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Abstract—Sign language recognition is a critical component of 

assistive technologies for individuals with hearing and speech 

impairments. While vision-based approaches have shown 

promising performance, their reliability is often affected by 

illumination variations, occlusions, and background complexity. 

Wearable sensor–based solutions, particularly smart gloves 

integrating flex sensors and inertial measurement units (IMUs), 

provide a more stable alternative by directly capturing hand 

articulation and motion patterns. However, existing sensor-based 

methods frequently suffer from temporal instability, noise 

sensitivity, and limited discrimination among structurally similar 

gestures, which is especially challenging in Hijaiyah sign language, 

where many letters differ only by subtle finger configurations. 

This study proposes a robust real-time Multimodal Polynomial 

Fusion (MPF) framework for sensor-based sign language 

recognition using a flex–IMU smart glove, with a specific focus on 

Hijaiyah gestures as the application domain. The proposed 

framework applies nonlinear polynomial temporal smoothing 

within a sliding window to stabilize raw flex–IMU trajectories, 

followed by multimodal fusion to enhance gesture separability and 

temporal consistency. A large-scale multimodal dataset 

comprising 231,000 samples collected from 33 users performing 28 

Hijaiyah gesture classes was constructed to enable rigorous 

subject-independent evaluation. Experimental results obtained 

from offline testing, session-aware analysis, and real-time 

streaming scenarios demonstrate that the proposed MPF 

framework consistently outperforms a baseline approach based on 

raw normalized signals. The proposed method improves 

recognition accuracy from 92.42% to 96.32%, while also achieving 

higher macro-level precision, recall, and F1-score. Furthermore, 

MPF significantly reduces misclassification rates and improves 

temporal stability, particularly for fine-grained Hijaiyah gestures 

with similar structural patterns. These results confirm that the 

proposed framework provides a robust and reliable solution for 

real-time wearable sign language recognition and offers practical 

benefits for Hijaiyah-based assistive communication systems. 
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I. INTRODUCTION 

Sign language recognition has been extensively 
investigated as a core technology for assistive communication 
systems that support individuals with hearing and speech 
impairments. Automatic translation of hand gestures into 
linguistic symbols enables improved accessibility in education, 
healthcare, and everyday interactions. Early studies in this area 
predominantly relied on vision-based approaches, utilizing 

RGB cameras, depth sensors, or skeletal tracking to model hand 
shape and motion patterns [1], [3], [11]. With the rapid 
advancement of machine learning and deep learning 
techniques, vision-based systems have achieved promising 
recognition accuracy, particularly for well-studied sign 
languages such as American Sign Language (ASL) and British 
Sign Language (BSL) [12], [19], [31]. 

Despite these advances, vision-based sign language 
recognition systems remain constrained by several inherent 
limitations. Their performance is highly sensitive to 
environmental factors, including illumination variations, 
background clutter, occlusion, and motion blur, which 
frequently occur in real-world settings [3], [12], [19]. In 
addition, camera-based systems typically require fixed 
viewpoints and considerable computational resources, limiting 
their suitability for real-time, mobile, and embedded assistive 
applications [11], [31]. These challenges have motivated an 
increasing interest in alternative sensing modalities that are less 
dependent on external visual conditions. 

Wearable sensor–based approaches have therefore emerged 
as a robust alternative for sign language recognition. Smart 
gloves [2] equipped with flex sensors enable continuous 
measurement of finger bending, while inertial measurement 
units (IMUs) capture hand orientation and dynamic motion cues 
[9], [10], [13], [14]. By directly sensing hand articulation at the 
source, wearable systems significantly reduce the influence of 
environmental disturbances and provide more stable gesture 
representations across diverse operating conditions [4], [18], 
[22], [32]. Numerous studies have demonstrated the feasibility 
of glove-based systems for gesture recognition and sign 
language translation using combinations of flex sensors, 
accelerometers, and gyroscopes [6], [7], [15], [20], [21], [26]. 

However, existing wearable sensor–based sign language 
recognition systems still face several unresolved challenges. 
Many prior studies rely on relatively small datasets involving 
limited numbers of participants, typically ranging from three to 
ten users, which restricts cross-user generalization and 
robustness [7], [15], [24], [28], [29]. In addition, gesture 
vocabularies are often limited, with many systems evaluating 
only partial sets of letters or gestures rather than complete sign 
alphabets [5], [8], [17], [28]. Furthermore, most preprocessing 
pipelines employ simple linear filtering techniques, such as 
moving average or low-pass filters, which are insufficient to 
model the nonlinear temporal characteristics inherent in flex–
IMU sensor signals. As a result, micro-tremors, sensor drift, 
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and temporal instability frequently persist, leading to 
misclassification, especially for gestures with subtle structural 
differences [12], [19], [25]. 

These challenges are particularly evident in Hijaiyah sign 
language, which represents the Arabic alphabet and consists of 
28 gesture classes. Many Hijaiyah letters differ only by minor 
variations in finger configuration or hand orientation, making 
them especially sensitive to noise and temporal inconsistencies 
in sensor measurements [5], [17], [28]. Existing Arabic and 
Hijaiyah sign language recognition systems are often limited to 
partial datasets, handcrafted feature extraction, or small-scale 
user evaluations, leaving large-scale multimodal modeling and 
real-time robustness insufficiently explored [8], [17], [28]. 

To address these limitations, more advanced temporal 
modeling techniques are required to stabilize sensor trajectories 
while preserving meaningful motion dynamics. Polynomial 
regression has been shown to be effective for motion smoothing 
and trajectory stabilization, as it is capable of modeling 
nonlinear temporal behavior more accurately than conventional 
linear filters [3], [12], [23]. Nevertheless, the integration of 
polynomial temporal modeling with multimodal flex–IMU 
fusion for sign language recognition remains largely 
unexplored, particularly in the context of real-time wearable 
systems. 

In this study, a robust real-time Multimodal Polynomial 
Fusion (MPF) framework is proposed for sensor-based sign 
language recognition using a flex–IMU smart glove, with 
Hijaiyah gestures serving as the application domain. The 
proposed framework applies nonlinear polynomial temporal 
smoothing within a sliding window to stabilize raw flex and 
IMU signals, followed by multimodal fusion to enhance gesture 
separability and temporal consistency. Unlike conventional 
linear preprocessing approaches, the proposed method 
explicitly models nonlinear sensor dynamics, thereby reducing 
intra-class variance and improving discrimination among 
structurally similar gestures. 

The effectiveness of the proposed framework is validated 
using a large-scale multimodal dataset comprising 231,000 
samples collected from 33 users, covering all 28 Hijaiyah 
gesture classes. A subject-independent evaluation protocol is 
adopted to rigorously assess cross-user generalization. 
Comprehensive experiments conducted under offline, session-
aware, and real-time streaming conditions demonstrate that the 
proposed MPF framework consistently outperforms a baseline 
approach based on raw normalized signals in terms of 
recognition accuracy, robustness, and temporal stability. 

The remainder of this study is organized as follows: 
Section II reviews related work on vision-based and wearable 
sensor–based sign language recognition. Section III describes 
the proposed Multimodal Polynomial Fusion framework, 
including system architecture, preprocessing, and real-time 
implementation. Experimental results and analysis are 
presented in Section IV. The discussion is presented in 
Section V. Finally, Section VI concludes the study and outlines 
directions for future research. 

II. RELATED WORK 

Research on sign language recognition has evolved along 
two dominant paradigms, namely vision-based approaches and 
wearable sensor–based systems. Each paradigm offers distinct 
advantages while also exhibiting inherent limitations, 
particularly when deployed in real-time assistive scenarios. 

Vision-based sign language recognition has been 
extensively explored using RGB cameras, depth sensors, and 
skeletal tracking models. Early studies employed handcrafted 
features extracted from hand shape and motion trajectories, 
while more recent works leverage convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and 
transformer-based architectures to improve recognition 
accuracy [1], [3], [11], [12], [19], [31]. These approaches have 
demonstrated strong performance for widely studied sign 
languages, especially ASL, under controlled conditions. 
However, several studies report that vision-based systems 
remain highly sensitive to illumination variations, occlusions, 
background clutter, and camera viewpoints, which significantly 
degrade performance in unconstrained environments [3], [12], 
[19]. Moreover, the computational complexity of deep vision 
models limits their feasibility for real-time embedded 
deployment, particularly in wearable or mobile assistive 
systems [11], [31]. 

To overcome the environmental dependency of camera-
based solutions, wearable sensor–based sign language 
recognition has attracted increasing attention. Smart gloves 
equipped with flex sensors, accelerometers, gyroscopes, and 
inertial measurement units (IMUs) enable direct measurement 
of finger articulation and hand motion, providing more stable 
gesture acquisition independent of external visual conditions 
[9], [10], [13], [14]. Early glove-based systems demonstrated 
the feasibility of translating hand gestures into symbolic 
representations using flex sensors and basic machine learning 
classifiers [6], [7], [15]. Subsequent studies integrated IMUs to 
capture three-dimensional motion cues, improving recognition 
robustness for dynamic gestures [4], [18], [20], [22], [26], [30], 
[32]. 

Despite these advances, many wearable sensor–based 
systems remain limited by dataset scale and evaluation scope. 
Numerous studies evaluate their models using small participant 
cohorts, often involving fewer than ten users, which restricts the 
assessment of cross-user generalization and robustness [7], 
[15], [24], [28], [29]. In addition, gesture vocabularies are 
frequently constrained to partial alphabets or small gesture sets, 
limiting their applicability to complete sign language systems 
[5], [8], [17], [28]. These limitations are particularly critical for 
alphabets with subtle inter-class differences, where robust 
temporal modeling and extensive user diversity are essential. 

Another important challenge lies in the preprocessing and 
temporal modeling of wearable sensor signals. Most existing 
works rely on simple linear filtering techniques, such as moving 
average smoothing or low-pass filters, to reduce sensor noise 
and jitter [12], [19], [25]. While these methods offer basic noise 
suppression, they are insufficient for modeling the nonlinear 
temporal dynamics inherent in flex–IMU signals, including 
micro-tremors, drift, and execution variability across users. As 
a result, gesture trajectories often remain unstable, leading to 
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increased intra-class variance and misclassification among 
structurally similar gestures. 

Multimodal fusion has been proposed as a strategy to 
improve robustness by integrating complementary sensor 
modalities. Several studies combine flex sensors with IMUs or 
tactile sensors using feature-level or decision-level fusion, 
demonstrating improved recognition accuracy compared with 
single-modality approaches [4], [18], [22], [27], [32]. Classical 
classifiers such as k-nearest neighbors (k-NN), support vector 
machines (SVMs), dynamic time warping (DTW), and random 
forests have been widely used in these systems. Recent deep 
learning-based glove systems [16] demonstrate higher accuracy 
but still rely on linear preprocessing. More recent works explore 
deep learning-based fusion models to improve multimodal 
integration [18], [19], [27]. However, most fusion strategies 
still rely on linear preprocessing pipelines and do not explicitly 
address nonlinear temporal instability in sensor trajectories. 

Polynomial regression and related nonlinear modeling 
techniques have been investigated in motion smoothing and 
trajectory stabilization tasks, showing superior performance 
over linear filters in capturing complex temporal patterns [3], 
[12], [23]. In the context of hand motion and gesture analysis, 
polynomial modeling has been reported to improve signal 
stability and reduce high-frequency noise. Nevertheless, the 
application of polynomial temporal smoothing within a 
multimodal flex–IMU fusion framework for real-time sign 
language recognition remains largely unexplored in the existing 
literature. 

Research on Arabic and Hijaiyah sign language recognition 
is comparatively limited when contrasted with ASL and other 
widely studied sign languages. Existing works often focus on 
partial Hijaiyah or Arabic gesture sets, rely on handcrafted 
features, or evaluate performance using small-scale datasets 
[5], [8], [17], [28]. Several studies highlight the difficulty of 
distinguishing Hijaiyah letters that differ only by subtle finger 
configurations, emphasizing the need for more robust temporal 
modeling and multimodal integration [5], [17], [28]. To date, 
no study has reported a large-scale multimodal flex–IMU 
dataset for Hijaiyah sign language combined with advanced 
nonlinear temporal fusion evaluated under real-time conditions. 

Based on this review, a clear research gap can be identified. 
Existing vision-based approaches struggle with environmental 
sensitivity, while wearable sensor–based systems remain 
constrained by limited datasets, linear temporal modeling, and 
insufficient real-time validation. Although multimodal fusion 
improves robustness, the lack of nonlinear temporal 
stabilization continues to limit performance, particularly for 
fine-grained alphabets such as Hijaiyah. These limitations 
motivate the development of a robust real-time framework that 
integrates nonlinear temporal modeling with multimodal sensor 
fusion, supported by large-scale subject-independent 
evaluation. The proposed Multimodal Polynomial Fusion 
(MPF) framework directly addresses these gaps by stabilizing 
flex–IMU trajectories through polynomial temporal smoothing 
and enhancing gesture separability via multimodal integration. 

III. METHODOLOGY 

This section describes the overall framework for real-time 
Hijaiyah sign recognition using the proposed Multimodal 
Polynomial Fusion (MPF) approach. The methodology 
includes hardware design, data acquisition, preprocessing, 
polynomial temporal smoothing, multimodal fusion, feature 
extraction, classification, and real-time implementation. 

A. Smart-Glove Architecture 

The smart glove integrates five flex sensors and a three-axis 
IMU to capture finger bending and hand motion, producing an 
eight-channel multimodal signal. As shown in Fig. 1, the 
pipeline applies preprocessing, polynomial smoothing, 
multimodal fusion, and classification, with a real-time sliding 
window ensuring temporal consistency and robustness during 
continuous gesture recognition. 

 

Fig. 1. Proposed multimodal Flex–IMU. 

The smart glove integrates five flex sensors and a three-axis 
IMU to capture finger bending and hand orientation, enabling 
reliable discrimination of all 28 Hijaiyah gestures, including 
those with similar postures, as shown in Fig. 2. 

 

Fig. 2. Sensor placement on the hand. 

The assembled smart-glove prototype integrates flex 
sensors, an IMU, a microcontroller, and a power unit into a 
wearable form factor, enabling stable signal acquisition during 
natural hand movements while maintaining user comfort, as 
shown in Fig. 3. 
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Fig. 3. Fully assembled smart-glove hardware prototype. 

Hijaiyah gesture classes used in this study, representing the 
complete Hijaiyah alphabet and following established 
conventions in sensor-based sign language recognition using 
flex–IMU smart gloves [13], [17], [26], [33], in Fig. 4. 

 

Fig. 4. The 28 Hijaiyah gesture. 

B. Data Acquisition 

Data collection involved 33 participants, each performing 
all 28 Hijaiyah gesture classes in 250 repetitions, yielding a 
total of 231,000 multimodal samples. This large-scale dataset 
captures natural variations in hand shape, execution speed, and 
sensor alignment across users. To enable rigorous subject-
independent evaluation, the dataset was partitioned into 26 
users for training and 7 unseen users for testing, ensuring that 
model performance reflects true cross-user generalization 
rather than memorization of individual motion patterns. Each 
raw observation is represented as: 

1) Feature vector 

𝑆(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡), 𝑓4(𝑡), 𝑓5(𝑡), 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] 

where, 𝑓1(𝑡) – 𝑓5(𝑡)  denote flex-sensor values and 

𝑎𝑥(𝑡),𝑎𝑦(𝑡), 𝑎𝑧(𝑡) denote IMU signals. 

C. Preprocessing 

To mitigate differences arising from hand size, glove fitting, 
and sensor drift, each sensor channel undergoes z-score 
normalization: 

1) Z-score normalization 

𝑆′(𝑡)=
𝑆(𝑡)− 𝜇

𝜎
 

where, 𝜇and 𝜎represent the mean and standard deviation 
computed from the training dataset. 

D. Polynomial Temporal Smoothing 

Raw flex–IMU signals naturally contain micro-tremors, 
noise, and nonlinear temporal variations that can degrade 
gesture separability. To mitigate these effects, polynomial 
regression is applied within a sliding window of length W, 
producing smoothed temporal trajectories that better capture 
the underlying motion patterns while suppressing high-
frequency fluctuations in the channel. The smoothed value is 
computed as: 

1) Polynomial smoothing 

𝑠̂(𝑡) =∑𝑎𝑘

𝑑

𝑘=0

𝑡𝑘 

where, 𝑑  denotes the polynomial order and 𝛼𝑘  are 
coefficients estimated using least-squares fitting. 

E. Multimodal Polynomial Fusion 

Following temporal smoothing, all flex and IMU channels 
are integrated into a unified multimodal representation: 

1) MPF vector 

𝐹 = [𝑓1 , 𝑓2 , 𝑓3, 𝑓4, 𝑓5 , 𝑥, 𝑦, 𝑧̂] 

where, 𝑓𝑖(𝑡)and 𝑎𝑗(𝑡)represent the polynomial-smoothed 

flex and IMU signals, respectively. 

The MPF approach strengthens cross-channel modeling and 
improves discrimination among similar gestures by producing 
more stable, noise-resistant sensor representations. Fig. 5 
highlights these enhancements compared with the baseline 
pipeline. 

 

Fig. 5. Baseline vs. Polynomial fusion framework. 
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F. Feature Extraction, Classification, and Implementation 

After multimodal polynomial fusion, compact features are 
extracted from each fused window, including basic statistical 
descriptors and temporal gradients, to represent gesture 
dynamics. A Random Forest classifier is employed due to its 
robustness to noise and nonlinear feature interactions, with 
identical settings applied to both the baseline and MPF models 
to ensure fair comparison. The entire pipeline is implemented 
in a real-time streaming framework using a sliding-window 
mechanism, enabling stable predictions and smooth gesture 
transitions with low computational overhead. Model 
performance is evaluated using accuracy, macro precision, 
recall, F1-score, and confusion matrix analysis under subject-
independent and real-time conditions. 

IV. RESULTS 

This section presents the experimental results of the 
proposed Multimodal Polynomial Fusion (MPF) framework. 
The evaluation is conducted under subject-independent, 
session-aware, and real-time streaming conditions to assess 
recognition accuracy, robustness across users, and temporal 
stability. Performance is compared against a baseline system 
using raw normalized flex–IMU features. 

A. Overall Performance Evaluation 

To provide a concise quantitative comparison between the 
baseline system and the proposed Multimodal Polynomial 
Fusion (MPF) framework, overall recognition performance is 
summarized using standard evaluation metrics. Accuracy and 
macro-averaged precision, recall, and F1-score are reported to 
ensure balanced assessment across all gesture classes under 
subject-independent and real-time conditions. The results 
presented in Table I highlight the consistent performance 
improvements achieved by the proposed framework over the 
baseline approach. 

TABLE I.  OVERALL PERFORMANCE COMPARISON 

Metric Baseline Model MPF Model 

Accuracy (%) 92.42 96.32 

Precision (Macro) 92.56 96.51 

Recall (Macro) 92.44 96.32 

F1-Score (Macro) 92.44 96.30 

The real-time evaluation shows that MPF consistently 
outperforms the baseline across all metrics, providing more 
stable and reliable predictions during continuous gesture 
execution. Higher precision, recall, and F1-score indicate 
reduced misclassification and improved consistency across 
gesture classes, confirming MPF’s robustness for real-world 
assistive use. Fig. 6 further illustrates the real-time behavior of 
the proposed framework under subject-independent conditions; 
representative gesture detection results from seven unseen users 
are presented. Each example corresponds to a different test 
subject and shows a direct comparison between the baseline 
model and the proposed Multimodal Polynomial Fusion (MPF) 
approach for the same Hijaiyah gesture, highlighting user-
specific variability and temporal prediction stability. 

 

With Polynomial Fusion – Letter Alif  

 

With Baseline – Letter Alif 

 

With Polynomial Fusion – Letter Jim 

 

With Baseline – Letter Jim 

 

With Polynomial Fusion – Letter Dzal 

 

With Baseline – Letter Dzal 

 

With Polynomial Fusion – Letter Sin 

 

With Baseline – Letter Sin 
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With Polynomial Fusion – Letter Tho 

 

With Baseline – Letter Tho 

 

With Polynomial Fusion – Letter Fa 

 

With Baseline – Letter Fa 

 

With Polynomial Fusion – Letter Yaa 

 

With Baseline – Letter Yaa 

 

Fig. 6. Representative real-time gesture detection results for selected 

Hijaiyah gestures. 

1) Heatmap of per-gesture real-time accuracy: Fig. 7 

presents the per-gesture accuracy heatmap for the proposed 

MPF model, showing consistently high recognition accuracy 

across most Hijaiyah gesture classes under real-time streaming 

conditions. 

 

Fig. 7. Presents the per-gesture accuracy heatmap for the MPF model. 

2) Real-time accuracy comparison: Compares the real-

time accuracy of the baseline and MPF models, as shown in 

Fig. 8. The MPF model achieves noticeably higher 

performance, confirming the effectiveness of polynomial 

smoothing and multimodal fusion in stabilizing gesture 

predictions during continuous execution. 

 

Fig. 8. Real-time accuracy comparison. 

B. Misclassification and Confusion Analysis 

Misclassification patterns were examined to understand 
how often specific gestures were confused with others during 
real-time evaluation. This analysis provides insight into gesture 
similarities that challenge both models and reveals how 
Polynomial Fusion (MPF) reduces these errors. In Fig. 9, the 
baseline model exhibits frequent misclassification in gestures 
with subtle structural similarities such as Fa, Sin, Zai, Nun, and 
Ha, resulting in darker regions on the heatmap and lower per-
gesture accuracy. In contrast, the MPF model shows far fewer 
errors, with a more uniform and brighter heatmap that reflects 
improved stability and separability. Only minor confusion 
remains in closely related gestures like Haa, Tsa, Kho, Fa, Lam. 

 

Fig. 9. Top misclassified gestures - polynomial fusion model. 

C. Variance Reduction Analysis 

To further assess model stability across users, variance 
analysis was performed using per-user accuracy distributions. 
Lower variance indicates more consistent performance when 
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encountering natural differences in gesture execution, hand 
size, glove fit, and movement style. 

D. Temporal Stability and Per-Letter Robustness 

The per-letter robustness plot shows that the MPF model 
consistently maintains higher accuracy and smoother 
performance across all 28 gestures, whereas the baseline model 
exhibits greater fluctuation and instability. MPF’s smoother 
accuracy curve reflects stronger temporal stability and 
improved discrimination between similar gestures in Fig. 10, 
confirming its suitability for real-time recognition. 

 

Fig. 10. Temporal stability and per-letter robustness. 

V. DISCUSSION 

A. Interpretation of Performance Improvements 

Across all offline, session-aware, and real-time evaluations, 
the MPF framework consistently outperforms the baseline. Its 
improvements stem from nonlinear temporal smoothing, 
multimodal fusion, reduced intra-class variance, and enhanced 
gesture discriminability. These results clearly demonstrate 
MPF’s effectiveness for stable and reliable real-time Hijaiyah 
sign recognition. 

B. Temporal Stability and Gesture Separability 

Temporal stability plays a critical role in real-time sign 
language recognition, where fluctuating predictions can 
degrade recognition reliability. As observed in the temporal 
robustness analysis, the proposed MPF framework produces 

smoother and more consistent predictions over time compared 
with the baseline. This behavior indicates effective suppression 
of sensor jitter and short-term fluctuations in flex–IMU signals. 

Improved temporal stability contributes directly to 
enhanced gesture separability by maintaining consistent feature 
trajectories across consecutive frames. As a result, class 
boundaries remain more distinct during continuous gesture 
execution, supporting stable real-time recognition without 
relying on frame-level corrections. 

C. Comparison with Prior Wearable Sensor-Based Methods 

Compared with prior wearable sensor–based sign language 
recognition systems that rely on linear preprocessing and 
limited user evaluations [6], [7], [15], [24], the proposed MPF 
framework demonstrates superior robustness and scalability, 
supported by large-scale subject-independent evaluation and 
nonlinear temporal modeling. 

Table II highlights that the most existing sensor-based sign 
language recognition systems with reported accuracies below 
96% are evaluated using limited datasets and a small or 
unspecified number of users, which restricts their 
generalizability. Several approaches rely primarily on flex 
sensors with predefined gesture mappings, leading to moderate 
recognition performance and reduced robustness to inter-user 
variability [6], [30], while others incorporate additional sensing 
modalities but still operate on relatively small datasets [9], [11], 
[18]. Moreover, some studies report results under offline 
evaluation settings [28], [33], which do not adequately reflect 
stability and consistency during continuous real-time operation. 
In contrast, the proposed Multimodal Polynomial Fusion 
(MPF) framework is evaluated on a substantially larger dataset 
comprising 231,000 samples from 33 users and operates fully 
in real time, enabling improved robustness and higher 
recognition accuracy (96.32%) in continuous sign language 
recognition scenarios. 

TABLE II.  LITERATURE-BASED COMPARISON OF REPRESENTATIVE STATE-OF-THE-ART SIGN LANGUAGE RECOGNITION METHODS 

Method / Approach Modality Dataset Scale #Users 
Reported 

Accuracy (%) 
Real-Time Ref 

Smart Glove-Based SLR System Flex Sensors Limited dataset – ~85–90 Yes [6] 

Assistive Communication Glove (Combined 

Sensors) 

Flex + Contact + 3D 

Accel 
28 ASL gestures 7 77.9 Yes [9] 

Smart Hand Sign Glove with ESP32  MPU6050 + ESP32 Limited – 92–95 Yes [11] 

Intelligent Glove with kNN + CHC/DROP3  5 Flex Sensors ~5,000 samples 10 85 Yes [18] 

Indonesian Sign Language Recognition (ANN) Flex + Accelerometer 1,000 samples – 91.60 (offline) No [28] 

Sign Language Detection using Flex Sensor Flex Sensors Limited – 88–92 Yes [30] 

Flex Sensor Dataset for SLR (ML Comparison) Flex + Accelerometer ~180 samples – 94 (offline) No [33] 

Proposed MPF (This Work) Flex–IMU 231,000 samples 33 96.32 Yes This study 

 

D. Limitations and Future Directions 

Despite its advantages, the proposed wearable sensor-based 
framework has inherent limitations. The reliance on specialized 
smart-glove hardware introduces additional cost and usability 
considerations compared to vision-only approaches. Long-term 
wearability and user comfort may also affect practical 
deployment. Future work will explore lightweight hardware 

designs and cross-modal integration with vision-based cues to 
further enhance robustness 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This study introduces a Multimodal Polynomial Fusion 
(MPF) framework for real-time Hijaiyah sign recognition using 
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flex–IMU smart gloves. MPF enhances signal stability, reduces 
intra-class variability, and improves gesture separability 
through nonlinear smoothing and multimodal fusion. Across all 
evaluations, MPF consistently surpasses the baseline, 
demonstrating a robust and reliable foundation for fine-grained 
assistive communication systems. These findings directly 
address the research objective of improving temporal stability 
and recognition accuracy for fine-grained Hijaiyah gestures in 
real-time wearable sign language systems. 

B. Future Work 

Future work may explore adaptive polynomial smoothing, 
fusion with vision-based modalities, and integration into 
lightweight neural models for edge deployment. Expanding 
user diversity, improving glove ergonomics, and extending 
recognition to continuous Hijaiyah sequences will further 
enhance the practicality and generalization of sensor-based sign 
language systems. Despite its advantages, the proposed 
wearable sensor–based approach has certain limitations. The 
use of smart gloves introduces hardware dependency and 
potential cost constraints, which may affect large-scale 
adoption. In addition, user comfort and long-term wearability 
remain important considerations. Nevertheless, these 
limitations are balanced by the system’s robustness to 
environmental conditions and its suitability for real-time 
assistive applications. 
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