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Abstract—The rapid expansion of New Energy Vehicles (NEVs) 

has increased the global NEV supply chains' exposure to diverse 

and interconnected risks. Distributed production networks 

frequently face disruptions driven by raw material volatility, 

evolving environmental regulations, customs clearance 

uncertainty, and geopolitical instability, underscoring the need for 

effective early-warning systems. To address limitations in existing 

studies that lack a consistent and interpretable structure for NEV-

specific hazards, this study proposes a hybrid NLP-based pipeline 

for risk text classification and early-warning sender extraction. A 

curated dataset of 120 NEV-related risk reports published 

between 2023 and 2025 was collected from Chinese information 

sources, pre-processed, and annotated according to a six-category 

risk taxonomy. Classical machine-learning models, including 

logistic regression, support vector machines, random forest, and 

XGBoost, were trained using TF-IDF features, while a multilayer 

perceptron and a BERT model were employed to capture 

nonlinear patterns and contextual semantics. Classical models 

were evaluated using five-fold cross-validation, and deep models 

were assessed on a held-out test set. XGBoost achieved the best 

classical performance, with accuracy and F1 scores of 0.826 and 

0.766, respectively. BERT outperformed all baselines, reaching an 

accuracy of 0.864 and an F1 score of 0.808. The proposed 

framework demonstrates a modular and scalable approach. 
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I. INTRODUCTION 

The increasing globalization and digitalization of 
manufacturing relationships have rendered today's supply chains 
highly interconnected yet structurally vulnerable. Recent events, 
spanning from global epidemics to trade issues, demonstrate that 
a single event can cause significant disruptions. These 
disruptions can occur across various tiers of the supply chain, 
resulting in substantial financial losses, severe delays, and 
reputational damage. 

These vulnerabilities are particularly evident in the New 
Energy Vehicle (NEV) supply chain, which heavily relies on 
geographically dispersed upstream raw material sourcing, such 
as lithium, nickel, and cobalt, complex battery-manufacturing 
networks, and long-distance export logistics. As indicated by [1], 

[2], [3], effective risk management for supply chains has become 
a priority for both academic institutions and the industry. 

Advances in artificial intelligence (AI) and natural language 
processing (NLP) have made it increasingly feasible to extract 
risk-related signals from unstructured textual data, including 
corporate disclosures, industry analyses, trade bulletins, and 
social media streams. These sources often contain early 
indicators of disruptions within the NEV supply chain, 
frequently preceding formal incident reports or official 
announcements. 

Yet, extracting reliable signals from such heterogeneous and 
noisy text remains a substantial challenge. Rule-based systems 
lack scalability and domain adaptability. Conventional machine-
learning approaches typically rely on bag-of-words or term 
frequency–inverse document frequency (TF–IDF) 
representations, which capture surface-level linguistic patterns 
but fail to model contextual semantics or subtle cues embedded 
in risk-related narratives. 

Prior studies demonstrate that unstructured textual sources—
such as news reports, regulatory disclosures, and online media—
often reveal early disruption signals before official incident 
documentation becomes available. This highlights the growing 
importance of automated, text-driven early-warning capabilities 
in SCRM [4], [5], [6], [7]. 

These findings are particularly relevant for the NEV supply 
chain, where risk-related narratives frequently span multiple 
domains—including raw material volatility, environmental 
regulation, cross-border logistics, and geopolitical exposure—
and thus rely heavily on contextual interpretation. 

Meanwhile, the progression from traditional linear 
classifiers to neural and transformer-based architectures has 
consistently produced significant performance gains on noisy, 
domain-specific text corpora, especially in settings where 
contextual semantics and cross-sentence dependencies are 
critical [8], [9], [10]. 

Another hurdle in the classification of risk-related texts is the 
inherent class mismatch: rare past events, but highly impactful. 
Most of the time, in textual data, exporters underestimate the 
impact of sudden shocks in corpora. 
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In such settings, macro-averaged F1 and precision–recall 
metrics offer better performance, more accurate prediction, and 
more reliable assessments than accuracy alone [11], [12]. 

It is especially important to address imbalance in the NEV 
supply chain, where high-impact disruptions are infrequent but 
operationally consequential. 

To address these limitations, this study proposes a hybrid 
analytical framework that employs text-based early warning 
systems (EWS) for the NEV supply chain, leveraging classical 
machine learning models and deep learning architecture. 
Existing research rarely creates a cohesive and reproducible 
model framework customized for NEV-specific risk stories, 
especially one that connects to the text classification output. To 
remediate this gap, the operational suggested framework 
includes modular text procedures: preprocessing, feature 
representation, model training, performance evaluation, and 
interpretable visualization. 

Classical models, including Logistic Regression, Support 
Vector Machine (SVM), Random Forest (RF), and Extreme 
Gradient Boosting (XGBoost) serve as transparent and 
interpretable baselines, along with neural models like a 
multilayer Perceptron, which is based on PyTorch, and a fine-
tuned model, Bidirectional Encoder Representations from 
Transformers (BERT) model which allows learning the 
contextually semantic, resilience to noisy, domain-specific NEV 
risk expressions. Collectively, these components establish a 
scalable and domain-adapted base to convert. Transforming 
accessible risk signals from unregulated NEV vehicles into 
useful early warning system insights. 

II. METHODOLOGY 

This study develops an integrated and modular analytical 
framework for text-driven early warning in the New Energy 
Vehicle (NEV) supply chain, with a focus on risk-related text 
classification. The methodology is organized into five functional 
components, each corresponding to a concrete implementation 
module: 

• Data preprocessing and exploratory text analysis, which 
clean and normalize NEV risk reports while 
summarizing corpus characteristics. 

• Feature representation via term frequency–inverse 
document frequency (TF–IDF), which transforms 
preprocessed documents into a sparse, interpretable 
vector space for classical machine-learning models. 

• Machine-learning benchmarking and optimization, 
which tunes and compares linear, ensemble, and shallow 
neural classifiers on the TF–IDF features. 

• Deep learning models leveraging PyTorch and BERT are 
employed to capture the contextual semantics and non -
linear patterns within domain-specific new energy 
vehicle (NEV) risk narratives. 

• Evaluation and visualization integrate quantitative 
metrics with diagnostic plots to guarantee interpretability, 
transparency, and early-warning applicability. 

A. Data Preprocessing and Exploratory Analysis 

1) Linguistic normalization: All documents were 

tokenized, lemmatized, converted to lowercase, and stripped of 

stopwords to standardize linguistic forms. Rare-word filtering 

was applied to remove extremely infrequent tokens that 

contributed noise and sparsity. Chinese-language preprocessing 

involved word segmentation based on the PKU standard, 

implemented using Jieba. A domain-specific lexicon was 

incorporated into the segmentation process to preserve 

technical terms relevant to the study domain. Default tokenizer 

parameters were used unless otherwise stated [13], [14]. 

2) Noise reduction and domain-specific retention: Non-

informative elements, including emojis, URLs, HTML tags, 

and special characters, were removed or normalized. Domain-

specific expressions relevant to NEV supply-chain disruptions 

(e.g., delay, shortage, price surge, shutdown) were explicitly 

preserved to retain risk-relevant semantics. 

3) Exploratory corpus profiling: Exploratory NLP 

techniques were applied to summarize token-frequency 

distributions and identify commonly co-occurring terms across 

the corpus. These descriptive statistics provided an initial 

understanding of the lexical characteristics of NEV risk 

narratives and informed subsequent feature-engineering 

decisions. 

4) Keyword frequency visualization: A word-cloud 

visualization was generated to highlight high-frequency risk-

related terms. Dominant keywords—such as supply, disruption, 

inventory, and delay—were used to obtain an overview of 

salient lexical items related to operational, supply, and logistics 

concerns within the NEV risk corpus. 

5) Sentiment polarity overview: Sentiment polarity 

distributions were computed to characterize the overall 

emotional tone of the corpus. The analysis indicated that many 

texts exhibited neutral-to-negative polarity, consistent with the 

risk-oriented nature of NEV supply-chain reports. This step was 

used solely for contextual profiling rather than as model input. 

B. Risk Category Definition and Annotation Scheme 

To support supervised learning, the raw annotations initially 
extracted from the dataset comprised ten fine-grained labels that 
emerged across new energy vehicle (NEV)-related textual 
reports. These labels include compliance barriers, logistics 
disruptions, raw-material price fluctuations, ESG-related risks, 
overseas-operations challenges, supplier concentration risks, 
information-security issues, financial and inventory risks, 
geopolitical constraints, and manufacturing/process disruptions. 

Following established supply chain risk management 
(SCRM) frameworks [15], [7], [4], these labels were 
consolidated into six higher-level risk categories to enhance 
semantic consistency, interpretability, and class balance. The 
final taxonomy employed for model training is: 

• Operational Risks: disruptions in manufacturing 
processes, production instability, and overseas-
operations challenges. 
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• Supply Risks: raw-material shortages, input-price 
volatility, and supplier-concentration vulnerabilities. 

• Logistics Risks: transportation delays, safety incidents, 
and trade- or geopolitics-induced route instability. 

• Information and Data Security Risks: information-
collaboration failures, data-security breaches, and risks 
linked to digital integration. 

• Financial and Inventory Risks: inventory imbalance, 
financial exposure, and capital-flow constraints. 

• Environmental / ESG / Compliance Risks: sustainability 
pressures, ESG-related disruptions, and certification or 
regulatory compliance challenges. 

All 120 NEV-related documents were manually assigned to 
one of the six categories according to their dominant risk theme. 
Ambiguous cases were re-examined to ensure consistency. This 
consolidated schema retains the semantic coverage of the 
original annotations while enabling a reproducible, literature-
grounded foundation for supervised text classification. 

C. TF-IDF Feature Representation 

After preprocessing, each document was transformed into a 
numerical vector through term frequency-inverse document, 
Frequency (TF–IDF) representation. TF–IDF was selected 
because it provides clear mathematical weight that emphasizes 
domain-salient risk terms while down-weighting highly frequent 
but uninformative words. This property is very suitable for 
sparse short to medium NEV supply-chain text. 

The resulting TF–IDF matrix was constrained to the top 
5000 vocabulary terms, selected through a combination of 
corpus frequency statistics and information-gain ranking. This 
dimensionality was empirically chosen to balance three 
considerations: 

• Retaining sufficient lexical diversity to differentiate the 
six risk categories; 

• Avoiding overfitting associated with excessively large 
vocabularies; and 

• Ensuring computational tractability for classical 
machine-learning models that operate on high-
dimensional sparse inputs. 

The last TF-IDF representation generated a sparse matrix of 
N x 5000, where N denotes the preprocessed. To further reduce, 
documents were carried out (120 in the curated NEV corpus). 
Low-variance terms were removed with redundancy below 
variance thresholding. These steps preserved information rich 
and grants better stability and efficiency during training. 

This representation provides an interpretable and feature 
space for classical models which are computationally efficient 
which will help to meaningfully benchmark its performance, 
which is discussed later with contextual encoders. 

D. Machine Learning Benchmarking and Optimization 

To establish robust classical baselines, five supervised 
machine-learning classifiers were implemented and evaluated 
on the TF–IDF representations: Logistic Regression (LR), 

Support Vector Machine (SVM), Random Forest (RF), Extreme 
Gradient Boosting (XGBoost), and a shallow Multilayer 
Perceptron (MLP). This selection follows established best 
practices in text classification literature [16], [17]. 

Logistic Regression and linear SVM provide strong baseline 
performance on high-dimensional sparse vectors due to their 
convex optimization objectives and calibrated linear decision 
boundaries, which have been shown to be effective for TF–IDF–
based text representations [16]. 

Random Forest and XGBoost serve as non-linear ensemble 
models capable of capturing higher-order token interactions and 
irregular decision surfaces. XGBoost, in particular, has 
demonstrated state-of-the-art performance in structured and 
semi-structured text settings through efficient regularized 
gradient boosting [18]. 

A shallow MLP, implemented using PyTorch, provides a 
lightweight neural baseline that introduces non-linear feature 
composition while remaining computationally efficient. Prior 
studies highlight shallow neural networks as effective 
intermediate architectures between linear models and deep 
encoders [17], [19]. 

Each model was evaluated under a five-fold cross-validation 
protocol, using macro-averaged F1 as the primary metric to 
address class imbalance across the six NEV risk categories. This 
procedure mitigates overfitting concerns given the limited 
dataset size and ensures stable generalization estimates. 

Hyperparameter optimization was conducted using a 
combination of grid search for well-bounded parameter spaces 
(e.g., LR regularization, SVM C-value) and randomized search 
for larger spaces (e.g., XGBoost learning rate, MLP hidden-
layer widths). Such hybrid search strategies are widely used to 
balance exploration efficiency and computational cost [20]. 

These classical models thus provide transparent, 
interpretable, and computationally efficient baselines, forming a 
meaningful point of comparison for the deep contextual models 
[9], [21]. 

E. Deep Learning Models: PyTorch and BERT Fine-Tuning 

To complement the classical machine-learning baselines, 
two deep-learning architectures were implemented: a PyTorch-
based Multilayer Perceptron (MLP) trained on TF–IDF vectors, 
and a fine-tuned Bidirectional Encoder Representations from 
Transformers (BERT) model trained directly on the raw NEV 
risk texts. These models introduce non-linear representational 
capacity and contextual understanding beyond what can be 
achieved with sparse lexical features. 

1) PyTorch-based MLP: The baseline neural model 

consists of two fully connected hidden layers with ReLU 

activation, trained on the 5000-dimensional TF–IDF feature 

vectors. This shallow architecture serves as a lightweight neural 

baseline positioned between linear classifiers and transformer-

based encoders. 

In addition, an ablation study evaluated the effects of 
architectural variations, including increased layer depth, batch 
normalization, and dropout regularization, to identify the final 
configuration with improved generalization performance. Batch 
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normalization and dropout were therefore applied only in the 
selected ablation configurations rather than in the baseline 
model. 

2) BERT Fine-Tuning: In order to understand the semantics 

in NEV supply-chain narratives, a pre-trained BERT-base 

model [9] was fine-tuned on the 120-document corpus. BERT’s 

bidirectional transformer architecture allows the model to [21] 

represent subword-level semantics and long-range 

dependencies that classical TF-IDF features cannot code. The 

fine-tuning procedure followed standard transformers with a 

learning rate of 2e-5, batch size of 16, and so on. 128 token 

input sequence length and early stopping are used to avoid 

overfitting occurrence due to the size of the small dataset. Here, 

the procedure utilizes the Hugging Face transformer library 

[22]. 

Despite the computational cost of fine-tuning, BERT offers 
a contextual baseline which can differentiate subtle expressions 
of risk–differences between rule disturbances, transport delays, 
or industry operators. Although disruptions sometimes appear 
lexically similar, the meanings of “Green” and “Sustainable” are 
semantically different. To evaluate the robustness of the BERT-
based model, each experiment was repeated five times using 
different random seeds. Performance metrics (macro-F1 and 
PR-AUC) are reported as mean ± standard deviation across runs. 
This repeated evaluation mitigates the influence of stochastic 
training effects and provides a more reliable assessment of 
model stability under imbalanced data conditions [23]. 

Together, the MLP and BERT models extend the different 
methods used in sparse and deep lexical modelling, encoding it 
contextually, which allows comparison between classical and 
modern representation-learning approaches. 

F. Evaluation and Visualization Framework 

Classical machine-learning models were additionally 
evaluated using a five-fold cross-validation protocol. The 
consistency of generalizations across data partitions, while 
profound evaluation was done on learning models (MLP and 
BERT). The standard held-out test split is harder to compute. 
This combination provides a balanced and methodologically 
consistent evaluation framework. 

On the quantitative side, several established metrics were 
applied. 

Accuracy provides an overall measure of prediction and 
correctness. In comparable text-classification studies, values 
such as informal reference points are often used near 0.80. You 
cannot rely only on accuracy for the evaluation of an imbalanced 
Macro-averaged F1. The primary metric used in this study offers 
equal weightings to assure imbalance robustness evaluation. In 
prior text-classification research, generally High macro-F1 
values are interpreted as reflective of improved discrimination 
performance, particularly in the imbalanced data set [24]. 

ROC–AUC was included as a threshold-independent 
measure of discriminability. Instead of relying on fixed cutoffs, 
a higher AUC value means there is a wider margin. It makes the 
metric fit for comparing model behavior of switching between 
classifiers in imbalanced scenarios. 

Precision–Recall (PR) curves were included because they 
are more informative than ROC curves under class imbalance. 
Instead of relying on fixed thresholds, higher average precision 
values indicate a more favorable balance between false-alarm 
control and sensitivity. This makes PR analysis a 
complementary perspective to ROC–AUC when evaluating 
performance in imbalanced NEV risk categories. 

Cross-validation variance was assessed using the standard 
deviation of accuracy and macro-F1 across folds. Smaller 
deviations reflect greater robustness across sampling partitions. 

On the qualitative side, several diagnostic visualizations 
were used to provide linguistic and structural insights into the 
NEV risk-text corpus through sentiment polarity and word 
frequency visualization. 

Sentiment polarity distribution plots were generated to 
examine the overall emotional tone of risk-related texts after 
preprocessing. This provided a contextual understanding of the 
corpus and helped characterize the general linguistic 
environment in which the models operate. 

Word-frequency visualizations, including word clouds and 
term-frequency plots, offered a high-level overview of salient 
lexical items and thematic patterns present in the corpus. 

Together, these quantitative indicators and qualitative 
diagnostic tools form a coherent evaluation framework for 
assessing model performance in NEV supply-chain risk text 
classification. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset Overview and Preprocessing 

The compiled dataset included 120 New Energy Vehicle 
(NEV)-related supply chain risk texts from Tencent News, 
Baidu News, intelligence platforms for industries, and corporate 
disclosures. Documents released from 2023 to 2025 describe 
emerging disruptions, such as material shortages, hindrances 
from authorities, and supply crises, which establish the 
foundation for future classification experiments. 

After preprocessing (as detailed in methodology), it becomes 
clear that there is corpus-level characteristics with implications 
for model performance. 

First, the documents are predominantly short to medium in 
length. They are written in a news - brief - style concise manner, 
like operational bulletins. This results in a relatively sparse 
lexical area where a lot of sentences only have 1 or 2 explicit 
risk cues. Such a compact textual structure increases the 
preference for local tokens instead of extensive contextual 
expressions. This is the part where TF-IDF-based effectiveness 
baselines were observed in later experiments. 

Second, sentiment-polarity analysis (see Fig. 1) shows a 
strong concentration of neutral-to-negative tones. This is 
consistent. Due to the risks involved in reporting, there are 
expressions. Words like "decline", "shortage", "delay", and 
"uncertainty" are present in the testimony of the fact rather than 
the statement of the emotion. The sentiment distribution thus 
acts as a backdrop. It indicates risk orientation instead of being 
a predictive factor. 
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Fig. 1. Distribution of sentiments in risk reports. 

Third, keyword-frequency visualization (Fig. 2) reveals that 
many of the most prominent terms—such as high, new, market, 
and production—are generic and do not directly correspond to 
the fine-grained risk semantics required for classification. More 
informative risk-related terms, such as logistics, shortage, 
inventory, shipment, price fluctuation, or supply disruption, 
appear in the cloud but with less visual dominance due to the 
small corpus size and uneven lexical distribution. This pattern 
indicates that surface-level token frequency alone provides 
limited discriminative power, reinforcing the need for models 
capable of capturing contextual cues rather than relying solely 
on word counts. 

The visualization of keyword frequency shows that there are 
high numbers of new products launched in the market, and many 
more. “Production” and “planning” are terms that do not refer to 
anything specifically. The classification requires well-defined 
risk semantics. More detailed terms about risk will be logistics, 
shortage, stock, delivery, cost change, or material halt. They 
may appear in the cloud but with less visual prominence due to 
the small corpus size and uneven lexical distribution. 

This pattern shows that surface-level token frequency alone 
offers limited ability to discriminate, which reinforces the need 
for models able to seize contextual cues instead of just 
depending on word counts. 

Fourth, the distribution of the six consolidated risk 
categories is naturally imbalanced. Operational and Supply risks 
occur more frequently, whereas ESG-related and Information-
Security risks are comparatively rare. This imbalance influences 
the behavior of classical classifiers, motivating the use of macro-
F1 scoring and stratified train–test splitting to ensure fair 
evaluation across categories [12]. 

Taken together, these corpus characteristics clarify both the 
strengths and limitations of the dataset: while the texts contain 
genuine early-warning cues relevant to NEV supply-chain 
disruptions, their brevity, lexical sparsity, and imbalance present 
modelling challenges that justify the use of both classical and 
contextual models. 

 
Fig. 2. Risk event word cloud. 

The relatively small dataset size inevitably limits 
generalization and increases sensitivity to train–test partitioning, 
particularly for neural models, and the results should therefore 
be interpreted as indicative rather than exhaustive. 

Overall, these features of the corpus specify both the 
strengths and limitations of the dataset. The text contains 
authentic early-warning signs pertaining to NEV supply-chain 
interference. These signs are short-lived, not complex, and not 
balanced. 

B. Baseline Model Comparison 

To establish reference performance for NEV supply-chain 
risk classification, five classical machine-learning models—
Logistic Regression (LR), Support Vector Machine (SVM), 
Random Forest (RF), Extreme Gradient Boosting (XGBoost), 
and a shallow Multilayer Perceptron (MLP)—were trained on 
the TF–IDF representations derived from the preprocessed 
corpus. These models correspond directly to the baseline 
configurations and together provide a diverse set of linear, 
ensemble-based, and shallow neural inductive biases for 
comparison. 

Table Ⅰ reports the baseline performance on the held-out test 
split. Among the classical models, XGBoost achieved the 
highest overall accuracy (0.826) and macro-F1 score (0.766). 
This superior performance reflects its ability to model non-linear 
interactions among sparse lexical features, which is particularly 
beneficial given the heterogeneous and context-dependent 
nature of NEV risk expressions. The shallow MLP produced the 
second-best performance (F1 = 0.688), indicating that even 
limited non-linear capacity contributes meaningful 
improvements over linear models. In contrast, LR and SVM 
showed comparable but lower performance (F1 = 0.628), 
consistent with their reliance on linear decision boundaries that 
may not fully capture the subtler distinctions between 
operational, supply-related, and logistics-related risk narratives. 

Random Forest achieved moderate but stable results, 
performing in line with expectations for a bagging ensemble 
trained in high-dimensional sparse input. Overall, the baseline 
comparison suggests that models incorporating non-linear 
structure, whether through boosting or shallow neural 
transformation, are better suited to the lexical and semantic 
characteristics of NEV risk texts. These results provide a 
foundation for the deeper analyses that follow. 
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TABLE I.  BASELINE MODEL PERFORMANCE COMPARISON 

Model Accuracy F1-score 

XGBoost 0.826 0.766 

MLP 0.783 0.688 

Logistic Regression 0.739 0.628 

SVM (Linear) 0.739 0.628 

Random Forest 0.739 0.628 

1) Micro-level ROC and PR analysis: To examine the 

discriminative behavior of the baseline models beyond single-

point metrics, micro-averaged ROC and Precision–Recall (PR) 

curves were generated. Micro-averaging aggregates true 

positives, false positives, and false negatives across all six risk 

categories, providing a threshold-independent view of overall 

performance that is particularly suitable for small and 

imbalanced datasets such as the NEV corpus. 

Fig. 3 shows the ROC curves of the five baseline classifiers. 
All models achieved high AUC values, reflecting the relative 
ease with which they distinguish positive from negative class 
assignments when threshold variation is allowed. The MLP 
model attained the highest micro-AUC (0.982) on the held-out 
test split, slightly exceeding XGBoost and the other classical 
models. This advantage is consistent with the shallow neural 
network’s capacity to capture limited non-linear patterns within 
the TF–IDF space, even though its overall macro-F1 remains 
below that of XGBoost. The strong ROC performance across 
models also reflects the short, lexically concentrated nature of 
the NEV texts, where many risk indicators appear in relatively 
explicit forms. 

 
Fig. 3. ROC curves of all baseline models. 

Precision-Recall (PR) curves (see Fig. 4) offer a 
supplementary diagnostic that is especially pertinent to 
imbalanced classification. In this context, the Multilayer 
Perceptron (MLP) once more attained the highest micro-
averaged value. The outcome demonstrated a precision of 0.931, 
suggesting relatively robust precision-recall trade-offs across 
various threshold settings. 

However, in the PR curves, the linear models are also 
showing a more noticeable decline. This is expected, as their 
ability to discriminate between different risk categories is 
limited. 

Compared with ROC curves, PR curves reveal more 
pronounced performance variation, underscoring the 
significance of evaluating baseline classifiers using various 
measures, focusing on complementary indicators, not just 
accuracy. 

 
Fig. 4. PR curves of all baseline models. 

Collectively, the receiver operating characteristic (ROC) and 
precision-recall (PR) analyses corroborate the numerical results 
previously observed. Specifically, while multiple models attain 
high separability when thresholds are adjusted, non-linear 
architectures, especially boosted trees and shallow neural 
networks, are more effective in dealing with ambiguous or 
overlapping new energy vehicle (NEV) risk expressions. 

2) Cross-validation and robustness evaluation: To evaluate 

the stability of the baseline classifiers beyond the reserved test 

subset, five-fold cross-validation was conducted on all classical 

models, with macro-averaged F1 serving as the primary 

evaluation metric. Table Ⅱ presents the mean accuracy, mean 

macro-F1, and the corresponding standard deviations across 

folds, offering an understanding of each model's robustness 

under different data partitions. 

XGBoost achieved the highest mean accuracy of 0.820, the 
best average macro-F1 score (0.764), and one of the smallest 
variances across folds. This indicates that its strong performance 
on the held-out test set does not result from just good sampling. 
It shows generalization for NEV risk information. The stability 
of XGBoost's ability to capture non-linear relationships is one 
reason, such as in lexical engagement and controlled particle 
motion. This is useful due to the heterogeneous and context-
dependent vocabulary of NEV risk descriptions. 

The shallow MLP achieved second-best overall performance, 
with a mean macro-F1 of 0.688 but moderately higher variance 
compared with XGBoost. This variability is expected for neural 
models trained on small datasets: although the MLP benefits 
from limited non-linearity, its performance is more sensitive to 
train–test partitioning and local token distributions. 

Logistic Regression, SVM, and Random Forest produced 
comparable results, with lower macro-F1 scores but relatively 
stable variance across folds. Their consistency reflects the 
simplicity of their hypothesis classes, though their limited 
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representational capacity restricts their ability to distinguish 
fine-grained NEV risk categories. 

TABLE II.  CROSS-VALIDATION PERFORMANCE OF BASELINE MODELS 

Model 
Mean 

Accuracy 
Std. Dev. 

Mean F1-

score 
Std. Dev. 

Logistic 

Regression 
0.742 0.018 0.635 0.025 

SVM (Linear) 0.745 0.021 0.640 0.023 

Random 

Forest 
0.754 0.030 0.662 0.028 

XGBoost 0.820 0.017 0.764 0.019 

MLP 0.783 0.025 0.688 0.027 

Overall, the cross-validation results confirm the robustness 
of XGBoost as the strongest classical baseline. Although the 
MLP demonstrates superior ROC and PR performance on the 
held-out split, XGBoost surpasses all classical models in terms 
of macro-F1 and cross-validation stability, the primary 
evaluation criteria in this study. 

C. Model Optimization and Hyperparameter Tuning 

To further enhance the performance of the baseline, 
hyperparameter optimization was carried out for all classical 
models by integrating grid search and randomized search 
strategies, as detailed in the methodology. Table Ⅲ presents a 
summary of the key optimized parameters and the 
corresponding enhancements in accuracy and macro-F1. 

Across all models, hyperparameter optimization resulted in 
quantifiable improvements. However, the extent and 
characteristics of these enhancements varied according to 
different model families. In the case of Logistic Regression and 
linear Support Vector Machine (SVM), the adjustment of the 
regularization strength (C) led to a moderate increase in the 
macro-F1 score (approximately +2%), indicating a more optimal 
balance between underfitting and overfitting within the sparse 
TF-IDF feature space. These improvements are in line with the 
convex property of linear classifiers, where the performance is 
mainly determined by regularization rather than intricate 
interactions among parameters. 

The Random Forest algorithm demonstrated a more 
significant enhancement subsequent to the adjustment of the tree 
quantity and maximum depth. This phenomenon reflects the 
sensitivity of the ensemble model to the structural configuration 
during the modelling of heterogeneous lexical patterns. The 
increment in the macro-F1 value (+3.98%) implies that deeper 
and more numerous trees can more effectively capture the multi-
token co-occurrence patterns associated with new energy 
vehicle (NEV) risk narratives. 

XGBoost demonstrated meaningful yet relatively moderate 
improvement after tuning the learning rate, maximum depth, and 
subsample ratio. The post-optimization performance (macro-F1 
= 0.781) solidifies its status as the most robust classical model. 
Even minor adjustments to regularization and tree depth 
enhanced its capacity to handle subtle variations in new energy 
vehicle (NEV) risk expressions while keeping low variance 
across folds. 

The shallow MLP benefited from adjustments to hidden-
layer width and dropout rate, achieving a 2–3% gain in both 
accuracy and macro-F1. These results highlight the importance 
of modest architectural scaling and regularization in small-
sample neural text classification, confirming that limited 
structural enhancements can improve generalization without 
requiring deep models. 

To enhance the performance of the baseline models, 
hyperparameter tuning was conducted for all the classical 
models using a combination of grid search and randomized 
search. The key parameters that were tuned and how they 
improved performance are presented in Table Ⅲ. 

Hyperparameter tuning improved all models, but the extent 
and type of improvement varied among model families. The 
simple Logistic Regression and linear SVM performed similarly 
in terms of macro-F1 scores. Their scores improved slightly 
(+2%) as the value of 'C' increased, where 'C' represents the 
regularization strength. Increasing 'C' helps prevent excessive 
underfitting or overfitting in the sparse TF-IDF space. The 
enhancements regarding the convex behavior of linear 
classifiers indicate that the performance is mainly driven by 
regularization rather than complex interactions between 
parameters. 

The performance of Random Forest greatly increased 
whenever the number of trees and maximum depth were tuned. 
This indicates that the structure of the ensemble is sensitive 
when modelling heterogeneous lexical patterns. The upsurge in 
macro-F1 (+3.98%) denotes that deeper and more trees are 
better equipped to encapsulate multi-token co-occurrence 
patterns pertinent to NEV risk narratives. 

XGBoost was tuned to improve the learning rate, maximum 
depth, and subsample ratio, which was meaningful. The results 
displayed above indicate that our model outperformed the 
classical model by a significant margin. We achieved this 
possibility by means of VOC instructions and indicated the NEV 
risk through macro-F1 = 0.781. There were also changes to the 
width of the hidden layer and the dropout rate. 

The shallow MLP gained a 2-3% increase in macro-F1 and 
accuracy. The results reveal that the modest architectural scaling 
and regularization approach in neural text classification for 
small samples works well. Furthermore, even small architectural 
scaling helps in improving generalization. Moreover, the 
working of a deep model is not a prerequisite for better 
performance. 

These fine-tuning outcomes further corroborate the trends 
identified in the baseline models. Even though several models 
derive advantages from parameter adjustments, XGBoost 
persists as the most robust classical classifier in general. 
Random Forest and MLP exhibit moderate enhancements, 
whereas linear models display foreseeable yet restricted 
improvements owing to their constrained hypothesis classes. 
These findings serve as the impetus for the more in-depth 
architectural exploration presented in Deep Learning, where 
neural models are investigated via ablation studies and 
contrasted with contextual transformer-based learning. 
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TABLE III.  GRID SEARCH OPTIMIZATION RESULTS 

Model 
Key Tuned 

Parameters 

Accuracy 

(Before→After) 

F1-score 

(Before→After) 

Logistic 

Regression 
C = 1 → 3 

0.739 → 

0.751(+1.62%) 

0.628 → 

0.641(+2.07%) 

SVM 

(Linear) 
C = 1 → 5 

0.739 → 

0.756(+2.30%) 

0.628 → 

0.644(+2.55%) 

Random 

Forest 

n_estimators = 100 

→ 300; max_depth 

= 10 → 20 

0.739 → 

0.762(+3.11%) 

0.628 → 

0.653(+3.98%) 

XGBoost 

learning_rate = 0.1 

→ 0.05; max_depth 

= 6 → 8; subsample 

= 0.8 

0.826 → 

0.841(+1.82%) 

0.766 → 

0.781(1.96%) 

MLP 

hidden_size = 128 

→ 256; dropout = 

0.3 

0.783 → 

0.798(+1.92%) 

0.688 → 

0.710(+3.20%) 

D. Deep Learning 

1) MLP performance and architectural ablation: To 

evaluate the contribution of architectural components within 

the neural baseline, a structured ablation analysis was 

conducted on the PyTorch MLP classifier. The ablation 

experiments systematically varied three key factors—layer 

depth, batch normalization, and dropout regularization—to 

assess their individual and combined effects on classification 

performance. All configurations were trained on the same TF–

IDF feature space and evaluated using the held-out test set to 

ensure comparability. 

Table Ⅳ presents the quantitative outcomes. The results 
illustrate clear and consistent trends. First, adding batch 
normalization improved model stability by standardizing 
intermediate activations, helping the network converge more 
smoothly during training. Second, incorporating dropout (0.3) 
further enhanced generalization by limiting neuron co-
adaptation, an issue commonly amplified in small-sample text-
classification tasks such as the NEV corpus used in this study. 
Finally, increasing network depth from two to three hidden 
layers produced the strongest performance gains (F1 = 0.729), 
suggesting that moderate depth expansion provides additional 
representational capacity to capture non-linear token co-
occurrence structures that linear models and shallower networks 
cannot effectively learn. 

TABLE IV.  PYTORCH ABLATION RESULTS 

Configuration Hidden Layers Dropout Batch Norm Activation Accuracy F1-score 

Baseline 2 0.0 No ReLU 0.739 0.628 

+ Batch Normalization 2 0.0 Yes ReLU 0.761 0.662 

+ Dropout Regularization 2 0.3 Yes ReLU 0.783 0.701 

+ Deeper Network 3 0.3 Yes ReLU 0.804 0.729 

 

Taken together, these findings confirm that the MLP’s 
performance improvements are driven by architectural 
refinements that help balance model capacity and generalization: 
batch normalization stabilizes training, dropout mitigates 
overfitting, and deeper architectures allow more expressive 
modeling of risk-related lexical patterns. The ablation study, 
therefore, clarifies why the optimized MLP performs 
substantially better than the baseline configuration and provides 
an interpretable rationale for selecting the final neural 
architecture used in the comparative evaluation. 

2) BERT fine-tuning results: The fine-tuned BERT-base 

model demonstrated the strongest overall performance. By 

utilizing bidirectional self-attention, BERT captures contextual 

dependencies, including regulatory cues, operational verbs, and 

implicit risk expressions, which TF–IDF features are unable to 

encode. These capabilities are especially valuable for NEV risk 

texts, where categories frequently share overlapping surface 

vocabulary but differ significantly in semantic intent. 

To contextualize these results within the overall model 
spectrum, Table Ⅴ summarizes the final comparative 
performance across all classifiers. Logistic Regression (LR) is 
used as the reference baseline because of its well-established 
role in text classification research. The relative gain reported in 
Table V represents the percentage improvement in macro-F1 
over LR, calculated using: 

 
model LR

LR

F1 -F1
Relative Gain 100%

F1
=   (1) 

Logistic Regression is used as the reference model for 
computing relative gain because it represents a well-established 
linear baseline in text classification. The relative gain values in 
Table Ⅴ are therefore calculated using macro-F1 to reflect 
improvements in class-balanced performance. Fine-tuned BERT 
yields the largest relative gain (+28.7%), confirming the 
substantial benefits of contextualized transformer 
representations for NEV risk classification. 

TABLE V.  FINAL COMPARATIVE PERFORMANCE SUMMARY 

Model Accuracy F1-score 
Relative Gain 

(F1 vs.LR）  

Logistic Regression 0.739 0.628 – 

SVM (Linear) 0.739 0.628 0.0% 

Random Forest 0.739 0.628 0.0% 

XGBoost 0.826 0.766 +21.9% 

PyTorch MLP 0.804 0.729 +16.1% 

Fine-tuned BERT 0.864 0.808 +28.7% 

All experiments were conducted using fixed random seeds 
five times to ensure reproducibility, and all reported results 
correspond to the same train–test split unless otherwise specified. 
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IV. DISCUSSION 

A. Summary of Key Findings 

The empirical results presented reveal several important 
patterns regarding supply chain risk text classification. Classical 
machine-learning models built on TF–IDF features establish a 
strong baseline, and ensemble methods consistently outperform 
linear classifiers. Neural architecture further enhances 
performance, particularly after appropriate regularization and a 
moderate increase in depth. Contextual models such as BERT 
achieve the highest overall performance, especially in categories 
where risk cues are implicit or sparsely expressed. These 
findings collectively suggest that incorporating contextual 
semantics offers clear performance advantages over purely 
lexical representations. 

B. Interpretation of Model Performance 

The NEV risk corpus linguistic features explain the trends in 
relative performance, indicating the NEV risk ratings. Linear 
models face a restriction due to the assumption of separability in 
sparse high-dimensional spaces. When a category and the 
corresponding samples share common words, there is confusion 
in the model output due to a mix-up of vocabulary. Ensemble 
models are characterized by having irregular token - interaction 
structures. This helps them capture heterogeneous risk 
expressions. 

Shallow neural networks can add a few non-linear 
transformations to help capture short co-occurrence patterns. 
Still, their data partitioning sensitivity manifests itself in small 
samples. 

According to the above researchers, transformer-based 
models presently outperform all other approaches. Their 
bidirectional self-attention mechanism allows them to establish 

contextual and relational meaning beyond explicit keywords. 
Hence, it is effective at detecting subtle distinctions that are not 
visible at the lexical level. 

C. Implications for Supply Chain Risk Detection 

Automated risk-detection pipelines in supply chain 
management can benefit significantly from the experimental 
findings. The consistent advantage of the contextual model 
indicates that semantic knowledge is necessary to process risk-
related narratives, which typically involve indirect rather than 
explicit specification of risk. 

Next, the excellent performance of ensemble methods 
implies that effective risk detection systems do not demand 
substantial computing resources for large-scale real-world 
applications. 

Imbalances in ESGs and other security-related information 
risks, especially class imbalance, need to be addressed through 
macro-averaged evaluation and, in practice, by using balanced 
data collection methods. 

Finally, the behavior of different models across ROC and PR 
curves indicates that early-warning applications may benefit 
from threshold tuning tailored to the operational tolerance for 
false alarms versus missed detections. 

D. Proposed Output Framework for Practical Early-Warning 

Application 

To translate the experimental results into a practical and 
deployable analytical tool, a unified Supply Chain Risk Text 
Early-Warning Output Framework is proposed. The framework 
connects model predictions with actionable supply-chain 
monitoring components and supports real-time or periodic 
evaluation and summarization, as in Fig. 5. 

 
Fig. 5. Proposed framework for supply chain risk analysis. 

Input 
• Curated unstructured texts from news portals, corporate disclosures, industry bulletins, and 

monitoring platforms. 

• Standardized preprocessing pipeline (tokenization, lemmatization, noise filtering, domain-

term retention). 

Multi Model Classification Layer 

• Classical models (e.g., XGBoost) provide fast, low-cost baseline predictions. 

• Neural models (MLP) capture non-linear lexical patterns. 

• Transformer-based models (BERT) provide final context-aware risk categorization. 

• A model-selection module allows organizations to choose between speed and accuracy 

depending on operational needs. 

Risk Signal Aggregation 

• Probability distributions across the six risk categories are aggregated over time. 

• High-frequency or rapidly rising signals are flagged as emerging risk trends. 

• Cross-category co-occurrence (e.g., Supply + Logistics) is monitored to detect compound 

disruptions. 

Early-Warning Indicators 

• Short-term alerts: sudden spikes in risk mentions. 

• Medium-term indicators: sustained upward movement in category-specific signals. 

• Cross-reference with external variables (e.g., commodity prices, policy changes) for 

enhanced interpretability. 

Outputs for Decision Support 

• Input Heatmaps of risk intensity across categories. 

• Time-series dashboards for monitoring trends. 

• Automated reports summarizing daily or weekly supply-chain vulnerabilities.  

• Integration with procurement, logistics, or strategy systems for operational response. 
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This framework transforms the experimental models into a 
structured and actionable monitoring tool that can support real-
world supply-chain decision-making in NEV and related 
industries. 

V. CONCLUSION 

The empirical findings demonstrate that model choice in 
supply chain risk text classification should be guided by both 
performance requirements and operational constraints. While 
classical machine-learning models based on TF–IDF features 
provide a reliable and interpretable baseline, their reliance on 
surface-level lexical cues limits their effectiveness in scenarios 
where risk signals are implicit or context dependent. Ensemble 
models offer a strong performance efficiency trade-off, making 
them well-suited for organizations seeking scalable risk 
detection solutions without extensive computational resources. 

Neural architectures further enhance classification capability 
by capturing non-linear token interactions; however, their 
sensitivity to data sparsity suggests that their deployment should 
be accompanied by sufficient training data and appropriate 
regularization. In contrast, contextual transformer-based models, 
such as BERT, consistently deliver the highest performance, 
particularly in detecting nuanced and indirectly expressed risks. 
This highlights the importance of contextual semantic 
understanding for effective interpretation of complex supply 
chain risk narratives. 

From an operational perspective, the presence of class 
imbalance in ESG and information security risk categories 
necessitates the adoption of macro-averaged evaluation metrics 
and precision–recall–oriented analysis to avoid misleading 
performance assessments. Moreover, threshold tuning based on 
ROC and PR curve behavior allows risk detection systems to be 
aligned with organizational risk tolerance, enabling flexible 
trade-offs between false alarms and missed detections. 
Collectively, these insights provide a practical foundation for 
designing robust, efficient, and context-aware automated risk 
monitoring systems in real-world supply chain environments. 
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