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Abstract—Sign language recognition is a critical component of
assistive technologies for individuals with hearing and speech
impairments. While vision-based approaches have shown
promising performance, their reliability is often affected by
illumination variations, occlusions, and background complexity.
Wearable sensor—based solutions, particularly smart gloves
integrating flex sensors and inertial measurement units (IMUs),
provide a more stable alternative by directly capturing hand
articulation and motion patterns. However, existing sensor-based
methods frequently suffer from temporal instability, noise
sensitivity, and limited discrimination among structurally similar
gestures, which is especially challenging in Hijaiyahsign language,
where many letters differ only by subtle finger configurations.
This study proposes a robust real-time Multimodal Polynomial
Fusion (MPF) framework for sensor-based sign language
recognition using a flex—-IMU smart glove, with a specific focus on
Hijaiyah gestures as the application domain. The proposed
framework applies nonlinear polynomial temporal smoothing
within a sliding window to stabilize raw flex-IMU trajectories,
followed by multimodal fusion to enhance gesture separability and
temporal consistency. A large-scale multimodal dataset
comprising 231,000samples collected from 33 users performing 28
Hijaiyah gesture classes was constructed to enable rigorous
subject-independent evaluation. Experimental results obtained
from offline testing, session-aware analysis, and real-time
streaming scenarios demonstrate that the proposed MPF
framework consistently outperforms a baseline approachbasedon
raw normalized signals. The proposed method improves
recognitionaccuracy from92.42% to 96.32 %, while also achieving
higher macro-level precision, recall, and F1-score. Furthermore,
MPF significantly reduces misclassification rates and improves
temporal stability, particularly for fine-grained Hijaiyah gestures
with similar structural patterns. These results confirm that the
proposed framework provides a robust and reliable solution for
real-time wearable sign language recognition and offers practical
benefits for Hijaiyah-based assistive communication systems.

Keywords—Sign language recognition; Hijaiyah sign language;
wearable sensors; smart glove; multimodal fusion; polynomial
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I.  INTRODUCTION

Sign language recognition has been extensively
investigated as a core technology for assistive communication
systems that support individuals with hearing and speech
impairments. Automatic translation of hand gestures into
linguistic symbols enables improved accessibility in education,
healthcare, and everyday interactions. Early studies in this area
predominantly relied on vision-based approaches, utilizing

RGB cameras, depth sensors, or skeletal tracking to model hand
shape and motion patterns [1], [3], [11]. With the rapid
advancement of machine learning and deep learning
techniques, vision-based systems have achieved promising
recognition accuracy, particularly for well-studied sign
languages such as American Sign Language (ASL) and British
Sign Language (BSL) [12],[19], [31].

Despite these advances, vision-based sign language
recognition systems remain constrained by several inherent
limitations. Their performance is highly sensitive to
environmental factors, including illumination variations,
background clutter, occlusion, and motion blur, which
frequently occur in real-world settings [3], [12], [19]. In
addition, camera-based systems typically require fixed
viewpoints and considerable computational resources, limiting
their suitability for real-time, mobile, and embedded assistive
applications [11], [31]. These challenges have motivated an
increasinginterestin alternative sensingmodalities that are less
dependent on external visual conditions.

Wearable sensor-based approaches have therefore emerged
as a robust alternative for sign language recognition. Smart
gloves [2] equipped with flex sensors enable continuous
measurement of finger bending, while inertial measurement
units (IMUs) capture hand orientation and dynamic motion cues
[9],[10],[13],[14]. By directly sensing hand articulation at the
source, wearable systems significantly reduce the influence of
environmental disturbances and provide more stable gesture
representations across diverse operating conditions [4], [18],
[22],[32]. Numerous studies have demonstrated the feasibility
of glove-based systems for gesture recognition and sign
language translation using combinations of flex sensors,
accelerometers, and gyroscopes [6],[7],[15], [20], [21], [26].

However, existing wearable sensor—based sign language
recognition systems still face several unresolved challenges.
Many prior studies rely on relatively small datasets involving
limited numbers of participants, typically ranging from three to
ten users, which restricts cross-user generalization and
robustness [7], [15], [24], [28], [29]. In addition, gesture
vocabularies are often limited, with many systems evaluating
only partial sets of letters or gestures rather than complete sign
alphabets [5], [8],[17], [28]. Furthermore, most preprocessing
pipelines employ simple linear filtering techniques, such as
moving average or low-pass filters, which are insufficient to
model the nonlinear temporal characteristics inherent in flex—
IMU sensor signals. As a result, micro-tremors, sensor drift,
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and temporal instability frequently persist, leading to
misclassification, especially for gestures with subtle structural
differences [12], [19], [25].

These challenges are particularly evident in Hijaiyah sign
language, which represents the Arabic alphabet and consists of
28 gesture classes. Many Hijaiyah letters differ only by minor
variations in finger configuration or hand orientation, making
them especially sensitive to noise and temporal inconsistencies
in sensor measurements [5], [17], [28]. Existing Arabic and
Hijaiyah sign language recognition systems are often limited to
partial datasets, handcrafted feature extraction, or small-scale
user evaluations, leaving large-scale multimodal modeling and
real-time robustness insufficiently explored [8], [17], [28].

To address these limitations, more advanced temporal
modelingtechniques are required to stabilize sensor trajectories
while preserving meaningful motion dynamics. Polynomial
regression hasbeen shown to be effective formotion smoothing
and trajectory stabilization, as it is capable of modeling
nonlinear temporal behavior more accurately than conventional
linear filters [3], [12], [23]. Nevertheless, the integration of
polynomial temporal modeling with multimodal flex—IMU
fusion for sign language recognition remains largely
unexplored, particularly in the context of real-time wearable
systems.

In this study, a robust real-time Multimodal Polynomial
Fusion (MPF) framework is proposed for sensor-based sign
language recognition using a flex—IMU smart glove, with
Hijaiyah gestures serving as the application domain. The
proposed framework applies nonlinear polynomial temporal
smoothing within a sliding window to stabilize raw flex and
IMU signals, followed by multimodal fusion to enhance gesture
separability and temporal consistency. Unlike conventional
linear preprocessing approaches, the proposed method
explicitly models nonlinear sensor dynamics, thereby reducing
intra-class variance and improving discrimination among
structurally similar gestures.

The effectiveness of the proposed framework is validated
using a large-scale multimodal dataset comprising 231,000
samples collected from 33 users, covering all 28 Hijaiyah
gesture classes. A subject-independent evaluation protocol is
adopted to rigorously assess cross-user generalization.
Comprehensive experiments conducted under offline, session-
aware, and real-time streaming conditions demonstrate that the
proposed MPF framework consistently outperforms a baseline
approach based on raw normalized signals in terms of
recognition accuracy, robustness, and temporal stability.

The remainder of this study is organized as follows:
Section II reviews related work on vision-based and wearable
sensor—based sign language recognition. Section III describes
the proposed Multimodal Polynomial Fusion framework,
including system architecture, preprocessing, and real-time
implementation. Experimental results and analysis are
presented in Section IV. The discussion is presented in
Section V. Finally, Section VI concludes the study and outlines
directions for future research.
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II.  RELATED WORK

Research on sign language recognition has evolved along
two dominant paradigms, namely vision-based approaches and
wearable sensor—based systems. Each paradigm offers distinct
advantages while also exhibiting inherent limitations,
particularly when deployed in real-time assistive scenarios.

Vision-based sign language recognition has been
extensively explored using RGB cameras, depth sensors, and
skeletal tracking models. Early studies employed handcrafted
features extracted from hand shape and motion trajectories,
while more recent works leverage convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and
transformer-based architectures to improve recognition
accuracy [1],[3],[11],[12],[19],[31]. These approaches have
demonstrated strong performance for widely studied sign
languages, especially ASL, under controlled conditions.
However, several studies report that vision-based systems
remain highly sensitive to illumination variations, occlusions,
background clutter,and camera viewpoints, which significantly
degrade performance in unconstrained environments [3], [12],
[19]. Moreover, the computational complexity of deep vision
models limits their feasibility for real-time embedded
deployment, particularly in wearable or mobile assistive
systems [11],[31].

To overcome the environmental dependency of camera-
based solutions, wearable sensor-based sign language
recognition has attracted increasing attention. Smart gloves
equipped with flex sensors, accelerometers, gyroscopes, and
inertial measurement units (IMUs) enable direct measurement
of finger articulation and hand motion, providing more stable
gesture acquisition independent of external visual conditions
[9],[10], [13], [14]. Early glove-based systems demonstrated
the feasibility of translating hand gestures into symbolic
representations using flex sensors and basic machine learning
classifiers [6],[7], [15]. Subsequent studies integrated IMUs to
capture three-dimensional motion cues, improving recognition
robustness for dynamic gestures [4],[18],[20], [22],[26], [30],
[32].

Despite these advances, many wearable sensor—based
systems remain limited by dataset scale and evaluation scope.
Numerous studies evaluate their models using small participant
cohorts, often involving fewer than ten users, whichrestricts the
assessment of cross-user generalization and robustness [7],
[15], [24], [28], [29]. In addition, gesture vocabularies are
frequently constrained to partial alphabets or small gesture sets,
limiting their applicability to complete sign language systems
[51,18],[171,[28]. These limitations are particularly critical for
alphabets with subtle inter-class differences, where robust
temporal modeling and extensive user diversity are essential.

Another important challenge lies in the preprocessing and
temporal modeling of wearable sensor signals. Most existing
worksrely on simple linear filteringtechniques, suchas moving
average smoothing or low-pass filters, to reduce sensor noise
andjitter [12],[19],[25]. While these methods offer basic noise
suppression, they are insufficient for modeling the nonlinear
temporal dynamics inherent in flex—IMU signals, including
micro-tremors, drift, and execution variability across users. As
a result, gesture trajectories often remain unstable, leading to
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increased intra-class variance and misclassification among
structurally similar gestures.

Multimodal fusion has been proposed as a strategy to
improve robustness by integrating complementary sensor
modalities. Several studies combine flex sensors with IMUs or
tactile sensors using feature-level or decision-level fusion,
demonstrating improved recognition accuracy compared with
single-modality approaches [4], [18],[22],[27],[32]. Classical
classifiers such as k-nearest neighbors (k-NN), support vector
machines (SVMs), dynamic time warping (DTW), and random
forests have been widely used in these systems. Recent deep
learning-based glove systems [ 16] demonstrate higher accuracy
butstillrely onlinear preprocessing. More recentworks explore
deep learning-based fusion models to improve multimodal
integration [18], [19], [27]. However, most fusion strategies
still rely on linear preprocessing pipelines and do not explicitly
address nonlinear temporal instability in sensor trajectories.

Polynomial regression and related nonlinear modeling
techniques have been investigated in motion smoothing and
trajectory stabilization tasks, showing superior performance
over linear filters in capturing complex temporal patterns [3],
[12],[23]. In the context of hand motion and gesture analysis,
polynomial modeling has been reported to improve signal
stability and reduce high-frequency noise. Nevertheless, the
application of polynomial temporal smoothing within a
multimodal flex—IMU fusion framework for real-time sign
language recognition remains largely unexplored in the existing
literature.

Research on Arabic and Hijaiyah sign language recognition
is comparatively limited when contrasted with ASL and other
widely studied sign languages. Existing works often focus on
partial Hijaiyah or Arabic gesture sets, rely on handcrafted
features, or evaluate performance using small-scale datasets
[51, [8], [17], [28]. Several studies highlight the difficulty of
distinguishing Hijaiyah letters that differ only by subtle finger
configurations, emphasizing the need for more robust temporal
modeling and multimodal integration [5], [17], [28]. To date,
no study has reported a large-scale multimodal flex—IMU
dataset for Hijaiyah sign language combined with advanced
nonlinear temporal fusion evaluated under real-time conditions.

Based on thisreview, a clear research gap can be identified.
Existing vision-based approaches struggle with environmental
sensitivity, while wearable sensor—based systems remain
constrained by limited datasets, linear temporal modeling, and
insufficient real-time validation. Although multimodal fusion
improves robustness, the lack of nonlinear temporal
stabilization continues to limit performance, particularly for
fine-grained alphabets such as Hijaiyah. These limitations
motivate the development of a robust real-time framework that
integrates nonlinear temporal modeling with multimodal sensor
fusion, supported by large-scale subject-independent
evaluation. The proposed Multimodal Polynomial Fusion
(MPF) framework directly addresses these gaps by stabilizing
flex—IMU trajectories through polynomial temporal smoothing
and enhancing gesture separability via multimodal integration.
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III. METHODOLOGY

This section describes the overall framework for real-time
Hijaiyah sign recognition using the proposed Multimodal
Polynomial Fusion (MPF) approach. The methodology
includes hardware design, data acquisition, preprocessing,
polynomial temporal smoothing, multimodal fusion, feature
extraction, classification, and real-time implementation.

A. Smart-Glove Architecture

The smart glove integrates five flex sensors and a three-axis
IMU to capture finger bending and hand motion, producing an
eight-channel multimodal signal. As shown in Fig. 1, the
pipeline applies preprocessing, polynomial smoothing,
multimodal fusion, and classification, with a real-time sliding
window ensuring temporal consistency and robustness during
continuous gesture recognition.

Mini Speaker

LCD-Module 1602 Flex Sensor

Flex-1 Flex-2 Flex-3 Flex-4 Flex-5

5 uﬁu o
ESP32-Dev Kit

Fig. 1. Proposed multimodal Flex-IMU.

The smart glove integrates five flex sensors and a three-axis
IMU to capture finger bending and hand orientation, enabling
reliable discrimination of all 28 Hijaiyah gestures, including
those with similar postures, as shown in Fig. 2.

Fig.2. Sensor placement on the hand.

The assembled smart-glove prototype integrates flex
sensors, an IMU, a microcontroller, and a power unit into a
wearable form factor, enabling stable signal acquisition during
natural hand movements while maintaining user comfort, as
shown in Fig. 3.
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Fig.3. Fully assembled smart-glove hardware prototype.
Hijaiyah gesture classes used in this study, representing the
complete Hijaiyah alphabet and following established
conventions in sensor-based sign language recognition using
flex—IMU smart gloves [13],[17],[26], [33], in Fig. 4.
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Fig. 4. The 28 Hijaiyah gesture.

B. Data Acquisition

Data collection involved 33 participants, each performing
all 28 Hijaiyah gesture classes in 250 repetitions, yielding a
total of 231,000 multimodal samples. This large-scale dataset
captures natural variations in hand shape, execution speed, and
sensor alignment across users. To enable rigorous subject-
independent evaluation, the dataset was partitioned into 26
users for training and 7 unseen users for testing, ensuring that
model performance reflects true cross-user generalization
rather than memorization of individual motion patterns. Each
raw observation is represented as:

1) Feature vector

5@ = [A®), £, (0, £2,(0), 5, x(0), y (), 2(£)]

where, f;(t) — fs(t) denote flex-sensor values and
a,(t),a,(t), a,(t) denote IMU signals.

C. Preprocessing

To mitigate differences arising fromhand size, glovefitting,
and sensor drift, each sensor channel undergoes z-score
normalization:
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1) Z-score normalization
S(t)—n
S't)y=——
®==
where, pand orepresent the mean and standard deviation
computed from the training dataset.

D. Polynomial Temporal Smoothing

Raw flex—IMU signals naturally contain micro-tremors,
noise, and nonlinear temporal variations that can degrade
gesture separability. To mitigate these effects, polynomial
regression is applied within a sliding window of length W,
producing smoothed temporal trajectories that better capture
the underlying motion patterns while suppressing high-
frequency fluctuations in the channel. The smoothed value is
computed as:

1) Polynomial smoothing

d
8(t) = Z a, tk
k=0

where, d denotes the polynomial order and «; are
coefficients estimated using least-squares fitting.

E. Multimodal Polynomial Fusion
Following temporal smoothing, all flex and IMU channels
are integrated into a unified multimodal representation:

1) MPF vector
F=1f1fofo fuf5, 2.9, 2]

where, f;(t)and @ j(t)represent the polynomial-smoothed
flex and IMU signals, respectively.

The MPF approach strengthens cross-channel modelingand
improves discrimination among similar gestures by producing
more stable, noise-resistant sensor representations. Fig. 5
highlights these enhancements compared with the baseline
pipeline.

Baseline Polynomial Fusion

Raw Sensor Data Raw Sensor Data

L1 p

L[p=

Classification

Signal Signal
Normalization MNormalization
Feature Multimodal Feature
Extraction Fusion & Polynomial
I Smoothing
T
Classifier
I e S—
Gesture Gesture

Classification

Fig. 5.
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Baseline vs. Polynomial fusion framework.
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F. Feature Extraction, Classification, and Implementation

After multimodal polynomial fusion, compact features are
extracted from each fused window, including basic statistical
descriptors and temporal gradients, to represent gesture
dynamics. A Random Forest classifier is employed due to its
robustness to noise and nonlinear feature interactions, with
identical settings applied to both the baseline and MPF models
to ensure fair comparison. The entire pipeline is implemented
in a real-time streaming framework using a sliding-window
mechanism, enabling stable predictions and smooth gesture
transitions with low computational overhead. Model
performance is evaluated using accuracy, macro precision,
recall, F1-score, and confusion matrix analysis under subject-
independent and real-time conditions.

IV. RESULTS

This section presents the experimental results of the
proposed Multimodal Polynomial Fusion (MPF) framework.
The evaluation is conducted under subject-independent,
session-aware, and real-time streaming conditions to assess
recognition accuracy, robustness across users, and temporal
stability. Performance is compared against a baseline system
using raw normalized flex—IMU features.

A. Overall Performance Evaluation

To provide a concise quantitative comparison between the
baseline system and the proposed Multimodal Polynomial
Fusion (MPF) framework, overall recognition performance is
summarized using standard evaluation metrics. Accuracy and
macro-averaged precision, recall, and F1-score are reported to
ensure balanced assessment across all gesture classes under
subject-independent and real-time conditions. The results
presented in Table I highlight the consistent performance
improvements achieved by the proposed framework over the
baseline approach.

Vol. 17, No. 1, 2026

With Polynomial Fusion — Letter Alif

Alf 1 Alif

TABLEI. OVERALL PERFORMANCE COMPARISON
Metric Baseline Model MPF Model
Accuracy (%) 92.42 96.32
Precision (Macro) 92.56 96.51
Recall (Macro) 92.44 96.32
F1-Score (Macro) 92.44 96.30

The real-time evaluation shows that MPF consistently
outperforms the baseline across all metrics, providing more
stable and reliable predictions during continuous gesture
execution. Higher precision, recall, and Fl-score indicate
reduced misclassification and improved consistency across
gesture classes, confirming MPF’s robustness for real-world
assistive use. Fig. 6 further illustrates the real-time behavior of
the proposed framework under subject-independent conditions;
representative gesture detectionresults from seven unseenusers
are presented. Each example corresponds to a different test
subject and shows a direct comparison between the baseline
model and the proposed Multimodal Polynomial Fusion (MPF)
approach for the same Hijaiyah gesture, highlighting user-
specific variability and temporal prediction stability.

www.ijacsa.thesai.org
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Fig. 6. Representative real-time gesture detection results for selected
Hijaiyah gestures.

Vol. 17, No. 1, 2026

1) Heatmap of per-gesture real-time accuracy: Fig. 7
presents the per-gesture accuracy heatmap for the proposed
MPF model, showing consistently high recognition accuracy
across most Hijaiyah gesture classes under real-time streaming
conditions.

Perfiesture Acc.racy Heatmap - Saselin Vodel . Per-(ieszume Acouracy Heatmap - Polynamial fusian ecel

n
pite

Fig. 7. Presents the per-gesture accuracy heatmap for the MPF model.

2) Real-time accuracy comparison: Compares the real-
time accuracy of the baseline and MPF models, as shown in
Fig. 8. The MPF model achieves noticeably higher
performance, confirming the effectiveness of polynomial
smoothing and multimodal fusion in stabilizing gesture
predictions during continuous execution.

, Per-Gasturs Accaracy Comparison: Bassline vs Polynamial Fusion
1

Fig. 8. Real-time accuracy comparison.

B. Misclassification and Confusion Analysis

Misclassification patterns were examined to understand
how often specific gestures were confused with others during
real-time evaluation. This analysis provides insight into gesture
similarities that challenge both models and reveals how
Polynomial Fusion (MPF) reduces these errors. In Fig. 9, the
baseline model exhibits frequent misclassification in gestures
with subtle structural similarities such as Fa, Sin, Zai, Nun, and
Ha, resulting in darker regions on the heatmap and lower per-
gesture accuracy. In contrast, the MPF model shows far fewer
errors, with a more uniform and brighter heatmap thatreflects
improved stability and separability. Only minor confusion
remains in closely related gestures like Haa, Tsa, Kho, Fa, Lam.

Top-5 Misclagsification - Baseline Model Top-5 Misclassification - Pelynamial Fusion Model
L

@ & @ o @ & & < ® &

Fig. 9. Top misclassified gestures - polynomial fusion model.

C. Variance Reduction Analysis

To further assess model stability across users, variance
analysis was performed using per-user accuracy distributions.
Lower variance indicates more consistent performance when
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encountering natural differences in gesture execution, hand
size, glove fit, and movement style.

D. Temporal Stability and Per-Letter Robustness

The per-letter robustness plot shows that the MPF model
consistently maintains higher accuracy and smoother
performance across all 28 gestures, whereas the baseline model
exhibits greater fluctuation and instability. MPF’s smoother
accuracy curve reflects stronger temporal stability and
improved discrimination between similar gestures in Fig. 10,
confirming its suitability for real-time recognition.

Fig. 10. Temporalstability and per-letter robustness.

V.  DISCUSSION

A. Interpretation of Performance Improvements

Across all offline, session-aware, and real-time evaluations,
the MPF framework consistently outperforms the baseline. Its
improvements stem from nonlinear temporal smoothing,
multimodal fusion, reduced intra-class variance, and enhanced
gesture discriminability. These results clearly demonstrate
MPF’s effectiveness for stable and reliable real-time Hijaiyah
sign recognition.

B. Temporal Stability and Gesture Separability

Temporal stability plays a critical role in real-time sign
language recognition, where fluctuating predictions can
degrade recognition reliability. As observed in the temporal
robustness analysis, the proposed MPF framework produces

Vol. 17, No. 1, 2026

smoother and more consistent predictions over time compared
with the baseline. This behavior indicates effective suppression
of sensorjitter and short-term fluctuations in flex—IMU signals.

Improved temporal stability contributes directly to
enhanced gesture separability by maintaining consistent feature
trajectories across consecutive frames. As a result, class
boundaries remain more distinct during continuous gesture
execution, supporting stable real-time recognition without
relying on frame-level corrections.

C. Comparison with Prior Wearable Sensor-Based Methods

Compared with prior wearable sensor—based sign language
recognition systems that rely on linear preprocessing and
limited user evaluations [6],[7], [15], [24], the proposed MPF
framework demonstrates superior robustness and scalability,
supported by large-scale subject-independent evaluation and
nonlinear temporal modeling.

Table II highlights that the most existing sensor-based sign
language recognition systems with reported accuracies below
96% are evaluated using limited datasets and a small or
unspecified number of wusers, which restricts their
generalizability. Several approaches rely primarily on flex
sensors with predefined gesture mappings, leading to moderate
recognition performance and reduced robustness to inter-user
variability [6],[30], while others incorporate additional sensing
modalities butstill operateon relatively small datasets[9],[11],
[18]. Moreover, some studies report results under offline
evaluation settings [28],[33], which do not adequately reflect
stability and consistency during continuous real-time operation.
In contrast, the proposed Multimodal Polynomial Fusion
(MPF) framework is evaluated on a substantially larger dataset
comprising 231,000 samples from 33 users and operates fully
in real time, enabling improved robustness and higher
recognition accuracy (96.32%) in continuous sign language
recognition scenarios.

TABLE II. LITERATURE-BASED COMPARISON OF REPRESENTATIVE STATE-OF-THE-ART SIGN LANGUAGE RECOGNITION METHODS
. Reported
Method / Approach Modality Dataset Scale #Users Accuracy (%) Real-Time Ref
Smart Glove-Based SLR System Flex Sensors Limited dataset - ~85-90 Yes [6]
— — - " "
Assistive Communication Glove (Combined Flex + Contact + 3D 28 ASL gestures 7 779 Yes 9]
Sensors) Accel
Smart Hand Sign Glove with ESP32 MPU6050 + ESP32 Limited - 92-95 Yes [11]
Intelligent Glove with kNN + CHC/DROP3 5 Flex Sensors ~5,000 samples 10 85 Yes [18]
Indonesian Sign Language Recognition (ANN) Flex + Accelerometer 1,000 samples - 91.60 (offline) No [28]
Sign Language Detection using Flex Sensor Flex Sensors Limited - 88-92 Yes [30]
Flex Sensor Dataset for SLR (ML Comparison) Flex + Accelerometer ~180 samples - 94 (offline) No [33]
Proposed MPF (This Work) Flex-IMU 231,000 samples 33 96.32 Yes This study

D. Limitations and Future Directions

Despite its advantages, the proposed wearable sensor-based
framework has inherent limitations. The reliance on specialized
smart-glove hardware introduces additional cost and usability
considerations compared to vision-only approaches. Long-term
wearability and user comfort may also affect practical
deployment. Future work will explore lightweight hardware

designs and cross-modal integration with vision-based cues to
further enhance robustness

VL

CONCLUSION AND FUTURE WORK

A. Conclusion

This study introduces a Multimodal Polynomial Fusion
(MPF) framework forreal-time Hijaiyah sign recognition using

www.ijacsa.thesai.org
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flex—IMU smart gloves. MPF enhances signal stability, reduces
intra-class variability, and improves gesture separability
through nonlinear smoothingand multimodal fusion. Acrossall
evaluations, MPF consistently surpasses the baseline,
demonstrating a robustand reliable foundation for fine-grained
assistive communication systems. These findings directly
address the research objective of improving temporal stability
and recognition accuracy for fine-grained Hijaiyah gestures in
real-time wearable sign language systems.

B. Future Work

Future work may explore adaptive polynomial smoothing,
fusion with vision-based modalities, and integration into
lightweight neural models for edge deployment. Expanding
user diversity, improving glove ergonomics, and extending
recognition to continuous Hijaiyah sequences will further
enhance the practicality and generalization of sensor-based sign
language systems. Despite its advantages, the proposed
wearable sensor—based approach has certain limitations. The
use of smart gloves introduces hardware dependency and
potential cost constraints, which may affect large-scale
adoption. In addition, user comfort and long-term wearability
remain important considerations. Nevertheless, these
limitations are balanced by the system’s robustness to
environmental conditions and its suitability for real-time
assistive applications.
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