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Abstract—The rapid expansion of New Energy Vehicles (NEVs)
has increased the global NEV supply chains' exposure to diverse
and interconnected risks. Distributed production networks
frequently face disruptions driven by raw material volatility,
evolving environmental regulations, customs clearance
uncertainty, and geopolitical instability, underscoring the need for
effective early-warning systems. To address limitations in existing
studies that lack a consistent and interpretable structure for NEV -
specific hazards, this study proposes a hybrid NLP-based pipeline
for risk text classification and early-warning sender extraction. A
curated dataset of 120 NEV-related risk reports published
between 2023 and 2025 was collected from Chinese information
sources, pre-processed, and annotated according to a six-category
risk taxonomy. Classical machine-learning models, including
logistic regression, support vector machines, random forest, and
XGBoost, were trained using TF-IDF features, while a multilayer
perceptron and a BERT model were employed to capture
nonlinear patterns and contextual semantics. Classical models
were evaluated using five-fold cross-validation, and deep models
were assessed on a held-out test set. XGBoost achieved the best
classical performance, with accuracy and F1 scores of 0.826 and
0.766, respectively. BERT outperformed all baselines, reaching an
accuracy of 0.864 and an F1 score of 0.808. The proposed
framework demonstrates a modular and scalable approach.

Keywords—New Energy Vehicle (NEV); supply chain risk;
natural language processing (NLP); text classification; early
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I.  INTRODUCTION

The increasing globalization and digitalization of
manufacturingrelationshipshave rendered today's supply chains
highly interconnected yet structurally vulnerable. Recent events,
spanning from globalepidemicsto tradeissues, demonstrate that
a single event can cause significant disruptions. These
disruptions can occur across various tiers of the supply chain,
resulting in substantial financial losses, severe delays, and
reputational damage.

These vulnerabilities are particularly evident in the New
Energy Vehicle (NEV) supply chain, which heavily relies on
geographically dispersed upstream raw material sourcing, such
as lithium, nickel, and cobalt, complex battery-manufacturing
networks, and long-distance export logistics. As indicated by [1],

[2],[3], effectiveriskmanagement for supply chains hasbecome
a priority for both academic institutions and the industry.

Advances in artificial intelligence (Al) and natural language
processing (NLP) have made it increasingly feasible to extract
risk-related signals from unstructured textual data, including
corporate disclosures, industry analyses, trade bulletins, and
social media streams. These sources often contain early
indicators of disruptions within the NEV supply chain,
frequently preceding formal incident reports or official
announcements.

Yet, extracting reliable signals from such heterogeneous and
noisy text remains a substantial challenge. Rule-based systems
lack scalability and domainadaptability. Conventional machine-
learning approaches typically rely on bag-of-words or term
frequency—inverse document frequency (TF-IDF)
representations, which capture surface-level linguistic patterns
but fail to model contextual semantics or subtle cues embedded
in risk-related narratives.

Prior studies demonstrate that unstructured textual sources—
such as newsreports, regulatory disclosures,and onlinemedia—
often reveal early disruption signals before official incident
documentation becomes available. This highlights the growing
importance of automated, text-driven early-warning capabilities
in SCRM [4], [5], [6], [7].

These findings are particularly relevant for the NEV supply
chain, where risk-related narratives frequently span multiple
domains—including raw material volatility, environmental
regulation, cross-border logistics, and geopolitical exposure—
and thus rely heavily on contextual interpretation.

Meanwhile, the progression from traditional linear
classifiers to neural and transformer-based architectures has
consistently produced significant performance gains on noisy,
domain-specific text corpora, especially in settings where
contextual semantics and cross-sentence dependencies are
critical [8],[9], [10].

Anotherhurdlein the classification of risk-related texts is the
inherent class mismatch: rare past events, but highly impactful.
Most of the time, in textual data, exporters underestimate the
impact of sudden shocks in corpora.
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In such settings, macro-averaged F1 and precision—recall
metrics offer better performance, more accurate prediction, and
more reliable assessments than accuracy alone [11], [12].

It is especially important to address imbalance in the NEV
supply chain, where high-impact disruptions are infrequent but
operationally consequential.

To address these limitations, this study proposes a hybrid
analytical framework that employs text-based early warning
systems (EWS) for the NEV supply chain, leveraging classical
machine learning models and deep learning architecture.
Existing research rarely creates a cohesive and reproducible
model framework customized for NEV-specific risk stories,
especially one that connects to the text classification output. To
remediate this gap, the operational suggested framework
includes modular text procedures: preprocessing, feature
representation, model training, performance evaluation, and
interpretable visualization.

Classical models, including Logistic Regression, Support
Vector Machine (SVM), Random Forest (RF), and Extreme
Gradient Boosting (XGBoost) serve as transparent and
interpretable baselines, along with neural models like a
multilayer Perceptron, which is based on PyTorch, and a fine-
tuned model, Bidirectional Encoder Representations from
Transformers (BERT) model which allows learning the
contextually semantic, resilience to noisy, domain-specific NEV
risk expressions. Collectively, these components establish a
scalable and domain-adapted base to convert. Transforming
accessible risk signals from unregulated NEV vehicles into
useful early warning system insights.

II. METHODOLOGY

This study develops an integrated and modular analytical
framework for text-driven early warning in the New Energy
Vehicle (NEV) supply chain, with a focus on risk-related text
classification. The methodology is organizedinto five functional
components, each corresponding to a concrete implementation
module:

e Data preprocessing and exploratory textanalysis, which
clean and normalize NEV risk reports while
summarizing corpus characteristics.

e Feature representation via term frequency—inverse
document frequency (TF-IDF), which transforms
preprocessed documents into a sparse, interpretable
vector space for classical machine-learning models.

e Machine-learning benchmarking and optimization,
which tunes and compares linear, ensemble, and shallow
neural classifiers on the TF—IDF features.

e Deeplearningmodelsleveraging PyTorchand BERT are
employed to capture the contextual semantics and non -
linear patterns within domain-specific new energy
vehicle (NEV) risk narratives.

e Evaluation and visualization integrate quantitative
metrics withdiagnostic plotsto guarantee interpretability,
transparency, and early-warning applicability.
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A. Data Preprocessing and Exploratory Analysis

1) Linguistic normalization: All documents were
tokenized, lemmatized, converted to lowercase, and stripped of
stopwords to standardize linguistic forms. Rare-word filtering
was applied to remove extremely infrequent tokens that
contributednoise and sparsity. Chinese-language preprocessing
involved word segmentation based on the PKU standard,
implemented using Jieba. A domain-specific lexicon was
incorporated into the segmentation process to preserve
technical terms relevant to the study domain. Default tokenizer
parameters were used unless otherwise stated [13], [14].

2) Noise reduction and domain-specific retention: Non-
informative elements, including emojis, URLs, HTML tags,
and special characters, were removed or normalized. Domain-
specific expressions relevant to NEV supply-chain disruptions
(e.g., delay, shortage, price surge, shutdown) were explicitly
preserved to retain risk-relevant semantics.

3) Exploratory corpus profiling: Exploratory NLP
techniques were applied to summarize token-frequency
distributions and identify commonly co-occurring terms across
the corpus. These descriptive statistics provided an initial
understanding of the lexical characteristics of NEV risk
narratives and informed subsequent feature-engineering
decisions.

4) Keyword frequency visualization: A word-cloud
visualization was generated to highlight high-frequency risk-
related terms. Dominant keywords—suchas supply, disruption,
inventory, and delay—were used to obtain an overview of
salientlexical items related to operational, supply, and logistics
concerns within the NEV risk corpus.

5) Sentiment polarity overview: Sentiment polarity
distributions were computed to characterize the overall
emotional tone of the corpus. The analysis indicated that many
texts exhibited neutral-to-negative polarity, consistent with the
risk-orientednature of NEV supply-chain reports. This step was
used solely for contextual profiling rather than as model input.

B. Risk Category Definition and Annotation Scheme

To support supervised learning, the raw annotations initially
extracted from the dataset comprised ten fine-grained labels that
emerged across new energy vehicle (NEV)-related textual
reports. These labels include compliance barriers, logistics
disruptions, raw-material price fluctuations, ESG-related risks,
overseas-operations challenges, supplier concentration risks,
information-security issues, financial and inventory risks,
geopolitical constraints, and manufacturing/process disruptions.

Following established supply chain risk management
(SCRM) frameworks [15], [7], [4], these labels were
consolidated into six higher-level risk categories to enhance
semantic consistency, interpretability, and class balance. The
final taxonomy employed for model training is:

e Operational Risks: disruptions in manufacturing
processes, production instability, and overseas-
operations challenges.
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e Supply Risks: raw-material shortages, input-price
volatility, and supplier-concentration vulnerabilities.

e Logistics Risks: transportation delays, safety incidents,
and trade- or geopolitics-induced route instability.

e Information and Data Security Risks: information-
collaboration failures, data-security breaches, and risks
linked to digital integration.

e Financial and Inventory Risks: inventory imbalance,
financial exposure, and capital-flow constraints.

e Environmental / ESG/ Compliance Risks: sustainability
pressures, ESG-related disruptions, and certification or
regulatory compliance challenges.

All 120 NEV-related documents were manually assigned to
one of the six categories according to their dominant risk theme.
Ambiguous cases were re-examined to ensure consistency. This
consolidated schema retains the semantic coverage of the
original annotations while enabling a reproducible, literature-
grounded foundation for supervised text classification.

C. TF-IDF Feature Representation

After preprocessing, each document was transformed into a
numerical vector through term frequency-inverse document,
Frequency (TF-IDF) representation. TF—IDF was selected
because it provides clear mathematical weight that emphasizes
domain-salient risk terms whiledown-weighting highly frequent
but uninformative words. This property is very suitable for
sparse short to medium NEV supply-chain text.

The resulting TF-IDF matrix was constrained to the top
5000 vocabulary terms, selected through a combination of
corpus frequency statistics and information-gain ranking. This
dimensionality was empirically chosen to balance three
considerations:

e Retaining sufficient lexical diversity to differentiate the
six risk categories;

e Avoiding overfitting associated with excessively large
vocabularies; and

e Ensuring computational tractability for classical
machine-learning models that operate on high-
dimensional sparse inputs.

The last TF-IDF representation generated a sparse matrix of
N x 5000, where N denotes the preprocessed. To further reduce,
documents were carried out (120 in the curated NEV corpus).
Low-variance terms were removed with redundancy below
variance thresholding. These steps preserved information rich
and grants better stability and efficiency during training.

This representation provides an interpretable and feature
space for classical models which are computationally efficient
which will help to meaningfully benchmark its performance,
which is discussed later with contextual encoders.

D. Machine Learning Benchmarking and Optimization

To establish robust classical baselines, five supervised
machine-learning classifiers were implemented and evaluated
on the TF-IDF representations: Logistic Regression (LR),
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Support Vector Machine (SVM), Random Forest (RF), Extreme
Gradient Boosting (XGBoost), and a shallow Multilayer
Perceptron (MLP). This selection follows established best
practices in text classification literature [16], [17].

Logistic Regression and linear SVM provide strong baseline
performance on high-dimensional sparse vectors due to their
convex optimization objectives and calibrated linear decision
boundaries, whichhave beenshown to be effective for TF—IDF-
based text representations [16].

Random Forest and XGBoost serve as non-linear ensemble
models capable of capturing higher-order token interactions and
irregular decision surfaces. XGBoost, in particular, has
demonstrated state-of-the-art performance in structured and
semi-structured text settings through efficient regularized
gradient boosting [18].

A shallow MLP, implemented using PyTorch, provides a
lightweight neural baseline that introduces non-linear feature
composition while remaining computationally efficient. Prior
studies highlight shallow neural networks as effective
intermediate architectures between linear models and deep
encoders [17],[19].

Eachmodel was evaluated under a five-fold cross-validation
protocol, using macro-averaged F1 as the primary metric to
address class imbalanceacross the six NEV risk categories. This
procedure mitigates overfitting concemns given the limited
dataset size and ensures stable generalization estimates.

Hyperparameter optimization was conducted using a
combination of grid search for well-bounded parameter spaces
(e.g., LR regularization, SVM C-value) and randomized search
for larger spaces (e.g., XGBoost learning rate, MLP hidden-
layer widths). Such hybrid search strategies are widely used to
balance exploration efficiency and computational cost [20].

These classical models thus provide transparent,
interpretable, and computationally efficient baselines, forming a
meaningful point of comparison for the deep contextual models

[9], [21].
E. Deep Learning Models: PyTorch and BERT Fine-Tuning

To complement the classical machine-learning baselines,
two deep-learning architectures were implemented: a Py Torch-
based Multilayer Perceptron (MLP) trained on TF—IDF vectors,
and a fine-tuned Bidirectional Encoder Representations from
Transformers (BERT) model trained directly on the raw NEV
risk texts. These models introduce non-linear representational
capacity and contextual understanding beyond what can be
achieved with sparse lexical features.

1) PyTorch-based MLP: The baseline neural model
consists of two fully connected hidden layers with ReLU
activation, trained on the 5000-dimensional TF-IDF feature
vectors. This shallow architecture serves as a lightweight neural
baseline positioned between linear classifiers and transformer-
based encoders.

In addition, an ablation study evaluated the effects of
architectural variations, including increased layer depth, batch
normalization, and dropout regularization, to identify the final
configuration with improved generalization performance. Batch
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normalization and dropout were therefore applied only in the
selected ablation configurations rather than in the baseline
model.

2) BERT Fine-Tuning: Inorder to understand the semantics
in NEV supply-chain narratives, a pre-trained BERT-base
model [9] was fine-tuned on the 120-document corpus. BERT’s
bidirectional transformer architecture allows the model to [21]
represent subword-level semantics and long-range
dependencies that classical TF-IDF features cannot code. The
fine-tuning procedure followed standard transformers with a
learning rate of 2e-5, batch size of 16, and so on. 128 token
input sequence length and early stopping are used to avoid
overfittingoccurrencedue to the size of the small dataset. Here,
the procedure utilizes the Hugging Face transformer library
[22].

Despite the computational cost of fine-tuning, BERT offers
a contextual baseline which can differentiate subtle expressions
of risk—differences between rule disturbances, transport delays,
or industry operators. Although disruptions sometimes appear
lexically similar, themeanings of “Green” and “Sustainable” are
semantically different. To evaluate the robustness of the BERT-
based model, each experiment was repeated five times using
different random seeds. Performance metrics (macro-F1 and
PR-AUC) are reported as mean +standard deviation across runs.
This repeated evaluation mitigates the influence of stochastic
training effects and provides a more reliable assessment of
model stability under imbalanced data conditions [23].

Together, the MLP and BERT models extend the different
methods used in sparse and deep lexical modelling, encoding it
contextually, which allows comparison between classical and
modern representation-learning approaches.

F. Evaluation and Visualization Framework

Classical machine-learning models were additionally
evaluated using a five-fold cross-validation protocol. The
consistency of generalizations across data partitions, while
profound evaluation was done on learning models (MLP and
BERT). The standard held-out test split is harder to compute.
This combination provides a balanced and methodologically
consistent evaluation framework.

On the quantitative side, several established metrics were
applied.

Accuracy provides an overall measure of prediction and
correctness. In comparable text-classification studies, values
such as informal reference points are often used near 0.80. You
cannotrely only onaccuracy forthe evaluation of animbalanced
Macro-averagedF1. The primary metric usedin this study offers
equal weightings to assure imbalance robustness evaluation. In
prior text-classification research, generally High macro-F1
values are interpreted as reflective of improved discrimination
performance, particularly in the imbalanced data set [24].

ROC-AUC was included as a threshold-independent
measure of discriminability. Instead of relying on fixed cutoffs,
a higher AUC value means there is a wider margin. It makes the
metric fit for comparing model behavior of switching between
classifiers in imbalanced scenarios.
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Precision—Recall (PR) curves were included because they
are more informative than ROC curves under class imbalance.
Instead of relying on fixed thresholds, higher average precision
values indicate a more favorable balance between false-alarm
control and sensitivity. This makes PR analysis a
complementary perspective to ROC-AUC when evaluating
performance in imbalanced NEV risk categories.

Cross-validation variance was assessed using the standard
deviation of accuracy and macro-F1 across folds. Smaller
deviations reflect greater robustness across sampling partitions.

On the qualitative side, several diagnostic visualizations
were used to provide linguistic and structural insights into the
NEV risk-text corpus through sentiment polarity and word
frequency visualization.

Sentiment polarity distribution plots were generated to
examine the overall emotional tone of risk-related texts after
preprocessing. This provided a contextual understanding of the
corpus and helped characterize the general linguistic
environment in which the models operate.

Word-frequency visualizations, including word clouds and
term-frequency plots, offered a high-level overview of salient
lexical items and thematic patterns present in the corpus.

Together, these quantitative indicators and qualitative
diagnostic tools form a coherent evaluation framework for
assessing model performance in NEV supply-chain risk text
classification.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset Overview and Preprocessing

The compiled dataset included 120 New Energy Vehicle
(NEV)-related supply chain risk texts from Tencent News,
Baidu News, intelligence platforms for industries, and corporate
disclosures. Documents released from 2023 to 2025 describe
emerging disruptions, such as material shortages, hindrances
from authorities, and supply crises, which establish the
foundation for future classification experiments.

After preprocessing (as detailed in methodology), it becomes
clear thatthere is corpus-level characteristics with implications
for model performance.

First, the documents are predominantly shortto medium in
length. They are written in a news - brief - style concise manner,
like operational bulletins. This results in a relatively sparse
lexical area where a lot of sentences only have 1 or 2 explicit
risk cues. Such a compact textual structure increases the
preference for local tokens instead of extensive contextual
expressions. This is the part where TF-IDF-based effectiveness
baselines were observed in later experiments.

Second, sentiment-polarity analysis (see Fig. 1) shows a
strong concentration of neutral-to-negative tones. This is
consistent. Due to the risks involved in reporting, there are
expressions. Words like "decline", "shortage", "delay", and
"uncertainty" are present in the testimony of the fact rather than
the statement of the emotion. The sentiment distribution thus
acts as a backdrop. It indicates risk orientation instead of being

a predictive factor.
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Distribution of Sentiments in Risk Reports

40

neutral positive negative
Sentiment

Fig. 1. Distribution of sentiments in risk reports.

Third, keyword-frequency visualization (Fig. 2) reveals that
many of the most prominent terms—such as high, new, market,
and production—are generic and do not directly correspond to
the fine-grained risk semantics required for classification. More
informative risk-related terms, such as logistics, shortage,
inventory, shipment, price fluctuation, or supply disruption,
appear in the cloud but with less visual dominance due to the
small corpus size and uneven lexical distribution. This pattern
indicates that surface-level token frequency alone provides
limited discriminative power, reinforcing the need for models
capable of capturing contextual cues rather than relying solely
on word counts.

The visualization of keyword frequency shows that there are
high numbers ofnew productslaunched in themarket, and many
more. “Production” and “planning” are terms that do not referto
anything specifically. The classification requires well-defined
risk semantics. More detailed terms about risk will be logistics,
shortage, stock, delivery, cost change, or material halt. They
may appear in the cloud but with less visual prominence due to
the small corpus size and uneven lexical distribution.

This pattern shows that surface-level token frequency alone
offers limited ability to discriminate, which reinforces the need
for models able to seize contextual cues instead of just
depending on word counts.

Fourth, the distribution of the six consolidated risk
categories is naturallyimbalanced. Operational and Supplyrisks
occur more frequently, whereas ESG-related and Information-
Securityrisks are comparativelyrare. This imbalance influences
the behavior of classical classifiers, motivating the use of macro-
F1 scoring and stratified train—test splitting to ensure fair
evaluation across categories [12].

Taken together, these corpus characteristics clarify both the
strengths and limitations of the dataset: while the texts contain
genuine early-warming cues relevant to NEV supply-chain
disruptions, their brevity, lexical sparsity, and imbalance present
modelling challenges that justify the use of both classical and
contextual models.
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Fig.2. Risk event word cloud.

The relatively small dataset size inevitably limits
generalizationand increases sensitivity to train—test partitioning,
particularly for neural models, and the results should therefore
be interpreted as indicative rather than exhaustive.

Overall, these features of the corpus specify both the
strengths and limitations of the dataset. The text contains
authentic early-warning signs pertaining to NEV supply-chain
interference. These signs are short-lived, not complex, and not
balanced.

B. Baseline Model Comparison

To establish reference performance for NEV supply-chain
risk classification, five classical machine-learning models—
Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), Extreme Gradient Boosting (XGBoost),
and a shallow Multilayer Perceptron (MLP)—were trained on
the TF-IDF representations derived from the preprocessed
corpus. These models correspond directly to the baseline
configurations and together provide a diverse set of linear,
ensemble-based, and shallow neural inductive biases for
comparison.

Table I reports the baseline performance on the held-out test
split. Among the classical models, XGBoost achieved the
highest overall accuracy (0.826) and macro-F1 score (0.766).
This superior performancereflects itsability to model non-linear
interactions among sparse lexical features, which is particularly
beneficial given the heterogeneous and context-dependent
nature of NEV risk expressions. The shallow MLP produced the
second-best performance (F1 = 0.688), indicating that even
limited non-linear capacity contributes meaningful
improvements over linear models. In contrast, LR and SVM
showed comparable but lower performance (F1 = 0.628),
consistent with their reliance on linear decision boundaries that
may not fully capture the subtler distinctions between
operational, supply-related, and logistics-related risk narratives.

Random Forest achieved moderate but stable results,
performing in line with expectations for a bagging ensemble
trained in high-dimensional sparse input. Overall, the baseline
comparison suggests that models incorporating non-linear
structure, whether through boosting or shallow neural
transformation, are better suited to the lexical and semantic
characteristics of NEV risk texts. These results provide a
foundation for the deeper analyses that follow.
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TABLEI. BASELINE MODEL PERFORMANCE COMPARISON
Model Accuracy F1-score
XGBoost 0.826 0.766
MLP 0.783 0.688
Logistic Regression 0.739 0.628
SVM (Linear) 0.739 0.628
Random Forest 0.739 0.628

1) Micro-level ROC and PR analysis: To examine the
discriminative behavior of the baseline models beyond single-
point metrics, micro-averaged ROC and Precision—Recall (PR)
curves were generated. Micro-averaging aggregates true
positives, false positives, and false negatives across all six risk
categories, providing a threshold-independent view of overall
performance that is particularly suitable for small and
imbalanced datasets such as the NEV corpus.

Fig. 3 shows the ROC curves of the five baseline classifiers.
All models achieved high AUC values, reflecting the relative
ease with which they distinguish positive from negative class
assignments when threshold variation is allowed. The MLP
model attained the highest micro-AUC (0.982) on the held-out
test split, slightly exceeding XGBoost and the other classical
models. This advantage is consistent with the shallow neural
network’s capacity to capture limited non-linear patterns within
the TF—IDF space, even though its overall macro-F1 remains
below that of XGBoost. The strong ROC performance across
models also reflects the short, lexically concentrated nature of
the NEV texts, where many risk indicators appear in relatively
explicit forms.

ROC (micro) - Baseline

-

Fig.3. ROC curves of all baseline models.

Precision-Recall (PR) curves (see Fig. 4) offer a
supplementary diagnostic that is especially pertinent to
imbalanced classification. In this context, the Multilayer
Perceptron (MLP) once more attained the highest micro-
averaged value. The outcome demonstrated a precisionof 0.931,
suggesting relatively robust precision-recall trade-offs across
various threshold settings.

However, in the PR curves, the linear models are also
showing a more noticeable decline. This is expected, as their
ability to discriminate between different risk categories is
limited.
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Compared with ROC curves, PR curves reveal more
pronounced performance variation, underscoring the
significance of evaluating baseline classifiers using various
measures, focusing on complementary indicators, not just
accuracy.

PR (micro) - Baseline

—— Logistic_Regression (AP=0.889)

Fig. 4. PR curves of all baseline models.

Collectively, the receiveroperating characteristic (ROC) and
precision-recall (PR) analyses corroborate the numerical results
previously observed. Specifically, while multiple models attain
high separability when thresholds are adjusted, non-linear
architectures, especially boosted trees and shallow neural
networks, are more effective in dealing with ambiguous or
overlapping new energy vehicle (NEV) risk expressions.

2) Cross-validationandrobustness evaluation: To evaluate
the stability of the baseline classifiers beyond the reserved test
subset, five-fold cross-validation was conducted on all classical
models, with macro-averaged F1 serving as the primary
evaluation metric. Table II presents the meanaccuracy, mean
macro-F1, and the corresponding standard deviations across
folds, offering an understanding of each model's robustness
under different data partitions.

XGBoost achieved the highest mean accuracy of 0.820, the
best average macro-F1 score (0.764), and one of the smallest
variancesacross folds. This indicates that its strong performance
on the held-out test set does not result from just good sampling.
It shows generalization for NEV risk information. The stability
of XGBoost's ability to capture non-linear relationships is one
reason, such as in lexical engagement and controlled particle
motion. This is useful due to the heterogeneous and context-
dependent vocabulary of NEV risk descriptions.

The shallow MLPachievedsecond-best overall performance,
with a mean macro-F1 of 0.688 but moderately higher variance
compared with XGBoost. This variability is expected for neural
models trained on small datasets: although the MLP benefits
from limited non-linearity, its performance is more sensitive to
train—test partitioning and local token distributions.

Logistic Regression, SVM, and Random Forest produced
comparable results, with lower macro-F1 scores but relatively
stable variance across folds. Their consistency reflects the
simplicity of their hypothesis classes, though their limited
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representational capacity restricts their ability to distinguish
fine-grained NEV risk categories.

TABLE II. CROSS-VALIDATION PERFORMANCE OF BASELINE MODELS

Model Mean Std. Dev. | Mean Fl- 1 g4 Dey.
Accuracy score

Logistic 0.742 0.018 0.635 0.025

Regression

SVM (Linear) | 0.745 0.021 0.640 0.023

Random 0.754 0.030 0.662 0.028

Forest

XGBoost 0.820 0.017 0.764 0.019

MLP 0.783 0.025 0.688 0.027

Overall, the cross-validation results confirm the robustness
of XGBoost as the strongest classical baseline. Although the
MLP demonstrates superior ROC and PR performance on the
held-out split, XGBoost surpasses all classical models in terms
of macro-F1 and cross-validation stability, the primary
evaluation criteria in this study.

C. Model Optimization and Hyperparameter Tuning

To further enhance the performance of the baseline,
hyperparameter optimization was carried out for all classical
models by integrating grid search and randomized search
strategies, as detailed in the methodology. Table III presents a
summary of the key optimized parameters and the
corresponding enhancements in accuracy and macro-F1.

Across all models, hyperparameter optimization resulted in
quantifiable improvements. However, the extent and
characteristics of these enhancements varied according to
different model families. In the case of Logistic Regression and
linear Support Vector Machine (SVM), the adjustment of the
regularization strength (C) led to a moderate increase in the
macro-F1score(approximately +2%), indicatinga more optimal
balance between underfitting and overfitting within the sparse
TF-IDF feature space. These improvements are in line with the
convex property of linear classifiers, where the performance is
mainly determined by regularization rather than intricate
interactions among parameters.

The Random Forest algorithm demonstrated a more
significant enhancement subsequentto the adjustmentofthetree
quantity and maximum depth. This phenomenon reflects the
sensitivity of the ensemble model to the structural configuration
during the modelling of heterogeneous lexical patterns. The
increment in the macro-F1 value (+3.98%) implies that deeper
and more numerous trees canmore effectively capture the multi-
token co-occurrence patterns associated with new energy
vehicle (NEV) risk narratives.

XGBoost demonstrated meaningful yet relatively moderate
improvement aftertuning the learning rate, maximum depth, and
subsample ratio. The post-optimization performance (macro-F1
= 0.781)solidifies its status as the mostrobust classical model.
Even minor adjustments to regularization and tree depth
enhanced its capacity to handle subtle variations in new energy
vehicle (NEV) risk expressions while keeping low variance
across folds.
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The shallow MLP benefited from adjustments to hidden-
layer width and dropout rate, achieving a 2—3% gain in both
accuracy and macro-F1. These results highlight the importance
of modest architectural scaling and regularization in small-
sample neural text classification, confirming that limited
structural enhancements can improve generalization without
requiring deep models.

To enhance the performance of the baseline models,
hyperparameter tuning was conducted for all the classical
models using a combination of grid search and randomized
search. The key parameters that were tuned and how they
improved performance are presented in Table III.

Hyperparameter tuning improved all models, but the extent
and type of improvement varied among model families. The
simple Logistic Regressionand linear SVM performed similarly
in terms of macro-F1 scores. Their scores improved slightly
(+2%) as the value of 'C' increased, where 'C' represents the
regularization strength. Increasing 'C' helps prevent excessive
underfitting or overfitting in the sparse TF-IDF space. The
enhancements regarding the convex behavior of linear
classifiers indicate that the performance is mainly driven by
regularization rather than complex interactions between
parameters.

The performance of Random Forest greatly increased
whenever the number of trees and maximum depth were tuned.
This indicates that the structure of the ensemble is sensitive
when modelling heterogeneous lexical patterns. The upsurge in
macro-F1 (+3.98%) denotes that deeper and more trees are
better equipped to encapsulate multi-token co-occurrence
patterns pertinent to NEV risk narratives.

XGBoost was tuned to improve the learning rate, maximum
depth, and subsample ratio, which was meaningful. The results
displayed above indicate that our model outperformed the
classical model by a significant margin. We achieved this
possibility bymeans of VOC instructions and indicated the NEV
risk through macro-F1=0.781. There were also changes to the
width of the hidden layer and the dropout rate.

The shallow MLP gained a 2-3% increase in macro-F1 and
accuracy. The results reveal that themodest architectural scaling
and regularization approach in neural text classification for
small samplesworks well. Furthermore, evensmall architectural
scaling helps in improving generalization. Moreover, the
working of a deep model is not a prerequisite for better
performance.

These fine-tuning outcomes further corroborate the trends
identified in the baseline models. Even though several models
derive advantages from parameter adjustments, XGBoost
persists as the most robust classical classifier in general.
Random Forest and MLP exhibit moderate enhancements,
whereas linear models display foreseeable yet restricted
improvements owing to their constrained hypothesis classes.
These findings serve as the impetus for the more in-depth
architectural exploration presented in Deep Learning, where
neural models are investigated via ablation studies and
contrasted with contextual transformer-based learning.
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TABLE III. GRID SEARCH OPTIMIZATION RESULTS
Model Key Tuned Accuracy F1-score
ode Parameters (Before—After) | (Before— After)
Logistic C=153 0.739 — | 0.628 —
Regression 0.751(+1.62%) | 0.641(+2.07%)
SVM C=155 0.739 — | 0.628 —
(Linear) - 0.756(+2.30%) | 0.644(+2.55%)
L i :d;p%? 0.739 | 0.628 -
Forest oS0 T 0.762(+3.11%) | 0.653(+3.98%)
leaming rate = 0.1
— 0.05;max_depth [ 0.826 — | 0.766 —
XGBoost | _ 6,8 subsampk | 0.841(+1.82%) | 0.781(1.96%)
=0.8
MLP lid‘;es“@s‘ge - 123 0.783 — | 0.688 .
0y ropou 0.798(+1.92%) | 0.710(+3.20%)

D. Deep Learning

1) MLP performance and architectural ablation: To
evaluate the contribution of architectural components within
the neural baseline, a structured ablation analysis was
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conducted on the PyTorch MLP classifier. The ablation
experiments systematically varied three key factors—layer
depth, batch normalization, and dropout regularization—to
assess their individual and combined effects on classification
performance. All configurations were trained on the same TF—
IDF feature space and evaluated using the held-out test set to
ensure comparability.

Table IV presents the quantitative outcomes. The results
illustrate clear and consistent trends. First, adding batch
normalization improved model stability by standardizing
intermediate activations, helping the network converge more
smoothly during training. Second, incorporating dropout (0.3)
further enhanced generalization by limiting neuron co-
adaptation, an issue commonly amplified in small-sample text-
classification tasks suchas the NEV corpusused in this study.
Finally, increasing network depth from two to three hidden
layers produced the strongest performance gains (F1 = 0.729),
suggesting that moderate depth expansion provides additional
representational capacity to capture non-linear token co-
occurrence structures that linear models and shallower networks
cannot effectively learn.

TABLEIV. PYTORCH ABLATION RESULTS
Configuration Hidden Layers Dropout Batch Norm Activation Accuracy F1-score
Baseline 2 0.0 No ReLU 0.739 0.628
+ Batch Normalization 2 0.0 Yes ReLU 0.761 0.662
+ Dropout Regularization 2 0.3 Yes ReLU 0.783 0.701
+ Deeper Network 3 0.3 Yes ReLU 0.804 0.729
Taken together, these findings confirm that the MLP’s F1 .. -F1
; ; ; Relative Gain = —= IR % 100%
performance improvements are driven by architectural = 0 (1)

refinements that help balance model capacity and generalization:

batch normalization stabilizes training, dropout mitigates
overfitting, and deeper architectures allow more expressive
modeling of risk-related lexical patterns. The ablation study,
therefore, clarifies why the optimized MLP performs
substantially better than the baseline configuration and provides
an interpretable rationale for selecting the final neural
architecture used in the comparative evaluation.

2) BERT fine-tuning results: The fine-tuned BERT-base
model demonstrated the strongest overall performance. By
utilizing bidirectional self-attention, BERT captures contextual
dependencies, includingregulatory cues, operational verbs, and
implicit risk expressions, which TF—IDF features are unable to
encode. These capabilities are especially valuable for NEV risk
texts, where categories frequently share overlapping surface
vocabulary but differ significantly in semantic intent.

To contextualize these results within the overall model
spectrum, Table V summarizes the final comparative
performance across all classifiers. Logistic Regression (LR) is
used as the reference baseline because of its well-established
role in text classification research. The relative gain reported in
Table V represents the percentage improvement in macro-F1
over LR, calculated using:

LR

Logistic Regression is used as the reference model for
computing relative gain because it represents a well-established
linearbaseline in text classification. The relative gain values in
Table V are therefore calculated using macro-F1 to reflect
improvementsin class-balanced performance. Fine-tuned BERT
yields the largest relative gain (+28.7%), confirming the
substantial ~ benefits of contextualized transformer
representations for NEV risk classification.

TABLE V. FINAL COMPARATIVE PERFORMANCE SUMMARY
Model Accuracy | Fl-score l};l]aii:iﬁ;in

Logistic Regression | 0.739 0.628 -
SVM (Linear) 0.739 0.628 0.0%
Random Forest 0.739 0.628 0.0%
XGBoost 0.826 0.766 +21.9%
PyTorch MLP 0.804 0.729 +16.1%
Fine-tuned BERT 0.864 0.808 +28.7%

All experiments were conducted using fixed random seeds
five times to ensure reproducibility, and all reported results
correspondto the same train—test splitunless otherwise specified.
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IV. DiscussION

A. Summary of Key Findings

The empirical results presented reveal several important
pattemns regarding supply chain risk text classification. Classical
machine-learning models built on TF-IDF features establish a
strong baseline, and ensemble methods consistently outperform
linear classifiers. Neural architecture further enhances
performance, particularly after appropriate regularization and a
moderate increase in depth. Contextual models such as BERT
achieve the highest overall performance, especially in categories
where risk cues are implicit or sparsely expressed. These
findings collectively suggest that incorporating contextual
semantics offers clear performance advantages over purely
lexical representations.

B. Interpretation of Model Performance

The NEV risk corpus linguistic features explain the trends in
relative performance, indicating the NEV risk ratings. Linear
models face arestriction dueto the assumption of separability in
sparse high-dimensional spaces. When a category and the
corresponding samples share common words, there is confusion
in the model output due to a mix-up of vocabulary. Ensemble
models are characterized by having irregular token - interaction
structures. This helps them capture heterogeneous risk
expressions.

Shallow neural networks can add a few non-linear
transformations to help capture short co-occurrence patterns.
Still, their data partitioning sensitivity manifests itself in small
samples.

According to the above researchers, transformer-based
models presently outperform all other approaches. Their
bidirectional self-attention mechanism allows them to establish
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contextual and relational meaning beyond explicit keywords.
Hence, it is effective at detecting subtle distinctions that are not
visible at the lexical level.

C. Implications for Supply Chain Risk Detection

Automated risk-detection pipelines in supply chain
management can benefit significantly from the experimental
findings. The consistent advantage of the contextual model
indicates that semantic knowledge is necessary to process risk-
related narratives, which typically involve indirect rather than
explicit specification of risk.

Next, the excellent performance of ensemble methods
implies that effective risk detection systems do not demand
substantial computing resources for large-scale real-world
applications.

Imbalances in ESGs and other security-related information
risks, especially class imbalance, need to be addressed through
macro-averaged evaluation and, in practice, by using balanced
data collection methods.

Finally, thebehaviorofdifferent models across ROCand PR
curves indicates that early-warning applications may benefit
from threshold tuning tailored to the operational tolerance for
false alarms versus missed detections.

D. Proposed Output Framework for Practical Early-Warning
Application

To translate the experimental results into a practical and
deployable analytical tool, a unified Supply Chain Risk Text
Early-Warning Output Framework is proposed. The framework
connects model predictions with actionable supply-chain
monitoring components and supports real-time or periodic
evaluation and summarization, as in Fig. 5.

. Curated unstructured texts from news portals, corporate disclosures, industry bulletins, and
Input il monitoring platforms.

. Standardized preprocessing pipeline (tokenization, lemmatization, noise filtering, domain-
& . Classical models (e.g., XGBoost) provide fast, low-cost baseline predictions.

- . . Neural models (MLP) capture non-linear lexical patterns.
Multi Model Classification Layer ———P» « Transformer-based models (BERT) provide final context-aware risk categorization.

. A model-selection module allows organizations to choose between speed and accuracy

@ depending on overational needs.

Risk Signal Aggregation

e

disruptions.

. Probability distributions across the six risk categories are aggregated over time.
High-frequency or rapidly rising signals are flagged as emerging risk trends.
Cross-category co-occurrence (e.g., Supply + Logistics) is monitored to detect compound

v .

Short-term alerts: sudden spikes in risk mentions.

. . . Medium-term indicators: sustained upward movement in category -specific signals.
Early-Waming Indicators ———— . Cross-reference with external variables (e.g, commodity prices, policy changes) for
enhanced interpretability.
G . Input Heatmaps of risk intensity across categories.
. Time-series dashboards for monitoring trends.
Outputs for Decision Support ———> . Automated reports summarizing daily or weekly supply-chain vulnerabilities.
. Integration with procurement, logistics, or strategy systems for operational response.

Fig. 5. Proposed framework for supply chain risk analysis.
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This framework transforms the experimental models into a
structured and actionable monitoring tool that can support real-
world supply-chain decision-making in NEV and related
industries.

V. CONCLUSION

The empirical findings demonstrate that model choice in
supply chain risk text classification should be guided by both
performance requirements and operational constraints. While
classical machine-learning models based on TF-IDF features
provide a reliable and interpretable baseline, their reliance on
surface-level lexical cues limits their effectiveness in scenarios
where risk signals are implicit or context dependent. Ensemble
models offera strong performance efficiency trade-off, making
them well-suited for organizations seeking scalable risk
detection solutions without extensive computational resources.

Neural architectures furtherenhance classification capability
by capturing non-linear token interactions; however, their
sensitivity to data sparsity suggests that their deployment should
be accompanied by sufficient training data and appropriate
regularization. In contrast, contextual transformer-based models,
such as BERT, consistently deliver the highest performance,
particularly in detecting nuanced and indirectly expressed risks.
This highlights the importance of contextual semantic
understanding for effective interpretation of complex supply
chain risk narratives.

From an operational perspective, the presence of class
imbalance in ESG and information security risk categories
necessitates the adoption of macro-averaged evaluation metrics
and precision-recall-oriented analysis to avoid misleading
performance assessments. Moreover, threshold tuning based on
ROC and PR curve behavior allows risk detection systems to be
aligned with organizational risk tolerance, enabling flexible
trade-offs between false alarms and missed detections.
Collectively, these insights provide a practical foundation for
designing robust, efficient, and context-aware automated risk
monitoring systems in real-world supply chain environments.
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