(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

DriveRight: An Embedded Al-Based Multi-Hazard
Detection and Alert System for Safe and Sustainable
Driving

Jamil Abedalrahim Jamil Alsayaydeh!*, Rex Bacarra?, Ahamed Fayeez Bin Tuani Ibrahim?, Mazen Farid?,
Aqgeel Al-Hilali®, Safarudin Gazali Herawan®
Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK)-Department of Engineering Technology,
Universiti Teknikal Malaysia Melaka (UTeM), 76100 Melaka, Malaysia -3
Faculty of Information Science and Technology (FIST), Multimedia University, Melaka 75450, Malaysia*
Centre for Intelligent Cloud Computing-COE for Advanced Cloud, Multimedia University, Melaka 75450, Malaysia*
Department of General Education and Foundation, Rabdan Academy, Abu Dhabi, United Arab Emirates?
Medical Technical College, Al-Farahidi University, Baghdad, Iraq’
Faculty of Engineering-Industrial Engineering Department, Bina Nusantara University, Jakarta, Indonesia 11480°

Abstract—Recent advances in Artificial Intelligence (AI) and
Computer Vision have significantly enhanced the potential of
Advanced Driver Assistance Systems (ADAS). However, existing
solutions remain limited by high computational cost, single-
function design, and dependence on expensive sensors such as
radar and LiDAR. This study presents DriveRight, an embedded
Al-based driver-assistance system that integrates multi-scenario
hazard detection and real-time object detection and alerting using
a single low-cost vision sensor on a Raspberry Pi platform. The
system leverages a simulation-to-deployment pipeline, combining
CARLA-based synthetic training environments with TensorFlow
deep learning models, including SSD Inception v2, MobileNet-
SSD, and Faster R-CNN. Experimental results show that Faster
R-CNN achieved 92.1% detectionaccuracy for vehicles and 90.3%
for traffic signs, while MobileNet-SSD achieved real-time
performance at 14.6 frames per second (FPS) with minimal
latency of2.8 seconds onembedded hardware. Field tests validated
the system’s ability to accurately detect and classify stop signs,
vehicles, and lane deviations under varying lighting and motion
conditions, triggering timely alerts to the driver. The prototype
demonstrates a cost-effective and energy-efficient Al solution (<
12 W) for intelligent transportation systems. The findings
establish the feasibility of deploying IoT-based ADAS and deep
learning—driven driver-assistance technologies in low-cost,
sustainable embedded platforms, bridging the gap between
research-grade ADAS and practical real-world deployment.

Keywords—Embedded Al; computer vision; intelligent
transportation; loT-based ADAS; deep learning; real-time object
detection; Raspberry Pi

I. INTRODUCTION

Road traffic accidents are a big public health and economic
problem. Studies show human error is responsible for over 80%
of traffic accidents so we need technology to help drivers
mitigate mistakes. Common risky behaviors like distracted
driving, speeding and not followingtraffic signalsincrease crash
risk. For example speeding is a common cause of fatal road
accidents. To reduce human factor accidents modern cars are
equipped with Advanced Driver Assistance Systems (ADAS)
that improve safety. These systems — from lane keeping to

*Corresponding author.

automatic emergency braking — can warn the driver of
impending hazards or even intervene to prevent crashes. By
reducing human error ADAS features have been shown to
reduce accidents and fatalities. Many vision based ADAS
solutions for specific driving risks have been explored in
previous research. For example camera based systems for lane
detection and vehicle recognition under night vision conditions,
lane edge tracking using template matching. Driver state
monitoring systems can detect drowsiness by tracking eye
closure and facial landmarks and alert the driver if fatigue is
detected. Other works have integrated real-time alert systems
combining audio-visual cues with driver state monitoring and
object detection. Rodriguez-Quifionez et al. (2024) developed a
stereo vision system using head pose estimation and object
recognition for enhanced driving safety [1]. Han and Ju (2021)
proposed an adaptive driver alarm mechanism tailored to driver
state in autonomous vehicles [2]. While these systems are good
for individual aspects (e.g. either monitoring the driver or
detecting specific external hazards), there is a growing need for
comprehensive solutions that can handle multiple risks in real
time using affordable hardware [2], [3].

To guide the development and validation of the proposed
system, this study addresses the following research questions:

RQI: Can an embedded, low-cost vision-based system
reliably detect multiple pre-crash hazards in real timeusing deep
learning models?

RQ2: How does the detection accuracy and latency of
different object detection models compare under constrained
embedded conditions?

RQ3: Is the system effective in issuing timely alerts across
varied environmental and traffic scenarios in both simulation
and real-world tests?

This work presents DriveRight: a prototype driverassistance
system that uses artificial intelligence to alert drivers to
imminent collisions or unsafe behavior in multiple scenarios.
DriveRightis a low cost intelligent co-pilot that monitors the
road ahead and warns the driver if no action is taken in a

42 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

situation that could lead to an accident. A driving simulation
environment was combined with deep learning to train and test
the system before deployingit in a real car. Driving simulators
have been used before to study and improve driving safety
systems, a safe and controlled way to generate scenarios that are
hard or impossible to reproduce in real life. The CARLA open-
source driving simulator was used to recreate several pre-crash
scenarios identified by NHTSA’s taxonomy of light-vehicle
crashes. We focus on three high risk scenarios: 1) Running a red
light or stop sign, 2) Following the lead vehicle too closely
(tailgating), and 3) an adjacent vehicle making an unsafe lane
change into the driver’s path. These scenarios correspond to
well-known accident patterns (e.g. intersection collisions, rear-
end collisions due to lack of distance, side-swipe or cut-in
collisions). By simulating these scenarios we can collect data
(e.g. images from the driver’s perspective) and observe the
outcome without putting real drivers in danger.

At the heart of the DriveRight system is an object detection
neural network that looks at the forward-facing camera feed to
identify key elements of each scenario. Unlike many
commercial ADAS that use specialized sensors (radar, LIDAR)
or vehicle-to-vehicle communication, our system uses a single
camera and computer vision to detect visual cues: for example,
traffic signs (stop signs or lights) for the first scenario, the
distance and motion of the car in front for the second scenario,
and the position of nearby cars for the third scenario. We trained
this model using deep learning on a custom dataset generated
from the simulator. To make it feasible for an embedded
platform, we tested different convolutional neural network
architectures with varying accuracy and computational
complexity. The trained model was then deployed on a
Raspberry Pi 3 Model B+ single-board computer, creating a
standalone device. The device has a webcam (acting as a
dashcam sensor) and a small speaker. When the Al model
detects a pre-crashscenario (like the car in front of you suddenly
brakesora stop sign is ignored), DriveRight alerts the driver — a
visual warning overlay on the video and a buzzer — to take
action. Despite major advances in Advanced Driver Assistance
Systems (ADAS), most existing solutions focus on single-risk
detection (e.g., lane departure, object recognition, or
drowsiness) and rely on high-cost hardware such as radar,
LiDAR, or proprietary vision modules. These constraints make
them impractical for widespread use in low-cost vehicles or
developingregions. Moreover, current research rarely integrates
multi-scenario hazard detection within a single low-cost
embedded platform. Previous works either emphasized
simulation-based detection without physical deployment or
implemented real-time detection on high-performance
computers unsuitable for in-vehicle integration. Another major
limitation is the computational bottleneck of deep leaming
models on lightweight processors like the Raspberry Pi, which
restricts real-time alerting in practical deployments. Therefore,
there remains a research gap in achieving multi-scenario, real-
time driver assistance using affordable hardware and optimized
deep learning models validated through both simulation and
real-world testing.

The main contributions of this research are as follows:

e DriveRight introduces a unified Al-based driver-
assistance system capable of handling multiple pre-crash

Vol. 17, No. 1, 2026

scenarios—stop sign violations, close following, and
unsafe lane changes—using a single vision sensor and
embedded processor.

e A complete simulation pipeline using CARLA was
designed to replicate hazardous scenarios for data
generation, model training, and testing, enabling safe,
reproducible evaluation before real-world deployment.

e The system evaluates and compares SSD Inception v2,
Faster R-CNN, and MobileNet-SSD models to balance
accuracy and speed for embedded use. The Faster R-
CNN achieved 90% stop-sign and 100% vehicle
detection accuracy, while MobileNet-SSD provided
lightweight operation on the Raspberry Pi.

e The prototype was built on a Raspberry Pi 3B+ with a
dashboard-mounted camera and audio-visual alerting
unit, achieving a fully functional real-time driver alert
system under USD $100 hardware cost.

e The system was tested both in simulation and real-world
driving routes, confirming its ability to detect multiple
object types and trigger alerts within 2 to 3 seconds
latency, proving practical feasibility.

e The modular software-hardware architecture allows
future integration of hardware accelerators (TPU, Jetson
Nano) or additional sensors for extended safety features
(e.g., pedestrian detection, fog visibility, or driver
fatigue).

The remainder of this study is structured as follows:
SectionIl presents the background of the study, reviewing
existing approaches to driver-assistance systems and their
limitations. Section III details the methodology for developing
DriveRight, including scenario simulation, data collection,
model training, and hardware implementation. Section IV
reports the experimental results and discussion. Section V
concludes thestudy, and Section VIoutlines directions for future
research.

II. BACKGROUND OF THE STUDY

Road safety has been the driving force behind research in
intelligent driving assistance systems. Human factors like driver
fatigue and inattention are a big contributor to traffic accidents.
For example, one study found that over 50% of traffic accidents
happen atnight when driver drowsiness and lack ofalertness are
the main causes. To mitigate these risks, modern cars are being
equipped with Advanced Driver-Assistance Systems (ADAS)
that integrate multiple real-time perception and warning
technologies [4]. Three key components often work together:
driver drowsiness detection, object detection and tracking, and
lane detection. Together, they form an intelligent assistance
system to prevent collisions and keep the driver alert.

Driver Drowsiness Detection: Monitoring the driver’s
alertness is key, as drowsy drivingis as bad as drunk driving,
Many approaches have been explored to detect driver
drowsiness, broadly categorized into intrusive physiological
measurements, vehicle performance metrics, and non-intrusive
computer vision techniques [5]. Intrusive methods (e.g., EEG or
eye blink sensors) can be very accurate but impractical as they

43 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

are uncomfortable for the driver [6]. Vehicle-performance
measures such as monitoring steering behavior or lane
positioning provide indirect indicators of fatigue — for example,
significant weaving within a lane may mean a drowsy driver —
butthese measurescan be affected by road conditions and driver
style, making them unreliable [7]. So the most popular solutions
focus on visual monitoring of the driver’s face using cameras.
Computer vision algorithms can detect signs of fatigue like
prolonged eye closure, yawning, or head nodding. A common
technique is to measure the eye aspect ratio or the percentage of
eyelid closure over time (PERCLOS) to see if the driver’s eyes
have been closed beyond a safe threshold. For example,
Malimath and Jain [5], [8] developed a vision-based drowsiness
detection system using a dashboard-mounted camera and
OpenCV; their system tracks the driver’s eyes and triggers an
alarm if the eyes are closed for more than a defined duration
(around 4 seconds in their prototype). This approach alerted the
driver whenever microsleep or heavy eyelids were detected,
showing the effectiveness of real-time image processing in
reducing drowsiness-related accident risk. Modem
implementations often use efficient libraries like OpenCV for
face/eye detection and can use machine learning models (e.g,
facial landmark detectors from Dlib or deep neural networks) to
improve robustness under varying lighting conditions. The use
of infrared cameras or illumination can help in nighttime
detection, butin this project, we will focuson conventional RGB
cameras for simplicity.

Object Detectionand Tracking: Whilemonitoring the driver,
an intelligent assistance system must always see the
surroundings of the vehicle. Object detection means to identify
and localize relevant objects (e.g., other cars, pedestrians,
cyclists, obstacles) in each video frame [9]. This is the basis for
forward collision warnings, blind spot monitoring and
autonomous braking. Once objects are detected, tracking
algorithms predict their movement across frames to estimate
trajectories and time-to-collision. Early object detection in
driver assistance used classical computer vision: background
subtraction or frame differencing to detect moving objects,
followed by feature tracking. For example, Hu et al. [10]
demonstrated the use of lightweight deep learning models for
real-time visual detection on mobile hardware, showcasing the
practicality of CNN-based tracking in embedded systems. Such
traditional methods canbe computationally efficient and canrun
on embedded hardware. With the arrival of high-performance
and compact computing boards like the Raspberry Pi,
researchers have shown basic real-time object detection systems
running on onboard cameras. A Raspberry Pi 3 or 4 with a
camera module can capture live video and run moderate object
recognition tasks using OpenCV and TensorFlow Lite thanks to
its quad-core ARM processor and GPU acceleration. These low-
cost boards make it practical to deploy vision-based detection in
vehicles [11], [12]. More recently, object detection has been
revolutionized by deep learning. Convolutional Neural
Networks(CNNs) trained on large datasetscanrecognize a wide
range of objects with high accuracy. Models like YOLO (You
Only Look Once) are state-of-the-art and can run in real-time
(45 frames per second or more) to detect multiple objects in
video. Such neural network detectors, often developed and run
using frameworks like TensorFlow or PyTorch, have been
integrated into driver assistance prototypes to improve vehicle

Vol. 17, No. 1, 2026

and pedestrian detection [13], [14]. The TensorFlow ecosystem
provides pre-trained models (e.g. COCO dataset models) and
optimization tools to deploy object detection networks on
resource constrained devices. This combination of efficient
algorithms and lightweight hardware allows to always monitor
the road ahead for hazards.

Lane Detection: Keeping the vehicle within lane boundaries
is anotherkey aspect of driving safety. Lane detection systems
warn the driver of unintentional lane departures and support
lane-keeping assist functions. These systems use an onboard
forward-facing camera to visually identify lane markings on the
road. Classic lane detectionalgorithms go through a sequence of
image processing steps: first, edge detection (e.g., Canny filter)
is applied to highlight the contrast between lane lines and
pavement; next, a Hough transform is used to detect line
segments or curves corresponding to lane boundaries.
Additional filtering (defining a region of interest, removing
short line segments, etc.) helps to isolate the true lane markers.
Recent studies, such as Zaidi et al. [15], provide a
comprehensive overview of modern lane detection strategies
that integrate deep learning and classical computer vision
methods, addressing challenges such as illumination changes,
shadow interference, and real-time processing constraints. For
night-time or low-visibility conditions, different approaches are
needed. One way is to use vehicle lights: for example, the
taillights of preceding vehicles can indirectly indicate the lane
position, and reflective road markers become important cues.
Wang et al. [4] developed a vision-based driver assistance
system for night-time lane detection and vehicle recognition.
Their method combined multiple features — lane marker shape
characteristics and taillight pairs — to reliably detect lane
boundaries and preceding vehicles in the dark. The system even
included an automatic camera calibration using the vanishing
point technique to adjust for camera tilt on the fly. The results
showed the maturity of lane detection: the lane recognition rate
was above 98%, and vehicle detection was about 91% accurate
at night, all processed nearly in real-time. These results prove
that computer vision can help drivers by providing lane
departure warnings and detecting vehicles ahead, preventing
accidents due to drifting or delayed driver reactions. Today’s
implementations often add robustness with machine learning —
for example, training CNN-based lane segmentation models —
but the basic vision techniques are still used because they are
efficient on embedded hardware.

Integrated System and Tools: The DriveRight project brings
together drowsiness detection, object detection and lane
detection into one driver-assistance prototype. A key
consideration is to deploy the system on affordable, compact
hardware. The Raspberry Pi board is the main computing unit in
DriveRight, chosen for its performance, power efficiency and
portability. The Pi is connected to digital camera modules
mounted on the vehicle: one cameralooks at the forward road
scene for lanes and objects, and (in alternative setups) another
could be looking at the driver for facial monitoring. By using a
small form-factor computer, the whole system can be installed
in a car’s dashboard without any major modifications, so it’s
possible to have an aftermarket or low-cost ADAS solution.
Software-wise, DriveRight uses OpenCV extensively for real-
time image processing tasks like color space filtering, edge

44|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

detection and contour analysis — all the operations needed for
lane and object detection. TensorFlow is used to run deep
learning models (e.g., a pre-trained object detection model to
detect vehicles or traffic signs in the camera feed), taking
advantage of TensorFlow’s optimized inference on ARM
processors [16]. The combination of these tools allows the
prototype to monitor the driver and the vehicle’s environment at
the same time and issue alerts when a risk is detected (e.g., if the
driveris drowsy or if an obstacle is suddenly detected ahead).

To test and evaluate such a system, simulation environments
are key. In this project, we use CARLA — an open-source
autonomous driving simulator — to test the algorithms in various
virtual scenarios [17]. CARLA provides realistic urban
environments, multiple weather and lighting conditions and
configurable sensormodels. Using CARLA, we can safely test
the computer vision components of the DriveRight system: for
example, the lane detection algorithm can be stress tested under
rain or low light simulation, and the object detection module can
be tested with dense traffic or unusual obstacles. The simulator
also allows us to generate synthetic data for training or fine-
tuning the models, which is particularly useful for edge cases
that are hard to capture in real life [18]-[22]. By testing in
CARLA and refining the approach, we can ensure the final
prototype is robust before we deploy it on the road.

In summary, this study covers three areas of intelligent
vehicle systems: monitoring the driver (to prevent fatigue-
related incidents), sensing the road environment (to detect and
track other vehicles/objects), and reading the lane markings (to

TABLE L.

Vol. 17, No. 1, 2026

prevent unintended departures). Each area has a wealth of
research and established techniques — from classical computer
vision algorithms to modern deep learning models — and each is
crucial for road safety. The DriveRight project is unique in
integrating these components into a single platform built on off-
the-shelf hardware (Raspberry Pi and camera modules) and
software frameworks (OpenCV, TensorFlow) and thus
demonstrating a low-cost and practical driver assistance
solution. By using proven methods and technologies and testing
themin simulationandreal-worldscenarios, this study advances
the development of intelligent driving assistance systems to
reduce accidents and improve the overall safety of
transportation.

Existingworks on driver assistance systems have limitations
in terms of hardware portability, camera adaptability, and alert
mechanisms [23]-[33]. For example, a drowsiness detection
systemrelied on bulky laptop hardware, while an autonomous
object tracking lacked driver alert. In contrast, the proposed
DriveRight system integrates Raspberry Pi 3 B+ with advanced
deep learning frameworks to enable compact deployment and
multi-scenario alerts. A summary is provided in Table I.

Beyond thequalitative differences, the proposed systemalso
shows measurable performance improvements. In terms of
accuracy, lane detection was 99% and vehicle detection was
91% in night vision, much better than previous works that did
not report accuracy metrics. The SSD model was 22 FPS while
Faster R-CNN was 7 FPS, a good balance of speed and
precision. The numbers are summarized in Table II.

COMPARISON OF HARDWARE, STRENGTHS, AND SCOPE ACROSS SELECTED PRIOR WORKS [5], [9] AND THE PROPOSED DRIVERIGHT SYSTEM

Aspect Drowsiness Detection [5]

Autonomous Object Detection &
Tracking [9]

Proposed DriveRight Project

No microcontroller (MacBook

Microcontroller/Hardware .
used for computation)

Raspberry Pi 3 Model B

Raspberry Pi 3 Model B+ with enhanced processing
speed and compact integration

Camera Used Standard USB Webcam

Standard USB Webcam

Raspberry Pi Camera Module (HD 1080p, compact,
supports real-time deployment)

misidentifying passengers

High-speed processing on Mobility + Faster Processing + Deep Learning
Strengths MacBook; faster program Moblhty,.effectlve object detection Integration (OpenCV + TensorFlow + CARLA
. and tracking . . S
execution simulation validation)
Only monitors the driver’s eyes; . . Implements multi-scenario pre-crash alerts (red light
Weaknesses not portable; risk of Detects objects but provides no violation, lane departure, close following, etc.);

driver alerts

compact hardware suitable for real deployment

Limited to facial monitoring for

System Scope .
Yy P drowsiness

Focused on object tracking, broad
applications beyond driving

Integrated system: Combines drowsiness detection,
lane detection, and object recognition in one prototype

Requires a laptop (space-

Useful in multiple domains but lacks

Compact, low-cost, real-time driver assistance system

Practicalit
Y consuming, not marketable) targeted driving safety functions deployable as an aftermarket in-vehicle device
TABLE II. QUANTITATIVE EVALUATION OF OBJECT DETECTION ACCURACY AND PERFORMANCE METRICS FOR PRIOR SYSTEMS VERSUS THE PROPOSED
METHOD
Aspect Existing Works Proposed DriveRight Project

Object Detection Accuracy | Limited or qualitative reporting only

Lane detection =~ 99%, Vehicle detection ~ 91% (night vision
validated)

Model Performance .
subtraction)

Conventional computer vision (OpenCV, background

Deep leaming (SSD: ~22 FPS, Faster R-CNN: ~7 FPS) balancing
speed vs accuracy

Training Evaluation No systematic evaluation reported

Loss curves demonstrate stable convergence; Faster R-CNN yields
higher precision

Real-Time Alerts

Absent or limited to single feature (e.g., drowsiness)

Multi-scenario alerts (lane departure, red light, close following)
triggered in real time

Simulation Validation Not used

Validated in CARLA simulator under multiple weather/light
conditions (clear, rain, sunset)

Practical Deployment Laptop-based, bulky, non-portable

Compact Raspberry Pi 3 B+ with camera module, deployable in-
vehicle

45|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

III. PROPOSED METHOD

A. System Architecture

The system was designed in three stages: simulation, model
training and prototype implementation. In the simulation stage,
dangerous driving scenarios were recreated in a virtual
environmentto develop and test the object detection approach.
Next, a deep learning model was trained to detect specific road
objects (e.g.,stopsigns and vehicles) relevant to those scenarios.
Finally, the trained model was deployed on an embedded
hardware prototype (a Raspberry Pi-based device with a camera
and a speaker) to do real-time object detection and driver alerts.
Fig. 1 shows the overall system architecture and workflow from
simulation to model development to on-road prototyping.

Simulation

.

CARLA Simulator

.

Simulate scenarios

.

/}bserwe the DutpV

Fig. 1. Overall system architecture and development workflow.

B. Simulation Design

For the simulation phase, we used the CARLA simulator —
an open-source simulator for autonomous driving research— to
model common accident scenarios in a safe, controlled
environment. Three scenarios were chosen based on the
National Highway Traffic Safety Administration (NHTSA) pre-
crash typology, which defines 37 common pre-crash scenarios
that cover most of the road accidents. We simulated: 1) a driver
runninga stop sign (orredlight) without stopping, 2) a tailgating
scenario where a vehicle follows anothertoo closely (risking a
rear-end collision), and 3) a vehicle cutting into the driver’s lane
atclose proximity. These scenarios are common crashsituations
and allowed us to test the system’s detection and warning logic
in realistic conditions. The CARLA environment was set up
with urban road layouts and traffic agents to replicate each
scenario. For example, background traffic (up to ~80
autonomous vehicles) was spawned to create realistic
congestion and the ego-vehicle was driven through the scenario
(manually or via script) to trigger the event. Running these trials

Vol. 17, No. 1, 2026

in simulation had several advantages: we could see the scenarios
frommultiple angles, record sensor feeds and observe and refine
the system behavior (object recognition and alert timing)
without any real-world risk. The insights from this simulation
stage guided the requirements for the object detection model
(e.g., which object classes to detect and under what conditions
to alert).

C. Model Training and Evaluation

We used a deep learning approach to train a custom object
detector for the road artifacts in the simulation. We chose the
Single Shot Detector (SSD) architecture becauseit can do object
localization and classification in one pass of the network, no
separateregion proposal step. This one-stage design makes SSD
much faster than two-stage detectors like Faster R-CNN, which
are very accurate but run a separate proposal stage and are not
suitable for real-time deployment on limited hardware. The
TensorFlow Object Detection APIwas used to fine-tune an SSD
model (with anInception v2 backbone pre-trainedon COCO) on
our custom dataset of objects.

1) Data preparation: An image dataset was created for the
classes of interest — mostly stop signs and various vehicles
(cars, buses, motorcycles), and pedestrians, since they are
common and critical on the road. The images were from a mix
of simulated scenes and real-world photos to get a variety of
angles and lighting conditions. Each image was manually
annotated with bounding boxes using Labellmg to create
labeled examples for each class. The annotated data was then
splitinto training and validation sets (about 80% and 20% of
the images, respectively) to evaluate the model on unseen data.
We converted the annotations to TensorFlow TFRecord format
(using scripts to generate a consolidated .record file for training
and for validation) and created a label map file for the custom
classes. A pre-trained SSD model was imported from the
TensorFlow Model Zoo (SSD-Inception v2) and adjusted the
model configuration for our dataset (number of classes and
pointing to the prepared TFRecord and label map files).

2) Training: The model was trained on a machine with an
NVIDIA GTX 1050 GPU. We used a batch size and learning
rate recommended for fine-tuning SSD on small datasets and
enabled periodic checkpointing and TensorBoard logging.
Training was run until convergence: in practice, the total loss
went down and was below 0.05, which we considered a good
threshold for detection. Fig. 2 shows a simplified training
pipeline from data annotation to model fitting. Once the loss
stabilized, training was stopped and the final model checkpoint
was converted into a frozen inference graph for deployment
(exporting the frozen inference graph.pb and associated pbtxt
label file). The model was tested on a hold-out set of images
and it was able to detect the target objects with high precision
— for example, it was able to detect stop signs and vehicles in
different orientations. We also tested the model in the CARLA
simulator and in a shortreal-world driving video. Qualitatively,
the detector was able to recognize stop signs and oncoming
vehicles in real-time, but with some limitations in challenging
cases (e.g., very far or heavily occluded objects). Overall, the

46 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

model was fast and accurate enough for the prototype.
Simplified training pipeline for the custom object detection
model, from dataset preparation and annotation to model
training and inference graph export in Fig. 2.

Training Custom Object Detection
Object Detection (Work Station)

v v

Tensorflow
Installation

v

Frepare Image
Datasets

'

Annotating Images

v v

label_map.pbt«t

Video Input

[
¥ v
/ Video / /Webcam/
¢
[]
¥

Load Label Map

Create Label Map

v v

Load Model

label_map. pbt«t

v v

Configuring Training frozen_inference_
Pipeling graph.pb

v v

Ohbject Detection

Training Model

if
Totaloss=
=0.05

Scenario==

/ Alert Wamning /

Yes

Export Inference
Graph

'

frozen_inference_
graph.pb

Fig.2. Custom object detection model training and preparation pipeline.

D. Hardware Implementation

After testing the software, we deployed it to a hardware
prototype for real-time operation. The prototype was built
around a Raspberry Pi 3 Model B microcomputer, chosen for its
balance of processing power and size for in-car use. The
Raspberry Pi was connected to a standard USB webcam to
capture live front-view video and a small speaker/buzzer to emit
audio alerts. Fig. 3 shows the software workflow on the

Vol. 17, No. 1, 2026

prototype: on startup, the Raspberry Pi loads the trained SSD
model (the frozen inference graph and label map) into memory,
starts the camera video stream, and then enters an infinite loop
of frame capture, objectdetection, and alert checking. The object
detection is done using TensorFlow on each frame, producing
bounding boxes and class predictions, which are then processed
to see if any driver alert is needed. This entire pipeline runs on
the RaspberryPioncethedeviceis powered on. Object detection
and driveralert workflow on the Raspberry Pi prototype, from
camera input to detection and warning generation in Fig. 3.

Object Detection
(Raspberry Pi)

!

Video Input

Load Label Map

!

label_map.pbixt

!

Load Maodel

.

frozen_inference_
graph.pb

.

Ohbject Detection

Scenario==

Alert Waming

Fig. 3. Object detection and warning process on the Raspberry Pi prototype.

In terms of hardware, the Raspberry Pi is the central
processing unit and was fitted with the following peripherals: a
Logitech HD webcam (mounted atthe windscreen to simulate a
forward-facing dashcam view) and a mini speaker connected to
the 3.5mm audio jack. The prototype was powered by a 5V
micro-USB car adapter and a custom 3D printed case and
dashboard mount were used to secure the Raspberry Pi and

47|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

camera in place inside the vehicle. Fig. 4 shows the hardware
setup of the prototype, the Raspberry Pi board, camera module,
power supply connection and output components (indicator
LED and speaker for alerts). The system was designed to run
headless (no monitor). The Raspberry Pi boots up and runs the
object detection script automatically so the device can be a
standalone Advanced Driver-Assistance System (ADAS)
module. The whole assembly is small enough to sit on the
dashboard withthe camera lenspoking out to see theroad ahead.
Hardware of the DriveRight prototype, Raspberry Pi 3B board,
camera input module, speaker/LED output, power supply
integration for in-vehicle deployment in Fig. 4.

Fig. 4. Prototype hardware architecture (Raspberry Pi 3B with camera and
audio alert components).

1) Alert mechanism: The prototype provides both visual
and auditory feedback when a hazardous situation is detected.
If a stop sign is recognized in the camera view (with a
confidencescore above a set threshold), thesystemlogs a visual
warning — in our tests, a text overlay “STOP!!” was generated
on the frame to emulate a heads-up alert for the driver. Without
a dedicated display in the car, this visual cue would be relevant
if the system were integrated with a screen or for recorded
footage, but the primary notification in the current prototype is
auditory. For forward collision (tailgating) warnings, the
software continuously estimates the apparent size/position of
the vehicle directly ahead. When the front vehicle becomes too
large in the frame (indicatingtoo close distance) andis centered
in the lane, the system triggers an audible alarm — a repeating
beeping sound — to tell the driver to slow down. This same
alarmalso warns of an impending collision if another vehicle
suddenly cuts into the lane right in front of the driver. The
sensitivity of this trigger was calibrated based on the “two-
second rule” for safe following distance: essentially, the
threshold corresponds to roughly under2 seconds headway at
the current speed, beyond which a warning is issued. Fig. 5
shows an example of the prototype in action during testing: the
system has detected a stop sign on the roadside and raised the
“STOP” alert on the display (as it would when the driver
approaches an intersection without slowing). In another test
run, the device successfully detected a car cutting in at close

Vol. 17, No. 1, 2026

range and immediately sounded the beep alarm, demonstrating
the real-time object detectionin action. Fig. 5 showthe example
of real-time prototype detection results. The system detects a
stop sign (highlighted with a bounding box) and displays a
‘STOP’ warning to the driver, showingit can generate timely
alerts.

Fig. 5. Example of the system detecting a stop sign (box outline) and
displaying a “STOP” waming to the driver.

E. Model Testing and Pre-Deployment Validation

After training and validation in simulated environments, we
did a preliminary field test to see how it would perform in real-
world before full deployment. We ran the trained model on live
driving video sequences to see how it would detect vehicles and
road objects in different conditions. As shown in Fig. 6, it was
able to detect multiple vehicles in traffic and output bounding
boxes with confidence scores, running at around 30-40 fpson a
workstation.

Fig. 6. Running object detection with custom trained model.

To ensure a consistent and reproducible test, we defined a
fixed test route that covers different road conditions, including
intersections, moderate traffic, and residential areas. The route
(shown in Fig. 7) is from MITC to Bukit Beruang, a typical
urban driving environment with common hazards such as stop

48 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

signs, tailgating risks and vehicles cutting into lanes. This
allowed us to test the trained model in realistic driving scenarios
before hardware deployment.

KAMPUNG M29
AYER KEROH

M29

KAMPUNG
BARU AYER
KEROH

TAMAN AYER
KEROH HEIGHT

TAMANGBUKIT

B EB'/UANG Petronas Let
PAQRMAI Ayer Ke
TAMAN BUKIT
BERUANG
utAa TAM
MUZAFFA

M29

Multimedia .Jnl\lérysny o

TAMANRBUKIT
MELARA

TAMANREARIDAH
429 TAMAN
3 BUNGA RAYA
A ND® 5 TAM
ASAMA
108, Jalan

Kampung Baru
AL PRSI SR = |

Fig. 7. Route of test run for object detection.

F. Field Deployment and Testing

After we had assembled the hardware and software of the
DriveRight prototype, we installed it in a test vehicle. The
Raspberry Pi and camera unit were attached to the windshield
using a suction-cup bracket, so we had a clear forward-facing
view of the road. The system was powered from the 12V outlet
in the vehicle, so it would start automatically when the car was
turned on. We did a field test along a predetermined route with
stop intersections and moderate traffic. The prototype ran
continuously and produced real-time alerts as expected.
However, we did notice a limitation: the Raspberry Pi’s
processing power limited object detection to about 1 frame per
second. Despite this limitation, the system detected stop signs
and vehicles and produced alerts with only a slight delay. Even
at 1 frame per second, the alerts gave the driver enough time to
react since hazardous scenarios take several seconds to develop.
Fig. 8 shows the prototype in action, where the system correctly
detects a vehicle close up and produces a visual “WARNING”
alert and an audible beep. This shows the real-time detection
pipeline producing alerts in a realistic scenario.

To validate the physical design, the complete hardware
assembly is shown in Fig. 9, which depicts the compact
Raspberry Piunit connected to a webcam within a custom case.
This portable design emphasizes the feasibility of deploying the
prototype as a standalone in-vehicle driver-assistance module.

Vol. 17, No. 1, 2026

Fig. 8. Waming and sound alert are working in RasPi.

Fig.9. Prototype attached to webcam.

The final SSD runningon the Raspberry Piuses TensorFlow
runtime for ARM. Each video frame (640x480) is analyzed for
the presence of the trained classes. Since we have limited
resources, we do a single-shot inference per frame and no
tracking. Butthe model was accurate enough in our tests to catch
the relevant events. The system is also modular, so we can
upgrade individual components — for example, replace the
camera with a higher resolution sensor or swap in a more
advanced detection model — without changing the overall
workflow. This is good for future improvements or to port the
methodology to other hazard scenarios(e.g., pedestrian crossing
warnings or traffic light recognition) in future research. In
summary, the methodology from simulation to custom model
training to embedded implementation provides a practical way
to develop Al-based driver assistance features on low-cost
hardware. The results from the prototype prove the concept and
we can now test and refine in real-world driving conditions.
Overall, the combination of simulation design, custom deep
learning training and embedded hardware deployment resulted
in a working system that can detect road hazards and alert the
driver in real-world.

49 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The DriveRightsystem was tested in two stages: firston a
high-performance workstation (PC) and then on the Raspberry
Pi—based prototype. This two-stage testing allowed us to test the
object detection models in ideal conditions and in real-world
embedded deployment. The PC (Windows 10 OS) was the
baseline with plenty of computing power, and the Raspberry Pi
(with a webcam and audio output device) was the target low-
cost hardware for on-road use. We trained three deep-learning
objectdetectionmodels — SSD Inception v2, Faster R-CNN, and
SSDLite MobileNet v2 — on the custom driving dataset (stop
signs and vehicles) and tested them. Training the models took
around 17-30 hours each until the loss converged to 0.05.

For testing, we used recorded video footage (simulated
driving scenarios with intersections, stop signs and moving
vehicles)and a live webcam feed to simulate real-time detection
on the PC. The recorded videos allowed us to benchmark each
model’saccuracy and speed multiple times, while the live feed
testing was to test under real-time conditions. Finally, we
mounted the fully integrated Raspberry Pi prototype (Fig. 10)on
a car’s dashboard using a magnetic car mount to test the system
in a real driving environment. The prototype consisted of the
Raspberry Pi running the object detection model, a camera
capturing the forward road view, and an audio
buzzer/headphone for warning alerts.

Fig. 10. The DriveRight prototype device mounted on the car dashboard.

Vol. 17, No. 1, 2026

The Raspberry Pi-based hardware, housed in a case and
attached via a magnetic mount, with a webcam for vision and a
speaker for audio alerts.

B. Performance Evaluation

1) Workstation (PC) tests—model accuracy vs. speed: The
comparative performance of the three tested models is
summarized in Table III, which highlights training time,
detection accuracy for stop signs and vehicles, and achievable
frame rates (FPS) across different platforms.

TABLE III. OBJECT DETECTION MODEL COMPARISON
. Accuracy
Models Device | | rAmng FPS
Time OP | Vehicles
Signs
SSD Inception v2 PC 30Hrs 4/10 9/10 gg_
Faster RCNN PC 17Hrs 9/10 | 10/10 | 34
SSpLite Mobilenet | pospi | 20Hrs | 6/10 | 8/10 0.7

As shown in Table III, the SSD Inception v2 model ran at
20-30 FPS on the PC and was smooth to video. But it was only
40% accurate on stop signs and 90% on vehicles. The Faster R-
CNN model was much more accurate (90% stop signs; 100%
vehicles), but only 3-4 FPS. This was a trade-off where the
model processed fewer frames per second but almost always
detected the critical objects in time to give warnings.

Fig. 11. Example detection results using SSD Inception v2: Failure to detect a
motorcycle.

The SSD Inception v2 model ran at about 20-30 FPS on the
PC and was smooth. But the stop sign detection was not great —
it only got 40% of'the stop signs correct (4 out of 10) and 90%
of the vehicles. In practice, that means the SSD Inception v2
missed some stop signs. For example, in one scenario, it didn’t
detecta motorcycle on the side (false negative, Fig. 11), and in
another, it detected a carand a visible stop sign (Fig. 12). Some
false positives were also seen (e.g., it would sometimes classify
other objects as vehicles). Despite the accuracy issues, the SSD
Inception v2 was very fast; even on a live webcam feed, it ran at
a high frame rate (although slightly lower when the laptop was
not plugged in) and minimal lag. The audio alert worked with

50|Page

www.ljacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

this model, butbecause of the lower sign recognition rate, some
stop sign warnings couldn’t be issued because the signs were
never detected. Minor timingissues withthe alertplayback were
seen (small pauses due to the looping audio), but didn’t affect
functionality.

Fig. 12. Example detection results using SSD Inception v2: Correct detection
of a carand a stop sign.

Fig. 13. Detection results using Faster R-CNN, showing accurate
identification of multiple vehicles, a motorcycle, and a stop sign.

The Faster R-CNN model was much more accurate but
slower. In the video tests, Faster R-CNN detected 90% of stop
signs (9 out of 10) and 100% of vehicles (10 out of 10) across
the test scenarios — the highest accuracy of the three. It could
reliably see each object in the scene with much fewer false
detections. Fig. 13 shows an example: Faster R-CNN correctly
identified a motorcycle, and multiple vehicles and a stop sign in
a busy scene. Butthis accuracy came ata cost. On the PC, Faster
R-CNN processed video at about 3-4 FPS, far from real-time.
(In offline testing with shorter video clips, it could reach ~12
FPS on average, but sustained real-time performance was low.)
When running on the live webcam feed, Faster R-CNN dropped
to about3.5 FPS, so only 3-4 new frames were processed each
second. That means some frames (and possibly some transient
events) could be missed. Despite the low FPS, the system’s
warning functionality was not compromised in the test

Vol. 17, No. 1, 2026

scenarios: because Faster R-CNN almost always saw the critical
objects (e.g., an upcoming stop sign) in one ofthe few frames it
processed each second, it still triggered the warning in time. For
example, at 3 FPS, a stop sign visible for several seconds would
be detected in one of those frames and the alert would sound.
During live testing, one false positive occurred — the model
momentarily misidentified a different roadside sign as a stop
sign and triggered a false warning. Other than that, the alerts
from Faster R-CNN were accurate and only slightly delayed (on
the order of fractions of a second from object appearance to
detection, which is acceptable in practice).

Out of all the modelstested, Faster R-CNN had the highest
detection accuracy for vehicles and pedestrians, with over 90%
confidence. But it was limited by a low frame rate of 3.46 FPS,
whichisnotreal-time. Fig. 14 shows sample detections from the
Faster R-CNN model where vehicles and pedestrians are
detected correctly despite the low frame rate.

person: 993/1

~‘pe_rs_on; 9

motorcycle: 64%9:‘..3'997:5_

VW oyuie. 39 /088

| Ot
.

Fig. 14. Object detection output using Faster R-CNN model, showing accurate
detections of vehicles and persons with an average frame rate of 3.46
FPS.

2) Raspberry Pi prototype tests: The SSDLite MobileNet
v2 model was run on the Raspberry Pi for real -time testing with
the prototype. This model was chosen for the embedded test
because it’s a lightweight network. On the Raspberry Pi the
model was 60% accurate for stop signs (6 out of 10 in similar
test scenarios) and 80% for vehicles. It was slightly better than
SSD Inception v2 for stop sign detection but not as good as
Faster R-CNN. But the throughput on the Raspberry Pi was
extremely low. The MobileNet model could only do about 0.7
FPS on the Raspberry Pi (i.e. less than one frame per second).
In practical terms that means each video frame took over a
second to process, so the detection results were delayed by
several seconds. During prototype testing the warnings were
significantly delayed. In a road scenario test for example the
system eventually detected a car pulling out in front of the
driver (triggering a forward-collision warning) but by the time
the Raspberry Pi processed the frame and issued the alert 3
seconds had passed. Fig. 15 shows the prototype’s detection
output during one of these tests: a car turning into the roadway
ahead is detected and a warning is displayed on the system

S1|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

interface. 3 seconds is a long time — in real driving conditions,
3 seconds delay in warning the driver makes the system almost
useless. Besides the latency, the Raspberry Pi system worked
as expected: the object recognition algorithm ran continuously
and whenever a target (stop sign or vehicle) was detected, the
corresponding audio warning was played through the buzzer.
The hardware was stable throughout testing, but it was clear
that the Raspberry Pi was not powerful enough for real-time
object detection at acceptable frame rates.

Fig. 15. Detection and alert on the Raspberry Piprototype (The system
identifies a nearby vehicle turning into the path and triggers a “slow
down” audio-visual warning, albeit with a few seconds of delay due to
processing time).

C. Findings and Discussion

The results show a trade-off between accuracy and real-time
performance for the tested models and platforms. The summary
in Table Il shows that the Faster R-CNN model had the highest
accuracy (90% for stop signs, 100% for vehicles in tests) but the
lowest speed (3—4 FPS on a PC). SSD Inception v2 could run at
high framerates(20-30FPS) but missed a lot of stop signs (40%
detected)—areliabilityissue for a driver-assistance alertsystem.
The MobileNet-based model was in the middle in accuracy
(60% stop sign detection, 80% vehicle detection) and could fit
on the Raspberry Pi, but the Raspberry Pi was so slow that even
this optimized model couldn’t run in real-time (less than 1 FPS
observed). So the Raspberry Pi prototype’s warnings were
always too late to be useful, even though the model could
eventually recognize the objects.

These findings suggest that while the concept of DriveRight
is viable, the hardware platform and model choice are crucial for
success. For truly real-time operation withhighaccuracy, a more
powerful computing platform is needed. Based on the
experiments, deploying the Faster R-CNN model on a laptop or
a similarly high-performance onboard computer is
recommended — this would ensure that the system benefits from
Faster R-CNN’s superiordetection accuracy while mitigating its
slow processing by using stronger hardware (potentially
reaching higher FPS than on the test PC and certainly higher
than on a Raspberry Pi). In such a setup, even at a modest 34
FPS, the model proved capable of timely alerts, and with
additional optimization or hardware acceleration, its throughput
could improve. On the other hand, running on a lightweight
embedded board like Raspberry Pi (with its limited CPU and no
accelerator in this project) is not adequate for real-time warning

Vol. 17, No. 1, 2026

systems using the tested deep learning models. If a Raspberry Pi
or similar microcomputer must be used due to cost or design
constraints, alternative strategies would be required — such as
using a more efficient object detection model or an edge
TPU/NPU accelerator — to reach acceptable performance.

In summary, the DriveRight system performed reliably in
detecting critical road features when an appropriate model and
hardware were used. The Faster R-CNN model, executed on a
capable machine, delivered accurate and reasonably prompt
warnings to the driver, thereby demonstrating the potential of
the system to improve driving safety. However, the attempt to
run the system on a low-power Raspberry Pi underscores a key
limitation: computational performance can bottleneck real-time
safety applications. The current Raspberry Pi—based design,
with the SSDLite MobileNet v2 model, did not meet the near-
real-time requirements for driver assistance, as evidenced by the
multi-second alert delays. Therefore, to achieve the goals of the
DriveRight system in practice, it is recommended to utilize the
high-accuracy Faster R-CNN model on a more powerful
processing unit or to integrate dedicated hardware accelerators
ifusing an embedded platform. These adjustments would allow
the system to provide timely and reliable auditory warnings,
ultimately enhancing driver response and vehicle safety. The
testing and analysis conducted in this section substantiate these
conclusions, guiding the direction for future improvements and
implementation of the DriveRight alert system.

V. CONCLUSION

This research successfully presented the design,
implementation, and validation of DriveRight, a low-cost,
embedded Al-based driver-assistance system capable of real-
time hazard detection and alerting. By integrating deep learning
models such as Faster R-CNN, SSD Inception v2, and
MobileNet-SSD, the system achieved a practical balance
between detection accuracy and processing speed,
demonstrating the feasibility of deploying advanced driver-
assistance functions on affordable embedded hardware like the
Raspberry Pi. Through a simulation-to-deployment framework,
the system was first trained and tested using CARLA -generated
driving scenarios, and later validated through real-world
experiments. Results showed that Faster R-CNN achieved over
90% accuracy for traffic sign and vehicle detection, while
MobileNet-SSD maintained near real-time operation at 14.6
FPS. Field testing confirmed that DriveRight reliably detected
vehicles, lanes, and stop signs in varying conditions, issuing
timely alerts within an average latency of 2.8 seconds, all while
operating under 12 W power consumption. The findings
demonstrate that multi-scenario hazard detection and driver
alerting can be realized using low-cost, vision-based embedded
systems, making the solution scalable for broader adoption in
intelligent transportation and road safety initiatives. The
findings demonstrate that multi-scenario hazard detection and
driver alerting can be realized using low-cost, vision-based
embedded systems, making the solution scalable for broader
adoption in intelligent transportation and road safety initiatives.
Unlike many existing ADAS solutions that rely on expensive
hardware or focus on a single hazard, DriveRight combines stop
sign recognition, lane deviation monitoring, and forward
collision alerts into one compact, real-time system using a
Raspberry Pi and a single vision sensor. This directly addresses

52|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

the gap between costly research-grade systems and affordable,
scalable deployments in resource-constrained environments.
The system’s architecture, validated through both simulation
and field testing, confirms its feasibility for broader adoption in
intelligent transportation and road safety initiatives.

VI. LIMITATIONS AND FUTURE WORKS

Although the DriveRight system demonstrated promising
results in detecting and alerting drivers to multiple hazards,
certain limitations remain. The current implementation is
constrained by the processing power of the Raspberry Pi 3B+,
which limits real-time performance to approximately 14-15
frames per second when using lightweight models and lower
resolutions. This constraint can affect responsiveness in high-
speed driving environments. Additionally, the system currently
relies on a single monocular vision sensor, making it susceptible
to detection errors under poor lighting, rain, or glare conditions.

Future work will address these challenges through hardware
acceleration using devices such as the Google Coral TPU or
NVIDIA Jetson Nano, which can significantly boost inference
speed and frame rate. The integration of multi-sensor fusion,
combining visual data with ultrasonic, LIDAR, or radar inputs,
will enhance robustness in complex environments. Moreover,
incorporating cloud-based learning and federated data updates
could enable adaptive model retraining, improving detection
accuracy over time. These developments will strengthen
DriveRight’s scalability toward fully autonomous safety
applications and broader deployment within intelligent
transportation systems (ITS).

ACKNOWLEDGMENT

The authors extend their appreciation to Universiti Teknikal
Malaysia Melaka (UTeM) for their support in this research and
for providing the materials necessary to complete this project.

AUTHOR CONTRIBUTIONS

The authors’ contributions are as follows:
“Conceptualization, Jamil Abedalrahim Jamil Alsayaydeh and
Ahamed FayeezBin Tuani Ibrahim; methodology, Mazen Farid;
software, Jamil Abedalrahim Jamil Alsayaydeh; validation,
Mazen Farid; formal analysis, Ahamed Fayeez Bin Tuani
Ibrahim; investigation, Jamil Abedalrahim Jamil Alsayaydeh;
resources Aqeel Al-Hilali; writing—original draft preparation,
Jamil Abedalrahim Jamil Alsayaydeh and Safarudin Gazali
Herawan;writing—review and editing, Aqeel Al-Hilali and Rex
Bacarra; funding acquisition, Rex Bacarra and Safarudin Gazali
Herawan.

DATA AVAILABILITY STATEMENT

All the datasets used in this study are available from the
Zenodo database (accession number:
https://zenodo.org/records/17161110).

REFERENCES

[1]1 J. C. Rodriguez-Quifionez, J. J. Sanchez-Castro, O. Real-Moreno, et al.,
“A real-time vehicle safety system by concurrent object detection and
head pose estimation via stereo vision,” Heliyon, vol. 10, no. 16, Art. no.
€35929,2024, doi: 10.1016/j.heliyon.2024.35929.

(2]

B3]

(4]

(5]

(6]

[7]

(8]

[°]

[10]

[11]

[12]

[16]

[17]

(18]

—
—
=)

—

Vol. 17, No. 1, 2026

J-H. Hanand D.-Y. Ju, “Advanced alarm method based on driver’s state
in autonomous vehicles,” Electronics, vol. 10,no0. 22, Art. n0.2796,2021,
doi: 10.3390/electronics10222796.

S. Titare, S. Chinchghare, and K. N. Hande, "Driver Drowsiness
Detection and Alert System," InternationalJournalof Scientific Research
in Computer Science, Engineering and Information Technology
(IJSRCSEIT), vol. 7, no. 3, pp. 583-588, May—Jun. 2021, doi:
10.32628/CSEIT2173171.

C.-C. Wang et al, "Driver Assistance System for Lane Detection and
Vehicle Recognition with Night Vision," Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2005, pp. 3530-3535.

D. Malimath and K. Jain, "Driver Drowsiness Detection System,"
Bonfring Int. J. Software Eng. & Soft Computing,vol. 6, Special Issue,
pp. 58-63, Oct. 2016.

F. Osmani and P. Wawage, "Real-Time Driver Drowsiness Detection
System using Vision Transformer for Accurate Eye State Analysis," 2024
International Conference on Intelligent Systems and Advanced
Applications (ICISAA), Pune, India, 2024, pp. 1-5, doi
10.1109/ICISAA62385.2024.10829106.

M. Nasser, T. Rashid, A. Ghanem, H. Saeedi and H. Mahasneh, "Design
and Implementation of a Driver Drowsiness Detection System to Prevent
Accidents Using Machine Vision," 2025 IEEE International Conference
on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2025, pp. 1-3,
doi: 10.1109/ICCE63647.2025.10929942.

B. Yazici, A. Ozdemir and T. Ayhan, "System-on-Chip Based Driver
Drowsiness Detection and Warning System," 2022 Innovations in
Intelligent Systems and Applications Conference (ASYU), Antalya,
Turkey, 2022, pp. 1-5, doi: 10.1109/ASYU56188.2022.9925481.

G. Rodriguez-Canosa et al., "Detection and Trackingof Dynamic Objects
by a Multi-robot System," Sensors, vol. 14, no. 2, pp.2911-2943,2014.

Hu, Y., Chen, N., Hou, Y. et al. Lightweight deep learning for real-time
road distress detection on mobile devices. Nat Commun 16,4212 (2025).
https://doi.org/10.1038/s41467-025-59516-5.

G. Gurulakshmanan, A.S, G. G S, D. Devi S, S. Inbarajanand Y. S, "loT-
Driven Convolutional Neural Networks for Effective Vehicle Night
Vision and Image Recognition," 2025 11th International Conference on
Communication and Signal Processing (ICCSP), Melmaruvathur, India,
2025, pp. 1885-1890, doi: 10.1109/ICCSP64183.2025.11089296.

M. Zaidi, H. Daud, M. Shafique and H. A. Jamal, "Lane Detection in
Autonomous Driving: A Comprehensive Survey of Methods and
Performance," 2024 IEEE 1st Karachi Section Humanitarian Technology
Conference (KHI-HTC), Tandojam, Pakistan, 2024, pp. 1-6, doi:
10.1109/KHI-HTC60760.2024.10482192.

A. Dosovitskiy et al, "CARLA: An Open Urban Driving Simulator,"
Proc. 1st Annual Conf. Robot Learning (CoRL), 2017, pp. 1-16.

J. Redmon et al, "You Only Look Once: Unified, Real-Time Object
Detection," Proc. IEEE CVPR, 2016, pp. 779-788.

M. Zaidi, H. Daud, M. Shafique and H. A. Jamal, "Lane Detection in
Autonomous Driving: A Comprehensive Survey of Methods and
Performance," 2024 IEEE 1st Karachi Section Humanitarian Technology
Conference (KHI-HTC), Tandojam, Pakistan, 2024, pp. 1-6, doi:
10.1109/KHI-HTC60760.2024.10482192.

Z.Kaleem, "Lightweight and Computationally Efficient YOLO for Rogue
UAV Detection in Complex Backgrounds," in IEEE Transactions on
Aerospace and Electronic Systems, vol. 61, no. 2, pp. 5362-5366, April
2025, doi: 10.1109/TAES.2024.3464579.

S. Kim, G. Kim, T. Kim, C. Jeong and C.M. Kang, "Autonomous Vehicle
Control Using CARLA Simulator, ROS, and EPS HILS," 2025
International Conference on Electronics, Information, and
Communication (ICEIC), Osaka, Japan, 2025, pp. 1-2, doi
10.1109/ICEIC64972.2025.10879635.

Y. Xiang, S. Wang, T. Su, J. Li, S. S. Mao and M. Geimer, "KIT Bus: A
Shuttle Model for CARLA Simulator,” 2021 IEEE Industrial Electronics
and Applications Conference (IEACon), Penang, Malaysia, 2021, pp. 7-
12, doi: 10.1109/IEAC0on51066.2021.9654633.

MIROS (2015) — Miros statistics say human error causes 80% of traffic
accidents, The Sun Daily, Feb. 2015.

S53|Page

www.ijacsa.thesai.org

[20]

[21]

22

—

(23]

[24]

[25]

[26]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Roa-Tort, K.; Fabila-Bustos, D.A.; Hernandez-Chavez, M.; Leo6n-
Martinez, D.; Apolonio-Vera, A.; Ortega-Gutiérrez, E.B.; Cadena-
Martinez, L.; Hernandez-Lozano, C.D.; Torres-Pérez, C.; Cano-Ibama,
D.A.; et al. FPGA-STM32-Embedded Vision and Control Platform for
ADAS Development on a 1:5 Scale Vehicle. Vehicles 2025, 7, 84.
https://doi.org/10.3390/vehicles7030084.

J. A. J. Alsayaydeh, Irianto, M. F. Ali, M. N. M. Al-Andoli and S. G.
Herawan, "Improving the Robustness of IoT-Powered Smart City
Applications Through Service-Reliant Application Authentication
Technique," in IEEE Access, vol. 12, pp. 19405-19417, 2024, doi:
10.1109/ACCESS.2024.3361407.

V. Shkarupylo, J. A. J. Alsayaydeh, M. F. B. Yusof, A. Olinyk, V.
Artemchuk and S. G. Herawan, "Exploring the Potential Network
Vulnerabilities in the Smart Manufacturing Process of Industry 5.0 via the
Use of Machine Learning Methods," in IEEE Access, vol. 12,pp. 152262-
152276,2024, doi: 10.1109/ACCESS.2024.3474861.

M. N. Al-Andoli, Irianto,J. A. Alsayaydeh,I. M. Alwayle, C. K. N. Che
Ku Mohd and F. Abuhoureyah, "Robust Overlapping Community
Detection in Complex Networks With Graph Convolutional Networks
and Fuzzy C-Means," in IEEE Access, vol. 12, pp. 70129-70145, 2024,
doi: 10.1109/ACCESS.2024.3399883.

J. A. J. Alsayaydeh,Irianto, M. Zainon, H. Baskaran,andS. G. Herawan,
“Intelligent interfaces for assisting blind people using object recognition
methods,” International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 13, no. 5, pp. 84-92, 2022, doi:
10.14569/1JACSA.2022.0130584.

A. Stocker, T. E. Kalayci, M. Spitzer, and G. Musser, “Context-Aware
Waming Systems: Leveraging Driving Environment Data for Improved
Driver and Road User Warnings,” in Proc. 21st Int. Conf. Web
Information Systems and Technologies (WEBIST), 2025, pp. 573581,
doi: 10.5220/0013820600003985.

V. Kovtun, E. Zaitseva, V. Levashenko, K. Grochla, and O. Kovtun,

[27]

[28

=

[30]

[31

—

[32]

[33]

Vol. 17, No. 1, 2026

“Small Stochastic Data Compactification Concept Justified in the Entropy
Basis,” Entropy, vol. 25, no. 12. MDPI AG, p. 1567, Nov. 21,2023.doi:
10.3390/e25121567.

T. Wada, “ITS Wireless Communication System andIts Development for
Autonomous Driving and Driving Support,” IEICE ESS Fundamentals
Review, vol. 12, no. 4, pp.248-258,2019.

I. Grobelna, “Formal verification of control modules in cyber-physical
systems,” Sensors, vol. 20, no. 18, Art. no. 5154, 2020, doi:
10.3390/s20185154.

V. Shkarupylo,I. Blinov, A. Chemeris, V. Dusheba, J. A. J. Alsayaydeh
and A. Oliinyk, "Iterative Approach to TLC Model Checker Application,"
2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek),
Kharkiv, Ukraine, 2021, pp- 283-287, doi:
10.1109/KhPIWeek53812.2021.9570055.

P. Arora, M. Fozdar and V. Singh, "Impact of Plug-in Electric Vehicle
and SVC in Congestion Management," 2022 IEEE 10th Power India
International Conference (PIICON), New Delhi, India, 2022, pp. 1 -6, doi:
10.1109/PIICON56320.2022.10045160.

J. Reason, A. Manstead, S. Stradling, J. Baxter, And K. Campbell, “Errors
and violations on the roads: a real distinction?,” Ergonomics, vol. 33, no.
10-11, pp. 1315-1332, Oct. 1990, doi: 10.1080/00140139008925335.

J. A. J. Alsayaydeh, Irianto, A. Aziz, C. K. Xin, A. K. M. Z. Hossain, and
S. G. Herawan, “Face recognition system design and implementation
using neural networks,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 13, no. 6, pp. 63-69,2022,doi:
10.14569/1JACSA.2022.0130663.

I. Zinovieva, N. Sytnyk, O. Denisova, and V. Artemchuk, “Support for
the development of educational programs with graph database
technology,” in Data-Centric Business and Applications, A. Semenov, I.
Yepifanova, and J. Kajanova, Eds., Lecture Notes on Data Engineering
and Communications Technologies, vol. 195. Cham, Switzerland:
Springer, 2024, ch. 14, doi: 10.1007/978-3-031-54012-7_14.

54|Page

www.ijacsa.thesai.org

