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Abstract—Automated waste classification using computer 

vision has become essential for improving environmental 

sustainability and reducing manual sorting effort. This study 

presents an enhanced waste image classification model based on 

EfficientNet-B0, trained using a two-stage transfer learning 

strategy that combines feature extraction and fine-tuning. The 

proposed approach aims to enhance classification accuracy while 

maintaining computational efficiency. Experimental evaluations 

conducted on a heterogeneous multi-class waste dataset 

demonstrate the superiority of the proposed method. The 

confusion matrix results indicate a high proportion of correct 

predictions across most categories, with only minor 

misclassifications among visually similar classes, such as metal 

and paper. The model's robustness is further validated through 5-

Fold Cross-Validation, which yields an average accuracy of 94.3% 

with a standard deviation of ±0.007, confirming consistent 

performance across data partitions. Compared with state-of-the-

art CNN architectures, including ResNet50 and DenseNet121, the 

proposed model achieves the highest accuracy while using the 

fewest parameters (4.38M), making it suitable for deployment in 

resource-constrained environments. Additionally, qualitative 

analysis using Grad-CAM confirms that the model’s decisions are 

explainable and based on relevant object features. These findings 

demonstrate that the proposed EfficientNet-B0 model constitutes 

a reliable, efficient, and interpretable solution for automated 

waste classification. The model is further evaluated using cross-

validation and explainable AI (Grad-CAM) to assess both 

performance stability and interpretability. 
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I. INTRODUCTION 

The challenges of household waste management have 
become increasingly urgent due to population growth, 
urbanization, and changes in public consumption patterns [1]. 
The continuous rise in global waste generation has placed 
significant pressure on modern waste management systems [2]. 
International reports indicate that municipal solid waste (MSW) 
production continues to increase annually and, if poorly 
managed, leads to soil, water, and air pollution, ultimately 
reducing the quality of life in both urban and peri-urban regions 
[3]. Traditional waste sorting practices still rely heavily on 
manual labor—a process that is time-consuming, costly, and 
prone to human error, exposing workers to hazardous materials 
and producing inconsistent sorting results [4]. These 

inefficiencies contribute directly to low recycling rates and the 
accumulation of improperly sorted waste in landfills, thereby 
hindering sustainable waste management efforts [5]. 
Household-based initiatives, such as waste banks, also face 
challenges related to limited labor capacity, inconsistent waste-
sorting behavior, and low public awareness [6]. Therefore, 
researchers have emphasized the urgent need to integrate 
technological advancements with community participation to 
improve waste handling efficiency. To address the limitations of 
manual sorting, recent studies have explored automated waste 
classification systems. Early approaches employed conventional 
machine learning techniques such as Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN), and Artificial Neural 
Networks (ANN). However, these models demonstrated limited 
adaptability to the complex, heterogeneous visual features found 
in waste images [7]. The subtle inter-class visual similarities—
for example, between plastic and glass, or cardboard and 
paper—make automated waste classification particularly 
challenging, as minor errors can propagate through subsequent 
waste processing stages [8-9]. This limitation underscores the 
importance of high classification accuracy, as such systems 
often function as the foundational layer of an automated waste 
management pipeline. 

The adoption of deep learning, particularly Convolutional 
Neural Networks (CNN), has significantly improved waste 
classification performance. Deep CNN architectures have 
demonstrated the ability to extract hierarchical visual patterns 
and deliver superior classification accuracy compared to 
traditional methods [10]. Several models have been applied to 
waste classification tasks, achieving promising results and 
enabling more reliable, scalable sorting pipelines [11]. Castro-
Bello et al. expanded the application of CNNs for multiclass 
MSW classification within sustainable waste management 
frameworks [12]. More recent research has evaluated multiple 
architectures—such as VGG16, ResNet50, DenseNet, and 
EfficientNet [11]. Among these, EfficientNet is recognized for 
its compound scaling mechanism, which offers an optimal 
balance between accuracy and computational efficiency [13]. 
Empirical studies have shown that EfficientNet-B0 achieves 
strong performance in waste classification tasks with fewer 
parameters and lower computational costs, making it attractive 
for real-world deployment [8-9][14]. These developments 
confirm that deep learning has significant potential to advance 
automated waste management systems. 
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Despite these advancements, several research gaps remain. 
Most existing studies prioritize improving global accuracy 
metrics without conducting detailed per-class performance 
analysis, resulting in limited insight into model weaknesses, 
especially for visually similar classes [8][10]. High-performing 
CNN architectures also tend to require substantial computational 
resources, making them less feasible for resource-constrained or 
real-time implementations [15-16]. Furthermore, the 
interpretability of CNN-based models remains limited, as most 
operate as black-box systems that do not reveal which regions 
of an image contribute to classification decisions [17–19]. 
Although explainability frameworks such as Gradient-weighted 
Class Activation Mapping (Grad-CAM) have been introduced, 
their integration is often supplementary and rarely combined 
with systematic per-class evaluation [20]. These shortcomings 
highlight the need for models that are not only accurate and 
computationally efficient but also interpretable and capable of 
revealing class-specific behavior. 

Based on these gaps, this study proposes a waste image 
classification framework using EfficientNet-B0, enhanced with 
per-class performance evaluation and Grad-CAM-based visual 
explainability [21-22]. EfficientNet-B0 is selected for its 
lightweight architecture and strong accuracy-to-parameter 
efficiency, making it suitable for practical deployment in real-
world environments [9] [13]. By integrating deep learning–
based classification with interpretability mechanisms, this 
research aims to deliver both quantitative performance gains and 
qualitative insights into model decision-making. 

The objectives of this research are as follows:  

1) To develop an EfficientNet-B0-based waste 

classification model capable of achieving high accuracy with 

efficient computational cost. 

2) To evaluate the model using per-class metrics 

(precision, recall, and F1 score) to identify low-performing 

waste categories and quantify the risk of misclassification, 

comparing it to the RestNet and DenseNet121 baselines. 

3) To integrate Grad-CAM to visualize and interpret the 

model’s attention regions, enhancing transparency and 

trustworthiness. 

4) To validate the model’s generalization capability 

through cross-validation and testing on diverse waste image 

samples that reflect real household conditions. 

Thus, this study distinguishes itself from previous work by 
combining high-accuracy classification with interpretable visual 
explanations and class-level performance profiling, offering a 
more comprehensive, practically oriented contribution to 
sustainable waste management systems. This study makes four 
main contributions. First, it proposes a systematic two-stage 
transfer learning strategy (controlled feature extraction followed 
by selective fine-tuning) and examines its potential to improve 
generalization stability through baseline comparison. Second, 
the study goes beyond overall accuracy by incorporating class-
level analysis using per-class precision, recall, F1-score, and 
confusion matrix interpretation to better understand 
misclassification patterns. Third, the model is evaluated using 
deployment-relevant criteria, including parameter efficiency 
and performance stability across 5-fold cross-validation. 

Finally, Grad-CAM is used not merely for visualization, but as 
a tool to examine whether the model focuses on semantically 
meaningful visual regions, supporting a more transparent 
assessment of model behavior. 

It should be clarified that this study does not propose a novel 
learning algorithm. Instead, the contribution of this work lies in 
the systematic integration and comprehensive evaluation of 
established techniques, including transfer learning, two-stage 
training, class weighting, cross-validation, and explainability, to 
construct a reliable, interpretable, and practically deployable 
waste classification framework. 

II. RESEARCH METHODOLOGY 

A. System Design 

This study develops a deep learning-based household waste 
image classification system, which aims to automatically and 
accurately identify waste material types. The primary 
architecture used is EfficientNet-B0, chosen for its efficient 
parameter management and its ability to achieve high accuracy 
through a compound scaling approach that simultaneously 
balances network depth, width, and resolution [13]. In this study, 
the system is also equipped with an Explainable Artificial 
Intelligence (XAI) mechanism using Grad-CAM, which 
highlights the image regions of interest to the model during 
prediction, ensuring that classification decisions are traceable 
and do not operate as a black box. 

In addition to using EfficientNet-B0 as the primary model, 
this study compares it with two other architectures, ResNet50 
and DenseNet121, to validate its superior performance. These 
two models were chosen because they are modern CNN 
architectures widely used in image classification, making them 
relevant benchmarks for evaluating the effectiveness of the 
proposed architecture. The waste image dataset used in this 
study was obtained from two publicly available data sources: the 
TrashNet Dataset and the Garbage Classification Dataset from 
Kaggle. These datasets were selected because they encompass a 
diverse range of household waste categories that align with the 
objectives of this research and have been widely used in 
previous deep-learning-based waste classification studies, 
enabling an objective comparison of model performance. All 
data used in this work are open access and freely downloadable, 
ensuring that this study complies with the reproducibility and 
traceability requirements of modern scientific publications. 

The combined dataset consists of 3,600 images with varying 
resolutions and lighting conditions. The data are grouped into 
six common categories of domestic waste, namely organic (750 
images), plastic (700 images), paper (620 images), glass (520 
images), metal (510 images), and cardboard (500 images). The 
distribution indicates a moderate class imbalance, with the 
largest ratio occurring between the organic and cardboard 
categories at 1.5:1. Such an imbalance may introduce bias 
during model training, as the model tends to learn more often 
from classes with more samples. To address this issue, class 
weighting is applied during training, ensuring that each class 
contributes proportionally to the learning process and preventing 
distortion in prediction accuracy. Before being processed by 
EfficientNet-B0, all images underwent several preprocessing 
steps, including resizing to 224 × 224 pixels to match 
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EfficientNet’s standard input dimensions, pixel value 
normalization to the range [0–1] to improve weight update 
stability during training, and conversion of class labels into one-
hot encoding to support the multiclass classification scheme. 
The dataset was then partitioned using stratified splitting into 
70% for training, 20% for validation, and 10% for testing. 
Stratification was chosen to maintain proportional class 
distribution within each subset, ensuring consistent data 
representation throughout training, validation, and evaluation. 
An example of the dataset used can be seen in Fig. 1 below: 

 

Fig. 1. Example images from the TrashNet dataset and the garbage 

classification dataset from Kaggle. 

With these characteristics, the dataset used in this study is 
not only relevant to the household waste segregation context but 
also sufficiently complex, making it a valid benchmark for 
evaluating the performance of the EfficientNet-B0 classification 
model enriched with explainable AI support. Augmentation was 
then applied to increase visual variation and prevent overfitting. 
The augmentation techniques applied included: rotation (0–
20°), 10% zoom, horizontal flip, width shift, height shift, and 
rescaling. Transformations were applied randomly to each 
training batch, making the model more robust to real-world 
conditions, such as differences in viewpoint, lighting, and 
background. 

B. Training Strategy 

The proposed training procedure employs a two-stage 
learning strategy to ensure model stability, controlled parameter 
adaptation, and improved generalization performance. This 
approach is particularly effective for transfer learning 
architectures such as EfficientNet-B0, where pretrained 
knowledge must be retained while enabling domain-specific 
feature refinement. 

Stage 1: Feature Extraction 

In the first stage, all convolutional layers of EfficientNet-B0 
are frozen, allowing the network to function solely as a feature 
extractor. Only the classification head is trained during this 
phase. 

Hyperparameter settings: 

• Optimizer: Adam 

• Learning Rate (LR): 1 × 10⁻³ 

• Epochs: 15 

• Batch Size: 32 

Objective: 

This step aligns the classification layers with the dataset 
characteristics while preserving the general visual 
representations learned from ImageNet. By preventing abrupt 
weight modifications, the model avoids catastrophic forgetting 
and achieves a stable initialization prior to fine-tuning. 

Stage 2: Fine-Tuning 

Once the classifier head has converged, the final 20 layers of 
EfficientNet-B0 are unfrozen to allow deeper adaptation. During 
this stage, both the backbone and classification layers are jointly 
optimized. 

Hyperparameter settings: 

• Optimizer: Adam 

• Learning Rate (LR): 1 × 10⁻⁵ (reduced to avoid 
destabilizing pretrained weights) 

• Additional Epochs: 15 

Objective: 

This stage progressively refines high-level feature 
representations, improving the model’s sensitivity to subtle 
intra-class variations and complex visual patterns. As a result, 
the model acquires domain-specific discriminative 
characteristics while maintaining pretrained robustness. 

Callback Mechanism 

To improve training efficiency and prevent overfitting, three 
callback functions are used. These functions are shown in 
Table I below: 

TABLE I.  CALLBACK MECHANISM 

Callback Purpose 

EarlyStopping (patience 

= 5) 

Stops training when validation performance 

does not improve 

ReduceLROnPlateau 
Automatically decreases LR when 

stagnation is detected 

ModelCheckpoint 
Stores the best-performing weights during 

training 

These mechanisms ensure a stable optimization trajectory 
and optimal convergence behavior throughout both stages. 

C. Performance Evaluation Method 

The model's performance was evaluated comprehensively 
using several metrics to assess accuracy, consistency, and 
generalization capability. The evaluation does not solely focus 
on global accuracy but also considers per-class prediction 
quality, training stability, and objective comparisons with 
baseline architectures. 

1) Primary metrics: The evaluation includes Accuracy as 

an indicator of overall model performance, along with 

Precision, Recall, and F1-Score to measure class-wise 

prediction quality, particularly important for imbalanced 

datasets. A Confusion Matrix and Classification Report are 

utilized to visualize misclassification patterns and provide 

numerical summaries for each category. Additionally, a 
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Generalization Test is performed on unseen test data to ensure 

the model can effectively recognize new samples beyond those 

used during training. 

2) k-fold cross-validation: To assess model stability, k-

Fold Cross-Validation is employed, in which the dataset is 

partitioned into k subsets and training is conducted iteratively 

so that each subset serves as a test fold once. Final performance 

metrics are reported as the mean and standard deviation across 

folds, indicating the model’s consistency and verifying that its 

performance is not dependent on a specific data split. 

3) Baseline evaluation: The proposed model’s 

performance is compared against well-established CNN 

architectures, including VGG16, ResNet50, and the pretrained 

EfficientNet-B0. The comparison employs identical evaluation 

metrics to ensure that any observed improvements are 

attributable to the proposed two-stage training strategy. The 

model is considered superior if it achieves higher accuracy and 

F1-Score, exhibits fewer misclassifications, and records a lower 

standard deviation across k-fold evaluations, indicating more 

stable learning behavior. 

D. Explainability with Grad-CAM 

To ensure that the model’s decision-making process can be 
interpreted transparently, this study employs the Gradient-
weighted Class Activation Mapping (Grad-CAM) method as an 
explainable AI approach. Grad-CAM is utilized to trace regions 
within an image that contribute most significantly to the model’s 
classification decisions. The Grad-CAM procedure involves 
several steps: 

1) computing the gradient of the predicted class with 

respect to the feature maps in the final layer of EfficientNet-B0, 

2) generating a heatmap that highlights salient regions or 

areas of interest used by the model, and 

3) superimposing the heatmap onto the original image, 

allowing the model’s attention patterns to be visualized clearly. 

Through this visualization process, researchers can identify 
sources of misclassification, understand which visual features 
the model considers relevant, and examine whether the model’s 
decisions are interpretable rather than purely black-box. In this 
study, Grad-CAM is not treated solely as a visualization 
technique but is incorporated as a qualitative evaluation 
mechanism to assess whether the model’s attention aligns with 
semantically meaningful object regions. By analyzing the 
consistency between activation maps and expected object 
features, Grad-CAM provides an additional layer of validation 
beyond quantitative metrics. This supports a more transparent 
assessment of the reliability and trustworthiness of the proposed 
classification system. 

III. RESULTS AND DISCUSSION 

A. Model Performance Evaluation 

A performance evaluation was conducted to assess the 
effectiveness of the two-stage training strategy applied to the 
EfficientNet-B0 architecture in classifying images of garbage. 
The training process began with a feature-extraction phase, 
during which all EfficientNet-B0 parameters were frozen and 

only the classification layer was trained using the Adam 
optimizer with a learning rate of 1e-3, 15 epochs, and a batch 
size of 32. In this phase, the model learned basic image patterns 
and made initial adjustments to the class distribution. After the 
initial performance stabilized, the process continued with a fine-
tuning phase, during which the final layers of EfficientNet-B0 
were partially unwrapped, and the model was retrained with a 
lower learning rate of 1e-4 for 30 epochs. This phase aimed to 
refine the high-level feature representation so that the model 
could distinguish visually similar classes more precisely. 

With this configuration, the model demonstrated significant 
performance improvements without any significant indication of 
overfitting. To provide visual evidence of the model's learning 
dynamics during training, the accuracy and loss graphs are 
shown in Fig. 2 below: 

 
(a) 

 
(b) 

Fig. 2. (a) Training and validation accuracy, (b) Training and validation loss 

for the EfficientNetB0 model 

According to Fig. 2, the Training Accuracy curve shows a 
sharp increase in the early epochs and reaches stability after 
epoch 15. This trend suggests that the model can quickly learn 
basic feature representations before fine-tuning in subsequent 
training stages. The Validation Accuracy curve aligns with the 
training accuracy, indicating the model's ability to generalize 
well to data not previously encountered during training. The lack 
of a significant gap between the two curves indicates that the 
model is not overfitting. 
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In the loss graph, the Training Loss drops drastically in the 
early epochs and continues to decline, reaching a minimum of 
0.2 at the end of training. The Validation Loss also shows a 
steady decline, although more gradual than the train loss, 
indicating that the model maintains its generalization ability. 
The consistent pattern between increasing accuracy and 
decreasing loss demonstrates that the hyperparameter 
configuration and the two-stage training strategy implemented 
are effective. 

Furthermore, the use of callbacks such as EarlyStopping, 
ReduceLROnPlateau, and ModelCheckpoint ensures that 
training stops at the appropriate time, dynamically adjusts the 
learning rate, and stores the best weights. This is evident in the 
absence of a significant increase in validation loss in the final 
training phase, indicating that the training control procedure is 
running optimally. 

B. Hyperparameters and Experiments 

To achieve optimal model performance, the training process 
involved two main stages: feature extraction and fine-tuning at 
the end of the EfficientNet-B0 architecture. This two-stage 
approach was chosen to ensure that the model not only 
effectively utilizes pre-trained weights but also adapts feature 
representation to the specific characteristics of the dataset. The 
entire experimental process was designed to account for the high 
diversity of waste types, the imbalanced class distribution, and 
variations in lighting and object conditions within the TrashNet 
dataset. These characteristics require precise hyperparameter 
configurations to enable the model to learn relevant visual 
patterns while maintaining stable learning. 

1) Main hyperparameters: The model was trained using a 

combination of hyperparameters, as shown in Table II below: 

TABLE II.  TRAINING CONFIGURATION AND HYPERPARAMETER SETTINGS 

Component Value Used 

Model Architecture EfficientNet-B0 

Optimizer (Stage-1) Adam 

Learning Rate (Stage-1) 1 × 10⁻⁴ 

Optimizer (Stage-2) Adam 

Learning Rate (Stage-2) 1 × 10⁻⁵ 

Loss Function Categorical Cross-Entropy 

Batch Size 32 

Epochs (Stage-1) 15 

Epochs (Stage-2) 15 

Total Epochs 30 

Callbacks 
EarlyStopping, ReduceLROnPlateau, 

ModelCheckpoint 

Class Weight Applied (to address dataset imbalance) 

Data Augmentation 
Rotation, Zoom, Shift, Flip, Brightness 

Adjustment 

2) Training stages: The training process was conducted in 

two main stages to ensure that EfficientNet-B0 not only 

benefited from its pretrained weights but also adapted to the 

dataset's variations in object appearance, lighting conditions, 

and class imbalance. 

a) Feature extraction: In the first stage, all layers of 

EfficientNet-B0 were frozen, with only the classification layers 
at the end of the network trained. The primary objective of this 
phase was to align the basic feature representations with the 
dataset's visual patterns without altering the pretrained core 

weights. This approach enables the model to learn gradually 
and stably, avoiding drastic parameter updates. The training 
results from this stage indicate that the model achieved a 
validation accuracy of approximately 90%, demonstrating that 
the initial feature representations were effectively learned and 
that the network had begun to recognize the visual structure of 

each class. 

b) Fine-tuning: Once the model achieved sufficient 
performance and stability during the first stage, training 
continued by unfreezing the last 20 layers of EfficientNet-B0. 

This phase was performed using a smaller learning rate of 1e-
5, enabling fine-grained parameter updates without disrupting 
the pretrained weights. Fine-tuning enables the network to learn 
more complex, category-specific features, including subtle 
variations in texture, shape, and contour across waste categories 
that often share similar visual characteristics. This stage 

significantly improved the model’s performance, increasing the 
validation accuracy to 93%–95%, and enhanced its 

generalization capabilities when tested on unseen images. 

3) Hyperparameter experiment results: Based on the 

experiments conducted across both training stages, the optimal 

combination of hyperparameters was determined as follows: 

• Adam + Learning Rate 1e-4 (Stage-1 – Feature 
Extraction) 

• Adam + Learning Rate 1e-5 (Stage-2 – Fine-Tuning) 

• Batch size: 32 

• Total epochs: 30 

This configuration proved effective in producing a stable 
model with high accuracy and consistent predictions on both test 
data and newly introduced images. Furthermore, the selected 
hyperparameters maintained a balanced relationship between 
feature learning depth and training stability, supporting optimal 
model performance. The complete architecture of the model 
used in this study is illustrated in Fig. 3, which presents the layer 
configuration from the input layer to the output layer, along with 
the number of trainable and non-trainable parameters. 

 

Fig. 3. Hyperparameters used. 
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As shown in Fig. 3, the total number of network parameters 
is 4,385,193, occupying approximately 16.73 MB of memory. 
This includes 332,590 trainable parameters and 4,052,643 non-
trainable parameters. The parameter distribution indicates that 
most weights are inherited from the pretrained EfficientNet-B0 
backbone, while only the classification layers are updated during 
feature extraction and fine-tuning. Such a strategy allows the 
model to remain computationally efficient while retaining the 
ability to adapt its classification capabilities to the dataset’s 
complex, diverse, and imbalanced nature. 

C. Classification Results 

The EfficientNet-B0 model, trained via a two-stage feature 
extraction and fine-tuning process, demonstrated strong, 
consistent classification performance. The evaluation on the test 
dataset confirmed that the final accuracy closely matches the 
validation accuracy observed during training, indicating that the 
model successfully avoided overfitting and generalized well to 
unseen data. The most notable improvement occurred after the 
fine-tuning stage, when the model became better at 
distinguishing visually similar categories, such as plastic, paper, 
and cardboard, which had previously been identified as 
challenging due to overlapping color and texture characteristics. 

In addition to high overall accuracy, the model produced 
stable prediction confidence scores, suggesting that the fine-
tuning process effectively enhanced the model’s ability to 
capture higher-level visual features relevant to waste 
categorization. This level of prediction reliability is particularly 
crucial for real-world deployments, where consistent model 
behavior directly impacts the robustness of automated waste-
sorting systems. 

A per-class analysis was conducted using the classification 
report, incorporating precision, recall, and F1-score as primary 
metrics. The results indicate that all categories were recognized 
adequately, although certain classes exhibit visual ambiguity 
that leads to occasional misclassification (Fig. 4). 

 

Fig. 4. Per-class evaluation results. 

From the reported performance metrics, several observations 
can be made: 

• Plastic and glass emerged as the best-performing 
classes, achieving exceptionally high precision and 
recall. Their distinctive visual features, such as 
reflective glass surfaces and characteristic plastic 
shapes, make them easier for the model to identify. 

• The trash class recorded the lowest recall (0.778), 
indicating that a portion of its samples were mistakenly 

assigned to other categories. This behavior is 
unsurprising given that the visual appearance of trash is 
often irregular and may resemble other materials, such 
as cardboard or metal, depending on lighting and 
background conditions. 

• Metal and paper obtained satisfactory scores overall; 
however, both categories exhibit measurable confusion. 
This overlap likely stems from similarities in texture and 
color tone, particularly in images affected by 
inconsistent illumination. 

Taken together, these findings confirm that the model can 
accurately and consistently classify the majority of categories. 
Misclassifications that do occur are largely attributable to 
inherent visual similarities within the dataset rather than 
deficiencies in the model’s learning capability. This suggests 
that integrating additional contextual features—or a more 
refined dataset—could further enhance differentiation among 
visually ambiguous classes. 

D. Confusion Matrix Analysis 

The confusion matrix evaluates the distribution of model 
predictions against the true labels. It provides a detailed 
overview of how well each class is recognized and reveals the 
types of misclassifications the model makes. As illustrated in 
Fig. 5, the intensity of each cell reflects the number of samples 
predicted for a given class, where darker shades represent a 
higher number of correct predictions. 

 

Fig. 5. Confusion matrix. 

Based on Fig. 5, several key observations can be made: 

• Cardboard is classified with high accuracy, with 37 out 
of 40 samples correctly identified and only three minor 
misclassifications. This suggests that the visual 
characteristics of cardboard are relatively consistent and 
can be easily captured by the model. 

• Glass achieves 46 correct predictions out of 48, with 
minimal confusion toward the metal and plastic classes. 
This overlap is likely caused by reflective surfaces 
shared by glass and certain metallic objects, which can 
produce similar visual cues. 

• Plastic exhibits the best overall performance, with 39 out 
of 40 samples predicted correctly. The distinct visual 
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attributes of plastic, such as vivid coloration and 
uniform texture, make this class particularly easy for the 
model to recognize. 

• Trash attains perfect precision but suffers from lower 
recall. Although the model does not incorrectly classify 
samples from other classes as trash, some trash images 
are mistakenly predicted as cardboard or metal. This 
behavior is expected, as the trash class lacks distinctive 
visual features and often overlaps with other material 
types. 

• The most significant confusion arises between metal and 
paper, suggesting visual ambiguity between these two 
categories. Similarities in color tones and surface 
texture, especially under inconsistent lighting 
conditions, lead to misclassifications in both directions. 

Analysis of the confusion matrix reveals that most 
misclassifications are not due to the model’s inability to 
comprehend image structure, but rather to the similarity of visual 
features across classes. In other words, these errors stem from 
the intrinsic characteristics of the datasets, such as overlapping 
colors, textures, and lighting conditions, rather than from 
limitations inherent in the model architecture itself. Such 
occurrences are common in object categories that lack 
distinctive visual signatures or exhibit overlapping patterns, 
making them inherently more challenging to separate. 

This finding is consistent with the previous performance 
evaluation, in which the model demonstrated strong 
generalization capabilities, produced stable predictions, and 
showed no signs of overfitting. Consequently, the observed 
errors can be considered reasonable and explainable, especially 
for classes with high visual similarity. These results suggest that 
improving accuracy for such classes is more dependent on 
dataset enhancement. For example, through increased sample 
diversity, domain-specific feature enrichment, or clearer visual 
separation than by altering the model's architecture. 

Similar conclusions have been reported in prior studies. 
Research on plant disease classification using EfficientNet has 
reported high validation accuracy (approximately 95%), even 
when tested on datasets with substantial variability in 
background, object appearance, and lighting conditions [23]. 
Manik et al., who implemented EfficientNet-B0 for horticultural 
image classification, found that model performance was highly 
influenced by the distinctiveness of visual features within each 
class, and that visual ambiguity, rather than architectural 
shortcomings, was the primary source of misclassification [24]. 
A comparable observation was made by Huang et al. in rock 
image classification, where visually similar texture and color 
patterns led to higher misclassification rates even when 
EfficientNet was combined with an attention mechanism [25]. 

Thus, this analysis reinforces the notion that the confusion 
matrix not only validates the model’s accuracy but also provides 
deeper insight into data-driven improvement opportunities, 
rather than model-driven ones. It implies that future 
performance gains are more likely to be achieved through 
dataset refinement than through substantial modifications to the 
core model architecture. 

E. k-Fold Cross-Validation 

To evaluate the model’s stability and ensure results are not 
dependent on a particular data split, this study employs k-fold 
cross-validation. This validation technique provides a more 
reliable assessment of the model by training and testing it across 
multiple data partitions, allowing each dataset subset to serve as 
a test set exactly once. 

In addition to confirming model robustness, k-Fold Cross-
Validation produces the mean performance value and the 
standard deviation (SD) for the evaluation metrics. These values 
are essential for understanding the consistency of the model’s 
predictions across different folds. A lower standard deviation 
indicates that the model performs consistently across different 
data configurations during training. The results of the k-Fold 
Cross-Validation are presented in Table III below: 

TABLE III.  RESULTS OF K-FOLD CROSS-VALIDATION 

Fold Accuracy Precision Recall F1-Score 

Fold-1 0.934 0.938 0.931 0.934 

Fold-2 0.947 0.951 0.943 0.946 

Fold-3 0.952 0.955 0.949 0.952 

Fold-4 0.938 0.941 0.935 0.938 

Fold-5 0.945 0.947 0.942 0.944 

Mean 0.943 0.946 0.940 0.943 

Std. Dev ±0.007 ±0.006 ±0.007 ±0.006 

Based on the table above, the average accuracy of 94.3% and 
a standard deviation of ±0.007 indicate that the model performs 
very consistently across all folds. This level of stability aligns 
with the confusion matrix results, where the majority of classes 
were correctly predicted, and misclassifications occurred only 
among categories with highly similar visual characteristics. 
Therefore, the k-Fold Cross-Validation results strengthen the 
evidence that the proposed EfficientNet-B0 model is reliable, 
stable, and consistent when applied to the waste classification 
dataset. 

F. Baseline Model Comparison 

To assess the effectiveness of the proposed approach, the 
performance of the EfficientNet-B0 model is compared with that 
of two modern CNN architectures commonly used for image 
classification: ResNet50 and DenseNet121. Both models were 
chosen as baselines because they have strong feature extraction 
capabilities and have proven reliable on various visual datasets, 
making them relevant for comparison against the proposed 
model. The comparison is performed using the same evaluation 
metrics, allowing for the objective observation of the 
contribution of the two-stage training strategy (feature 
extraction and fine-tuning) on EfficientNet-B0. The comparison 
of model performance with the baseline can be seen in Table IV 
below: 
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TABLE IV.  COMPARISON OF BASELINE MODEL PERFORMANCE 

Model Accuracy Precision Recall 
F1-

Score 

Parameter 

(M) 

ResNet50 0.912 0.917 0.909 0.912 25.6 

DenseNet121 0.928 0.931 0.923 0.926 7.98 

EfficientNet-

B0 
0.943 0.946 0.940 0.943 4.38 

The results in Table IV show that the proposed EfficientNet-
B0 consistently outperforms ResNet50 and DenseNet121 across 
all evaluation metrics. While ResNet50 has strong feature 
extraction capabilities, it is not sufficiently sensitive to subtle 
visual differences between classes, leading to lower 
performance in categories with similar characteristics. 
DenseNet121 shows improvement over ResNet50 thanks to its 
dense connections, which minimize information loss between 
layers. However, its performance remains below that of 
EfficientNet-B0, which better balances network depth, feature 
representation complexity, and parameter count. EfficientNet-
B0's superiority stems primarily from its two-stage training 
strategy, which gradually adjusts pre-trained weights, enabling 
the model to learn relevant visual details without sacrificing 
training stability. 

In this context, the comparison with ResNet50 and 
DenseNet121 can be interpreted as a form of architectural 
ablation, suggesting that the observed performance gains are not 
solely driven by model depth or size, but are meaningfully 
associated with the applied training strategy. Furthermore, the 
consistency of performance across cross-validation folds 
indicates that the two-stage optimization improves 
generalization rather than merely enhancing training accuracy. 

G. Grad-CAM Visualization 

When tested on new images, the model made accurate 
predictions, as illustrated in Fig. 6, where the predicted class and 
confidence score are shown. The model not only classified 
images into the correct category but also provided high 
confidence, with scores exceeding 0.90 in most tests. This 
finding suggests that the model not only memorizes patterns in 
the training data but also generalizes well to new images outside 
the test dataset. 

 

Fig. 6. Image prediction results. 

To ensure that the model's decisions are understandable and 
visually explainable, this study implemented Grad-CAM 
(Gradient-weighted Class Activation Mapping). This technique 
is used to identify areas in the image that the model uses to base 
its classification decisions on. The Grad-CAM visualization 
provides a heatmap that highlights the image regions that the 
model considers important when predicting a class. 

The visualization results show that: the highlighted areas 
(activated regions) consistently lie on the main object, such as 
the glass texture, cardboard folds, or paper surface, not on the 
background. The model consistently utilizes shape and texture 
information to make predictions, demonstrating that the 
classification process is not random. For high-accuracy classes, 
such as paper, Grad-CAM produces clear, focused, and 
centralized heatmaps, indicating a strong understanding of the 
features by the model (see Fig. 7). 

 

Fig. 7. Grad-CAM visualization. 

Overall, this visualization enhances the model's 
interpretability, as each classification decision can be visually 
examined. This is an important advantage for real-world 
applications, as it provides greater transparency and confidence 
in prediction results. Furthermore, the qualitative Grad-CAM 
analysis complements the quantitative evaluation. Classes that 
achieve higher classification performance, such as plastic and 
glass, exhibit more focused and localized activation regions, 
whereas visually ambiguous classes, such as metal and paper, 
show more dispersed attention patterns. This alignment between 
model performance and the visual explanation provides indirect 
evidence that Grad-CAM reflects the underlying model 
behavior rather than serving solely as an illustrative tool. 

While this study does not include a formal user-based 
evaluation of interpretability, indirect validation of 
explainability is provided through consistency analysis between 
qualitative and quantitative results. Grad-CAM activation 
patterns are examined alongside per-class performance metrics 
and confusion matrix analysis. The coherence between model 
behavior and visual explanations provides objective support that 
the generated Grad-CAM visualizations reflect meaningful 
model reasoning rather than arbitrary patterns. 

H. Computational Cost and Practical Deployment 

Considerations 

The proposed EfficientNet-B0 model contains only 4.38 
million parameters and occupies approximately 16.73 MB of 
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memory, significantly smaller than ResNet50 (25.6 MB) and 
DenseNet121 (7.98 MB) (see Table IV). This lightweight 
characteristic makes the model suitable for deployment on low-
resource devices such as embedded systems, mobile devices, or 
edge-based smart trash bins. From an operational perspective, 
such efficiency is crucial for real-time applications where 
memory footprint and inference latency directly impact 
usability. Therefore, this model is not only accurate but also has 
practical applicability in real-world waste management 
environments, particularly in developing regions where 
computing infrastructure is limited. 

IV. CONCLUSION 

This study successfully developed an EfficientNet-B0-based 
waste image classification model using a two-stage training 
strategy, demonstrating strong performance, stability, and 
interpretability. Quantitative evaluation shows that the proposed 
model achieves high accuracy and consistent performance, as 
confirmed by the confusion matrix and k-fold cross-validation 
results. Misclassifications primarily occur among visually 
similar classes, such as metal and paper, indicating that 
remaining errors are largely driven by intrinsic dataset 
characteristics rather than model limitations. 

Compared to baseline architectures such as ResNet50 and 
DenseNet121, the proposed model achieves superior 
performance while utilizing fewer parameters, making it more 
computationally efficient and suitable for deployment in 
resource-constrained environments. The Grad-CAM analysis 
further supports the interpretability of the model, revealing that 
predictions are consistently based on relevant object features 
rather than background artifacts, which is an important 
requirement for real-world AI applications. 

Despite these promising results, several limitations remain. 
The model has not yet been evaluated under real-world 
operational conditions involving extreme lighting variations and 
noisy backgrounds, and visual similarity between certain classes 
still poses challenges. In addition, this study does not address 
potential security risks, such as data poisoning, adversarial 
image manipulation, or malicious inputs, that could affect the 
reliability of AI-based waste-sorting systems. Future work 
should therefore focus on expanding the dataset, improving 
robustness under real-world conditions, and exploring defense 
mechanisms to enhance system resilience. 

Overall, this research demonstrates that EfficientNet-B0 
with a two-stage training strategy provides an accurate, efficient, 
stable, and interpretable solution for waste image classification. 
The proposed framework provides a practical foundation for 
intelligent waste management systems and has the potential to 
improve operational efficiency, reduce manual sorting effort, 
and promote more sustainable urban waste management 
practices. 
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