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Abstract—Low-light image enhancement has been extensively 

studied, with numerous methods proposed to address this 

challenge. Among these, Geometric Mean Histogram Equalization 

(GMHE) emerged as a histogram-based technique specifically 

designed for enhancing low-light images. Despite its effectiveness, 

GMHE has notable limitations: it often oversaturates results 

under specific conditions and amplifies noise, limiting its practical 

applicability. These shortcomings become particularly 

pronounced in real-world scenarios where low-light conditions are 

frequently accompanied by significant noise artifacts. To address 

these shortcomings, this study introduces EnGMHE, an enhanced 

version of GMHE. The proposed method consists of three key 

steps: 1) introducing a novel Gaussian Histogram Equalization 

(GHE) to improve image contrast and brightness, 2) utilizing 

GMHE to enhance sharpness and detail clarity, and 3) denoising 

the enhanced image using a pretrained deep neural network 

model. Together, these steps offer a more robust solution for low-

light image enhancement, balancing contrast improvement, detail 

preservation, and noise reduction. The experimental results reveal 

not only the efficiency but also the effectiveness of the proposed 

model when benchmarked against the state-of-the-art methods. 
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I. INTRODUCTION 

Enhancing low-light images is essential across various 
domains, including surveillance, medical imaging, and 
photography, especially within the context of computer vision 
and intelligent systems. Insufficient lighting often leads to 
images with low brightness, poor contrast, and noticeable noise, 
severely affecting visual quality and obscuring critical details 
necessary for effective automated processing. 

In recent decades, researchers have extensively explored 
solutions for low-light image enhancement. One of the classic 
methods is Histogram Equalization (HE) [1]. While HE 
effectively enhances local contrast on dark images, it often 
oversaturates bright regions in the process [2]. Another 
prominent approach involves Retinex-based methods [2 -8], 
which decompose low-light images into reflectance and 
illumination layers. While this decomposition can yield 
promising enhancements, many Retinex-based techniques 
require priors for effective layer separation [9]. 

Recent advancements in low-light image enhancement 
leverage dehaze-based methods [10] and illumination map 
estimation techniques [2], [4]. With the rise of deep learning, 
enhanced computational power and large datasets have driven 
progress. Supervised learning methods relying on paired 

datasets [11] are used to map low-light to enhanced images, 
effectively reducing noise and recovering details. However, 
their performance depends on high-quality datasets, which 
remain a significant challenge. 

Unsupervised learning methods utilize unpaired datasets 
[12], which are more accessible, larger in scale, and diverse in 
content. These methods are adaptively trained to restore 
illumination, color, and contrast. However, the lack of paired 
supervision can limit their ability to recover fine details, often 
leaving noise in the enhanced results. The field of low-light 
image enhancement continues to evolve, with researchers 
exploring methodologies that balance effectiveness with 
inherent trade-offs [9]. 

While deep learning methods often deliver impressive 
results, their efficiency remains a concern, particularly in real-
world scenarios where low-light conditions are frequently 
accompanied by noise artifacts. To address this gap, this study 
introduces the EnGMHE (Enhanced Geometric Mean 
Histogram Equalization) model, a novel approach for low-light 
image enhancement. Unlike classical histogram-based methods, 
EnGMHE combines Gaussian Histogram Equalization (GHE) 
for initial contrast enhancement, GMHE for structural 
preservation, and a pre-trained denoising network for noise 
suppression, providing a unified and robust enhancement 
pipeline. 

EnGMHE is built on the foundation of GMHE (Geometric 
Mean Histogram Equalization) [13], a contrast enhancement 
technique inspired by traditional histogram equalization. A key 
innovation of EnGMHE is the introduction of Gaussian 
Histogram Equalization (GHE), proposed as the first step to 
enhance the input low-light image's contrast and luminosity. 
Following GHE, the traditional GMHE is applied to further 
refine the enhancement. The final step involves denoising using 
a pre-trained deep neural network, effectively mitigating noise 
introduced during low-light image capture. This novel model 
integrates the newly proposed GHE with traditional and 
advanced techniques, delivering a robust solution for improving 
the visual quality of images captured in low-light conditions. 

The effectiveness of the proposed model is validated through 
extensive experiments, where its performance is benchmarked 
against state-of-the-art methods in low-light image 
enhancement.  

The rest of the study is as follows: Section II reviews the 
literature and related work; Section III details the proposed 
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methodology; Section IV presents the experimental settings and 
results; and Section V concludes the study. 

II. RELATED WORK 

The problem of low-light image enhancement has gained 
significant attention in recent years, leading to the development 
of diverse methodologies ranging from classical techniques to 
modern deep learning methods. These methods aim to improve 
the brightness, contrast, and overall visual quality of low-light 
images while addressing challenges such as noise and color 
distortion. 

Traditional methods, such as HE [1], BPDHE [14], and 
GMHE [13], focus on enhancing image contrast by 
redistributing pixel intensity values. HE is computationally 
efficient and straightforward, but it often amplifies noise and 
over-saturates the image. 

Retinex theory-based approaches, such as LIME [2], NPE 
[15], and SRIE [4], decompose an image into illumination and 
reflectance components. By enhancing the illumination while 
preserving the reflectance, these methods aim to balance 
brightness and detail clarity. 

Supervised and semi-supervised deep learning methods, 
such as LLNET [16], DRBN [17], RetinexNet [3], MBLLEN 
[18], LLFlow [19], PairLIE [20], and MIRNet [21], leverage 
paired datasets to learn complex mappings from low-light 
images to enhanced images. These methods excel in preserving 
fine details and reducing noise. For instance, DRBN 
incorporates recursive band representation for effective 
enhancement, while MIRNet utilizes multi-scale feature 
extraction for robust performance. However, their reliance on 
high-quality paired datasets can limit scalability. In addition, 
LLFlow employs flow-based mechanisms for illumination 
correction. 

Unsupervised deep learning methods, such as 
EnlightenGAN [12] and SCI [22], address the challenge of 
paired dataset availability by learning from unpaired data. 
EnlightenGAN uses adversarial learning to generate visually 
appealing results. Despite their adaptability, these methods may 
struggle with detail preservation and noise reduction. 

Recently, zero-shot learning methods rely on models that are 
trained on a set of classes (seen classes) but can make 
predictions on new, unseen classes without direct examples of 
those unseen classes during training. These methods leverage 
transfer learning to generalize knowledge from seen to unseen 
classes. Examples of such methods include ZeroDCE [23], 
ZeroDCE++ [24], RUAS [25], and ExCNet [26]. 

Transformer-based architectures like Restormer [27] and U-
EGformer [28] have also demonstrated significant potential in 
low-light enhancement. Restormer employs attention 
mechanisms to capture global context, while U-EGformer 
integrates exposure-guided mechanisms for enhanced 
adaptability. Although these methods offer high performance, 
they often come with increased computational complexity. 

Emerging techniques like MTUR-Net [29] focus on multi-
task learning for joint enhancement and noise reduction. 
Additionally, methods like ISSR [30] and LCDPNet [31] 

leverage advanced architectures to address specific challenges 
in low-light scenarios. For underwater and domain-specific 
scenarios, methods such as WaterNet [32], Ucolor [33] and 
PUGAN [34], address challenges like haze, color distortion, and 
poor visibility. These methods utilize specialized architectures 
and priors to handle unique environmental conditions 
effectively. 

While the aforementioned methods have significantly 
advanced the field, challenges such as noise suppression, detail 
preservation, and computational efficiency persist. Many 
existing techniques either focus on enhancing brightness and 
contrast or on reducing noise, but few address these issues 
jointly. Furthermore, achieving a balance between enhancement 
quality and real-world applicability remains a critical research 
gap. 

III. METHODOLOGY 

The proposed methodology involves a sequence of 
preprocessing and noise-reduction phases. They include 
advanced histogram operations and a denoising approach using 
a pre-trained neural network, as shown in Fig. 1. 

 

Fig. 1. The main phases of the proposed EnGMHE. 

A. Gaussian Histogram Equalization (GHE) 

This phase introduces the proposed GHE. It performs image 
enhancement through a Gaussian-smoothed histogram 
equalization technique. The following are the proposed steps for 
applying GHE to each of the image channels: 

1) Compute the histogram of the input image. 

2) Apply Gaussian smoothing: 

A Gaussian filter, as defined in Eq. (1), is applied to the 
histogram to smooth intensity variations. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜏2 𝑒
−

𝑥2+𝑦2

𝜏2                                () 

where, G(x,y) is the value of the Gaussian function at pixel 
(x,y). The parameter τ denotes the standard deviation of the 
Gaussian distribution and is empirically determined to control 
the degree of histogram smoothing. Pixel (x,y) represents the 
center of the filter. The filter size is determined using Eq. (2): 

𝐹𝑖𝑙𝑡𝑒𝑟𝑆𝑖𝑧𝑒 =  2 × 𝑐𝑒𝑖𝑙(2 × 𝜏) + 1              () 

τ is determined experimentally to control the degree of 
smoothing, as follows: 

τ ∈ [0.5-1]: Minimal smoothing. 

τ ∈ [1.5-3]: Moderate smoothing (balanced). 
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τ > 3.5: Significant smoothing. 

3) Normalize the smoothed histogram: The smoothed 

histogram h is normalized such that its values sum to 1, forming 

a probability distribution, as defined in Eq. (3): 

𝑁𝑜𝑟𝑚_ℎ𝑖 =
ℎ𝑖

∑ (ℎ)𝑝
𝑖

, 𝑖 = {1, … 𝑝}             () 

where, hi is the value of the ith bin in the histogram h, and p 
denotes the total number of bins. 

4) Compute the cumulative distribution function (CDF) for 

the normalized histogram, as defined in Eq. (4): 

𝐶𝐷𝐹_ℎ𝑖 = ∑ 𝑁𝑜𝑟𝑚_ℎ𝑗
𝑖
𝑗=0 , 𝑖 = {1, … 𝑝}              () 

5) Map pixel intensity values: Each pixel intensity i is 

transformed to a new value, as defined in Eq. (5): 

𝑁𝑒𝑤_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑙𝑒𝑣𝑒𝑙𝑖 =  𝐶𝐷𝐹_ℎ𝑖 ∗ (𝐿 − 1), 𝑖 = {1, … 𝑝}  () 

where, L is the maximum intensity value (265 in this study). 

6) Output the enhanced image: Finally, the output image 𝐼′ 
is generated by mapping the intensity of each pixel in the 

original image I according to the new intensity values stored in 

𝑁𝑒𝑤_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑙𝑒𝑣𝑒𝑙. Note that steps (3) to (6) are the steps 

of the traditional HE method. 

B. Geometric Mean Histogram Equalization (GMHE) 

The key idea behind GMHE [13] is to preserve the overall 
structure of the image while enhancing contrast, particularly in 
dark regions. This is achieved by redistributing pixel intensities 
based on the geometric mean, which is less sensitive to extreme 
values than the arithmetic mean and therefore reduces the 
influence of outliers in the histogram. 

In this phase, GMHE is applied to the intermediate enhanced 
image I'. The procedure is performed independently on each 
image channel as follows: 

For each channel in I' apply the following steps: 

1) Compute the histogram S of the input image. 

2) Apply a geometric mean filter to the histogram to obtain 

a modified histogram (S') using Eq. (6): 

𝑆′ =  (∏ 𝑥𝑖
𝑛
𝑖=1 )1/𝛾                           () 

where, xi represents the histogram values within the filter 
window, n denotes the filter length (set to 3 in this work), and 
γ is an experimentally determined constant that controls the 
strength of the geometric mean operation. 

3) Apply steps (3–6) from the first phase (GHE) to the 

modified histogram S' to generate the enhanced image (I''). 

C. Denoising 

To suppress noise, while preserving image fidelity, a 
channel-wise image denoising is applied to the enhanced image 
𝐼′′ using a pre-trained deep learning model described in [35]. 
This network was selected due to its demonstrated effectiveness 

 
1 SICE_Grad and SICE_Mix datasets are available at 

“https://github.com/ShenZheng2000/LLIE_Survey”. 

and stability in general-purpose image denoising tasks, 
particularly in scenarios involving low-light and noise-amplified 
images. 

As shown in Fig. 2, the adopted model consists of 19 
convolutional blocks, where each block is composed of a 
convolutional layer followed by batch normalization and a 
ReLU activation function. This relatively deep architecture 
enables the extraction of hierarchical features, ranging from 
low-level structures such as edges and intensity gradients to 
higher-level spatial patterns, which is essential for 
discriminating noise from meaningful image content. Padding is 
employed in all convolutional layers to preserve the spatial 
dimensions of the input image, thereby preventing the loss of 
structural details during the denoising process. 

The use of a pre-trained denoising network is motivated by 
both technical and practical considerations. Leveraging a pre-
trained model allows the proposed framework to benefit from 
robust, previously learned noise characteristics without 
requiring dataset-specific retraining, which enhances 
computational efficiency and generalizability. Moreover, the 
regression-based output layer is specifically designed to 
estimate clean image intensities, enabling effective noise 
suppression, while maintaining important visual and structural 
details. This balance between noise reduction and detail 
preservation makes the selected network particularly suitable for 
integration into the proposed EnGMHE-based enhancement 
pipeline. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Datasets Used in the Comparisons 

The datasets used in this study include both paired and 
unpaired collections. The ExDark-Bicycle [36], NPE [15], 
DICM [37], VV [38], MEF [39], LIME [2], and LoLi-Phone 
[40] datasets consist of 652, 84, 64, 24, 17, 10, and 600 real low-
light images, respectively, with varying resolutions. These 
datasets are unpaired and cover a wide range of indoor and 
outdoor scenes, including natural landscapes, buildings, and 
indoor objects or decorations. 

In contrast, the LOL [3], MIT-5K [41], SICE [42], and UIEB 
[32]  datasets are paired datasets. The LOL dataset includes 
LOL-15, which comprises 15 test images, and LOL-V2, which 
contains two subsets: 100 synthetic and 100 real test images. The 
MIT-5K provides 5000 low-light images, with 500 designated 
for testing. The SICE dataset contains 4800 real and synthetic 
multi-exposure images of various resolutions, capturing diverse 
indoor and outdoor scenes under different exposure levels. In 
this study, two variations of the SICE dataset, namely 
SICE_Grad and SICE_Mix1, were used, each consisting of 589 
paired images. Finally, two subsets of the UIEB dataset were 
utilized: one comprising 890 paired images and another 
challenging subset containing 60 images. 

B. Metrics 

This section presents an overview of the evaluation metrics 
employed in this study to assess the performance of the proposed 
methods. Both reference-based metrics, which rely on a ground-
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truth image for comparison, and no-reference metrics, which 
evaluate image quality without relying on a reference image, are 
considered. These metrics were selected to provide a 

comprehensive assessment of image quality and processing 
effectiveness across diverse experimental scenarios. 

 

Fig. 2. The structure of the adopted pre-trained network. 

1) Reference-based measures 

a) SSIM (Structural Similarity Index) is a perceptual 

metric that evaluates the similarity between two images by 
considering their luminance, contrast, and structural 
information. SSIM values range from -1 to 1, where a value of 
1 indicates perfect similarity. It is widely used in image 
processing tasks to assess the quality of reconstructed images. 

It is defined in Eq. (7) [43]: 

𝑆𝑆𝐼𝑀(𝑎, 𝑏) =
(2𝜇𝑎𝜇𝑏+(𝑘1𝐿)2)(2𝜎𝑎𝑏 +(𝑘2𝐿)2)

(𝜇𝑎
2+𝜇𝑏

2+(𝑘1𝐿)2)(𝜎𝑎
2+𝜎𝑏

2+(𝑘2𝐿)2)
       () 

where, a and b denote the input and the enhanced images, 
respectively. μ denotes the mean of the specified image. 𝜎𝑎

2 and 
𝜎𝑏

2 denote  the variances of images a and b, respectively, while 
𝜎𝑎𝑏 represents the covariance between a and b. The constants 
(K1, K2, L) are set to 0.01, 0.03, and 255 for 8-bit images, 
respectively. 

b) PSNR (Peak Signal-to-Noise Ratio) is a quantitative 
metric used to evaluate the quality of an image by measuring 
the ratio between the maximum possible power of an image and 
the power of noise that affects the image's fidelity. Expressed 

in decibels (dB), PSNR quantifies image quality by comparing 
the original and distorted images, with higher values indicating 

better quality [44]. It is defined as follows in Eq. (8) and Eq. (9): 

𝑃𝑆𝑁𝑅(𝑎, 𝑏) = 10. log10(
𝐿2

𝑀𝑆𝐸(𝑎,𝑏)
)              () 

𝑀𝑆𝐸(𝑎, 𝑏) =
1

𝑀𝑁
∑ ∑ [𝑎𝑖,𝑗 − 𝑏𝑖,𝑗]2𝑁

𝑗=1
𝑀
𝑖=1          () 

where, a and b are the input and the enhanced images, 
respectively. L is a constant referring to the maximum possible 
pixel value, which is equal to 255 for 8-bit images. MSE denotes 
the mean square error between two images. M and N are the 
dimensions of the image (width and height). 𝑎𝑖,𝑗  denotes the 

pixel value at position (i,j) in image a. 

c) LPIPS (Learned Perceptual Image Patch Similarity) 
is a recently developed metric designed to evaluate image 

quality from the perspective of human perception. Unlike 
traditional metrics, such as PSNR and SSIM, which focus on 
pixel-level comparisons, LPIPS leverages deep learning 

features to align more closely with human visual perception 
[45], [46]. It measures the similarity between an image and its 
corresponding ground truth by calculating the difference 
between their feature representations, extracted from a pre-
trained deep neural network (e.g., VGG or AlexNet), as 

described in Eq. (10): 

𝐿𝑃𝐼𝑃𝑆 (𝐼1, 𝐼2) = ∑ 𝑤𝑙‖𝑓𝑙 (𝐼1) − 𝑓𝑙 (𝐼2)‖2𝑙         () 

where, 𝑓𝑙  denotes the feature maps from layer l of the 
network, 𝑤𝑙 represents the learned weights for each layer l, and 
‖. ‖2  denotes the L2-Norm (Euclidean distance) of the deep 
features of a trained CNN. 

d) Delta_E is a reference-based measure that quantifies 
the difference between two colors in the CIELAB color space. 
It is widely used to evaluate color accuracy, identify deviations, 
and assess color similarity. Lower Delta-E values indicate 

better color consistency and are therefore preferred [47]. Delta-

E is defined as shown in Eq. (11): 

𝐷𝑒𝑙𝑡𝑎_𝐸 =
1

𝑀𝑁
∑ ∑ √(𝐿1𝑖 ,𝑗 − 𝐿2𝑖 ,𝑗)2 + (𝑎1𝑖 ,𝑗 − 𝑎2𝑖 ,𝑗)2 + (𝑏1𝑖,𝑗 − 𝑏2𝑖,𝑗)2𝑁

𝑗=1
𝑀
𝑖=1

 () 

where, (L1i,j, a1i,j, b1i,j) are the LAB values for a pixel (i, j) 
in the input image, and (L2i,j, a2i,j, b2i,j) correspond to those of 
the enhanced image. The overall score is obtained by averaging 
the pixel-wise Delta-E values, yielding a single scalar that 
reflects the overall perceptual color fidelity. 

2) No reference-based measures 

a) BRISQUE (Blind/Reference-less Image Spatial 
Quality Evaluator) is a no-reference image quality assessment 

model that operates in the spatial domain to evaluate image 
quality without relying on distortion-specific features or 
frequency-domain transformations, such as DCT or wavelets. It 
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uses natural scene statistics (NSS) of locally normalized 
luminance coefficients and their products to quantify the loss of 
image "naturalness" caused by distortions, offering a holistic 
and distortion-generic measure of quality. BRISQUE is a 
model-driven measure which does not have a single closed-

form analytical equation. Instead, it employs a machine 
learning pipeline that estimates image quality using NSS 

features and a trained regressor, as shown in Eq. (12): 

𝐵𝑅𝐼𝑆𝑄𝑈𝐸(𝐼) = 𝑆𝑉𝑅(𝐹(𝐼))                   () 

where, I denotes the input low-light image. F(.) represents a 
36-dimensional NSS feature vector extracted from I. SVR(.) is 
the pre-trained support vector regressor. The feature vector F is 
derived from locally normalized luminance coefficients and is 
computed by fitting an Asymmetric Generalized Gaussian 
Distribution (AGGD) to the normalized image and its 
directional pairwise product maps at two image scales [48]. 

b) NIQE (The Natural Image Quality Evaluator) is a no-
reference image quality assessment metric that measures the 
degree to which an image’s features deviate from the statistical 
regularities commonly observed in natural images. It is built 

upon a robust spatial-domain NSS model designed to capture 
quality-aware statistical features learned from a dataset of 
natural, undistorted images. Lower NIQE scores indicate better 
perceptual quality. The quality score is computed as the 
Mahalanobis distance between the image’s feature vector and a 
multivariate Gaussian (MVG) model fitted on high-quality 

images [49]. 

c) UCIQE (Underwater Color Image Quality 
Evaluation) is a no-reference image quality assessment metric 
specifically designed for underwater images. It evaluates visual 

quality in the CIELab color space by analyzing three key 
factors: Chroma, which measures the image's colorfulness and 
reflects the loss of color diversity due to light scattering and 
absorption in underwater environments; Saturation, which 
assesses the vividness or dullness of colors; and Contrast, which 
quantifies the visibility of image details often diminished in 

underwater scenes because of haze or turbidity. The UCIQE 

metric is computed using Eq. (13): 

𝑈𝐶𝐼𝑄𝐸 =  𝑐1 × 𝑠𝑡𝑑𝑐 + 𝑐2 × 𝑐𝑜𝑛1 + 𝑐3 × 𝐴𝑣𝑔𝑠     () 

where, 𝑠𝑡𝑑𝑐 denotes the standard deviation of chroma, 𝑐𝑜𝑛1 
denotes the contrast of luminance, and 𝐴𝑣𝑔𝑠  represents the 
average of saturation. The coefficients c1, c2, and c3 are 
empirically determined (c1 =0.4680, c2 =0.2745, c3=0.2576). 
This metric provides a quantitative evaluation of underwater 
image quality, enabling the assessment and enhancement of 
visual clarity and color fidelity [50]. 

C. Experimental Environment and Parameter Settings 

To ensure the reproducibility and reliability of the 
experiments, a controlled experimental setup was carefully 
established, and specific parameter configurations were defined. 
The following details provide an overview of the conditions 
under which the experiments were conducted: 

• All experiments in this study were conducted in the 
MATLAB environment and were executed on an 
Intel(R) Core(TM) i7 CPU @ 2.60GHz device with 12 
GB of RAM. 

• In the context of EnGMHE, the parameters τ and γ 
control histogram smoothing and geometric mean 
redistribution, respectively. Default values of τ = 2 and 
γ = 25 provide robust performance across most low-light 
datasets. For datasets with specific characteristics, such 
as SICE and ExDark, slightly different values (see 
Table I) were used to achieve optimal enhancement. 
These exceptions do not require exhaustive per-dataset 
tuning; they simply reflect natural variations in image 
statistics across diverse datasets, while the method 
remains effective with the general default settings. 

TABLE I.  PARAMETER SETTINGS FOR THE DATASETS OF INTEREST 

Dataset τ γ 

MEF | NPE | LOL | DICM | LIME | UIEB | VV | MIT5K 2 25 

ExDark 10 15 

SICE 2 50 

D. Qualitative Results 

Fig. 3 shows the performance of various low-light 
enhancement methods on an image from the LIME dataset. The 
input image is underexposed, with significant loss of visibility 
in shadowed regions. SCI [22] brightens the image but 
introduces a strong purplish tint, making the colors appear 
unnatural. URetinexNet [51] enhances the brightness and detail 
visibility but overexposes certain regions, resulting in a reddish 
hue. In contrast, EnGMHE achieves a balanced enhancement, 
maintaining natural color while preserving fine details. 

Fig. 4 presents a comparison, where the input is an 
underwater image suffering from poor visibility and color 
distortion. Compared to state-of-the-art methods, EnGMHE 
delivers visually consistent results with enhanced clarity and 
more accurate color restoration for underwater images. 

As shown in Fig. 5(a), the input image represents 
challenging low-light photography, with significant visibility 
issues in darker regions. While the illuminated monument 
retains some visibility, the surrounding darker areas lack detail, 
making the image a strong candidate for enhancement. 
EnGMHE effectively balances brightness enhancement with 
structural detail preservation, whereas FDMLNet [55] 
overexposes bright areas (see the monument's facade). In 
Fig. 5(b), the input image presents complex lighting conditions, 
with a mix of shadowed areas and bright overhead lights. 
ZeroDCE++ and RetinexNet enhance brightness, but introduce 
noticeable artifacts and color distortions. KinD++ [56] over-
saturates certain regions, leading to unnatural visual results. 
LIVENet [57] produces more natural adjustments in terms of 
brightness but fails to recover fine details in shadowed regions 
[Fig. 5(c)]. EnGMHE, however, delivers the most balanced 
output, effectively preserving both color fidelity and structural 
details while enhancing brightness. 
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Input Image SCI URetinexNet EnGMHE 

Fig. 3. Visual comparison with state-of-the-art methods on an input image from the LIME dataset. 

 
 

 

Input Image FiveA+[53] PUIE-MP[54] 

  

NAS-Unet [52] EnGMHE 

Fig. 4. Visual comparison with state-of-the-art methods on an input image 

from the UIEB-890 dataset. 

 
 

 

a) Input Image FDMLNet EnGMHE 

   

b) Input Image ZeroDCE++ RetinexNet 

   

c) KinD++ LIVENet EnGMHE 

Fig. 5. Visual comparison with state-of-the-art methods on input images 

from the DICM dataset. 

Fig. 6 shows a comparison with various state-of-the-art 
methods (KinD [58], SNR-Aware [59], and SPIC [60]) on 
challenging low-light and visually complex images from 
different datasets (NPE, VV, and ExDark). The overall results 
consistently demonstrate that EnGMHE excels in detail 
preservation, color accuracy, and balanced brightness 
enhancement across diverse datasets. 

 
2 https://imagerecognize.com/text/#site-content 

Fig. 7 evaluates the performance of LLIEDiff and EnGMHE 
against the ground truth for a low-light input image. The input 
image is significantly dark, with details obscured across various 
regions, while the ground truth serves as an ideal reference with 
vibrant colors, sharp textures, and excellent detail visibility. 
LLIEDiff improves brightness and restores some visibility in 
shadowed areas but struggles with color accuracy and fine detail 
preservation, particularly in the regions highlighted by the 
colored rectangles. In contrast, EnGMHE delivers a more 
balanced enhancement, achieving restored brightness, natural 
color tones, and excellent detail clarity that closely aligns with 
the ground truth. While EnGMHE may not perfectly match the 
ground truth in all regions, it demonstrates better color fidelity 
than LLIEDiff, producing vibrant and realistic colors and 
preserving natural tones, such as the red object and green grapes, 
with a closer resemblance to the ground truth in hue and 
saturation. 

Fig. 8 highlights the text extraction results from a dark image 
and the EnGMHE-enhanced image. The text in this figure was 
recognized using “Image Recognize2” tool. As shown in Fig. 8, 
the EnGMHE-enhanced image not only retains high confidence 
for clearly visible text like "RESTAURANT" but also reveals 
additional details such as "Hpidavos" with significantly 
improved confidence (94%) compared to the dark image (44%). 
Furthermore, it introduces new textual elements such as 
"GROUP" and "be TEA", demonstrating its capability in 
enhancing low-light images for accurate text recognition. 

N
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E
 

   

Input Image KinD EnGMHE 

V
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Input Image SNR-Aware EnGMHE 

E
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D
a
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Input Image SPIC EnGMHE 

Fig. 6. Visual comparison with state-of-the-art methods on (NPE, VV, and 

Exdark) datasets. 
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Input Image Ground Truth 

  

LLIEDiff EnGMHE 

Fig. 7. Comparison with LLIEDiff against EnGMHE on the input image 

from the LOL-15 dataset. 

 

Input Image: OMOEHMO (95%) | RESTAURANT (99%) | Hpidavos 

(44%) 

 

EnGMHE: OMOEHMO (93%) | RESTAURANT (99%) | GROUP with 

(10%) | Hpidavos (94%) | be TEA (25%) | haye Knop (53%) 

Fig. 8. Text extraction test. Red rectangles in the figure highlight the 

extracted text (confidence %) from the original dark image and the EnGMHE-

enhanced image, respectively. The input image is a cropped portion of an 

image from the VV dataset. 

E. Qualitative Results 

This section quantitatively presents the comparative results 
obtained using both reference-based and non-reference-based 
methods across various datasets. 

 

1) Comparisons using reference-based measures: The first 

comparisons were conducted to compare SSIM scores on 

different datasets. As shown in Table II, the proposed method 

achieved impressive SSIM scores of (0.72 and 0.78) on the 

LOL-V2 and MIT5K-500 datasets, respectively. On LOL-V2, 

it outperformed EnlightenGAN (0.68) and demonstrated a 

significant improvement over ZeroDCE [23] (0.58) and LIME 

(0.47), highlighting its ability to preserve structural details. On 

MIT5K-500, EnGMHE reported a score of 0.78, ranking 

second only to LIME (0.80). For SICE_GRAD, as presented in 

Table III, the proposed method achieved the highest score of 

(0.67), surpassing U-EGformer (0.64) and ZeroDCE (0.64). On 

SICE_MIX, it obtained a score of (0.64), outperforming 

URetinexNet (0.60) and RUAS (0.493). 

On the LOL-15 dataset, as depicted in Table IV, the 
proposed method demonstrated a superior SSIM score of 
(0.734), significantly outperforming competitors like BIMEF 
[61] (0.595), EnlightenGAN (0.652), and ZeroDCE (0.559). 

TABLE II.  COMPARATIVE RESULTS ON SSIM ↑ ON (LOL-V2, MIT5K-
500) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE, AND THE 

SECOND-RATED RESULTS ARE UNDERLINED 

Method LOL-V2 MIT5K-500 

EnGMHE 0.72 0.78 

LDR [37] - 0.73 

DRBN [17] - 0.76 

EnlightenGAN [12] 0.68 0.76 

LIME [2] 0.47 0.80 

ZeroDCE [23] 0.58 0.72 

TABLE III.  COMPARATIVE RESULTS ON SSIM ↑ ON (SICE GRAD AND 

SICE MIX) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE, 
AND THE SECOND-RATED RESULTS ARE UNDERLINED 

Method SICE GRAD SICE MIX 

EnGMHE 0.67 0.64 

ZeroDCE [23]  0.64 0.64 

RetinexNet [3] 0.60 0.61 

URetinexNet [51] 0.61 0.60 

RUAS [25] 0.49 0.49 

SGZ [62] 0.60 0.62 

LLFlow [19] 0.62 0.61 

U-EGformer [28] 0.64 0.65 

TABLE IV.  COMPARATIVE RESULTS ON SSIM ↑ ON (LOL-15) DATASET, 
THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-RATED 

RESULT IS UNDERLINED 

EnGMHE EnlightenGAN BIMEF [61] LIME [2] 

0.734 0.652 0.595 0.484 

STAR [64] DRBN [17] RRDNet [65] RUAS [25] 

0.518 0.551 0.457 0.500 

ZeroDCE [23] SDD [63] SCI [22]  

0.559 0.637 0.522  

TABLE V.  COMPARATIVE RESULTS ON PSNR ↑ ON (SICE_GRAD AND 

SICE_MIX) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE 

AND THE SECOND-RATED RESULTS ARE UNDERLINED 

Dataset 
EnGM

HE 

Retinex

Net [3] 

URetinexN

et [51] 

KinD++ 

[56] 

UEGform

er [28] 

SICE_G

RAD 
14.22 12.45 10.89 13.24 13.27 

SICE_

MIX 
13.66 12.39 10.90 13.19 14.23 

Dataset 
RUAS 

[25] 

ZeroDCE 

[23] 
SCI [22] 

LLFlow 

[19] 
SGZ [62] 

SICE_G

RAD 
8.62 12.48 8.55 12.74 10.99 

SICE_

MIX 
8.68 12.42 8.64 12.73 10.86 

TABLE VI.  COMPARATIVE RESULTS ON PSNR ↑ ON (LOL-15) DATASET, 
THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-RATED 

RESULT IS UNDERLINED 

EnGMHE RUAS [25] DRBN [17] SCI [22] 

16.29 16.40 16.29 14.78 

SDD [63] STAR [64] ZeroDCE [23] RRDNet [65] 

13.34 12.91 14.86 11.40 
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The second set of comparisons was conducted to compare 
PSNR scores across various datasets. As shown in Table V, 
EnGMHE achieved a PSNR of 14.22 on the SICE_GRAD 
dataset, surpassing KinD++ (13.24) and U-EGformer (13.27). 
Similarly, on SICE_MIX, it recorded the second-highest PSNR 
with a score of 13.66, following the U-EGformer (14.23). On the 
LOL-15 dataset (Table VI), EnGMHE achieved a PSNR of 
16.29, tying with DRBN for the top performance while 
outperforming other notable methods, such as ZeroDCE (14.86) 
and SCI (14.78). Additionally, on the MIT5K-500 dataset 
(Table VII), EnGMHE recorded the best PSNR score of 18.12, 
surpassing DRBN (16.37) and LIME (16.07), demonstrating its 
exceptional noise suppression and fidelity on this dataset. 

The third set of comparisons evaluated the performance 
based on the LPIPS measure, where lower scores indicate better 
perceptual similarity. On the SICE_GRAD dataset (Table VIII), 
EnGMHE achieved a score of 0.33 as Kind++, securing the 
second rank, followed by U-EGformer with a score of 0.27, 
demonstrating strong perceptual similarity. On the LOL-15 
dataset (Table IX), EnGMHE achieved the best score of 0.194, 
demonstrating superior perceptual quality, while methods like 
SDD (0.743) and STAR (0.366) performed significantly worse. 
For the LOL-V2 dataset (Table X), EnGMHE again achieved 
the best score of (0.204), slightly outperforming ISSR (0.206). 
Other competitors, such as ZeroDCE (0.313) and RetinexNet 
(0.365), showed comparatively weaker performance, further 
emphasizing EnGMHE's effectiveness in maintaining 
perceptual fidelity across various datasets. 

TABLE VII.  COMPARATIVE RESULTS ON PSNR ↑ ON (MIT5K-500) 
DATASET, THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-

RATED RESULT IS UNDERLINED 

EnGMHE EnlightenGAN LIME [2] DRBN ZeroDCE 

18.12 15.58 16.07 16.37 12.82 

TABLE VIII.  COMPARATIVE RESULTS ON LPIPS ↓ ON (SICE_GRAD) 
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE 

SECOND-RATED RESULTS ARE UNDERLINED 

EnGMH

E 

RetinexNet 

[3] 

URetinexN

et 
RUAS SCI [22] 

0.33 0.36 0.35 0.49 0.48 

LLFlow 

[19] 
SGZ [62] KinD [58] 

KinD++ 

[56] 

U-EGformer 

[28] 

0.38 0.36 0.34 0.33 0.27 

TABLE IX.  COMPARATIVE RESULTS ON LPIPS ↓ ON (LOL-15) DATASET, 
THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE SECOND-RATED 

RESULTS ARE UNDERLINED 

EnGMHE SDD [63] STAR [64] DRBN [17] 

0.194 0.743 0.366 0.316 

RRDNet [65] RUAS [25] SCI [22] ExCNet [26] 

0.362 0.270 0.339 0.373 

MBLLEN [18] RetinexNet [3] GLADNet [66] ZeroDCE [23] 

0.225 0.379 0.321 0.335 

PairLIE [20] LLNET [16] EnlightenGAN [12]  

0.248 0.360 0.322  

TABLE X.  COMPARATIVE RESULTS ON LPIPS ↓ ON (LOL-V2) DATASET, 
THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE SECOND-RATED 

RESULTS ARE UNDERLINED 

EnGMHE RetinexNet [3] ZeroDCE [23] EnlightenGAN [12] 

0.204 0.365 0.313 0.309 

KinD [58] ISSR [30] MIRNet [21] HWMNet [67] 

0.375 0.206 0.317 0.359 

TABLE XI.  COMPARATIVE RESULTS ON DELTA-E ↓ ON (LOL-15) 
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE 

SECOND-RATED RESULTS ARE UNDERLINED 

EnGM

HE 

SDD 

[63] 

STAR 

[64] 

MBLLE

N [18] 

Retinex

Net [3] 
KinD [58] 

12.42 21.83 23.46 13.68 12.69 12.49 

DRBN 

[17] 

ZeroDC

E [23] 

RRDNe

t [65] 

RUAS 

[25] 
SCI [22] 

EnlightenG

AN [12] 

13.44 18.81 26.43 16.85 19.52 14.5 

The fourth comparison focused on evaluating Delta-E on the 
LOL-15 dataset (Table XI). EnGMHE achieved the lowest 
Delta-E score of (12.42), signifying minimal color distortion and 
high fidelity in color reproduction. The next closest competitor 
was KinD with a score of 12.49, while methods like ZeroDCE 
(18.81) and RRDNet (26.43) exhibited substantially higher 
errors, highlighting their relatively poorer performance in 
preserving color accuracy. 

2) Comparisons using no reference-based measures: As 

depicted in Table XII, EnGMHE demonstrated excellent 

performance in minimizing NIQE scores across diverse 

datasets, underscoring its effectiveness in achieving high-

quality, perceptually natural results. Its ability to outperform 

contemporary methods on DICM, NPE, and MEF highlighted 

its superiority in the domain of low-light image enhancement. 

Additionally, its performance on LIME and VV-24 was 

competitive with well-known methods such as EnlightenGAN 

and KinD++. Traditional methods like HE and KinD 

consistently recorded higher NIQE scores, reflecting their 

limitations in maintaining perceptual quality. Furthermore, as 

depicted in Table XIII and Table XIV, EnGMHE achieved the 

best performance on the MIT5K-500, LOL-V2, and LOL-15 

datasets. 

According to the BRISQUE measure (Table XV and 
Table XVI), EnGMHE led across all datasets, showing superior 
perceptual quality on VV-24 and LIME datasets and the second 
rank on DICM, NPE, and MEF datasets. This consistent 
performance across diverse datasets underscores EnGMHE's 
robustness and adaptability in various enhancement scenarios. 

For the UCIQE measure (Table XVII), EnGMHE 
demonstrated a strong capability in underwater image 
enhancement, achieving the highest score on the UIEB-Ch60. It 
outperformed notable methods, including: MTUR-Net [29], 
WaterNet [32], Ucolor [33], IDMR [73], Restormer [27], 
FUnIEGAN [74], PUGAN [34], U-Shape [75], Semi-UIR [76], 
and UWE-Net [77], setting a new benchmark in this domain. 

EnGMHE consistently outperforms or competes strongly 
with state-of-the-art techniques across a wide range of 
benchmark datasets and evaluation metrics. In reference-based 
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assessments, it achieved top or second-best SSIM and PSNR 
scores on datasets, including LOL-V2, MIT5K-500, 
SICE_GRAD, and LOL-15, indicating excellent structural 
preservation and noise suppression. It also demonstrated 
superior perceptual quality with low LPIPS values and achieved 
the best Delta-E score on LOL-15, highlighting its ability to 
maintain color accuracy. In no-reference evaluations, EnGMHE 
recorded the lowest or among the lowest NIQE and BRISQUE 
scores across diverse datasets such as VV-24, DICM, NPE, and 
MEF, highlighting its robustness in producing perceptually 
natural images. Additionally, EnGMHE outperformed other 
methods on the UCIQE metric in underwater image 
enhancement, setting a new benchmark in that domain. 

TABLE XII.  COMPARATIVE RESULTS ON NIQE ↓ ON (VV-24, LIME, 
DICM, NPE, MEF) DATASETS, THE BEST RESULTS ARE DENOTED BY 

BOLDFACE AND THE SECOND-RATED RESULTS ARE UNDERLINED 

Method VV-24 LIME DICM NPE MEF 

Ours 2.50 3.92 2.74 2.94 2.86 

+SFSA[68] - - 3.45 3.89 3.17 

DRBN [17] - 4.40 - 3.92 4.09 

LIVENet[57] 3.44 4.21 3.60 3.89 3.89 

PairLIE [20] 3.57 - - 4.18 - 

KinD [58] 4.30 4.64 - 4.69 4.13 

RUAS [25] 4.29 - - - - 

LLFlow [19] 4.04 - - - - 

SKF [69] - 3.98 3.53 3.82 3.63 

HE [1] 3.20 4.12 3.64 4.28 3.47 

KinD++ [56] 2.35 4.81 3.78 4.38 3.73 

EnlightenGAN[12] 2.25 3.67 3.54 4.74 3.22 

HWMNet [67] - 4.35 3.92 4.06 4.21 

Self-Supervised [70] 3.36 4.96 4.58 3.50 4.47 

LCAE[71] - 4.12 3.59 - 3.08 

TABLE XIII.  COMPARATIVE RESULTS ON NIQE ↓ ON (MIT5K-500) 
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE 

EnGMHE 
NPE 

[15] 

SRIE 

[4] 

LDR 

[37] 

DRBN 

[17] 

DSLR 

[72] 

ZeroDCE 

[23] 

2.18 3.92 3.93 3.67 4.38 4.20 3.84 

TABLE XIV.  COMPARATIVE RESULTS ON NIQE ↓ ON (LOL-15 AND LOL-
V2) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE 

Method LOL-15 LOL-V2 Method 
LOL-

15 

LOL-

V2 

EnGMHE 2.82 3.11 HE [1] 8.42 - 

LLNET [16] 3.84 - LIME [2] 5.32 5.37 

BIMEF [61] 3.85 - RetinexNet [3] 6.37 9.09 

DRBN [17] 4.79 4.96 ExCNet [26] 3.05 - 

+SFSA [68] - 4.19 
URetinexNet 

[51] 
3.51 - 

ZeroDCE 

[23] 
7.76 8.05 KinD++ [56] 4.76 5.08 

ZeroDCE++ 

[24] 
7.86 8.05 

EnlightenGAN 

[12] 
3.26 - 

PairLIE [20] 4.25 4.34 LCDPNet [31] 3.06 - 

KinD [58] 5.18 6.84 HWMNet [67] 5.97 - 

LLFlow [19] 5.41 - SCI [22] 4.08 - 

SKF [69] 4.14 3.96    

TABLE XV.  COMPARATIVE RESULTS ON BRISQUE ↓ ON (VV-24) 
DATASET, THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-

RATED RESULT IS UNDERLINED 

EnGMHE KinD [58] DCE [23] RUAS [25] 

24.93 50.56 34.66 38.37 

SCI [22] LLFLOW [19] PairLIE [20] SNR-Aware [59] 

26.13 31.67 39.13 78.72 

TABLE XVI.  COMPARATIVE RESULTS ON BRISQUE ↓ ON (LIME, DICM, 
NPE, MEF) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND 

THE SECOND-RATED RESULTS ARE UNDERLINED 

Method LIME DICM NPE MEF 

KIND [58] 39.91 48.72 36.85 49.94 

RUAS [25] 27.59 38.75 47.85 23.68 

LLFLOW [19] 27.06 26.36 28.86 30.27 

PairLIE [20] 25.23 33.31 28.27 27.53 

SNR-Aware [59] 39.22 37.35 26.65 31.28 

EnGMHE 20.38 26.78 26.85 24.13 

TABLE XVII.  COMPARATIVE RESULTS ON UCIQE ↑ ON (UIEB-CH60) 
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE 

SECOND-RATED RESULTS ARE UNDERLINED 

EnGMHE 
MTUR-

Net [29] 

WaterNe

t [32] 

Ucolor 

[33] 

IDMR 

[73] 

Restorme

r [27] 

0.64 0.5868 0.591 0.553 0.613 0.572 

FUnIEGA

N [74] 

PUGAN 

[34] 

U-Shape 

[75] 

Semi-

UIR [76] 
UWE-Net[77] 

0.556 0.566 0.56 0.574 0.21 

F. Ablation Study 

This section describes three tests, as they effectively address 
different aspects of the proposed model evaluation and 
improvement. 

The first test evaluated the sensitivity of the model to the 
parameters γ and τ. As shown in Fig. 9, the model was applied 
to the dark image (Left). The test was first conducted by running 
EnGMHE multiple times on the input image while varying τ and 
keeping γ fixed at 25. Subsequently, the sensitivity to γ was 
examined by varying γ while keeping τ fixed at 2. As shown in 
Fig. 9, the sensitivity plot of τ indicates that τ significantly 
affects the model's performance and requires precise tuning to 
achieve optimal enhancement results. In comparison, the flat 
region in the γ sensitivity plot suggests that γ is less sensitive 
within its optimal range, making it slightly more robust than τ. 
To ensure better performance across datasets. Therefore, a 
sample image set from each dataset was initially selected to 
determine experimentally the most suitable parameter values for 
this model. 
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The second test (see Fig. 10) examined the incremental 
addition of the components of EnGMHE. This is to demonstrate 
how the following procedural steps enhance its performance. 

 

Input Image 

  

Sensitivity to (τ) Sensitivity to (γ) 

Fig. 9. Sensitivity to τ and γ parameters. 

  

Input Image (NIQE: 3.2611) 
Image after applying GHE. (NIQE: 

3.2314) 

  

Image after applying GHE and 

GMHE. (NIQE: 2.9981) 

Image after applying GHE, GMHE, 

and denoising, respectively. 

(NIQE: 2.85) 

Fig. 10. The impact of the gradual addition of EnGMHE components. The 

input image extracted from the LOLi_Phone dataset [40]. 

The third test examined the sequence of enhancement steps 
and emphasized the importance of workflow design. It was 
applied across multiple datasets, and the proposed step sequence 
consistently produced the best results. For example, Fig. 11 
illustrates how varying the order of steps in the enhancement 
workflow affected image quality, evaluated using NIQE and 
SSIM metrics. The input image exhibited low visibility and poor 
structural similarity, as reflected by its high NIQE and low SSIM 
scores. Among the tested configurations, the sequence GHE → 
GMHE → Denoise (EnGMHE) achieved the optimal balance 
between perceptual quality and structural similarity, recording 
the lowest NIQE (3.48) and the highest SSIM (0.84). This 
demonstrates that beginning with GHE, followed by GMHE, 
and concluding with denoising effectively preserved fine details 
and maintained natural image quality. 

  
 

Input Image Denoise/GHE/GMHE GMHE/GHE/Denoise 

NIQE: 6.97 | SSIM: 

0.24 

NIQE: 5.23 | SSIM: 

0.69 

NIQE: 3.53 | SSIM: 

0.82 

   

GMHE/Denoise/GHE GHE/Denoise/GMHE 
GHE/GMHE/Denoise 

(EnGMHE) 

NIQE: 4.60 | SSIM: 

0.69 

NIQE: 3.50 | SSIM: 

0.81 

NIQE: 3.48 | SSIM: 

0.84 

Fig. 11. Impact of procedural step order on image quality. 

G. Limitations and Areas for Improvement 

Fig. 12 highlights a potential limitation of EnGMHE in terms 
of color fidelity when compared to other enhancement methods. 
Although EnGMHE performs effectively in recovering fine 
details and improving text clarity, it may introduce slight 
oversaturation and color shifts when compared to the ground 
truth. Although this could be considered a weakness in terms of 
color fidelity, it may be advantageous in certain applications, 
such as text and object recognition, where clarity and detail 
preservation are often more important than strict closeness to a 
poor-quality ground truth. 

    

Input Image Ground Truth LLFlow EnGMHE 

    

Input Image Ground Truth SwinIR [78] EnGMHE 

    

Input Image Ground Truth HSGFE[79] EnGMHE 

  
 

 

Input Image Ground Truth LIVENet EnGMHE 

    

Input Image Ground Truth 
En-

ZeroDCE[80] 
EnGMHE 

Fig. 12. Comparison of enhancement methods against the ground truth. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

546 | P a g e  
www.ijacsa.thesai.org 

V. CONCLUSION 

This study addresses the challenge of low-light image 
enhancement, considering the presence of noise in corrupted 
images. To tackle this problem, an effective joint low-light 
enhancement and denoising model, termed EnGMHE, is 
proposed. The model introduces a GHE-based technique 
combined with traditional GMHE to enhance image contrast and 
brightness. This enhancement stage is followed by a pretrained 
deep neural network for noise suppression, resulting in 
improved overall visual quality. EnGMHE effectively preserves 
fine details and produces visually appealing contrast and color 
distributions. Both qualitative and quantitative evaluations 
confirm its effectiveness, demonstrating superior performance 
compared to state-of-the-art methods. 
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