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Abstract—Low-light image enhancement has been extensively
studied, with numerous methods proposed to address this
challenge. Among these, Geometric Mean Histogram Equalization
(GMHE) emerged as a histogram-based technique specifically
designed for enhancing low-light images. Despite its effectiveness,
GMHE has notable limitations: it often oversaturates results
under specific conditions and amplifies noise, limiting its practical
applicability. ~These shortcomings become particularly
pronounced in real-world scenarios where low-light conditions are
frequently accompanied by significant noise artifacts. To address
these shortcomings, this study introduces EnGMHE, an enhanced
version of GMHE. The proposed method consists of three key
steps: 1) introducing a novel Gaussian Histogram Equalization
(GHE) to improve image contrast and brightness, 2) utilizing
GMHE to enhance sharpness and detail clarity, and 3) denoising
the enhanced image using a pretrained deep neural network
model. Together, these steps offer a more robust solution for low-
light image enhancement, balancing contrast improvement, detail
preservation, and noise reduction. The experimental results reveal
not only the efficiency but also the effectiveness of the proposed
model when benchmarked against the state-of-the-art methods.

Keywords—Histogram Equalization; image enhancement; low-
light enhancement; denoising; deep learning

I.  INTRODUCTION

Enhancing low-light images is essential across various
domains, including surveillance, medical imaging, and
photography, especially within the context of computer vision
and intelligent systems. Insufficient lighting often leads to
images with low brightness, poor contrast, and noticeable noise,
severely affecting visual quality and obscuring critical details
necessary for effective automated processing.

In recent decades, researchers have extensively explored
solutions for low-light image enhancement. One of the classic
methods is Histogram Equalization (HE) [1]. While HE
effectively enhances local contrast on dark images, it often
oversaturates bright regions in the process [2]. Another
prominent approach involves Retinex-based methods [2-8],
which decompose low-light images into reflectance and
illumination layers. While this decomposition can yield
promising enhancements, many Retinex-based techniques
require priors for effective layer separation [9].

Recent advancements in low-light image enhancement
leverage dehaze-based methods [10] and illumination map
estimation techniques [2], [4]. With the rise of deep learning,
enhanced computational power and large datasets have driven
progress. Supervised learning methods relying on paired

datasets [11] are used to map low-light to enhanced images,
effectively reducing noise and recovering details. However,
their performance depends on high-quality datasets, which
remain a significant challenge.

Unsupervised learning methods utilize unpaired datasets
[12], which are more accessible, largerin scale, and diverse in
content. These methods are adaptively trained to restore
illumination, color, and contrast. However, the lack of paired
supervision can limit their ability to recover fine details, often
leaving noise in the enhanced results. The field of low-light
image enhancement continues to evolve, with researchers
exploring methodologies that balance effectiveness with
inherent trade-offs [9].

While deep learning methods often deliver impressive
results, their efficiency remains a concern, particularly in real-
world scenarios where low-light conditions are frequently
accompanied by noise artifacts. To address this gap, this study
introduces the EnGMHE (Enhanced Geometric Mean
Histogram Equalization) model, a novel approach for low-light
image enhancement. Unlike classical histogram-based methods,
EnGMHE combines Gaussian Histogram Equalization (GHE)
for initial contrast enhancement, GMHE for structural
preservation, and a pre-trained denoising network for noise
suppression, providing a unified and robust enhancement
pipeline.

EnGMHE is built on the foundation of GMHE (Geometric
Mean Histogram Equalization) [13], a contrast enhancement
technique inspired by traditional histogram equalization. A key
innovation of EnGMHE 1is the introduction of Gaussian
Histogram Equalization (GHE), proposed as the first step to
enhance the input low-light image's contrast and luminosity.
Following GHE, the traditional GMHE is applied to further
refine the enhancement. The final step involves denoising using
a pre-trained deep neural network, effectively mitigating noise
introduced during low-light image capture. This novel model
integrates the newly proposed GHE with traditional and
advanced techniques, delivering a robust solution for improving
the visual quality of images captured in low-light conditions.

The effectiveness ofthe proposed modelis validated through
extensive experiments, where its performance is benchmarked
against state-of-the-art methods in low-light image
enhancement.

The rest of the study is as follows: Section II reviews the
literature and related work; Section Il details the proposed
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methodology; Section IV presents the experimental settings and
results; and Section V concludes the study.

II.  RELATED WORK

The problem of low-light image enhancement has gained
significant attention in recent years, leading to the development
of diverse methodologies ranging from classical techniques to
modern deep learning methods. These methods aim to improve
the brightness, contrast, and overall visual quality of low-light
images while addressing challenges such as noise and color
distortion.

Traditional methods, such as HE [1], BPDHE [14], and
GMHE [13], focus on enhancing image contrast by
redistributing pixel intensity values. HE is computationally
efficient and straightforward, but it often amplifies noise and
over-saturates the image.

Retinex theory-based approaches, such as LIME [2], NPE
[15],and SRIE [4], decompose an image into illumination and
reflectance components. By enhancing the illumination while
preserving the reflectance, these methods aim to balance
brightness and detail clarity.

Supervised and semi-supervised deep learning methods,
such as LLNET [16], DRBN [17], RetinexNet [3], MBLLEN
[18], LLFlow [19], PairLIE [20], and MIRNet [21], leverage
paired datasets to learn complex mappings from low-light
images to enhanced images. These methods excel in preserving
fine details and reducing noise. For instance, DRBN
incorporates recursive band representation for effective
enhancement, while MIRNet utilizes multi-scale feature
extraction for robust performance. However, their reliance on
high-quality paired datasets can limit scalability. In addition,
LLFlow employs flow-based mechanisms for illumination
correction.

Unsupervised deep learning methods, such as
EnlightenGAN [12] and SCI [22], address the challenge of
paired dataset availability by learning from unpaired data.
EnlightenGAN uses adversarial leaming to generate visually
appealing results. Despite their adaptability, these methods may
struggle with detail preservation and noise reduction.

Recently,zero-shot learning methods rely on models that are
trained on a set of classes (seen classes) but can make
predictions on new, unseen classes without direct examples of
those unseen classes during training. These methods leverage
transfer leaming to generalize knowledge from seen to unseen
classes. Examples of such methods include ZeroDCE [23],
ZeroDCE++ [24], RUAS [25], and ExCNet [26].

Transformer-based architectures like Restormer [27] and U-
EGformer [28] have also demonstrated significant potential in
low-light enhancement. Restormer employs attention
mechanisms to capture global context, while U-EGformer
integrates exposure-guided mechanisms for enhanced
adaptability. Although these methods offer high performance,
they often come with increased computational complexity.

Emerging techniques like MTUR-Net [29] focus on multi-
task learning for joint enhancement and noise reduction.
Additionally, methods like ISSR [30] and LCDPNet [31]
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leverage advanced architectures to address specific challenges
in low-light scenarios. For underwater and domain-specific
scenarios, methods such as WaterNet [32], Ucolor [33] and
PUGAN [34], addresschallenges like haze, color distortion, and
poor visibility. These methods utilize specialized architectures
and priors to handle unique environmental conditions
effectively.

While the aforementioned methods have significantly
advanced the field, challenges such as noise suppression, detail
preservation, and computational efficiency persist. Many
existing techniques either focus on enhancing brightness and
contrast or on reducing noise, but few address these issues
jointly. Furthermore, achieving a balance between enhancement
quality and real-world applicability remains a critical research

gap.
III. METHODOLOGY

The proposed methodology involves a sequence of
preprocessing and noise-reduction phases. They include
advanced histogram operations and a denoising approach using
a pre-trained neural network, as shown in Fig. 1.

GHE
Contrast and
Luminosity

Enhancement

GMHE

More Contrast Cleansing the
and Brightness image from
Refinement noise

Denoising

Fig. 1. The main phases of the proposed EnGMHE.

A. Gaussian Histogram Equalization (GHE)

This phase introduces the proposed GHE. It performs image
enhancement through a Gaussian-smoothed histogram
equalization technique. The followingare the proposed steps for
applying GHE to each of the image channels:

1) Compute the histogram of the input image.
2) Apply Gaussian smoothing:

A Gaussian filter, as defined in Eq. (1), is applied to the
histogram to smooth intensity variations.

1 _x%+y?

e = (M

Glx,y) =

where, G(x,y) is the value of the Gaussian function at pixel
(x,y). The parameter 7 denotes the standard deviation of the
Gaussian distribution and is empirically determined to control
the degree of histogram smoothing. Pixel (x,y) represents the
center of the filter. The filter size is determined using Eq. (2):

Filters;,, = 2% ceil(2x 1) +1 2)

2mt?

7 is determined experimentally to control the degree of
smoothing, as follows:

T € [0.5-1]: Minimal smoothing.
T € [1.5-3]: Moderate smoothing (balanced).
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T > 3.5: Significant smoothing.

3) Normalize the smoothed histogram: The smoothed
histogramh is normalized such thatits values sumto 1, forming
a probability distribution, as defined in Eq. (3):

hoo,
Norm_h; = RO {1,..p} 3)

where, A is the value of the i bin in the histogram £, and p
denotes the total number of bins.

4) Compute the cumulative distribution function (CDE) for
the normalized histogram, as defined in Eq. (4):

CDF_h; = ¥:_oNorm_h;,i = {1, ...p} 4)

5) Map pixel intensity values: Each pixel intensity i is
transformed to a new value, as defined in Eq. (5):

New_intensity_level, = CDF_h;* (L —1),i ={1,...p} (5)
where, L is the maximum intensity value (265 in this study).

6) Output the enhanced image: Finally, the output imagel’
is generated by mapping the intensity of each pixel in the
original image [ according to the new intensity values stored in
New_intensity_level. Note that steps (3) to (6) are the steps
of the traditional HE method.

B. Geometric Mean Histogram Equalization (GMHE)

The key idea behind GMHE [13] is to preserve the overall
structure of the image while enhancing contrast, particularly in
dark regions. This is achieved by redistributing pixel intensities
based on the geometric mean, which is less sensitive to extreme
values than the arithmetic mean and therefore reduces the
influence of outliers in the histogram.

In this phase, GMHE is applied to the intermediate enhanced
image /'. The procedure is performed independently on each
image channel as follows:

For each channel in /" apply the following steps:

1) Compute the histogram S of the input image.
2) Apply a geometric mean filter to the histogram to obtain
a modified histogram (S') using Eq. (6):

§'= ([T, x)" (6)

where, x; represents the histogram values within the filter
window, ndenotes the filter length (set to 3 in this work), and
v is an experimentally determined constant that controls the
strength of the geometric mean operation.

3) Apply steps (3—6) from the first phase (GHE) to the
modified histogram S' to generate the enhanced image (I").

C. Denoising

To suppress noise, while preserving image fidelity, a
channel-wise image denoising is applied to the enhanced image
I"" using a pre-trained deep learning model described in [35].
This network was selected due to its demonstrated effectiveness

' SICE Grad and SICE Mix datasets are
“https://github.com/ShenZheng2000/LLIE_Survey”.

available at
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and stability in general-purpose image denoising tasks,
particularlyin scenariosinvolving low-light and noise-amplified
images.

As shown in Fig. 2, the adopted model consists of 19
convolutional blocks, where each block is composed of a
convolutional layer followed by batch normalization and a
ReLU activation function. This relatively deep architecture
enables the extraction of hierarchical features, ranging from
low-level structures such as edges and intensity gradients to
higher-level spatial patterns, which is essential for
discriminatingnoise from meaningful image content. Padding is
employed in all convolutional layers to preserve the spatial
dimensions of the input image, thereby preventing the loss of
structural details during the denoising process.

The use of a pre-trained denoising network is motivated by
both technical and practical considerations. Leveraging a pre-
trained model allows the proposed framework to benefit from
robust, previously learned noise characteristics without
requiring dataset-specific retraining, which enhances
computational efficiency and generalizability. Moreover, the
regression-based output layer is specifically designed to
estimate clean image intensities, enabling effective noise
suppression, while maintaining important visual and structural
details. This balance between noise reduction and detail
preservation makes the selected network particularly suitable for
integration into the proposed EnGMHE-based enhancement
pipeline.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets Used in the Comparisons

The datasets used in this study include both paired and
unpaired collections. The ExDark-Bicycle [36], NPE [15],
DICM [37], VV [38], MEF [39], LIME [2], and LoLi-Phone
[40] datasetsconsistof652,84,64,24,17,10,and 600 real low-
light images, respectively, with varying resolutions. These
datasets are unpaired and cover a wide range of indoor and
outdoor scenes, including natural landscapes, buildings, and
indoor objects or decorations.

In contrast,the LOL[3], MIT-5K [41],SICE [42],and UIEB
[32] datasets are paired datasets. The LOL dataset includes
LOL-15, which comprises 15 test images, and LOL-V2, which
contains two subsets: 100syntheticand 100real testimages. The
MIT-5K provides 5000 low-light images, with 500 designated
for testing. The SICE dataset contains 4800 real and synthetic
multi-exposure images of various resolutions, capturing diverse
indoor and outdoor scenes under different exposure levels. In
this study, two variations of the SICE dataset, namely
SICE Grad and SICE_Mix!, were used, each consisting of 589
paired images. Finally, two subsets of the UIEB dataset were
utilized: one comprising 890 paired images and another
challenging subset containing 60 images.

B. Metrics

This section presents an overview of the evaluation metrics
employedin this study to assessthe performance of the proposed
methods. Both reference-based metrics, which rely on a ground-
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truth image for comparison, and no-reference metrics, which
evaluateimage quality without relying on a reference image, are
considered. These metrics were selected to provide a

Vol. 17, No. 1, 2026

comprehensive assessment of image quality and processing
effectiveness across diverse experimental scenarios.

1 "TnpotLayer* Tmage Inmput S50x50x]l imagea

2 "Convl' Convolution 64 Ixdxl comvelutioms with atride [1 1] and padding [1 1 1 1]
3 "Relll’ ReLU ReLT

4 "Conwd' Conwvolution 64 IxIxE4 copvolutions with ride [1 1] and padding [1 1 1 1]
5 "BHezm2' Batch Hormalizatisn Batch normalization with &4 annels

[ "RelO2' BelD Rell

T "Convi' Convaluclion 64 IxIxed comvelurlons with stride [1 1] and padding [1L 1 1 1]
B "BHoEm3 ' Batch Normalization Batch normalization with 64 channels

-] "Reli3' RelU Rell

" 'l'.-'-:vZ" !'.-'-.-.l.r"l:'.'_:.nn &4 IxIxé4 copvelutions with stride [1 1] and padding [1 1 1 1]
=1 "BHorml 5" Batch Hormalization Batch nommalizatiom with 64 channels

57 "RelOlG’ EelDT Rell

SB "Canval' Convaluclion 1 3x3xEd comvolucions with acride [1 1] and padding [L 1 1 1]
55  "FinalBegresaionlayer'  HRegression Oucput mean-sguared-error with response 'Reaponss’

Fig.2. The structure of the adopted pre-trained network.

1) Reference-based measures

a) SSIM (Structural Similarity Index) is a perceptual
metric that evaluates the similarity between two images by
considering their luminance, contrast, and structural
information. SSIM values range from -1 to 1, where a value of
1 indicates perfect similarity. It is widely used in image
processing tasks to assess the quality of reconstructed images.
It is defined in Eq. (7) [43]:

= Cuampt(a1)?)(200p +(kz1)*)

SSIM(@.b) = 4w igy ()

where, a and b denote the input and the enhanced images,

respectively. p denotes the mean of the specified image. o2 and

o denote the variances ofimages a and b, respectively, while

0,4 represents the covariance between a and b. The constants

(K1, K>, L) are set to 0.01, 0.03, and 255 for 8-bit images,
respectively.

b) PSNR (Peak Signal-to-Noise Ratio) is a quantitative
metric used to evaluate the quality of an image by measuring
the ratio between the maximum possible power of an image and
the power of noise that affects the image's fidelity. Expressed
in decibels (dB), PSNR quantifies image quality by comparing
the original and distorted images, with higher values indicating
better quality [44].Itis defined as follows in Eq. (8) and Eq. (9):

L 8)

MSE(a,b)

1
MSE(a,b) = e LiXialag; — b7 )

PSNR(a,b) = 10.10g;

where, a and b are the input and the enhanced images,
respectively. L is a constant referring to the maximum possible
pixel value, which is equal to 255 for 8-bitimages. MSE denotes
the mean square error between two images. M and N are the
dimensions of the image (width and height). a; ; denotes the
pixel value at position (i,j) in image a.

¢) LPIPS (Learned Perceptual Image Patch Similarity)
is a recently developed metric designed to evaluate image

quality from the perspective of human perception. Unlike
traditional metrics, such as PSNR and SSIM, which focus on
pixel-level comparisons, LPIPS leverages deep learning
features to align more closely with human visual perception
[45],[46]. It measures the similarity between an image and its
corresponding ground truth by calculating the difference
between their feature representations, extracted from a pre-
trained deep neural network (e.g., VGG or AlexNet), as
described in Eq. (10):

LPIPS (I,,1;) = Xywillfi(T) — fi ), (10)

where, f; denotes the feature maps from layer 1 of the
network, w; represents the learned weights for each layer 1, and
[l- ]I, denotes the L2-Norm (Euclidean distance) of the deep
features of a trained CNN.

d) Delta_E1is a reference-based measure that quantifies
the difference between two colors in the CIELAB color space.
It is widely used to evaluate color accuracy, identify deviations,
and assess color similarity. Lower Delta-E values indicate
better color consistency and are therefore preferred [47]. Delta-
E is defined as shown in Eq. (11):

Delta_E =

1
N BN \/(Lli.j —L2; )%+ (al;j—a2;)® + (b1, — b2, ;)*
(11)

where, (L1ij,alij, bli;) arethe LAB values for a pixel (i, )
in the input image, and (L2, a2;j, b2ij) correspond to those of
the enhanced image. The overall score is obtained by averaging
the pixel-wise Delta-E values, yielding a single scalar that
reflects the overall perceptual color fidelity.

2) No reference-based measures
a) BRISQUE  (Blind/Reference-less Image Spatial
Quality Evaluator) is a no-reference image quality assessment
model that operates in the spatial domain to evaluate image
quality without relying on distortion-specific features or
frequency-domain transformations,such as DCT or wavelets. It
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uses natural scene statistics (NSS) of locally normalized
luminance coefficients and their products to quantify the loss of
image "naturalness" caused by distortions, offering a holistic
and distortion-generic measure of quality. BRISQUE is a
model-driven measure which does not have a single closed-
form analytical equation. Instead, it employs a machine
learning pipeline that estimates image quality using NSS
features and a trained regressor, as shown in Eq. (12):

BRISQUE(I) = SVR(F(I)) (12)

where, I denotes the input low-light image. F(.) represents a
36-dimensional NSS feature vector extracted from I. SVR(.) is
the pre-trained support vector regressor. The feature vector F is
derived from locally normalized luminance coefficients and is
computed by fitting an Asymmetric Generalized Gaussian
Distribution (AGGD) to the normalized image and its
directional pairwise product maps at two image scales [48].

b) NIQFE (The Natural Image Quality Evaluator) is a no-
reference image quality assessment metric that measures the
degree to which an image’s features deviate from the statistical
regularities commonly observed in natural images. It is built
upon a robust spatial-domain NSS model designed to capture
quality-aware statistical features learned from a dataset of
natural, undistorted images. Lower NIQE scores indicate better
perceptual quality. The quality score is computed as the
Mahalanobis distance between the image’s feature vectorand a
multivariate Gaussian (MVG) model fitted on high-quality
images [49].

c) UCIQE  (Underwater Color Image Quality
Evaluation) is a no-reference image quality assessment metric
specifically designed for underwater images. It evaluates visual
quality in the CIELab color space by analyzing three key
factors: Chroma, which measures the image's colorfulness and
reflects the loss of color diversity due to light scattering and
absorption in underwater environments; Saturation, which
assesses thevividnessor dullness of colors; and Contrast, which
quantifies the visibility of image details often diminished in
underwater scenes because of haze or turbidity. The UCIQE
metric is computed using Eq. (13):

UCIQE = ¢y X std.+c, X con, +c3 X Avg, (13)

where, std denotes the standard deviation of chroma, con,
denotes the contrast of luminance, and Avg, represents the
average of saturation. The coefficients cl, c¢2, and c3 are
empirically determined (c1 =0.4680, c2 =0.2745, ¢3=0.2576).
This metric provides a quantitative evaluation of underwater
image quality, enabling the assessment and enhancement of
visual clarity and color fidelity [50].

C. Experimental Environment and Parameter Settings

To ensure the reproducibility and reliability of the
experiments, a controlled experimental setup was carefully
established, and specific parameter configurations were defined.
The following details provide an overview of the conditions
under which the experiments were conducted:
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e All experiments in this study were conducted in the
MATLAB environment and were executed on an
Intel(R) Core(TM)i7 CPU @ 2.60GHz device with /2
GB of RAM.

e In the context of EnGMHE, the parameters T and y
control histogram smoothing and geometric mean
redistribution, respectively. Default values of t = 2 and
vy =25 providerobust performance acrossmost low-light
datasets. For datasets with specific characteristics, such
as SICE and ExDark, slightly different values (see
Table I) were used to achieve optimal enhancement.
These exceptions do not require exhaustive per-dataset
tuning; they simply reflect natural variations in image
statistics across diverse datasets, while the method
remains effective with the general default settings.

TABLEI. PARAMETER SETTINGS FOR THE DATASETS OF INTEREST
Dataset T v
MEF | NPE | LOL | DICM | LIME | UIEB | VV | MIT5K | 2 25
ExDark 10 15
SICE 2 50

D. Qualitative Results

Fig. 3 shows the performance of various low-light
enhancement methods on an image from the LIME dataset. The
input image is underexposed, with significant loss of visibility
in shadowed regions. SCI [22] brightens the image but
introduces a strong purplish tint, making the colors appear
unnatural. URetinexNet [5 1] enhances the brightness and detail
visibility but overexposes certain regions, resulting in a reddish
hue. In contrast, EnGMHE achieves a balanced enhancement,
maintaining natural color while preserving fine details.

Fig. 4 presents a comparison, where the input is an
underwater image suffering from poor visibility and color
distortion. Compared to state-of-the-art methods, EnGMHE
delivers visually consistent results with enhanced clarity and
more accurate color restoration for underwater images.

As shown in Fig. 5(a), the input image represents
challenging low-light photography, with significant visibility
issues in darker regions. While the illuminated monument
retains some visibility, the surrounding darker areas lack detail,
making the image a strong candidate for enhancement.
EnGMHE effectively balances brightness enhancement with
structural detail preservation, whereas FDMLNet [55]
overexposes bright areas (see the monument's facade). In
Fig. 5(b), the input image presents complex lighting conditions,
with a mix of shadowed areas and bright overhead lights.
ZeroDCE++ and RetinexNet enhance brightness, but introduce
noticeable artifacts and color distortions. KinD++ [56] over-
saturates certain regions, leading to unnatural visual results.
LIVENet [57] produces more natural adjustments in terms of
brightness but fails to recover fine details in shadowed regions
[Fig. 5(c)]. EnGMHE, however, delivers the most balanced
output, effectively preserving both color fidelity and structural
details while enhancing brightness.
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Input Image SCI

URetinexNet EnGMHE

Fig.3. Visual comparison with state-of-the-art methods on an input image from the LIME dataset.

o1

NAS-Unet [52] EnGMHE

Fig. 4. Visual comparison with state-of-the-art methods on an input image
from the UIEB-890 dataset.

a) Input Image FDMLNet EnGMHE

b) Input Image

¢) KinD++ LIVENet EnGMHE

Fig. 5. Visual comparison with state-of-the-art methods on input images
from the DICM dataset.

Fig. 6 shows a comparison with various state-of-the-art
methods (KinD [58], SNR-Aware [59], and SPIC [60]) on
challenging low-light and visually complex images from
different datasets (NPE, VV, and ExDark). The overall results
consistently demonstrate that EnGMHE excels in detail
preservation, color accuracy, and balanced brightness
enhancement across diverse datasets.

s://imagerecognize.com/text/#site-conten
% https://imag an /text/#sit tent

Fig. 7 evaluates the performance of LLIEDiffand EnGMHE
against the ground truth for a low-light inputimage. The input
image is significantly dark, with details obscured across various
regions, while the ground truth serves as an ideal reference with
vibrant colors, sharp textures, and excellent detail visibility.
LLIEDiff improves brightness and restores some visibility in
shadowed areas but struggles with color accuracy and fine detail
preservation, particularly in the regions highlighted by the
colored rectangles. In contrast, EnGMHE delivers a more
balanced enhancement, achieving restored brightness, natural
color tones, and excellent detail clarity that closely aligns with
the ground truth. While EnGMHE may not perfectly match the
ground truthin all regions, it demonstrates better color fidelity
than LLIEDiff, producing vibrant and realistic colors and
preservingnatural tones, suchas the red objectand green grapes,
with a closer resemblance to the ground truth in hue and
saturation.

Fig. 8 highlights thetext extractionresults froma dark image
and the EnGMHE-enhanced image. The text in this figure was
recognized using “Image Recognize?” tool. As shown in Fig, 8,
the EnGMHE-enhanced image not only retains high confidence
for clearly visible text like "RESTAURANT" but also reveals
additional details such as "Hpidavos" with significantly
improved confidence (94%) compared to the dark image (44%).
Furthermore, it introduces new textual elements such as
"GROUP" and "be TEA", demonstrating its capability in
enhancing low-light images for accurate text recognition.

NPE

L
e

ExDark

EnGMHE

Input Image | SPIC |

Fig. 6. Visual comparison with state-of-the-art methods on (NPE, VV, and
Exdark) datasets.
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TABLE II. COMPARATIVE RESULTS ON SSIM 1 ON (LOL-V2, MIT5K-
500) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE, AND THE
SECOND-RATED RESULTS ARE UNDERLINED

LLIEDiff EnGMHE

Method LOL-V2 MIT5K-500
EnGMHE 0.72 0.78
LDR [37] - 0.73
Input Image DRBN [17] - 0.76
EnlightenGAN [12] 0.68 0.76
LIME [2] 0.47 0.80
ZeroDCE [23] 0.58 0.72

TABLEIII. COMPARATIVE RESULTS ON SSIM 1 ON (SICE GRAD AND
SICE MIX) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE,
AND THE SECOND-RATED RESULTS ARE UNDERLINED

Fig. 7. Comparison with LLIEDiff against EnGMHE on the input image

from the LOL-15 dataset.

e

Input Image: OMOEHMO (95%) | RESTAURANT (99%) | Hpidavos
(44%)

EnGMHE: OMOEHMO (93%) | RESTAURANT (99%) | GROUP with
(10%) | Hpidavos (94%) | be TEA (25%) | haye Knop (53%)

Method SICE GRAD SICE MIX
EnGMHE 0.67 0.64
ZeroDCE [23] 0.64 0.64
RetinexNet [3] 0.60 0.61
URetinexNet [51] 0.61 0.60
RUAS [25] 0.49 0.49
SGZ [62] 0.60 0.62
LLFlow [19] 0.62 0.61
U-EGformer [28] 0.64 0.65

TABLEIV. COMPARATIVE RESULTS ON SSIM 1 ON (LOL-15) DATASET,
THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-RATED
RESULT IS UNDERLINED

Fig. 8. Text extraction test. Red rectangles in the figure highlight the
extracted text (confidence %) from the original dark image and the EnGMHE-
enhanced image, respectively. The input image is a cropped portion of an
image from the VV dataset.

E. Qualitative Results
This section quantitatively presents the comparative results

obtained using both reference-based and non-reference-based
methods across various datasets.

1) Comparisons using reference-based measures: The first
comparisons were conducted to compare SSIM scores on
different datasets. As shown in Table II, the proposed method
achieved impressive SSIM scores of (0.72 and 0.78) on the
LOL-V2 and MIT5K-500 datasets, respectively. On LOL-V2,
it outperformed EnlightenGAN (0.68) and demonstrated a
significantimprovement over ZeroDCE [23] (0.58) and LIME
(0.47), highlighting its ability to preserve structural details. On
MIT5K-500, EnGMHE reported a score of 0.78, ranking
second only to LIME (0.80). For SICE_GRAD, as presented in
Table III, the proposed method achieved the highest score of
(0.67),surpassing U-EGformer (0.64) and ZeroDCE (0.64). On
SICE_MIX, it obtained a score of (0.64), outperforming
URetinexNet (0.60) and RUAS (0.493).

On the LOL-15 dataset, as depicted in Table IV, the
proposed method demonstrated a superior SSIM score of
(0.734), significantly outperforming competitors like BIMEF
[61] (0.595), EnlightenGAN (0.652), and ZeroDCE (0.559).

EnGMHE EnlightenGAN | BIMEF [61] LIME [2]
0.734 0.652 0.595 0.484
STAR [64] DRBN [17] RRDNet [65] | RUAS [25]
0.518 0.551 0.457 0.500
ZeroDCE [23] SDD [63] SCI [22]

0.559 0.637 0.522

TABLE V.

COMPARATIVE RESULTS ON PSNR 1 ON (SICE_GRAD AND

SICE_MIX) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE
AND THE SECOND-RATED RESULTS ARE UNDERLINED

Dataset EnGM Retinex URetinexN KinD++ UEGform
HE Net [3] et [51] [56] er 28]
;I/fg—G 1422 | 1245 10.89 1324 | 1327
T | 13ss | 1239 10.90 13.19 | 1423
Dataset Eg?s [Z;;?DCE SCI [22] [LIB?OW SGZ [62]
;‘Sﬁ 8.62 12.48 8.55 12.74 10.99
fjgg— 8.68 12.42 8.64 12.73 10.86
TABLE VI.  COMPARATIVE RESULTS ON PSNR 1 ON (LOL-15) DATASET,

THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-RATED
RESULT IS UNDERLINED

EnGMHE RUAS [25] DRBN [17] SCI [22]
1629 16.40 16.29 14.78

SDD [63] STAR [64] ZeroDCE [23] | RRDNet [65]
13.34 1291 14.86 11.40

www.ijacsa.thesai.org

542 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

The second set of comparisons was conducted to compare
PSNR scores across various datasets. As shown in Table V,
EnGMHE achieved a PSNR of 14.22 on the SICE_GRAD
dataset, surpassing KinD++ (13.24) and U-EGformer (13.27).
Similarly, on SICE_MIX, it recorded the second-highest PSNR
with ascore of 13.66, following the U-EGformer(14.23). On the
LOL-15 dataset (Table VI), EnGMHE achieved a PSNR of
16.29, tying with DRBN for the top performance while
outperforming other notable methods, such as ZeroDCE (14.86)
and SCI (14.78). Additionally, on the MIT5K-500 dataset
(Table VII), EnGMHE recorded the best PSNR score of 18.12,
surpassing DRBN (16.37)and LIME (16.07), demonstrating its
exceptional noise suppression and fidelity on this dataset.

The third set of comparisons evaluated the performance
based on the LPIPS measure, where lower scores indicate better
perceptual similarity. On the SICE_ GRAD dataset (Table VIII),
EnGMHE achieved a score of 0.33 as Kind++, securing the
second rank, followed by U-EGformer with a score of 0.27,
demonstrating strong perceptual similarity. On the LOL-15
dataset (Table IX), EnGMHE achieved the best score of 0.194,
demonstrating superior perceptual quality, while methods like
SDD (0.743) and STAR (0.366) performed significantly worse.
For the LOL-V2 dataset (Table X), EnGMHE again achieved
the best score of (0.204), slightly outperforming ISSR (0.206).
Other competitors, such as ZeroDCE (0.313) and RetinexNet
(0.365), showed comparatively weaker performance, further
emphasizing EnGMHE's effectiveness in maintaining
perceptual fidelity across various datasets.

TABLE VII. COMPARATIVE RESULTS ON PSNR 1 ON (MIT5K-500)
DATASET, THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-
RATED RESULT IS UNDERLINED

EnGMHE
18.12

EnlightenGAN
1558

LIME [2]
16.07

DRBN
16.37

ZeroDCE
12.82

TABLE VIII. COMPARATIVE RESULTS ON LPIPS | ON (SICE_GRAD)
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE
SECOND-RATED RESULTS ARE UNDERLINED
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TABLE X. COMPARATIVE RESULTS ON LPIPS | ON (LOL-V2) DATASET,
THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE SECOND-RATED
RESULTS ARE UNDERLINED

EnGMH RetinexNet URetinexN RUAS SCI 22]
E 31 et
0.33 0.36 0.35 0.49 0.48
LLFlow . KinD++ U-EGformer
[19] SGZ [62] KinD [58] [56] 28]
0.38 0.36 0.34 0.33 0.27
TABLE IX. COMPARATIVE RESULTS ON LPIPS l ON (LOL—] 5) DATASET,

THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE SECOND-RATED
RESULTS ARE UNDERLINED

EnGMHE SDD [63] STAR [64] DRBN [17]
0.194 0.743 0.366 0316
RRDNet [65] | RUAS [25] SCI [22] ExCNet [26]
0.362 0.270 0.339 0373

MBLLEN [18]

RetinexNet [3]

GLADNet [66]

ZeroDCE [23]

0225 0.379 0.321 0335
PairLIE [20] | LLNET [16] | EnlightenGAN [12]
0.248 0.360 0.322

EnGMHE RetinexNet [3] | ZeroDCE [23] | EnlightenGAN [12]
0.204 0.365 0.313 0.309
KinD [58] ISSR [30] MIRNet [21] HWMNet [67]
0.375 0.206 0.317 0.359

TABLE XI. COMPARATIVE RESULTS ON DELTA-E | ON (LOL-15)

DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE
SECOND-RATED RESULTS ARE UNDERLINED

BN o0 | ST [ WL | e | o
12.42 21.83 23.46 13.68 12.69 1249
DRBN | ZeroDC RRDNe | RUAS SCI [22] EnlightenG
[17] E [23] t [65] [25] AN [12]
13.44 18.81 26.43 16.85 19.52 14.5

The fourth comparison focused on evaluating Delta-E on the
LOL-15 dataset (Table XI). EnGMHE achieved the lowest
Delta-Escoreof(12.42),signifyingminimalcolordistortionand
high fidelity in colorreproduction. The next closest competitor
was KinD with a score of 12.49, while methods like ZeroDCE
(18.81) and RRDNet (26.43) exhibited substantially higher
errors, highlighting their relatively poorer performance in
preserving color accuracy.

2) Comparisons using no reference-based measures: As
depicted in Table XII, EnGMHE demonstrated excellent
performance in minimizing NIQE scores across diverse
datasets, underscoring its effectiveness in achieving high-
quality, perceptually natural results. Its ability to outperform
contemporary methods on DICM, NPE, and MEF highlighted
its superiority in the domain of low-light image enhancement.
Additionally, its performance on LIME and VV-24 was
competitive with well-known methods such as EnlightenGAN
and KinD++. Traditional methods like HE and KinD
consistently recorded higher NIQE scores, reflecting their
limitations in maintaining perceptual quality. Furthermore, as
depicted in Table XIII and Table XIV, EnGMHE achieved the
best performance on the MIT5K-500, LOL-V2, and LOL-15
datasets.

According to the BRISQUE measure (Table XV and
Table XVI), EnGMHE led across all datasets, showing superior
perceptual quality on VV-24 and LIME datasets and the second
rank on DICM, NPE, and MEF datasets. This consistent
performance across diverse datasets underscores EnGMHE's
robustness and adaptability in various enhancement scenarios.

For the UCIQE measure (Table XVII), EnGMHE
demonstrated a strong capability in underwater image
enhancement, achieving the highest score on the UIEB-Ch60. It
outperformed notable methods, including: MTUR-Net [29],
WaterNet [32], Ucolor [33], IDMR ([73], Restormer [27],
FUnIEGAN [74], PUGAN [34], U-Shape [75], Semi-UIR [76],
and UWE-Net [77], setting a new benchmark in this domain.

EnGMHE consistently outperforms or competes strongly
with state-of-the-art techniques across a wide range of
benchmark datasets and evaluation metrics. In reference-based
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assessments, it achieved top or second-best SSIM and PSNR
scores on datasets, including LOL-V2, MIT5K-500,
SICE_GRAD, and LOL-15, indicating excellent structural
preservation and noise suppression. It also demonstrated
superior perceptual quality with low LPIPS values and achieved
the best Delta-E score on LOL-15, highlighting its ability to
maintain coloraccuracy. In no-reference evaluations, EnGMHE
recorded the lowest or among the lowest NIQE and BRISQUE
scores across diverse datasets such as VV-24, DICM, NPE, and
MEF, highlighting its robustness in producing perceptually
natural images. Additionally, ENGMHE outperformed other
methods on the UCIQE metric in underwater image
enhancement, setting a new benchmark in that domain.

TABLE XII. COMPARATIVE RESULTS ON NIQE | ON (VV-24, LIME,
DICM, NPE, MEF) DATASETS, THE BEST RESULTS ARE DENOTED BY
BOLDFACE AND THE SECOND-RATED RESULTS ARE UNDERLINED

Method vv-24 | LIME | DICM | NPE | MEF

Ours 2.50 3.92 2.74 2.94 2.86
+SFSA[68] - - 345 | 389 3.17
DRBN [17] - 4.40 - 3.92 4.09
LIVENet[57] 3.44 421 3.60 3.89 3.89
PairLIE [20] 3.57 - - 4.18 -

KinD [58] 430 4.64 - 4.69 4.13
RUAS [25] 429 - - - -

LLFlow [19] 4.04 - - - -

SKF [69] - 3.98 3.53 3.82 3.63
HE[1] 3.20 4.12 3.64 428 347
KinD++ [56] 235 481 378 438 373
EnlightenGAN[12] | 2.25 3.67 3.54 4.74 322
HWMNet [67] - 435 3.92 4.06 421
Self-Supervised [70] | 3.36 4.96 4.58 3.50 447
LCAE[71] - 4.12 3.59 - 3.08

TABLE XIII. COMPARATIVE RESULTS ON NIQE | ON (MIT5K-500)
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE

NPE | SRIE | LDR | DRBN | DSLR | ZeroDCE
[15] [4] 37] [17] [72] [23]

218 3.92 3.93 3.67 438 4.20 3.84

EnGMHE

TABLE XIV. COMPARATIVE RESULTS ON NIQE | ON (LOL-15 AND LOL-
V2) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE

LOL- | LOL-
Method LOL-15 | LOL-V2 Method 15 V2
EnGMHE 2.82 311 HE [1] 842 | -
LLNET [16] | 3.84 ; LIME [2] 532 | 537
BIMEF[61] | 3.85 ; RetinexNet [3] | 637 | 9.09
DRBN[17] | 4.79 496 ExCNet [26] 3.05 | -
+SFSA [68] | - 419 [Lﬁ]etme"Net 351 | -
[Zze;TDCE 776 8.05 KinD++ [56] | 476 | 5.08
ZeroDCE++ EnlightenGAN
0] 7.86 8.05 2] 326 | -
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PairLIE [20] | 4.25 434 LCDPNet [31] | 3.06 | -
KinD [58] 5.18 6.84 HWMNet [67] | 597 | -
LLFlow [19] | 5.41 - SCI [22] 408 | -
SKF [69] 4.14 3.96

TABLE XV. COMPARATIVE RESULTS ON BRISQUE | ON (VV-24)
DATASET, THE BEST RESULT IS DENOTED BY BOLDFACE AND THE SECOND-
RATED RESULT IS UNDERLINED

EnGMHE KinD [58] DCE [23] RUAS [25]
24.93 50.56 34.66 3837
SCI [22] LLFLOW [19] | PairLIE [20] | SNR-Aware [59]
26.13 31.67 39.13 78.72

TABLE XVI. COMPARATIVE RESULTS ON BRISQUE | ON (LIME, DICM,
NPE, MEF) DATASETS, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND
THE SECOND-RATED RESULTS ARE UNDERLINED

Method LIME DICM NPE MEF
KIND [58] 3991 48.72 36.85 49.94
RUAS [25] 27.59 3875 47.85 23.68
LLFLOW [19] 27.06 26.36 28.86 30.27
PairLIE [20] 2523 3331 2827 27.53
SNR-Aware [59] | 39.22 3735 26.65 3128
EnGMHE 2038 26.78 2685 | 2413

TABLE XVII. COMPARATIVE RESULTS ON UCIQE 1 ON (UIEB-CH60)
DATASET, THE BEST RESULTS ARE DENOTED BY BOLDFACE AND THE
SECOND-RATED RESULTS ARE UNDERLINED

MTUR- WaterNe Ucolor IDMR Restorme
EnGMHE |\t o1 | 132 133] (73] ' 27]
0.64 0.5868 0.591 0.553 0613 | 0572
FUnIEGA PUGAN U-Shape | Semi-
N [74] [34] [75] uir [76] | UWENet77]
0556 0.566 0.56 0574 021

F. Ablation Study

This section describes three tests, as they effectively address
different aspects of the proposed model evaluation and
improvement.

The first test evaluated the sensitivity of the model to the
parametersy and t. As shown in Fig. 9, the model was applied
to the dark image (Left). The test was first conducted by running
EnGMHE multiple times on the input image while varying t and
keeping v fixed at 25. Subsequently, the sensitivity to y was
examined by varyingy while keeping t fixed at 2. As shown in
Fig. 9, the sensitivity plot of t indicates that t significantly
affects the model's performance and requires precise tuning to
achieve optimal enhancement results. In comparison, the flat
region in the y sensitivity plot suggests that y is less sensitive
within its optimal range, making it slightly more robust than .
To ensure better performance across datasets. Therefore, a
sample image set from each dataset was initially selected to
determine experimentally the most suitable parameter values for
this model.
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The second test (see Fig. 10) examined the incremental
addition ofthe components of EnGMHE. This is to demonstrate
how the following procedural steps enhance its performance.

Input Image

a

Sensitivity to (t) Sensitivity to (y)

Fig. 9. Sensitivity to T and y parameters.

Image after applying GHE. (NIQE:
3.2314)

Imageafter applying GHE, GMHE,
and denoising, respectively.

(NIQE: 2.85)

Image after applying GHE and
GMHE. (NIQE: 2.9981)
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Input Image Denoise/GHE/GMHE GMHE/GHE/Denoise
NIQE: 6.97 | SSIM: NIQE: 5.23 | SSIM: NIQE: 3.53 | SSIM:
0.24 0.69

GMHE/Denoise/GHE | GHE/Denoise/GMHE GHE/(E’HMGIESQ%‘;“‘““
NIQE: 4.60 | SSIM: NIQE: 3.50 | SSIM: NIQE: 3.48 | SSIM:
0.69 0.81 0.84

Fig. 11. Impact of procedural step order on image quality.

G. Limitations and Areas for Improvement

Fig. 12 highlights a potential limitation of EnGMHE in terms
of color fidelity when compared to other enhancement methods.
Although EnGMHE performs effectively in recovering fine
details and improving text clarity, it may introduce slight
oversaturation and color shifts when compared to the ground
truth. Although this could be considered a weakness in terms of
color fidelity, it may be advantageous in certain applications,
such as text and object recognition, where clarity and detail
preservation are often more important than strict closeness to a
poor-quality ground truth.

Input Image Ground Truth

Input Image

Fig. 10. The impact of the gradual addition of ENGMHE components. The
input image extracted from the LOLi_Phone dataset [40].

The third test examined the sequence of enhancement steps
and emphasized the importance of workflow design. It was
applied acrossmultiple datasets, and the proposed step sequence
consistently produced the best results. For example, Fig. 11
illustrates how varying the order of steps in the enhancement
workflow affected image quality, evaluated using NIQE and
SSIM metrics. The input image exhibited low visibility and poor
structuralsimilarity, as reflected by its high NIQE and low SSIM
scores. Among the tested configurations, the sequence GHE —
GMHE — Denoise (EnGMHE) achieved the optimal balance
between perceptual quality and structural similarity, recording
the lowest NIQE (3.48) and the highest SSIM (0.84). This
demonstrates that beginning with GHE, followed by GMHE,
and concluding with denoising effectively preserved fine details
and maintained natural image quality.

Ground Truth

£

o HEs

EnGMHE

Pl

Ground Truth
|

Input Image

Input Image Ground Truth EnGMHE

I

Input Image Ground Truth EnGMHE

ZeroDCE[80]

Fig. 12. Comparison of enhancement methods against the ground truth.
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V. CONCLUSION

This study addresses the challenge of low-light image
enhancement, considering the presence of noise in corrupted
images. To tackle this problem, an effective joint low-light
enhancement and denoising model, termed EnGMHE, is
proposed. The model introduces a GHE-based technique
combined with traditional GMHE to enhance image contrastand
brightness. This enhancement stage is followed by a pretrained
deep neural network for noise suppression, resulting in
improved overall visual quality. EnGMHE effectively preserves
fine details and produces visually appealing contrastand color
distributions. Both qualitative and quantitative evaluations
confirm its effectiveness, demonstrating superior performance
compared to state-of-the-art methods.

REFERENCES

[1] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and K. E.
Muller, “Contrast-limited adaptive histogram equalization: speed and
effectiveness,” in Proceedings of'the First Conference on Visualization in
Biomedical Computing, IEEE Comput. Soc. Press, 1990, pp. 337-345,
doi: 10.1109/VBC.1990.109340.

[2] X. Guo, Y. Li, and H. Ling, “LIME: low-light image enhancement via
illumination map estimation,” IEEE Trans. Image Process., vol. 26,n0. 2,
pp- 982-993, February 2017, doi: 10.1109/TIP.2016.2639450.

[3] C.Wei, W. Wang, W. Yang, andJ. Liu, “Deep retinex decomposition for
low-light enhancement,” in British Machine Vision Conference, British
Machine Vision Association, 2018.

[4] X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, “A weighted
variational model for simultaneous reflectance and illumination
estimation,” in 2016 IEEE Conference on Computer Vision and Pattem
Recognition (CVPR), IEEE, June 2016, pp. 2782-2790, doi:
10.1109/CVPR.2016.304.

[S] M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-
light image enhancement via robust retinex model,” IEEE Trans. Image
Process., vol. 27, no. 6, pp. 2828-2841, June 2018, doi:
10.1109/TIP.2018.2810539.

[6] X. Ren, M. Li, W.-H. Cheng, and J. Liu, “Joint enhancement and
denoising method via sequential decomposition,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, May
2018, pp. 1-5,doi: 10.1109/ISCAS.2018.8351427.

[7] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for
bridging the gap between color images and the human observation of
scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965-976, July
1997, doi: 10.1109/83.597272..

[8] X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding, and J. Paisley, “A fusion-
based enhancingmethod for weakly illuminated images,” Signal Process.,
vol. 129,pp. 82-96, December 2016, doi: 10.1016/j.sigpro.2016.05.031.

[9]1 J. Tan, T. Zhang, L. Zhao, D. Huang, and Z. Zhang, “Low-light image
enhancement with geometrical sparse representation,” Appl. Intell.,, vol.
53,n0.9,pp. 11019-11033,May 2023,doi: 10.1007/s10489-022-04013-
1.

[10] R. I. Zaghloul and H. Hiary, “A fast single image fog removal method
using geometric mean histogram equalization,” Int. J. Image Graph., vol.
21,10.01,p.2150001,January 2021, doi: 10.1142/S0219467821500017.

[11] J. Li, J. Li, F. Fang, F. Li, and G. Zhang, “Luminance-aware pyramid
network for low-light image enhancement,” IEEE Trans. Multimedia, vol
23,pp.3153-3165,2021, doi: 10.1109/TMM.2020.3021243.

[12] Y. Jiang et al, “Enlighten GAN: deep light enhancement without paired
supervision,” IEEE Transactions on Image Processing, vol. 30, pp. 2340—
2349,2021, doi: 10.1109/TIP.2021.3051462.

[13] H. Hiary, R. Zaghloul, A. Al-Adwan, and M. B. Al-Zoubi, “Image
contrast enhancement using geometric mean filter,” Signal Image Video
Process., vol. 11, no. 5, pp. 833—-840, July 2017, doi: 10.1007/s11760-
016-1029-8.

[14] H. Ibrahim and N. Pik Kong, “Brightness preserving dynamic histogram
equalization for image contrast enhancement,” IEEE Trans. Consumer

[15

[}

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[27]

[28

[}

[29]

[30]

[31]

Vol. 17, No. 1, 2026

Electron., vol. 53, no. 4, pp. 1752-1758, November 2007, doi:
10.1109/TCE.2007.44292380.

S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness preserved
enhancement algorithm for non-uniform illumination images,” IEEE
Trans. Image Process., vol. 22, no. 9, pp. 3538-3548, September 2013,
doi: 10.1109/T1P.2013.2261309.

K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: a deep autoencoder
approach to natural low-light image enhancement,” Pattern Recognit.,
vol. 61, pp. 650-662,2017, doi: 10.1016/j.patcog.2016.06.008.

W. Yang, S. Wang, Y. Fang, Y. Wang, and J. Liu, “From fidelity to
perceptual quality: a semi-supervised approach for low-light image
enhancement,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, June 2020, pp. 3060-3069, doi:
10.1109/CVPR42600.2020.00313.

F. Lv, F. Lu, J. Wu, and C. Lim, “Mbllen: low-light image/video
enhancement usingcnns,” in British Machine Vision Conference, British
Machine Vision Association, 2018, pp. 1-13.

Y. Wang, R. Wan, W. Yang, H. Li, L.-P. Chau, and A. Kot, “Low-light
image enhancement with normalizing flow,” in Proceedings of the AAAI
Conference on Atrtificial Intelligence, vol. 36, no. 3, pp. 2604-2612, June
2022, doi: 10.1609/aaai.v36i3.20162.

Z. Fu, Y. Yang, X. Tu, Y. Huang, X. Ding, and K.-K. Ma, “Learninga
simple low-light image enhancer from paired low-light instances,” in
2023 IEEE/CVF Conference on Computer Vision and Pattem
Recognition (CVPR), IEEE, June 2023, pp. 22252-22261, doi:
10.1109/CVPR52729.2023.02131.

S. W. Zamir, S. Arora, S. Khan, M. Hayat,F. S. Khan,and M.-H. Yang,
“Leaming enriched features for fast image restoration and enhancement,”
IEEE Trans. Pattern Anal. Mach. Intell,, vol. 45, no. 2, pp. 1934-1948,
2023, doi: 10.1109/TPAMI.2022.3167175.

L. Ma, T. Ma, R. Liu, X. Fan, and Z. Luo, “Toward fast, flexible, and
robust low-light image enhancement,” in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, 2022, pp. 5627-5636,
doi: 10.1109/CVPR52688.2022.00555.

C. Guo et al., “Zero-reference deep curve estimation for low-light image
enhancement,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, Jun. 2020, pp. 1777-1786.

C. Li, C. Guo, and C. C. Loy, “Leaming to enhance low-light image via
zero-reference deep curve estimation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 8, pp. 4225-4238,2022.

R. Liu, L. Ma, J. Zhang, X. Fan, and Z. Luo, “Retinex-inspired unrolling
with cooperative prior architecture search for low-light image
enhancement,” in 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 10556
10565.

L. Zhang, L. Zhang, X. Liu, Y. Shen, S. Zhang, and S. Zhao, “Zero-shot
restoration of back-lit images using deep internal leamning,” in
Proceedings of the 27th ACM International Conference on Multimedia,
New York, NY, USA: ACM, October. 2019, pp. 1623-1631.

S. W. Zamir, A. Arora, S. Khan,M. Hayat,F. S. Khan,and M.-H. Yang,
“Restormer: efficient transformer for high-resolution image restoration,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattem
Recognition (CVPR), IEEE, June. 2022, pp. 5718-5729.

E. Adhikarla et al, “Unified-EGformer: exposure guided lightweight
transformer for mixed-exposure image enhancement,” in Pattem
Recognition, A. Antonacopoulos, S. Chaudhuri, R. Chellappa, CL. Liu, S.
Bhattacharya, and U. Pal, Eds., ICPR 2024, Lecture Notes in Computer
Science, vol. 15329. Springer, Cham, 2025, pp. 260-275. doi:
10.1007/978-3-031-78110-0_17.

K. Yan, L. Liang, Z. Zheng, G. Wang, and Y. Yang, “Medium
transmission map matters for leaming to restore real-world underwater
images,” Applied Sciences, vol. 12,no. 11, p. 5420, May 2022.

M. Fan, W. Wang, W. Yang, and J. Liu, “Integrating semantic
segmentation and retinex model for low-light image enhancement,” in

Proceedings of the 28th ACM International Conference on Multimedia,
New York, NY, USA: ACM, Oct. 2020, pp. 2317-2325.

H. Wang, K. Xu, and R. W. H. Lau, “Local color distributions prior for
image enhancement,” in A. Avidan, G. Brostow, M. Ciss¢, G. M.
Farinella, and T. Hassner, Eds., Computer Vision — ECCV 2022, Lecture

546 |Page

www.ijacsa.thesai.org



[32

—

(33]

[36]

[37]

[38

[}

[39]

[40

=

[41

—

[42]

(43]

(44]

[45]

[46]

[47]

[48

=

(49]

[50]

[51]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Notes in Computer Science, vol. 13678.Cham: Springer, 2022,pp. 343 —
359.doi: 10.1007/978-3-031-19797-0_20.

C. Li et al.,, “An underwater image enhancement benchmark dataset and
beyond,” IEEE Trans. Image Process., vol. 29, pp. 4376-4389,2019, doi:
10.1109/TIP.2019.2955241.

C. Li, S. Anwar, J. Hou, R. Cong, C. Guo, and W. Ren, “Underwater
image enhancement via medium transmission-guided multi-color space
embedding,” IEEE Trans. Image Process., vol. 30, pp.4985-5000,2021,
doi: 10.1109/TIP.2021.3076367.

R. Cong et al, “PUGAN: physical model-guided underwater image
enhancement using GAN with dual-discriminators,” IEEE Trans. Image
Process., vol. 32, pp. 4472-4485,2023,doi: 10.1109/TIP.2023.3286263.

K. Zhang,W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: residual leaming of deep cnn forimage denoising,” IEEE Trans.
Image Process., vol. 26, no. 7, pp. 3142-3155, 2017, doi:
10.1109/TIP.2017.2662206.

Y. P. Loh and C. S. Chan, “Getting to know low-light images with the
exclusively dark dataset,” Comput. Vis. Image Underst., vol. 178, pp. 30—
42,2019, doi: 10.1016/j.cviu.2018.10.010.

C. Lee, C. Lee, and C.-S. Kim, “Contrast enhancement based on layered
difference representation of 2d histograms,” IEEE Trans. Image Process.,
vol. 22,n0. 12, pp. 5372-5384,2013, doi: 10.1109/TIP.2013.2284059.

V. Vonikakis, R. Kouskouridas, and A. Gasteratos, “On the evaluation of
illumination compensation algorithms,” Multimed. Tools Appl., vol. 77,
no. 8, pp.9211-9231,2018, doi: 10.1007/s11042-017-4783-x.

K. Ma,K. Zeng, and Z. Wang, “Perceptual quality assessment for multi-
exposure image fusion,” IEEE Trans. Image Process., vol. 24, no. 11, pp.
3345-3356,2015, doi: 10.1109/TIP.2015.2442920.

C.Lietal, “Low-light image and video enhancement usingdeep learning
a survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp.
9396-9416, 2022, doi: 10.1109/TPAMI.2021.3126387.

V. Bychkovsky, S. Paris, E. Chan,and F. Durand, “Learing photographic
global tonal adjustment with a database of input/output image pairs,” in
CVPR, IEEE, 2011, pp. 97-104, doi: 10.1109/CVPR.2011.5995413.

J. Cai, S. Gu, and L. Zhang, “Leaming a deep single image contrast
enhancer from multi-exposure images,” IEEE Trans. Image Process., vol.
27,n0.4, pp.2049-2062,2018, doi: 10.1109/TIP.2018.2794218.

Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, 2004, doi:
10.1109/TIP.2003.819861.

E. Cuevasand A. N. Rodriguez, Image processing and machine learning,
Volume 2: Advanced topics in image analysis and machine learning,
Chapman & Hall, 2024.

S. Ghazanfari, S. Garg, P. Krishnamurthy, F. Khorrami, and A. Araujo,
“R-LPIPS: anadversarially robust perceptualsimilarity metric,” in ICML
2023, Workshop on New Frontiers in Adversarial Machine Leaming,
unpublished.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
2018 IEEE/CVF Conference on Computer Vision and Pattem
Recognition, IEEE, 2018, pp. 586—595.doi: 10.1109/CVPR.2018.00068.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference
formula: implementation notes, supplementary test data, and
mathematical observations,” Color Res. Appl., vol. 30, no. 1, pp.21-30,
2005. doi: 10.1002/c01.20070.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “Blind/referenceless image
spatial quality evaluator,” in 2011 Conference Record of the Forty Fifth
Asilomar Conference on Signals, Systemsand Computers (ASILOMAR),
IEEE, 2011, pp. 723-727. doi: 10.1109/ACSSC.2011.6190099.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp-209-212,2013. doi: 10.1109/LSP.2012.2227726.

M. Yangand A. Sowmya, “An underwater color image quality evaluation
metric,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 6062-6071,
2015. doi: 10.1109/TIP.2015.2491020.

W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, andJ. Jiang, “URetinex-
Net: Retinex-based deep unfolding network for low-light image

[52]

[53

—

[54]

[55]

[56

[}

[57]

[58

=

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

[68]

Vol. 17, No. 1, 2026

enhancement,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1EEE, pp- 5891-5900. doi:
10.1109/CVPR52688.2022.00581.

Y. Weng, T. Zhou, Y. Li, and X. Qiu, “NAS-Unet: neural architecture
search for medicalimage segmentation,” [EEE Access, vol. 7, pp. 44247—
44257,2019, doi: 10.1109/ACCESS.2019.2908991.

J. Jiang, T. Ye, S. Chen, E. Chen, Y. Liu, S. Jun, J. Bai, and W. Chai,
“Five A+ network: you only need 9k parameters for underwater image
enhancement,” in 34th British Machine Vision Conference 2023,
Aberdeen, UK: BMVA, pp. 1-12.

Z.Fu, W. Wang, Y. Huang, X. Ding, and K.-K. Ma, “Uncertainty inspired
underwater image enhancement,” in Computer Vision — ECCV 2022, S.
Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds.,
Lecture Notes in Computer Science, vol. 13678, Springer, Cham, pp.465—
482.doi: 10.1007/978-3-031-19797-0_27.

H. Lu, J. Gong, Z. Liu, R. Lan, and X. Pan, “FDMLNet: a frequency-
division and multiscale learning network forenhancinglow-light image,”
Sensors, vol. 22, n0.21, p. 8244. doi: 10.3390/s22218244.

Y. Zhang, X. Guo, J. Ma, W. Liu, and J. Zhang, “Beyond brightening low-
light images,” Int.J. Comput. Vis., vol. 129, no. 4, pp. 1013-1037. doi:
10.1007/s11263-020-01407-x.

D. Makwana, G. Deshmukh, O. Susladkar, S. Mittal, and S. C. T. R,
“LIVENet: a novel network for real-world low-light image denoising and
enhancement,” in 2024 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), IEEE, pp. 5844-5853. doi:
10.1109/WACV57701.2024.00575.

Y. Zhang, J. Zhang, and X. Guo, “Kindling the darkness,” in Proceedings
of the 27th ACM International Conference on Multimedia, New York,
NY, USA: ACM, pp. 1632-1640. doi: 10.1145/3343031.3350926.

X. Xu, R. Wang, C.-W. Fu, and J. Jia, “SNR-aware low-light image
enhancement,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, pp. 17693-17703. doi:
10.1109/CVPR52688.2022.01719.

Y. P. Loh, X. Liang, and C. S. Chan, “Low-light image enhancement
using Gaussian process for features retrieval,” Signal Process. Image
Commun.,vol. 74, pp. 175-190,2019.doi: 10.1016/j.image.2019.02.001.

J.Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in 34th Conference on Neural Information Processing Systems (Neurl PS
2020), Vancouver, Canada.

S. Zheng and G. Gupta, “Semantic-guided zero-shot learning for low-light
image/video enhancement,” in 2022 IEEE/CVF Winter Conference on
Applications of Computer Vision Workshops (WACVW), Waikoloa, HI,
USA, pp. 581-590,2022, doi: 10.1109/WACVW54805.2022.00064.

S. Hao, X. Han, Y. Guo, X. Xu, and M. Wang, “Low-light image
enhancement with semi-decoupled decomposition,” TEEE Trans.
Multimedia, vol. 22, no. 12, pp. 3025-3038, 2020, doi:
10.1109/TMM.2020.2969790.

J. Xu et al.,, “STAR: a structure and texture aware retinex model,” IEEE
Trans. Image Process., vol. 29, pp. 5022-5037, 2020, doi:
10.1109/T1P.2020.2974060.

A. Zhu, L. Zhang, Y. Shen, Y. Ma, S. Zhao, and Y. Zhou, “Zero-shot
restoration of underexposed images via robust retinex decomposition,” in
2020 IEEE International Conference on Multimedia and Expo (ICME),
IEEE, pp. 1-6,2020, doi: 10.1109/ICME46284.2020.9102962.

W. Wang, C. Wei, W. Yang, and J. Liu, “GLADNet: low-light
enhancement network with global awareness,” in 2018 13th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2018), IEEE, pp. 751-755,2018, doi: 10.1109/FG.2018.00118.

C.-M. Fan, T.-J. Liu, and K.-H. Liu, “Half wavelet attention on M-Net+
for low-light image enhancement,” in 2022 IEEE International
Conference on Image Processing (ICIP), IEEE, Oct. 2022, pp. 3878—
3882, doi: 10.1109/ICIP46576.2022.9897503.

X. Wangand Q. Zheng, “Revitalize supervised low-light image enhancer.
learning source-free fast scene adaptation,” in Advanced Intelligent
Computing Technology and Applications, D. S. Huang, H. Chen, B. Li,
and Q. Zhang, Eds., Lecture Notes in Computer Science, vol. 15843,
Springer, Singapore, 2025, pp. 86-98, doi: 10.1007/978-981-96-9866-
0_8.

547 |Page

www.ijacsa.thesai.org



[69]

[70

=

[71]

[72]

[73]

[74]

[75]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Y. Wuet al, “Learning semantic-aware knowledge guidance forlow-light
image enhancement,” in 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,2023,
pp. 1662-1671,doi: 10.1109/CVPR52729.2023.00166.

J. Liang, Y. Xu, Y. Quan, B. Shi, and H. Ji, “Self-supervised low-light
image enhancement using discrepant untrained network priors,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 32, no.
11, pp. 7332-7345,Nov. 2022, doi: 10.1109/TCSVT.2022.3181781.

Q. Mu, Y. Guo, X. Ge, X. Wang, and Z. Li, “Local content-aware
enhancement for low-light images with non-uniform illumination,”
Computers, Materials & Continua, vol. 82, no. 3, pp. 4669-4690, 2025,
doi: 10.32604/cmc.2025.058495.

S. Lim and W. Kim, “DSLR: deep stacked Laplacian restorer for low-
light image enhancement,” IEEE Trans. Multimedia, vol. 23, pp. 4272—
4284,2021, doi: 10.1109/TMM.2020.3039361.

A. Sridhar, A. B. N., T. Radhakrishnan, and S. Tripathi, “Underwater
image enhancement usingimage dehazerand multiscale retinex,” in 2024
6th International Conference on Image, Video and Signal Processing,
New York, NY, USA: ACM, Mar. 2024, pp. 86-94, doi
10.1145/3655755.3655767.

M. J. Islam, Y. Xia, and J. Sattar, “Fast underwater image enhancement
for improved visual perception,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 3227-3234, Apr. 2020, doi: 10.1109/LRA.2020.2974710.

L. Peng, C. Zhu, and L. Bian, “U-shape transformer forunderwaterimage

enhancement,” IEEE Trans. Image Process., vol. 32, pp. 30663079,
2023, doi: 10.1109/TIP.2023.3276332.

[76]

[77]

[78]

[79]

(80]

Vol. 17, No. 1, 2026

S. Huang, K. Wang, H. Liu, J. Chen, and Y. Li, “Contrastive semi-
supervised learning for underwater image restoration via reliable bank,”
in 2023 IEEE/CVF Conference on Computer Vision and Pattem
Recognition (CVPR), IEEE, June. 2023, pp. 18145-18155, doi:
10.1109/CVPR52729.2023.01740.

S. Jayasurya, S. Geetha, A. S. Abdullah, and U. Mishra, “UWE-Net: deep
leaming framework for underwater image enhancement integrating
CBAM and Charbonnierloss,” Procedia Comput. Sci., vol. 258, pp.689—
698,2025, doi: 10.1016/j.procs.2025.04.302.

J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“SwinIR: image restoration using Swin transformer,” in 2021 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW),
Montreal, BC, Canada, 2021, pp- 1833-1844,  doi:
10.1109/ICCVW54120.2021.00210.

W. Dong, Y. Min, H. Zhou, and J. Chen, “Towards scale-aware low-light
enhancement via structure-guided transformer design,” in 2025
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 1EEE, 2025, pp. 1454-1461, doi:
10.1109/CVPRW67362.2025.00135.

J. Premasagarand S. Pelluri, “Low-light image enhancement for video
object detection using modified Zero DCE deep leaming model,” SSRG
Int. J. Electron. Commun. Eng,, vol. 11, no. 9, pp. 290-304, 2024, doi:
10.14445/23488549/1JECE-V1119P125.

548 |Page

www.ijacsa.thesai.org



