐵𝐽 ≤ 𝑃𝐼 ,𝐽

𝑃2 ≤ 𝑈𝐵𝐽

𝐿𝐵𝐽 , 𝑃𝐼,𝐽
𝑃2 < 𝐿𝐵𝐽

𝑈𝐵𝐽 , 𝑃𝐼,𝐽
𝑃2 > 𝑈𝐵𝐽

                   () 

Finally, a greedy selection mechanism ensures that the fitter 
solution is retained for subsequent iterations as Eq. (20): 

                        𝑃𝐼 = {
𝑃𝐼

𝑃2 ,𝑓𝐼
𝑃2 < 𝑓𝐼

𝑃𝐼 , 𝐸𝑙𝑠𝑒
                        () 

where, 𝑡 is the total count of repetitions, 𝑇 is described as the 
iteration counter of the algorithm, 𝑅𝐼,𝐽 is the random statistics in 

the range [0,1], 𝑓𝐼
𝑃2 is the objective function parameter, 𝑃𝐼 ,𝐽

𝑃2 is 

the dimension, 𝑃𝐼
𝑃2 is the novel location of the osprey related on 

the next phase of OOA. Based on this algorithm, the optimal 
weight parameter is designated and sent to the classifier which 
enhance the prediction of growth and provide efficient fertilizer 
recommendation. 

4) Proposed Selfdom Enhanced CatBoost Model: The 

SECB algorithm integrates multispectral vegetation information 

with an optimized boosting framework to perform precise paddy 

growth monitoring and fertilizer recommendation. As shown in 

Fig. 4, the process begins with preparing the training and testing 

image datasets, from which key vegetation indices such as 

NDVI, NDRE, GNDVI, RVI, and GRVI are computed. These 

indices capture spectral variations related to crop vigor, 
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chlorophyll concentration, and canopy structure, providing 

discriminative features for stage-wise growth assessment. 

CatBoost serves as the core predictive engine, where multiple 

decision trees are sequentially constructed. Each tree learns from 

the residual errors of its predecessors, allowing the model to 

capture nonlinear interactions among spectral indices. To further 

improve learning efficiency, the Improved Osprey Optimization 

Algorithm (IOOA) adjusts the internal weight parameters of the 

boosting process. Through exploration (fish searching) and 

exploitation (position refinement), IOOA identifies optimal 

parameter configurations that enhance model accuracy and 

stability. The optimized predictors collectively estimate early 

and mature growth stages with high reliability. These stage 

predictions are then interpreted to generate fertilizer 

recommendations tailored to the crop’s current physiological 

needs. By combining CatBoost’s structured boosting with 

IOOA’s adaptive parameter optimization, the SECB algorithm 

provides a robust, data-driven framework suitable for precision 

agriculture decision-making. 

 

Fig. 4. Proposed Self Enhanced CatBoost Algorithm. 

D. Simulation Setup 

The SECB model was developed and executed entirely on a 
cloud-based simulation environment to ensure efficient training 
and scalability. Python served as the primary development 
platform, utilizing Pandas and NumPy for data preprocessing 

and scikit-learn for computing evaluation metrics. Model 
training and IOOA-based optimization were performed on 
Google Colaboratory with GPU acceleration, enabling faster 
computation of boosting iterations and optimized parameter 
tuning. CatBoost was employed as the core classifier, while the 
IOOA algorithm refined model weights to improve predictive 
stability. This cloud-based setup ensured consistent 
performance, rapid experimentation, and reliable validation of 
the proposed paddy growth monitoring and fertilizer 
recommendation framework. 

The main simulation parameters adopted for training the 
proposed SECB model are summarized in Table II. The 
configuration includes 1000 boosting iterations to ensure stable 
learning and convergence, with a tree depth of 8 to effectively 
capture nonlinear relationships among vegetation indices. A step 
size of 0.03 was selected to balance learning speed and accuracy, 
while an L2 regularization coefficient of 3 was applied to 
prevent overfitting. Controlled randomness in tree splits was 
maintained at level 1 to enhance generalization. To address class 
imbalance, balancing weights of (1, 5) were used. A fixed 
random seed of 42 ensured reproducibility, and training progress 
was reported every 100 iterations. 

TABLE II.  SIMULATION VARIABLES OF THE PROPOSED MODEL 

Description Parameters 

Number of boosting iterations (trees) 1000 

Depth of the trees 8 

Step size during optimization 0.03 

L2 regularization coefficient for leaf values 3 

Level of randomization in tree splits 1 

Balancing weights for imbalanced classes [1, 5] 

Seed for reproducibility 42 

Print progress during training 100 

Oppositional initialization for optimization  FALSE 

The overall runtime of the SECB–IOOA framework is 
primarily influenced by the optimization stage, since IOOA 
evaluates multiple candidate hyperparameter settings and each 
evaluation requires training and validating the CatBoost model. 
Vegetation-index computation is performed once during 
preprocessing and contributes relatively minor overhead 
compared to optimization. After training, inference remains 
efficient because CatBoost prediction involves evaluating a 
fixed set of symmetric decision trees, enabling fast tile-wise 
prediction and supporting large-scale deployment under 
practical monitoring conditions. 

IV. RESULTS AND DISCUSSION 

This section analyzes the performance of the proposed 
Selfdom Enhanced CatBoost model for remote paddy growth 
monitoring and fertilizer recommendation. The vegetation 
indices GRVI, RVI, NDVI, GNDVI, and NDRE were extracted 
from multispectral images and normalized during preprocessing 
to ensure uniform scale across features. The IOOA was 
incorporated during training to fine-tune CatBoost’s parameters, 
enabling faster convergence and improved prediction capability. 
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The effectiveness of the SECB model was measured using key 
performance indicators such as recall, precision, accuracy, F1 
score and specificity. These metrics, defined in Eq. (21) to 
Eq. (25) and computed from false negatives (FN), false positives 
(FP), true positives (TP), and true negatives (TN), collectively 
validate the model’s ability to interpret spectral signatures, 
classify paddy growth stages accurately, and generate precise 
fertilizer recommendations. 

                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                            () 

                          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    () 

                           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 () 

               𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     () 

                          𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                () 

Recent studies emphasize the need for data-driven tools that 
can support sustainable rice growth monitoring and fertilization 
decisions. Compared with earlier approaches such as fuzzy 
MCDM, SMART, AHP, and other knowledge-based fertilizer 

recommendation techniques [4–6,20,23], the proposed SECB 
framework integrates multispectral vegetation indices with 
IOOA-optimized CatBoost learning to enhance classification 
performance and improve the reliability of fertilizer-related 
decision-making. This design aligns with current precision 
agriculture trends by linking remote sensing–based crop 
condition assessment with robust, automated model 
optimization for practical field deployment. 

To demonstrate its superiority, the SECB model was 
compared against widely used baseline classifiers, including 
Naive Bayes, RF, DT and LR under similar experimental 
conditions. The SECB model consistently outperformed these 
approaches due to its optimized boosting structure and enhanced 
parameter tuning provided by the IOOA. The main simulation 
parameters used for model training are listed in Table II, which 
includes the number of boosting iterations (1000), tree depth (8), 
step size (0.03), L2 regularization coefficient (3) and balancing 
weights for handling class imbalances. The results validate that 
the SECB model is an efficient and reliable framework for 
paddy growth monitoring and fertilizer recommendation in 
precision agriculture settings. 

    
(a)                                                                                                 (b) 

        
(c)                                                                                                (d) 

 
(e) 

Fig. 5. Vegetation Index: a) NDVI, b) GNDVI, c) NDRE, d) RVI, and e) GRVI. 
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The temporal behavior of vegetation indices provides 
comprehensive insight into the paddy crop lifecycle across 
multiple seasons. Fig. 5 summarizes the evolution of crop vigor 
and canopy conditions from January 2016 to January 2020, 
enabling continuous monitoring of phenological transitions. In 
Fig. 5(a), NDVI captures overall canopy greenness and density, 
with peaks corresponding to active vegetative growth and sharp 
drops reflecting post-harvest or land preparation periods. A 
notable rise in early 2018 indicates particularly favorable growth 
conditions, which may be linked to improved irrigation or 
nutrient availability. Fig. 5(b) shows GNDVI trends, which are 
generally consistent with NDVI but offer increased sensitivity 
to chlorophyll-related variation in the green band. Fig. 5(c) 
presents NDRE dynamics, highlighting chlorophyll activity 
using the red-edge region and providing better discrimination of 
subtle stress during certain stages. Fig. 5(d) illustrates RVI 
variations, where higher ratios typically correspond to dense 
canopies, while lower values align with sparse vegetation or 
non-growing phases. Fig. 5(e) depicts GRVI behavior, which 
reflects shifts between germination, vegetative growth, and post-
harvest periods and provides complementary information on 
canopy color dynamics. 

Overall, the observed NDVI, GNDVI, NDRE, RVI, and 
GRVI trajectories (2016–2020) are consistent with prior satellite 
studies that use multispectral/hyperspectral indices to monitor 
paddy development, biomass, and yield. The recurring seasonal 
rises during active growth and declines during post-harvest or 
stress periods support the use of VI time-series patterns as 
reliable indicators of rice phenology. This long-term consistency 
strengthens the rationale for using these indices as inputs to the 
SECB framework for robust monitoring and fertilizer decision 
support across multiple seasons. 

 
Fig. 6. Accuracy plot of the proposed model. 

Fig. 6 depicts the validation and training accuracy trends of 
the SECB model over 100 epochs. Both curves demonstrate a 
consistent upward trajectory, indicating that the model learns 
effectively from the input vegetation indices and progressively 
improves its predictive capability. At the initial stages, the 
model exhibits moderate accuracy values, reflecting the early 
learning phase where parameters are still being optimized. As 
epochs increase, the training accuracy steadily rises and 
converges close to 0.98, illustrating strong fitting of the model 
to the training data. The validation accuracy follows a similar 
pattern, closely trailing the training curve with minor 
oscillations around epochs 40–80. These fluctuations are due to 

the dynamic nature of unseen data during validation and the 
model’s effort to generalize across different crop growth 
scenarios. Importantly, the validation accuracy stabilizes near 
the training accuracy towards the end of the training period, 
confirming that the SECB model does not encounter overfitting 
and maintains excellent generalization capabilities. The 
accuracy behavior verifies the robustness of the proposed SECB 
architecture. The close alignment between the two curves 
highlights the model’s stability, efficient learning mechanism 
and strong capability in predicting paddy growth stages and 
fertilizer needs with high reliability. 

 

Fig. 7. ROC plot of the proposed model. 

Fig. 7 illustrates the Receiver Operating Characteristic 
(ROC) curve for the proposed SECB model, which evaluates the 
model’s discriminative capability in classifying paddy growth 
conditions based on vegetation indices. The curve demonstrates 
a steep rise toward the upper-left section of the graph, indicating 
that the classifier identifies true positives effectively while 
generating minimal false positives. This behavior reflects the 
model’s ability to correctly identify healthy or nutrient-deficient 
crop conditions without generating excessive false alarms. The 
calculated Area Under the Curve (AUC) value of 0.946 confirms 
excellent classification power. An AUC close to 1 indicates that 
the model makes highly reliable decisions with minimal 
misclassification, outperforming typical threshold-based or non-
boosting algorithms. The smooth progression and high 
asymptotic value of the ROC curve show that the SECB model 
retains strong generalization ability even when tested on unseen 
datasets. This robust performance underscores the effectiveness 
of integrating the Improved Osprey Optimization Algorithm 
with CatBoost for precision agricultural monitoring, enabling 
accurate fertilizer recommendation and timely intervention to 
enhance crop productivity. 

Fig. 8 illustrates the ROC curves of different ML models 
used for paddy growth monitoring. The curves show how well 
each model distinguishes between growth stages based on 
vegetation index patterns. The proposed Selfdom Enhanced 
CatBoost (SECB) model clearly outperforms all the baseline 
techniques. The blue curve, representing the SECB model, 
shows the highest AUC value of 0.946, indicating excellent 
classification capability and very low misclassification. This 
means the model consistently made correct predictions even 
when the input conditions were complex or varied across 
seasons. The DT [33] (AUC = 0.926) and RF [34] (AUC = 
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0.923) also performed well but could not match the SECB 
model’s precision. Logistic Regression (LR) [35] (AUC = 
0.914) and Naive Bayes [36] (AUC = 0.911) delivered lower 
discrimination power because they struggled to capture the 
nonlinear behavior of paddy crop growth. The ROC comparison 
confirms that adding the IOOA to CatBoost significantly 
strengthened its learning ability. This enhancement enabled the 
SECB model to make more confident decisions, making it the 
most reliable approach for crop growth analysis and fertilizer 
recommendation in precision agriculture. 

 

Fig. 8. ROC comparison. 

 
Fig. 9. Comparison of accuracy. 

Fig. 9 compares the accuracy of five ML models, such as 
Naive Bayes, DT, LR, RF and the proposed SECB method using 
different proportions of training data (20%, 40%, 60% and 
80%). At 20% training data, all models performed modestly; 
however, the SECB method already demonstrated a clear 
advantage, achieving an accuracy of around 0.75, whereas Naive 
Bayes lagged significantly with an accuracy close to 0.55. DT, 
LR and RF clustered around mid-range values, indicating 
limited learning capability with sparse data. When the training 
data increased to 40% and 60%, all models showed gradual 
improvement, but the SECB method continued to maintain a 
noticeable performance lead. This highlights its superior ability 
to extract meaningful patterns even from partially available 
vegetation index data. The most significant performance gap 
appeared at 80% training data, where the SECB method reached 
an impressive accuracy of nearly 0.95. In contrast, RF achieved 
about 0.88, DT stabilized around 0.74 and LR settled near 0.65, 
while Naive Bayes improved only marginally to approximately 
0.57. The comparison confirms that the proposed SECB model 

consistently outperformed every traditional algorithm across all 
training partitions. The more data available to the model, the 
more pronounced its superiority became, proving its strong 
generalization ability and robust performance for paddy growth 
monitoring and fertilizer recommendation. 

 
Fig. 10. Comparison of precision. 

Fig. 10 illustrates the precision comparison of five models: 
Naive Bayes, DT, LR, RF, and the proposed method across 
varying proportions of training data. At 20% training data, the 
proposed method already achieves the highest precision of 
approximately 0.76, outperforming RF and DT, while Naive 
Bayes records the lowest value near 0.60. As the training data 
increases to 40% and 60%, all models show gradual 
improvement; however, the proposed method consistently 
maintains a noticeable lead, reflecting its superior capability to 
distinguish relevant patterns. At 80%, the proposed method 
attains a precision close to 0.91, higher than RF at 0.87 and 
considerably above Naive Bayes at 0.67. These results clearly 
demonstrate the enhanced decision reliability of the proposed 
SECB model. 

 

Fig. 11. Comparison of specificity. 

Fig. 11 presents the specificity comparison among Naive 
Bayes, DT, LR, RF and the proposed method at different 
training data proportions. At 20% training data, the proposed 
method already demonstrates a strong specificity of around 0.78, 
outperforming all baseline models, where Naive Bayes, DT and 
LR remain below 0.65 and RF reaches only 0.69. As the training 
percentage increases, all methods show gradual improvement; 
however, the proposed method continues to lead consistently. 
When trained with 80% of the data, it attains an impressive 
specificity of approximately 0.96, significantly exceeding the 
other models. This superior performance highlights its 
robustness in accurately identifying negative cases and reducing 
false positives. 
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Fig. 12. Comparison of F1 score. 

Fig. 12 compares the F1-score performance of different 
models Naive Bayes, DT, LR, RF and the proposed model 
across increasing proportions of training data. At 20% training 
data, the proposed method already records an impressive F1-
score of around 0.78, surpassing all other models, with Naive 
Bayes showing the weakest value near 0.58. As the training data 

increases, all models improve gradually; however, the margin of 
superiority for the Proposed Method becomes more evident. 
With 80% training data, it achieves an F1-score above 0.93, 
outperforming RF and DT. This consistent dominance 
highlights the effectiveness of the proposed approach in 
maintaining a balanced precision-recall trade-off. 

To further validate the robustness of the proposed SECB 
framework, a comparative evaluation was performed against 
conceptually similar metaheuristic-optimized boosting models, 
including Genetic Algorithm-tuned XGBoost (GA-XGBoost), 
Particle Swarm Optimization-based LightGBM (PSO-
LightGBM), Grey Wolf Optimizer-enhanced CatBoost (GWO-
CatBoost), and Honey Badger Algorithm-optimized XGBoost 
(HBA-XGBoost). These variants were implemented following 
optimization principles established in prior metaheuristic-
boosting studies, where GA [37], PSO [38], GWO [39], and 
HBA [40] have been used to enhance model convergence and 
generalization. 

TABLE III.  COMPARATIVE PERFORMANCE OF METAHEURISTIC-OPTIMIZED BOOSTING MODELS 

Model Accuracy Precision Recall F1-Score Specificity AUC 

GA-XGBoost 0.928 0.915 0.904 0.909 0.932 0.938 

PSO-LightGBM 0.931 0.918 0.912 0.915 0.936 0.941 

GWO-CatBoost 0.935 0.920 0.918 0.919 0.940 0.943 

HBA-XGBoost 0.939 0.926 0.922 0.924 0.944 0.945 

SECB (Proposed) 0.951 0.934 0.930 0.932 0.952 0.946 

 

Table III summarizes the comparative performance of these 
optimization-guided boosting strategies. The SECB model 
achieves the highest performance across all metrics, surpassing 
all other metaheuristic-based approaches. The observed 
improvement in accuracy (0.951) and AUC (0.946) highlights 
the effectiveness of integrating the IOOA with CatBoost. The 
Selfdom mechanism further enhances the exploration–
exploitation balance through oppositional initialization and 
adaptive acceptance, allowing SECB to avoid premature 
convergence commonly observed in GA and PSO-based 
models. 

These findings confirm that SECB achieves superior 
learning stability and predictive reliability for spectral-index-
driven paddy monitoring. Moreover, its strong performance 
generalizes across diverse environmental conditions, 
demonstrating potential for large-scale implementation in real-
world precision agriculture systems. 

V. CONCLUSION 

This research introduced the Selfdom Enhanced CatBoost 
model as an effective solution for remote paddy growth 
monitoring and fertilizer recommendation, addressing key 
limitations of conventional agricultural practices. By integrating 
multispectral UAV imagery with vegetation indices such as 
NDRE, GNDVI, RVI, GRVI and NDVI, the proposed model 
enabled a comprehensive evaluation of crop health and 
developmental stages. The incorporation of the IOOA further 
enhanced the CatBoost framework by optimizing feature 
weights and reducing training errors, resulting in more reliable 
predictions. Comparative analysis against widely used ML 

models, including LR, DT, RF, and Naive Bayes, demonstrated 
that the SECB model consistently delivered superior 
performance across crucial metrics. Its improved accuracy in 
identifying growth stages and recommending precise fertilizer 
inputs highlights its potential to support sustainable and data-
driven agricultural management. The findings of this study 
reaffirm the growing importance of integrating remote sensing, 
machine learning, and optimization techniques for modern 
precision farming. By minimizing resource wastage and 
improving crop productivity, the SECB model offers a scalable 
and intelligent decision-support tool that can significantly assist 
farmers and policymakers. Future work may extend this 
framework to other crop varieties and integrate real-time field 
data from IoT sensors, enabling more dynamic and autonomous 
agricultural decision-making systems. Additionally, exploring 
edge computing and cloud-based deployment could further 
enhance its usability in large-scale smart farming environments. 
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