
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

42 | P a g e  
www.ijacsa.thesai.org 

DriveRight: An Embedded AI-Based Multi-Hazard 

Detection and Alert System for Safe and Sustainable 

Driving

Jamil Abedalrahim Jamil Alsayaydeh1*, Rex Bacarra2, Ahamed Fayeez Bin Tuani Ibrahim3, Mazen Farid4,  

Aqeel Al-Hilali5, Safarudin Gazali Herawan6 

Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK)-Department of Engineering Technology,  
Universiti Teknikal Malaysia Melaka (UTeM), 76100 Melaka, Malaysia 1, 3 

Faculty of Information Science and Technology (FIST), Multimedia University, Melaka 75450, Malaysia 4 
Centre for Intelligent Cloud Computing-COE for Advanced Cloud, Multimedia University, Melaka 75450, Malaysia 4 

Department of General Education and Foundation, Rabdan Academy, Abu Dhabi, United Arab Emirates 2 
Medical Technical College, Al-Farahidi University, Baghdad, Iraq5 

Faculty of Engineering-Industrial Engineering Department, Bina Nusantara University, Jakarta, Indonesia 114806 

 

 
Abstract—Recent advances in Artificial Intelligence (AI) and 

Computer Vision have significantly enhanced the potential of 

Advanced Driver Assistance Systems (ADAS). However, existing 

solutions remain limited by high computational cost, single-

function design, and dependence on expensive sensors such as 

radar and LiDAR. This study presents DriveRight, an embedded 

AI-based driver-assistance system that integrates multi-scenario 

hazard detection and real-time object detection and alerting using 

a single low-cost vision sensor on a Raspberry Pi platform. The 

system leverages a simulation-to-deployment pipeline, combining 

CARLA-based synthetic training environments with TensorFlow 

deep learning models, including SSD Inception v2, MobileNet-

SSD, and Faster R-CNN. Experimental results show that Faster 

R-CNN achieved 92.1% detection accuracy for vehicles and 90.3% 

for traffic signs, while MobileNet-SSD achieved real-time 

performance at 14.6 frames per second (FPS) with minimal 

latency of 2.8 seconds on embedded hardware. Field tests validated 

the system’s ability to accurately detect and classify stop signs, 

vehicles, and lane deviations under varying lighting and motion 

conditions, triggering timely alerts to the driver. The prototype 

demonstrates a cost-effective and energy-efficient AI solution (< 

12 W) for intelligent transportation systems. The findings 

establish the feasibility of deploying IoT-based ADAS and deep 

learning–driven driver-assistance technologies in low-cost, 

sustainable embedded platforms, bridging the gap between 

research-grade ADAS and practical real-world deployment. 

Keywords—Embedded AI; computer vision; intelligent 

transportation; IoT-based ADAS; deep learning; real-time object 

detection; Raspberry Pi 

I. INTRODUCTION 

Road traffic accidents are a big public health and economic 
problem. Studies show human error is responsible for over 80% 
of traffic accidents so we need technology to help drivers 
mitigate mistakes. Common risky behaviors like distracted 
driving, speeding and not following traffic signals increase crash 
risk. For example speeding is a common cause of fatal road 
accidents. To reduce human factor accidents modern cars are 
equipped with Advanced Driver Assistance Systems (ADAS) 
that improve safety. These systems – from lane keeping to 

automatic emergency braking – can warn the driver of 
impending hazards or even intervene to prevent crashes. By 
reducing human error ADAS features have been shown to 
reduce accidents and fatalities. Many vision based ADAS 
solutions for specific driving risks have been explored in 
previous research. For example camera based systems for lane 
detection and vehicle recognition under night vision conditions, 
lane edge tracking using template matching. Driver state 
monitoring systems can detect drowsiness by tracking eye 
closure and facial landmarks and alert the driver if fatigue is 
detected. Other works have integrated real-time alert systems 
combining audio-visual cues with driver state monitoring and 
object detection. Rodríguez-Quiñonez et al. (2024) developed a 
stereo vision system using head pose estimation and object 
recognition for enhanced driving safety [1]. Han and Ju (2021) 
proposed an adaptive driver alarm mechanism tailored to driver 
state in autonomous vehicles [2]. While these systems are good 
for individual aspects (e.g. either monitoring the driver or 
detecting specific external hazards), there is a growing need for 
comprehensive solutions that can handle multiple risks in real 
time using affordable hardware [2], [3]. 

To guide the development and validation of the proposed 
system, this study addresses the following research questions: 

RQ1: Can an embedded, low-cost vision-based system 
reliably detect multiple pre-crash hazards in real time using deep 
learning models? 

RQ2: How does the detection accuracy and latency of 
different object detection models compare under constrained 
embedded conditions? 

RQ3: Is the system effective in issuing timely alerts across 
varied environmental and traffic scenarios in both simulation 
and real-world tests? 

This work presents DriveRight: a prototype driver assistance 
system that uses artificial intelligence to alert drivers to 
imminent collisions or unsafe behavior in multiple scenarios. 
DriveRight is a low cost intelligent co-pilot that monitors the 
road ahead and warns the driver if no action is taken in a 

*Corresponding author. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

43 | P a g e  
www.ijacsa.thesai.org 

situation that could lead to an accident. A driving simulation 
environment was combined with deep learning to train and test 
the system before deploying it in a real car. Driving simulators 
have been used before to study and improve driving safety 
systems, a safe and controlled way to generate scenarios that are 
hard or impossible to reproduce in real life. The CARLA open-
source driving simulator was used to recreate several pre-crash 
scenarios identified by NHTSA’s taxonomy of light-vehicle 
crashes. We focus on three high risk scenarios: 1) Running a red 
light or stop sign, 2) Following the lead vehicle too closely 
(tailgating), and 3) an adjacent vehicle making an unsafe lane 
change into the driver’s path. These scenarios correspond to 
well-known accident patterns (e.g. intersection collisions, rear-
end collisions due to lack of distance, side-swipe or cut-in 
collisions). By simulating these scenarios we can collect data 
(e.g. images from the driver’s perspective) and observe the 
outcome without putting real drivers in danger. 

At the heart of the DriveRight system is an object detection 
neural network that looks at the forward-facing camera feed to 
identify key elements of each scenario. Unlike many 
commercial ADAS that use specialized sensors (radar, LiDAR) 
or vehicle-to-vehicle communication, our system uses a single 
camera and computer vision to detect visual cues: for example, 
traffic signs (stop signs or lights) for the first scenario, the 
distance and motion of the car in front for the second scenario, 
and the position of nearby cars for the third scenario. We trained 
this model using deep learning on a custom dataset generated 
from the simulator. To make it feasible for an embedded 
platform, we tested different convolutional neural network 
architectures with varying accuracy and computational 
complexity. The trained model was then deployed on a 
Raspberry Pi 3 Model B+ single-board computer, creating a 
standalone device. The device has a webcam (acting as a 
dashcam sensor) and a small speaker. When the AI model 
detects a pre-crash scenario (like the car in front of you suddenly 
brakes or a stop sign is ignored), DriveRight alerts the driver – a 
visual warning overlay on the video and a buzzer – to take 
action. Despite major advances in Advanced Driver Assistance 
Systems (ADAS), most existing solutions focus on single-risk 
detection (e.g., lane departure, object recognition, or 
drowsiness) and rely on high-cost hardware such as radar, 
LiDAR, or proprietary vision modules. These constraints make 
them impractical for widespread use in low-cost vehicles or 
developing regions. Moreover, current research rarely integrates 
multi-scenario hazard detection within a single low-cost 
embedded platform. Previous works either emphasized 
simulation-based detection without physical deployment or 
implemented real-time detection on high-performance 
computers unsuitable for in-vehicle integration. Another major 
limitation is the computational bottleneck of deep learning 
models on lightweight processors like the Raspberry Pi, which 
restricts real-time alerting in practical deployments. Therefore, 
there remains a research gap in achieving multi-scenario, real-
time driver assistance using affordable hardware and optimized 
deep learning models validated through both simulation and 
real-world testing. 

The main contributions of this research are as follows: 

• DriveRight introduces a unified AI-based driver-
assistance system capable of handling multiple pre-crash 

scenarios—stop sign violations, close following, and 
unsafe lane changes—using a single vision sensor and 
embedded processor. 

•  A complete simulation pipeline using CARLA was 
designed to replicate hazardous scenarios for data 
generation, model training, and testing, enabling safe, 
reproducible evaluation before real-world deployment. 

•  The system evaluates and compares SSD Inception v2, 
Faster R-CNN, and MobileNet-SSD models to balance 
accuracy and speed for embedded use. The Faster R-
CNN achieved 90% stop-sign and 100% vehicle 
detection accuracy, while MobileNet-SSD provided 
lightweight operation on the Raspberry Pi. 

• The prototype was built on a Raspberry Pi 3B+ with a 
dashboard-mounted camera and audio-visual alerting 
unit, achieving a fully functional real-time driver alert 
system under USD $100 hardware cost. 

• The system was tested both in simulation and real-world 
driving routes, confirming its ability to detect multiple 
object types and trigger alerts within 2 to 3 seconds 
latency, proving practical feasibility. 

• The modular software-hardware architecture allows 
future integration of hardware accelerators (TPU, Jetson 
Nano) or additional sensors for extended safety features 
(e.g., pedestrian detection, fog visibility, or driver 
fatigue). 

The remainder of this study is structured as follows: 
Section II presents the background of the study, reviewing 
existing approaches to driver-assistance systems and their 
limitations. Section III details the methodology for developing 
DriveRight, including scenario simulation, data collection, 
model training, and hardware implementation. Section IV 
reports the experimental results and discussion. Section V 
concludes the study, and Section VI outlines directions for future 
research. 

II. BACKGROUND OF THE STUDY 

Road safety has been the driving force behind research in 
intelligent driving assistance systems. Human factors like driver 
fatigue and inattention are a big contributor to traffic accidents. 
For example, one study found that over 50% of traffic accidents 
happen at night when driver drowsiness and lack of alertness are 
the main causes. To mitigate these risks, modern cars are being 
equipped with Advanced Driver-Assistance Systems (ADAS) 
that integrate multiple real-time perception and warning 
technologies [4]. Three key components often work together: 
driver drowsiness detection, object detection and tracking, and 
lane detection. Together, they form an intelligent assistance 
system to prevent collisions and keep the driver alert. 

Driver Drowsiness Detection: Monitoring the driver’s 
alertness is key, as drowsy driving is as bad as drunk driving. 
Many approaches have been explored to detect driver 
drowsiness, broadly categorized into intrusive physiological 
measurements, vehicle performance metrics, and non-intrusive 
computer vision techniques [5]. Intrusive methods (e.g., EEG or 
eye blink sensors) can be very accurate but impractical as they 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

44 | P a g e  
www.ijacsa.thesai.org 

are uncomfortable for the driver [6]. Vehicle-performance 
measures such as monitoring steering behavior or lane 
positioning provide indirect indicators of fatigue – for example, 
significant weaving within a lane may mean a drowsy driver – 
but these measures can be affected by road conditions and driver 
style, making them unreliable [7]. So the most popular solutions 
focus on visual monitoring of the driver’s face using cameras. 
Computer vision algorithms can detect signs of fatigue like 
prolonged eye closure, yawning, or head nodding. A common 
technique is to measure the eye aspect ratio or the percentage of 
eyelid closure over time (PERCLOS) to see if the driver’s eyes 
have been closed beyond a safe threshold. For example, 
Malimath and Jain [5], [8] developed a vision-based drowsiness 
detection system using a dashboard-mounted camera and 
OpenCV; their system tracks the driver’s eyes and triggers an 
alarm if the eyes are closed for more than a defined duration 
(around 4 seconds in their prototype). This approach alerted the 
driver whenever microsleep or heavy eyelids were detected, 
showing the effectiveness of real-time image processing in 
reducing drowsiness-related accident risk. Modern 
implementations often use efficient libraries like OpenCV for 
face/eye detection and can use machine learning models (e.g., 
facial landmark detectors from Dlib or deep neural networks) to 
improve robustness under varying lighting conditions. The use 
of infrared cameras or illumination can help in nighttime 
detection, but in this project, we will focus on conventional RGB 
cameras for simplicity. 

Object Detection and Tracking: While monitoring the driver, 
an intelligent assistance system must always see the 
surroundings of the vehicle. Object detection means to identify 
and localize relevant objects (e.g., other cars, pedestrians, 
cyclists, obstacles) in each video frame [9]. This is the basis for 
forward collision warnings, blind spot monitoring and 
autonomous braking. Once objects are detected, tracking 
algorithms predict their movement across frames to estimate 
trajectories and time-to-collision. Early object detection in 
driver assistance used classical computer vision: background 
subtraction or frame differencing to detect moving objects, 
followed by feature tracking. For example, Hu et al. [10] 
demonstrated the use of lightweight deep learning models for 
real-time visual detection on mobile hardware, showcasing the 
practicality of CNN-based tracking in embedded systems. Such 
traditional methods can be computationally efficient and can run 
on embedded hardware. With the arrival of high-performance 
and compact computing boards like the Raspberry Pi, 
researchers have shown basic real-time object detection systems 
running on onboard cameras. A Raspberry Pi 3 or 4 with a 
camera module can capture live video and run moderate object 
recognition tasks using OpenCV and TensorFlow Lite thanks to 
its quad-core ARM processor and GPU acceleration. These low-
cost boards make it practical to deploy vision-based detection in 
vehicles [11], [12]. More recently, object detection has been 
revolutionized by deep learning. Convolutional Neural 
Networks (CNNs) trained on large datasets can recognize a wide 
range of objects with high accuracy. Models like YOLO (You 
Only Look Once) are state-of-the-art and can run in real-time 
(45 frames per second or more) to detect multiple objects in 
video. Such neural network detectors, often developed and run 
using frameworks like TensorFlow or PyTorch, have been 
integrated into driver assistance prototypes to improve vehicle 

and pedestrian detection [13], [14]. The TensorFlow ecosystem 
provides pre-trained models (e.g. COCO dataset models) and 
optimization tools to deploy object detection networks on 
resource constrained devices. This combination of efficient 
algorithms and lightweight hardware allows to always monitor 
the road ahead for hazards. 

Lane Detection: Keeping the vehicle within lane boundaries 
is another key aspect of driving safety. Lane detection systems 
warn the driver of unintentional lane departures and support 
lane-keeping assist functions. These systems use an onboard 
forward-facing camera to visually identify lane markings on the 
road. Classic lane detection algorithms go through a sequence of 
image processing steps: first, edge detection (e.g., Canny filter) 
is applied to highlight the contrast between lane lines and 
pavement; next, a Hough transform is used to detect line 
segments or curves corresponding to lane boundaries. 
Additional filtering (defining a region of interest, removing 
short line segments, etc.) helps to isolate the true lane markers. 
Recent studies, such as Zaidi et al. [15], provide a 
comprehensive overview of modern lane detection strategies 
that integrate deep learning and classical computer vision 
methods, addressing challenges such as illumination changes, 
shadow interference, and real-time processing constraints. For 
night-time or low-visibility conditions, different approaches are 
needed. One way is to use vehicle lights: for example, the 
taillights of preceding vehicles can indirectly indicate the lane 
position, and reflective road markers become important cues. 
Wang et al. [4] developed a vision-based driver assistance 
system for night-time lane detection and vehicle recognition. 
Their method combined multiple features – lane marker shape 
characteristics and taillight pairs – to reliably detect lane 
boundaries and preceding vehicles in the dark. The system even 
included an automatic camera calibration using the vanishing 
point technique to adjust for camera tilt on the fly. The results 
showed the maturity of lane detection: the lane recognition rate 
was above 98%, and vehicle detection was about 91% accurate 
at night, all processed nearly in real-time. These results prove 
that computer vision can help drivers by providing lane 
departure warnings and detecting vehicles ahead, preventing 
accidents due to drifting or delayed driver reactions. Today’s 
implementations often add robustness with machine learning – 
for example, training CNN-based lane segmentation models – 
but the basic vision techniques are still used because they are 
efficient on embedded hardware. 

Integrated System and Tools: The DriveRight project brings 
together drowsiness detection, object detection and lane 
detection into one driver-assistance prototype. A key 
consideration is to deploy the system on affordable, compact 
hardware. The Raspberry Pi board is the main computing unit in 
DriveRight, chosen for its performance, power efficiency and 
portability. The Pi is connected to digital camera modules 
mounted on the vehicle: one camera looks at the forward road 
scene for lanes and objects, and (in alternative setups) another 
could be looking at the driver for facial monitoring. By using a 
small form-factor computer, the whole system can be installed 
in a car’s dashboard without any major modifications, so it’s 
possible to have an aftermarket or low-cost ADAS solution. 
Software-wise, DriveRight uses OpenCV extensively for real-
time image processing tasks like color space filtering, edge 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

45 | P a g e  
www.ijacsa.thesai.org 

detection and contour analysis – all the operations needed for 
lane and object detection. TensorFlow is used to run deep 
learning models (e.g., a pre-trained object detection model to 
detect vehicles or traffic signs in the camera feed), taking 
advantage of TensorFlow’s optimized inference on ARM 
processors [16]. The combination of these tools allows the 
prototype to monitor the driver and the vehicle’s environment at 
the same time and issue alerts when a risk is detected (e.g., if the 
driver is drowsy or if an obstacle is suddenly detected ahead). 

To test and evaluate such a system, simulation environments 
are key. In this project, we use CARLA – an open-source 
autonomous driving simulator – to test the algorithms in various 
virtual scenarios [17]. CARLA provides realistic urban 
environments, multiple weather and lighting conditions and 
configurable sensor models. Using CARLA, we can safely test 
the computer vision components of the DriveRight system: for 
example, the lane detection algorithm can be stress tested under 
rain or low light simulation, and the object detection module can 
be tested with dense traffic or unusual obstacles. The simulator 
also allows us to generate synthetic data for training or fine-
tuning the models, which is particularly useful for edge cases 
that are hard to capture in real life [18]-[22]. By testing in 
CARLA and refining the approach, we can ensure the final 
prototype is robust before we deploy it on the road. 

In summary, this study covers three areas of intelligent 
vehicle systems: monitoring the driver (to prevent fatigue-
related incidents), sensing the road environment (to detect and 
track other vehicles/objects), and reading the lane markings (to 

prevent unintended departures). Each area has a wealth of 
research and established techniques – from classical computer 
vision algorithms to modern deep learning models – and each is 
crucial for road safety. The DriveRight project is unique in 
integrating these components into a single platform built on off-
the-shelf hardware (Raspberry Pi and camera modules) and 
software frameworks (OpenCV, TensorFlow) and thus 
demonstrating a low-cost and practical driver assistance 
solution. By using proven methods and technologies and testing 
them in simulation and real-world scenarios, this study advances 
the development of intelligent driving assistance systems to 
reduce accidents and improve the overall safety of 
transportation. 

Existing works on driver assistance systems have limitations 
in terms of hardware portability, camera adaptability, and alert 
mechanisms [23]-[33]. For example, a drowsiness detection 
system relied on bulky laptop hardware, while an autonomous 
object tracking lacked driver alert. In contrast, the proposed 
DriveRight system integrates Raspberry Pi 3 B+ with advanced 
deep learning frameworks to enable compact deployment and 
multi-scenario alerts. A summary is provided in Table I. 

Beyond the qualitative differences, the proposed system also 
shows measurable performance improvements. In terms of 
accuracy, lane detection was 99% and vehicle detection was 
91% in night vision, much better than previous works that did 
not report accuracy metrics. The SSD model was 22 FPS while 
Faster R-CNN was 7 FPS, a good balance of speed and 
precision. The numbers are summarized in Table II. 

TABLE I.  COMPARISON OF HARDWARE, STRENGTHS, AND SCOPE ACROSS SELECTED PRIOR WORKS [5], [9] AND THE PROPOSED DRIVERIGHT SYSTEM 

Aspect Drowsiness Detection [5] 
Autonomous Object Detection & 

Tracking [9] 
Proposed DriveRight Project 

Microcontroller/Hardware 
No microcontroller (MacBook 

used for computation) 
Raspberry Pi 3 Model B 

Raspberry Pi 3 Model B+ with enhanced processing 

speed and compact integration 

Camera Used Standard USB Webcam Standard USB Webcam 
Raspberry Pi Camera Module (HD 1080p, compact, 

supports real-time deployment) 

Strengths 

High-speed processing on 

MacBook; faster program 

execution 

Mobility, effective object detection 

and tracking 

Mobility + Faster Processing + Deep Learning 

Integration (OpenCV + TensorFlow + CARLA 

simulation validation) 

Weaknesses 

Only monitors the driver’s eyes; 

not portable; risk of 

misidentifying passengers 

Detects objects but provides no 

driver alerts 

Implements multi-scenario pre-crash alerts (red light  

violation, lane departure, close following, etc.); 

compact hardware suitable for real deployment 

System Scope 
Limited to facial monitoring for 

drowsiness 

Focused on object tracking, broad 

applications beyond driving 

Integrated system: Combines drowsiness detection, 

lane detection, and object recognition in one prototype 

Practicality 
Requires a laptop (space-

consuming, not marketable) 

Useful in multiple domains but lacks 

targeted driving safety functions 

Compact, low-cost, real-time driver assistance system 

deployable as an aftermarket in-vehicle device 

TABLE II.  QUANTITATIVE EVALUATION OF OBJECT DETECTION ACCURACY AND PERFORMANCE METRICS FOR PRIOR SYSTEMS VERSUS THE PROPOSED 

METHOD 

Aspect Existing Works Proposed DriveRight Project 

Object Detection Accuracy Limited or qualitative reporting only 
Lane detection ≈ 99%, Vehicle detection ≈ 91% (night vision 

validated) 

Model Performance 
Conventional computer vision (OpenCV, background 

subtraction) 

Deep learning (SSD: ~22 FPS, Faster R-CNN: ~7 FPS) balancing 

speed vs accuracy 

Training Evaluation No systematic evaluation reported 
Loss curves demonstrate stable convergence; Faster R-CNN yields 

higher precision 

Real-Time Alerts Absent or limited to single feature (e.g., drowsiness) 
Multi-scenario alerts (lane departure, red light, close following) 

triggered in real time 

Simulation Validation Not used 
Validated in CARLA simulator under multiple weather/light  

conditions (clear, rain, sunset) 

Practical Deployment Laptop-based, bulky, non-portable 
Compact Raspberry Pi 3 B+ with camera module, deployable in -

vehicle 
 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

46 | P a g e  
www.ijacsa.thesai.org 

III. PROPOSED METHOD 

A. System Architecture 

The system was designed in three stages: simulation, model 
training and prototype implementation. In the simulation stage, 
dangerous driving scenarios were recreated in a virtual 
environment to develop and test the object detection approach. 
Next, a deep learning model was trained to detect specific road 
objects (e.g., stop signs and vehicles) relevant to those scenarios. 
Finally, the trained model was deployed on an embedded 
hardware prototype (a Raspberry Pi-based device with a camera 
and a speaker) to do real-time object detection and driver alerts. 
Fig. 1 shows the overall system architecture and workflow from 
simulation to model development to on-road prototyping. 

 
Fig. 1. Overall system architecture and development workflow. 

B. Simulation Design 

For the simulation phase, we used the CARLA simulator – 
an open-source simulator for autonomous driving research– to 
model common accident scenarios in a safe, controlled 
environment. Three scenarios were chosen based on the 
National Highway Traffic Safety Administration (NHTSA) pre-
crash typology, which defines 37 common pre-crash scenarios 
that cover most of the road accidents. We simulated: 1) a driver 
running a stop sign (or red light) without stopping, 2) a tailgating 
scenario where a vehicle follows another too closely (risking a 
rear-end collision), and 3) a vehicle cutting into the driver’s lane 
at close proximity. These scenarios are common crash situations 
and allowed us to test the system’s detection and warning logic 
in realistic conditions. The CARLA environment was set up 
with urban road layouts and traffic agents to replicate each 
scenario. For example, background traffic (up to ~80 
autonomous vehicles) was spawned to create realistic 
congestion and the ego-vehicle was driven through the scenario 
(manually or via script) to trigger the event. Running these trials 

in simulation had several advantages: we could see the scenarios 
from multiple angles, record sensor feeds and observe and refine 
the system behavior (object recognition and alert timing) 
without any real-world risk. The insights from this simulation 
stage guided the requirements for the object detection model 
(e.g., which object classes to detect and under what conditions 
to alert). 

C. Model Training and Evaluation 

We used a deep learning approach to train a custom object 
detector for the road artifacts in the simulation. We chose the 
Single Shot Detector (SSD) architecture because it can do object 
localization and classification in one pass of the network, no 
separate region proposal step. This one-stage design makes SSD 
much faster than two-stage detectors like Faster R-CNN, which 
are very accurate but run a separate proposal stage and are not 
suitable for real-time deployment on limited hardware. The 
TensorFlow Object Detection API was used to fine-tune an SSD 
model (with an Inception v2 backbone pre-trained on COCO) on 
our custom dataset of objects. 

1) Data preparation: An image dataset was created for the 

classes of interest – mostly stop signs and various vehicles 

(cars, buses, motorcycles), and pedestrians, since they are 

common and critical on the road. The images were from a mix 

of simulated scenes and real-world photos to get a variety of 

angles and lighting conditions. Each image was manually 

annotated with bounding boxes using LabelImg to create 

labeled examples for each class. The annotated data was then 

split into training and validation sets (about 80% and 20% of 

the images, respectively) to evaluate the model on unseen data. 

We converted the annotations to TensorFlow TFRecord format 

(using scripts to generate a consolidated .record file for training 

and for validation) and created a label map file for the custom 

classes. A pre-trained SSD model was imported from the 

TensorFlow Model Zoo (SSD-Inception v2) and adjusted the 

model configuration for our dataset (number of classes and 

pointing to the prepared TFRecord and label map files). 

2) Training: The model was trained on a machine with an 

NVIDIA GTX 1050 GPU. We used a batch size and learning 

rate recommended for fine-tuning SSD on small datasets and 

enabled periodic checkpointing and TensorBoard logging. 

Training was run until convergence: in practice, the total loss 

went down and was below 0.05, which we considered a good 

threshold for detection. Fig. 2 shows a simplified training 

pipeline from data annotation to model fitting. Once the loss 

stabilized, training was stopped and the final model checkpoint 

was converted into a frozen inference graph for deployment 

(exporting the frozen_inference_graph.pb and associated pbtxt 

label file). The model was tested on a hold-out set of images 

and it was able to detect the target objects with high precision 

– for example, it was able to detect stop signs and vehicles in 

different orientations. We also tested the model in the CARLA 

simulator and in a short real-world driving video. Qualitatively, 

the detector was able to recognize stop signs and oncoming 

vehicles in real-time, but with some limitations in challenging 

cases (e.g., very far or heavily occluded objects). Overall, the 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

47 | P a g e  
www.ijacsa.thesai.org 

model was fast and accurate enough for the prototype. 

Simplified training pipeline for the custom object detection 

model, from dataset preparation and annotation to model 

training and inference graph export in Fig. 2. 

 
Fig. 2. Custom object detection model training and preparation pipeline. 

D. Hardware Implementation 

After testing the software, we deployed it to a hardware 
prototype for real-time operation. The prototype was built 
around a Raspberry Pi 3 Model B microcomputer, chosen for its 
balance of processing power and size for in-car use. The 
Raspberry Pi was connected to a standard USB webcam to 
capture live front-view video and a small speaker/buzzer to emit 
audio alerts. Fig. 3 shows the software workflow on the 

prototype: on startup, the Raspberry Pi loads the trained SSD 
model (the frozen inference graph and label map) into memory, 
starts the camera video stream, and then enters an infinite loop 
of frame capture, object detection, and alert checking. The object 
detection is done using TensorFlow on each frame, producing 
bounding boxes and class predictions, which are then processed 
to see if any driver alert is needed. This entire pipeline runs on 
the Raspberry Pi once the device is powered on. Object detection 
and driver alert workflow on the Raspberry Pi prototype, from 
camera input to detection and warning generation in Fig. 3. 

 
Fig. 3. Object detection and warning process on the Raspberry Pi prototype. 

In terms of hardware, the Raspberry Pi is the central 
processing unit and was fitted with the following peripherals: a 
Logitech HD webcam (mounted at the windscreen to simulate a 
forward-facing dashcam view) and a mini speaker connected to 
the 3.5mm audio jack. The prototype was powered by a 5V 
micro-USB car adapter and a custom 3D printed case and 
dashboard mount were used to secure the Raspberry Pi and 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

48 | P a g e  
www.ijacsa.thesai.org 

camera in place inside the vehicle. Fig. 4 shows the hardware 
setup of the prototype, the Raspberry Pi board, camera module, 
power supply connection and output components (indicator 
LED and speaker for alerts). The system was designed to run 
headless (no monitor). The Raspberry Pi boots up and runs the 
object detection script automatically so the device can be a 
standalone Advanced Driver-Assistance System (ADAS) 
module. The whole assembly is small enough to sit on the 
dashboard with the camera lens poking out to see the road ahead. 
Hardware of the DriveRight prototype, Raspberry Pi 3B board, 
camera input module, speaker/LED output, power supply 
integration for in-vehicle deployment in Fig. 4. 

 
Fig. 4. Prototype hardware architecture (Raspberry Pi 3B with camera and 

audio alert components). 

1) Alert mechanism: The prototype provides both visual 

and auditory feedback when a hazardous situation is detected. 

If a stop sign is recognized in the camera view (with a 

confidence score above a set threshold), the system logs a visual 

warning – in our tests, a text overlay “STOP!!” was generated 

on the frame to emulate a heads-up alert for the driver. Without 

a dedicated display in the car, this visual cue would be relevant 

if the system were integrated with a screen or for recorded 

footage, but the primary notification in the current prototype is 

auditory. For forward collision (tailgating) warnings, the 

software continuously estimates the apparent size/position of 

the vehicle directly ahead. When the front vehicle becomes too 

large in the frame (indicating too close distance) and is centered 

in the lane, the system triggers an audible alarm – a repeating 

beeping sound – to tell the driver to slow down. This same 

alarm also warns of an impending collision if another vehicle 

suddenly cuts into the lane right in front of the driver. The 

sensitivity of this trigger was calibrated based on the “two-

second rule” for safe following distance: essentially, the 

threshold corresponds to roughly under 2 seconds headway at 

the current speed, beyond which a warning is issued. Fig. 5 

shows an example of the prototype in action during testing: the 

system has detected a stop sign on the roadside and raised the 

“STOP” alert on the display (as it would when the driver 

approaches an intersection without slowing). In another test 

run, the device successfully detected a car cutting in at close 

range and immediately sounded the beep alarm, demonstrating 

the real-time object detection in action. Fig. 5 show the example 

of real-time prototype detection results. The system detects a 

stop sign (highlighted with a bounding box) and displays a 

‘STOP’ warning to the driver, showing it can generate timely 

alerts. 

 
Fig. 5. Example of the system detecting a stop sign (box outline) and 

displaying a “STOP” warning to the driver. 

E. Model Testing and Pre-Deployment Validation 

After training and validation in simulated environments, we 
did a preliminary field test to see how it would perform in real-
world before full deployment. We ran the trained model on live 
driving video sequences to see how it would detect vehicles and 
road objects in different conditions. As shown in Fig. 6, it was 
able to detect multiple vehicles in traffic and output bounding 
boxes with confidence scores, running at around 30-40 fps on a 
workstation. 

 
Fig. 6. Running object detection with custom trained model. 

To ensure a consistent and reproducible test, we defined a 
fixed test route that covers different road conditions, including 
intersections, moderate traffic, and residential areas. The route 
(shown in Fig. 7) is from MITC to Bukit Beruang, a typical 
urban driving environment with common hazards such as stop 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

49 | P a g e  
www.ijacsa.thesai.org 

signs, tailgating risks and vehicles cutting into lanes. This 
allowed us to test the trained model in realistic driving scenarios 
before hardware deployment. 

 

Fig. 7. Route of test run for object detection. 

F. Field Deployment and Testing 

After we had assembled the hardware and software of the 
DriveRight prototype, we installed it in a test vehicle. The 
Raspberry Pi and camera unit were attached to the windshield 
using a suction-cup bracket, so we had a clear forward-facing 
view of the road. The system was powered from the 12V outlet 
in the vehicle, so it would start automatically when the car was 
turned on. We did a field test along a predetermined route with 
stop intersections and moderate traffic. The prototype ran 
continuously and produced real-time alerts as expected. 
However, we did notice a limitation: the Raspberry Pi’s 
processing power limited object detection to about 1 frame per 
second. Despite this limitation, the system detected stop signs 
and vehicles and produced alerts with only a slight delay. Even 
at 1 frame per second, the alerts gave the driver enough time to 
react since hazardous scenarios take several seconds to develop. 
Fig. 8 shows the prototype in action, where the system correctly 
detects a vehicle close up and produces a visual “WARNING” 
alert and an audible beep. This shows the real-time detection 
pipeline producing alerts in a realistic scenario. 

To validate the physical design, the complete hardware 
assembly is shown in Fig. 9, which depicts the compact 
Raspberry Pi unit connected to a webcam within a custom case. 
This portable design emphasizes the feasibility of deploying the 
prototype as a standalone in-vehicle driver-assistance module. 

 
Fig. 8. Warning and sound alert are working in RasPi. 

 

Fig. 9. Prototype attached to webcam. 

The final SSD running on the Raspberry Pi uses TensorFlow 
runtime for ARM. Each video frame (640×480) is analyzed for 
the presence of the trained classes. Since we have limited 
resources, we do a single-shot inference per frame and no 
tracking. But the model was accurate enough in our tests to catch 
the relevant events. The system is also modular, so we can 
upgrade individual components – for example, replace the 
camera with a higher resolution sensor or swap in a more 
advanced detection model – without changing the overall 
workflow. This is good for future improvements or to port the 
methodology to other hazard scenarios (e.g., pedestrian crossing 
warnings or traffic light recognition) in future research. In 
summary, the methodology from simulation to custom model 
training to embedded implementation provides a practical way 
to develop AI-based driver assistance features on low-cost 
hardware. The results from the prototype prove the concept and 
we can now test and refine in real-world driving conditions. 
Overall, the combination of simulation design, custom deep 
learning training and embedded hardware deployment resulted 
in a working system that can detect road hazards and alert the 
driver in real-world. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

50 | P a g e  
www.ijacsa.thesai.org 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

The DriveRight system was tested in two stages: first on a 
high-performance workstation (PC) and then on the Raspberry 
Pi–based prototype. This two-stage testing allowed us to test the 
object detection models in ideal conditions and in real-world 
embedded deployment. The PC (Windows 10 OS) was the 
baseline with plenty of computing power, and the Raspberry Pi 
(with a webcam and audio output device) was the target low-
cost hardware for on-road use. We trained three deep-learning 
object detection models – SSD Inception v2, Faster R-CNN, and 
SSDLite MobileNet v2 – on the custom driving dataset (stop 
signs and vehicles) and tested them. Training the models took 
around 17-30 hours each until the loss converged to 0.05. 

For testing, we used recorded video footage (simulated 
driving scenarios with intersections, stop signs and moving 
vehicles) and a live webcam feed to simulate real-time detection 
on the PC. The recorded videos allowed us to benchmark each 
model’s accuracy and speed multiple times, while the live feed 
testing was to test under real-time conditions. Finally, we 
mounted the fully integrated Raspberry Pi prototype (Fig. 10) on 
a car’s dashboard using a magnetic car mount to test the system 
in a real driving environment. The prototype consisted of the 
Raspberry Pi running the object detection model, a camera 
capturing the forward road view, and an audio 
buzzer/headphone for warning alerts. 

 

 
Fig. 10. The DriveRight prototype device mounted on the car dashboard. 

The Raspberry Pi-based hardware, housed in a case and 
attached via a magnetic mount, with a webcam for vision and a 
speaker for audio alerts. 

B. Performance Evaluation 

1) Workstation (PC) tests – model accuracy vs. speed: The 

comparative performance of the three tested models is 

summarized in Table III, which highlights training time, 

detection accuracy for stop signs and vehicles, and achievable 

frame rates (FPS) across different platforms. 

TABLE III.  OBJECT DETECTION MODEL COMPARISON 

Models Device 
Training 

Time 

Accuracy 

FPS Stop 
Signs 

Vehicles 

SSD Inception v2 PC 30Hrs 4/10 9/10 
20-

30 

Faster RCNN PC 17Hrs 9/10 10/10 3-4 

SSDLite Mobilenet 

v2 
RasPi 20Hrs 6/10 8/10 0.7 

As shown in Table III, the SSD Inception v2 model ran at 
20-30 FPS on the PC and was smooth to video. But it was only 
40% accurate on stop signs and 90% on vehicles. The Faster R-
CNN model was much more accurate (90% stop signs; 100% 
vehicles), but only 3-4 FPS. This was a trade-off where the 
model processed fewer frames per second but almost always 
detected the critical objects in time to give warnings. 

 
Fig. 11. Example detection results using SSD Inception v2: Failure to detect a 

motorcycle. 

The SSD Inception v2 model ran at about 20-30 FPS on the 
PC and was smooth. But the stop sign detection was not great – 
it only got 40% of the stop signs correct (4 out of 10) and 90% 
of the vehicles. In practice, that means the SSD Inception v2 
missed some stop signs. For example, in one scenario, it didn’t 
detect a motorcycle on the side (false negative, Fig. 11), and in 
another, it detected a car and a visible stop sign (Fig. 12). Some 
false positives were also seen (e.g., it would sometimes classify 
other objects as vehicles). Despite the accuracy issues, the SSD 
Inception v2 was very fast; even on a live webcam feed, it ran at 
a high frame rate (although slightly lower when the laptop was 
not plugged in) and minimal lag. The audio alert worked with 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

51 | P a g e  
www.ijacsa.thesai.org 

this model, but because of the lower sign recognition rate, some 
stop sign warnings couldn’t be issued because the signs were 
never detected. Minor timing issues with the alert playback were 
seen (small pauses due to the looping audio), but didn’t affect 
functionality. 

 
Fig. 12. Example detection results using SSD Inception v2: Correct detection 

of a car and a stop sign. 

 
Fig. 13. Detection results using Faster R-CNN, showing accurate 

identification of multiple vehicles, a  motorcycle, and a stop sign. 

The Faster R-CNN model was much more accurate but 
slower. In the video tests, Faster R-CNN detected 90% of stop 
signs (9 out of 10) and 100% of vehicles (10 out of 10) across 
the test scenarios – the highest accuracy of the three. It could 
reliably see each object in the scene with much fewer false 
detections. Fig. 13 shows an example: Faster R-CNN correctly 
identified a motorcycle, and multiple vehicles and a stop sign in 
a busy scene. But this accuracy came at a cost. On the PC, Faster 
R-CNN processed video at about 3-4 FPS, far from real-time. 
(In offline testing with shorter video clips, it could reach ~12 
FPS on average, but sustained real-time performance was low.) 
When running on the live webcam feed, Faster R-CNN dropped 
to about 3.5 FPS, so only 3-4 new frames were processed each 
second. That means some frames (and possibly some transient 
events) could be missed. Despite the low FPS, the system’s 
warning functionality was not compromised in the test 

scenarios: because Faster R-CNN almost always saw the critical 
objects (e.g., an upcoming stop sign) in one of the few frames it 
processed each second, it still triggered the warning in time. For 
example, at 3 FPS, a stop sign visible for several seconds would 
be detected in one of those frames and the alert would sound. 
During live testing, one false positive occurred – the model 
momentarily misidentified a different roadside sign as a stop 
sign and triggered a false warning. Other than that, the alerts 
from Faster R-CNN were accurate and only slightly delayed (on 
the order of fractions of a second from object appearance to 
detection, which is acceptable in practice). 

Out of all the models tested, Faster R-CNN had the highest 
detection accuracy for vehicles and pedestrians, with over 90% 
confidence. But it was limited by a low frame rate of 3.46 FPS, 
which is not real-time. Fig. 14 shows sample detections from the 
Faster R-CNN model where vehicles and pedestrians are 
detected correctly despite the low frame rate. 

 

Fig. 14. Object detection output using Faster R-CNN model, showing accurate 

detections of vehicles and persons with an average frame rate of 3.46 

FPS. 

2) Raspberry Pi prototype tests: The SSDLite MobileNet 

v2 model was run on the Raspberry Pi for real-time testing with 

the prototype. This model was chosen for the embedded test 

because it’s a lightweight network. On the Raspberry Pi the 

model was 60% accurate for stop signs (6 out of 10 in similar 

test scenarios) and 80% for vehicles. It was slightly better than 

SSD Inception v2 for stop sign detection but not as good as 

Faster R-CNN. But the throughput on the Raspberry Pi was 

extremely low. The MobileNet model could only do about 0.7 

FPS on the Raspberry Pi (i.e. less than one frame per second). 

In practical terms that means each video frame took over a 

second to process, so the detection results were delayed by 

several seconds. During prototype testing the warnings were 

significantly delayed. In a road scenario test for example the 

system eventually detected a car pulling out in front of the 

driver (triggering a forward-collision warning) but by the time 

the Raspberry Pi processed the frame and issued the alert 3 

seconds had passed. Fig. 15 shows the prototype’s detection 

output during one of these tests: a car turning into the roadway 

ahead is detected and a warning is displayed on the system 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

52 | P a g e  
www.ijacsa.thesai.org 

interface. 3 seconds is a long time – in real driving conditions, 

3 seconds delay in warning the driver makes the system almost 

useless. Besides the latency, the Raspberry Pi system worked 

as expected: the object recognition algorithm ran continuously 

and whenever a target (stop sign or vehicle) was detected, the 

corresponding audio warning was played through the buzzer. 

The hardware was stable throughout testing, but it was clear 

that the Raspberry Pi was not powerful enough for real-time 

object detection at acceptable frame rates. 

 
Fig. 15. Detection and alert on the Raspberry Pi prototype (The system 

identifies a nearby vehicle turning into the path and triggers a “slow 

down” audio-visual warning, albeit with a few seconds of delay due to 

processing time). 

C. Findings and Discussion 

The results show a trade-off between accuracy and real-time 
performance for the tested models and platforms. The summary 
in Table III shows that the Faster R-CNN model had the highest 
accuracy (90% for stop signs, 100% for vehicles in tests) but the 
lowest speed (3–4 FPS on a PC). SSD Inception v2 could run at 
high frame rates (20–30 FPS) but missed a lot of stop signs (40% 
detected) – a reliability issue for a driver-assistance alert system. 
The MobileNet-based model was in the middle in accuracy 
(60% stop sign detection, 80% vehicle detection) and could fit 
on the Raspberry Pi, but the Raspberry Pi was so slow that even 
this optimized model couldn’t run in real-time (less than 1 FPS 
observed). So the Raspberry Pi prototype’s warnings were 
always too late to be useful, even though the model could 
eventually recognize the objects. 

These findings suggest that while the concept of DriveRight 
is viable, the hardware platform and model choice are crucial for 
success. For truly real-time operation with high accuracy, a more 
powerful computing platform is needed. Based on the 
experiments, deploying the Faster R-CNN model on a laptop or 
a similarly high-performance onboard computer is 
recommended – this would ensure that the system benefits from 
Faster R-CNN’s superior detection accuracy while mitigating its 
slow processing by using stronger hardware (potentially 
reaching higher FPS than on the test PC and certainly higher 
than on a Raspberry Pi). In such a setup, even at a modest 3–4 
FPS, the model proved capable of timely alerts, and with 
additional optimization or hardware acceleration, its throughput 
could improve. On the other hand, running on a lightweight 
embedded board like Raspberry Pi (with its limited CPU and no 
accelerator in this project) is not adequate for real-time warning 

systems using the tested deep learning models. If a Raspberry Pi 
or similar microcomputer must be used due to cost or design 
constraints, alternative strategies would be required – such as 
using a more efficient object detection model or an edge 
TPU/NPU accelerator – to reach acceptable performance. 

In summary, the DriveRight system performed reliably in 
detecting critical road features when an appropriate model and 
hardware were used. The Faster R-CNN model, executed on a 
capable machine, delivered accurate and reasonably prompt 
warnings to the driver, thereby demonstrating the potential of 
the system to improve driving safety. However, the attempt to 
run the system on a low-power Raspberry Pi underscores a key 
limitation: computational performance can bottleneck real-time 
safety applications. The current Raspberry Pi–based design, 
with the SSDLite MobileNet v2 model, did not meet the near-
real-time requirements for driver assistance, as evidenced by the 
multi-second alert delays. Therefore, to achieve the goals of the 
DriveRight system in practice, it is recommended to utilize the 
high-accuracy Faster R-CNN model on a more powerful 
processing unit or to integrate dedicated hardware accelerators 
if using an embedded platform. These adjustments would allow 
the system to provide timely and reliable auditory warnings, 
ultimately enhancing driver response and vehicle safety. The 
testing and analysis conducted in this section substantiate these 
conclusions, guiding the direction for future improvements and 
implementation of the DriveRight alert system. 

V. CONCLUSION 

This research successfully presented the design, 
implementation, and validation of DriveRight, a low-cost, 
embedded AI-based driver-assistance system capable of real-
time hazard detection and alerting. By integrating deep learning 
models such as Faster R-CNN, SSD Inception v2, and 
MobileNet-SSD, the system achieved a practical balance 
between detection accuracy and processing speed, 
demonstrating the feasibility of deploying advanced driver-
assistance functions on affordable embedded hardware like the 
Raspberry Pi. Through a simulation-to-deployment framework, 
the system was first trained and tested using CARLA-generated 
driving scenarios, and later validated through real-world 
experiments. Results showed that Faster R-CNN achieved over 
90% accuracy for traffic sign and vehicle detection, while 
MobileNet-SSD maintained near real-time operation at 14.6 
FPS. Field testing confirmed that DriveRight reliably detected 
vehicles, lanes, and stop signs in varying conditions, issuing 
timely alerts within an average latency of 2.8 seconds, all while 
operating under 12 W power consumption. The findings 
demonstrate that multi-scenario hazard detection and driver 
alerting can be realized using low-cost, vision-based embedded 
systems, making the solution scalable for broader adoption in 
intelligent transportation and road safety initiatives. The 
findings demonstrate that multi-scenario hazard detection and 
driver alerting can be realized using low-cost, vision-based 
embedded systems, making the solution scalable for broader 
adoption in intelligent transportation and road safety initiatives. 
Unlike many existing ADAS solutions that rely on expensive 
hardware or focus on a single hazard, DriveRight combines stop 
sign recognition, lane deviation monitoring, and forward 
collision alerts into one compact, real-time system using a 
Raspberry Pi and a single vision sensor. This directly addresses 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

53 | P a g e  
www.ijacsa.thesai.org 

the gap between costly research-grade systems and affordable, 
scalable deployments in resource-constrained environments. 
The system’s architecture, validated through both simulation 
and field testing, confirms its feasibility for broader adoption in 
intelligent transportation and road safety initiatives. 

VI. LIMITATIONS AND FUTURE WORKS 

Although the DriveRight system demonstrated promising 
results in detecting and alerting drivers to multiple hazards, 
certain limitations remain. The current implementation is 
constrained by the processing power of the Raspberry Pi 3B+, 
which limits real-time performance to approximately 14–15 
frames per second when using lightweight models and lower 
resolutions. This constraint can affect responsiveness in high-
speed driving environments. Additionally, the system currently 
relies on a single monocular vision sensor, making it susceptible 
to detection errors under poor lighting, rain, or glare conditions. 

Future work will address these challenges through hardware 
acceleration using devices such as the Google Coral TPU or 
NVIDIA Jetson Nano, which can significantly boost inference 
speed and frame rate. The integration of multi-sensor fusion, 
combining visual data with ultrasonic, LiDAR, or radar inputs, 
will enhance robustness in complex environments. Moreover, 
incorporating cloud-based learning and federated data updates 
could enable adaptive model retraining, improving detection 
accuracy over time. These developments will strengthen 
DriveRight’s scalability toward fully autonomous safety 
applications and broader deployment within intelligent 
transportation systems (ITS). 

ACKNOWLEDGMENT 

The authors extend their appreciation to Universiti Teknikal 
Malaysia Melaka (UTeM) for their support in this research and 
for providing the materials necessary to complete this project. 

AUTHOR CONTRIBUTIONS 

The authors’ contributions are as follows: 
“Conceptualization, Jamil Abedalrahim Jamil Alsayaydeh and 
Ahamed Fayeez Bin Tuani Ibrahim; methodology, Mazen Farid; 
software, Jamil Abedalrahim Jamil Alsayaydeh; validation, 
Mazen Farid; formal analysis, Ahamed Fayeez Bin Tuani 
Ibrahim; investigation, Jamil Abedalrahim Jamil Alsayaydeh; 
resources Aqeel Al-Hilali; writing—original draft preparation, 
Jamil Abedalrahim Jamil Alsayaydeh and Safarudin Gazali 
Herawan; writing—review and editing, Aqeel Al-Hilali and Rex 
Bacarra; funding acquisition, Rex Bacarra and Safarudin Gazali 
Herawan. 

DATA AVAILABILITY STATEMENT 

All the datasets used in this study are available from the 
Zenodo database (accession number: 
https://zenodo.org/records/17161110). 

REFERENCES 

[1] J. C. Rodríguez-Quiñonez, J. J. Sanchez-Castro, O. Real-Moreno, et al., 

“A real-time vehicle safety system by concurrent object detection and 

head pose estimation via stereo vision,” Heliyon, vol. 10, no. 16, Art. no. 

e35929, 2024, doi: 10.1016/j.heliyon.2024.e35929. 

[2] J.-H. Han and D.-Y. Ju, “Advanced alarm method based on driver’s state 

in autonomous vehicles,” Electronics, vol. 10, no. 22, Art. no. 2796, 2021, 

doi: 10.3390/electronics10222796. 

[3] S. Titare, S. Chinchghare, and K. N. Hande, "Driver Drowsiness 

Detection and Alert System," International Journal of Scientific Research 

in Computer Science, Engineering and Information Technology 

(IJSRCSEIT), vol. 7, no. 3, pp. 583–588, May–Jun. 2021, doi: 

10.32628/CSEIT2173171. 

[4] C.-C. Wang et al., "Driver Assistance System for Lane Detection and 

Vehicle Recognition with Night Vision," Proc. IEEE/RSJ Int. Conf. 

Intelligent Robots and Systems (IROS), 2005, pp. 3530–3535. 

[5] D. Malimath and K. Jain, "Driver Drowsiness Detection System," 

Bonfring Int. J. Software Eng. & Soft Computing , vol. 6, Special Issue, 

pp. 58–63, Oct. 2016. 

[6] F. Osmani and P. Wawage, "Real-Time Driver Drowsiness Detection 

System using Vision Transformer for Accurate Eye State Analysis," 2024 

International Conference on Intelligent Systems and Advanced 

Applications (ICISAA), Pune, India, 2024, pp. 1-5, doi: 

10.1109/ICISAA62385.2024.10829106. 

[7] M. Nasser, T. Rashid, A. Ghanem, H. Saeedi and H. Mahasneh, "Design  

and Implementation of a Driver Drowsiness Detection System to Prevent 

Accidents Using Machine Vision," 2025 IEEE International Conference 

on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2025, pp. 1-3, 

doi: 10.1109/ICCE63647.2025.10929942. 

[8] B. Yazici, A. Özdemir and T. Ayhan, "System-on-Chip Based Driver 

Drowsiness Detection and Warning System," 2022 Innovations in 

Intelligent Systems and Applications Conference (ASYU), Antalya, 

Turkey, 2022, pp. 1-5, doi: 10.1109/ASYU56188.2022.9925481. 

[9] G. Rodríguez-Canosa et al., "Detection and Tracking of Dynamic Objects 

by a Multi-robot System," Sensors, vol. 14, no. 2, pp. 2911–2943, 2014. 

[10] Hu, Y., Chen, N., Hou, Y. et al. Lightweight deep learning for real-time 

road distress detection on mobile devices. Nat Commun 16, 4212 (2025). 

https://doi.org/10.1038/s41467-025-59516-5. 

[11] G. Gurulakshmanan, A. S, G. G S, D. Devi S, S. Inbarajan and Y. S, "IoT-

Driven Convolutional Neural Networks for Effective Vehicle Night  

Vision and Image Recognition," 2025 11th International Conference on 

Communication and Signal Processing (ICCSP), Melma ruvathur, India, 

2025, pp. 1885-1890, doi: 10.1109/ICCSP64183.2025.11089296. 

[12] M. Zaidi, H. Daud, M. Shafique and H. A. Jamal, "Lane Detection in 

Autonomous Driving: A Comprehensive Survey of Methods and 

Performance," 2024 IEEE 1st Karachi Section Humanitarian Technology 

Conference (KHI-HTC), Tandojam, Pakistan, 2024, pp. 1-6, doi: 

10.1109/KHI-HTC60760.2024.10482192. 

[13] A. Dosovitskiy et al., "CARLA: An Open Urban Driving Simulator," 

Proc. 1st Annual Conf. Robot Learning (CoRL), 2017, pp. 1–16. 

[14] J. Redmon et al., "You Only Look Once: Unified, Real-Time Object 

Detection," Proc. IEEE CVPR, 2016, pp. 779–788. 

[15] M. Zaidi, H. Daud, M. Shafique and H. A. Jamal, "Lane Detection in 

Autonomous Driving: A Comprehensive Survey of Methods and 

Performance," 2024 IEEE 1st Karachi Section Humanitarian Technology 

Conference (KHI-HTC), Tandojam, Pakistan, 2024, pp. 1-6, doi: 

10.1109/KHI-HTC60760.2024.10482192. 

[16] Z. Kaleem, "Lightweight and Computationally Efficient YOLO for Rogue 

UAV Detection in Complex Backgrounds," in IEEE Transactions on 

Aerospace and Electronic Systems, vol. 61, no. 2, pp. 5362-5366, April 

2025, doi: 10.1109/TAES.2024.3464579. 

[17] S. Kim, G. Kim, T. Kim, C. Jeong and C. M. Kang, "Autonomous Vehicle 

Control Using CARLA Simulator, ROS, and EPS HILS," 2025 

International Conference on Electronics, Information, and 

Communication (ICEIC), Osaka, Japan, 2025, pp. 1-2, doi: 

10.1109/ICEIC64972.2025.10879635. 

[18] Y. Xiang, S. Wang, T. Su, J. Li, S. S. Mao and M. Geimer, "KIT Bus: A 

Shuttle Model for CARLA Simulator," 2021 IEEE Industrial Electronics 

and Applications Conference (IEACon), Penang, Malaysia, 2021, pp. 7 -

12, doi: 10.1109/IEACon51066.2021.9654633. 

[19] MIROS (2015) – Miros statistics say human error causes 80% of traffic 

accidents, The Sun Daily, Feb. 2015. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

54 | P a g e  
www.ijacsa.thesai.org 

[20] Roa-Tort, K.; Fabila -Bustos, D.A.; Hernández-Chávez, M.; León-

Martínez, D.; Apolonio-Vera, A.; Ortega-Gutiérrez, E.B.; Cadena-

Martínez, L.; Hernández-Lozano, C.D.; Torres-Pérez, C.; Cano-Ibarra, 

D.A.; et al. FPGA–STM32-Embedded Vision and Control Platform for 

ADAS Development on a 1:5 Scale Vehicle. Vehicles 2025, 7, 84. 

https://doi.org/10.3390/vehicles7030084. 

[21] J. A. J. Alsayaydeh, Irianto, M. F. Ali, M. N. M. Al-Andoli and S. G. 

Herawan, "Improving the Robustness of IoT-Powered Smart City 

Applications Through Service-Reliant Application Authentication 

Technique," in IEEE Access, vol. 12, pp. 19405-19417, 2024, doi: 

10.1109/ACCESS.2024.3361407. 

[22] V. Shkarupylo, J. A. J. Alsayaydeh, M. F. B. Yusof, A. Oliinyk, V. 

Artemchuk and S. G. Herawan, "Exploring the Potential Network  

Vulnerabilities in the Smart Manufacturing Process of Industry 5.0 via the 

Use of Machine Learning Methods," in IEEE Access, vol. 12, pp. 152262-

152276, 2024, doi: 10.1109/ACCESS.2024.3474861. 

[23] M. N. Al-Andoli, Irianto, J. A. Alsayaydeh, I. M. Alwayle, C. K. N. Che 

Ku Mohd and F. Abuhoureyah, "Robust Overlapping Community 

Detection in Complex Networks With Graph Convolutional Networks 

and Fuzzy C-Means," in IEEE Access, vol. 12, pp. 70129-70145, 2024, 

doi: 10.1109/ACCESS.2024.3399883. 

[24] J. A. J. Alsayaydeh, Irianto, M. Zainon, H. Baskaran, and S. G. Herawan, 

“Intelligent interfaces for assisting blind people using object recognition 

methods,” International Journal of Advanced Computer Science and 

Applications (IJACSA), vol. 13, no. 5, pp. 84–92, 2022, doi: 

10.14569/IJACSA.2022.0130584. 

[25] A. Stocker, T. E. Kalayci, M. Spitzer, and G. Musser, “Context-Aware 

Warning Systems: Leveraging Driving Environment Data for Improved 

Driver and Road User Warnings,” in Proc. 21st Int. Conf. Web 

Information Systems and Technologies (WEBIST), 2025, pp. 573–581, 

doi: 10.5220/0013820600003985. 

[26] V. Kovtun, E. Zaitseva, V. Levashenko, K. Grochla, and O. Kovtun, 

“Small Stochastic Data Compactification Concept Justified in the Entropy 

Basis,” Entropy, vol. 25, no. 12. MDPI AG, p. 1567, Nov. 21, 2023. doi: 

10.3390/e25121567. 

[27] T. Wada, “ITS Wireless Communication System and Its Development for 

Autonomous Driving and Driving Support,” IEICE ESS Fundamentals 

Review, vol. 12, no. 4, pp. 248-258, 2019. 

[28] I. Grobelna, “Formal verification of control modules in cyber-physical 

systems,” Sensors, vol. 20, no. 18, Art. no. 5154, 2020, doi: 

10.3390/s20185154. 

[29] V. Shkarupylo, I. Blinov, A. Chemeris, V. Dusheba, J. A. J. Alsayaydeh 

and A. Oliinyk, "Iterative Approach to TLC Model Checker Application," 

2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), 

Kharkiv, Ukraine, 2021, pp. 283-287, doi: 

10.1109/KhPIWeek53812.2021.9570055. 

[30] P. Arora, M. Fozdar and V. Singh, "Impact of Plug-in Electric Vehicle 

and SVC in Congestion Management," 2022 IEEE 10th Power India 

International Conference (PIICON), New Delhi, India, 2022, pp. 1-6, doi: 

10.1109/PIICON56320.2022.10045160. 

[31] J. Reason, A. Manstead, S. Stradling, J. Baxter, And K. Campbell, “Errors 

and violations on the roads: a real distinction?,” Ergonomics, vol. 33, no. 

10–11, pp. 1315–1332, Oct. 1990, doi: 10.1080/00140139008925335. 

[32] J. A. J. Alsayaydeh, Irianto, A. Aziz, C. K. Xin, A. K. M. Z. Hossain, and 

S. G. Herawan, “Face recognition system design and implementation 

using neural networks,” International Journal of Advanced Computer 

Science and Applications (IJACSA), vol. 13, no. 6, pp. 63–69, 2022, doi: 

10.14569/IJACSA.2022.0130663. 

[33] I. Zinovieva, N. Sytnyk, O. Denisova, and V. Artemchuk, “Support for 

the development of educational programs with graph database 

technology,” in Data -Centric Business and Applications, A. Semenov, I. 

Yepifanova, and J. Kajanová, Eds., Lecture Notes on Data  Engineering 

and Communications Technologies, vol. 195. Cham, Switzerland: 

Springer, 2024, ch. 14, doi: 10.1007/978-3-031-54012-7_14. 


