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Abstract—Automated waste classification using computer
vision has become essential for improving environmental
sustainability and reducing manual sorting effort. This study
presents an enhanced waste image classification model based on
EfficientNet-B0, trained using a two-stage transfer learning
strategy that combines feature extraction and fine-tuning. The
proposed approach aims to enhance classification accuracy while
maintaining computational efficiency. Experimental evaluations
conducted on a heterogeneous multi-class waste dataset
demonstrate the superiority of the proposed method. The
confusion matrix results indicate a high proportion of correct
predictions across most categories, with only minor
misclassifications among visually similar classes, such as metal
and paper. The model's robustness is further validated through 5-
Fold Cross-Validation, which yields an average accuracy of94.3%
with a standard deviation of +0.007, confirming consistent
performance across data partitions. Compared with state-of-the-
art CNN architectures, including ResNet50 and DenseNet121, the
proposed model achieves the highest accuracy while using the
fewest parameters (4.38M), making it suitable for deployment in
resource-constrained environments. Additionally, qualitative
analysis using Grad-CAM confirms that the model’s decisions are
explainable and based on relevant object features. These findings
demonstrate that the proposed EfficientNet-B0 model constitutes
a reliable, efficient, and interpretable solution for automated
waste classification. The model is further evaluated using cross-
validation and explainable AI (Grad-CAM) to assess both
performance stability and interpretability.
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I.  INTRODUCTION

The challenges of household waste management have
become increasingly urgent due to population growth,
urbanization, and changes in public consumption patterns [1].
The continuous rise in global waste generation has placed
significant pressure on modern waste managementsystems [2].
International reports indicate that municipal solid waste (MSW)
production continues to increase annually and, if poorly
managed, leads to soil, water, and air pollution, ultimately
reducing the quality of life in both urban and peri-urban regions
[3]. Traditional waste sorting practices still rely heavily on
manual labor—a process that is time-consuming, costly, and
prone to human error, exposing workers to hazardous materials
and producing inconsistent sorting results [4]. These
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inefficiencies contribute directly to low recycling rates and the
accumulation of improperly sorted waste in landfills, thereby
hindering sustainable waste management efforts [5].
Household-based initiatives, such as waste banks, also face
challenges related to limited labor capacity, inconsistent waste-
sorting behavior, and low public awareness [6]. Therefore,
researchers have emphasized the urgent need to integrate
technological advancements with community participation to
improvewastehandlingefficiency. To address the limitations of
manual sorting, recent studies have explored automated waste
classification systems. Early approaches employed conventional
machine learning techniques such as Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), and Artificial Neural
Networks (ANN). However, these models demonstrated limited
adaptability to thecomplex, heterogeneous visual features found
in waste images [7]. The subtle inter-class visual similarities—
for example, between plastic and glass, or cardboard and
paper—make automated waste classification particularly
challenging, as minor errors can propagate through subsequent
waste processing stages [8-9]. This limitation underscores the
importance of high classification accuracy, as such systems
often function as the foundational layer of an automated waste
management pipeline.

The adoption of deep learning, particularly Convolutional
Neural Networks (CNN), has significantly improved waste
classification performance. Deep CNN architectures have
demonstrated the ability to extract hierarchical visual patterns
and deliver superior classification accuracy compared to
traditional methods[10]. Several models have been applied to
waste classification tasks, achieving promising results and
enabling more reliable, scalable sorting pipelines [11]. Castro-
Bello et al. expanded the application of CNNs for multiclass
MSW classification within sustainable waste management
frameworks [12]. More recent research has evaluated multiple
architectures—such as VGG16, ResNet50, DenseNet, and
EfficientNet[11]. Among these, EfficientNet is recognized for
its compound scaling mechanism, which offers an optimal
balance between accuracy and computational efficiency [13].
Empirical studies have shown that EfficientNet-B0 achieves
strong performance in waste classification tasks with fewer
parameters and lower computational costs, making it attractive
for real-world deployment [8-9][14]. These developments
confirm that deep leaming has significant potential to advance
automated waste management systems.
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Despite these advancements, several research gaps remain.
Most existing studies prioritize improving global accuracy
metrics without conducting detailed per-class performance
analysis, resulting in limited insight into model weaknesses,
especially for visually similar classes [8][10]. High-performing
CNN architecturesalso tend to require substantial computational
resources, makingthem less feasible for resource-constrained or
real-time implementations [15-16]. Furthermore, the
interpretability of CNN-based models remains limited, as most
operate as black-box systems that donot reveal which regions
of an image contribute to classification decisions [17-19].
Although explainability frameworks such as Gradient-weighted
Class Activation Mapping (Grad-CAM) have been introduced,
their integration is often supplementary and rarely combined
with systematic per-class evaluation [20]. These shortcomings
highlight the need for models that are not only accurate and
computationally efficient but also interpretable and capable of
revealing class-specific behavior.

Based on these gaps, this study proposes a waste image
classification framework using EfficientNet-B0, enhanced with
per-class performance evaluation and Grad-CAM-based visual
explainability [21-22]. EfficientNet-BO is selected for its
lightweight architecture and strong accuracy-to-parameter
efficiency, making it suitable for practical deployment in real-
world environments [9] [13]. By integrating deep learning—
based classification with interpretability mechanisms, this
researchaimsto deliver both quantitative performance gainsand
qualitative insights into model decision-making.

The objectives of this research are as follows:

1) To develop an EfficientNet-BO-based waste
classification model capable of achieving high accuracy with
efficient computational cost.

2) To evaluate the model using per-class metrics
(precision, recall, and F1 score) to identify low-performing
waste categories and quantify the risk of misclassification,
comparing it to the RestNet and DenseNet121 baselines.

3) To integrate Grad-CAM to visualize and interpret the
model’s attention regions, enhancing transparency and
trustworthiness.

4) To validate the model’s generalization capability
through cross-validation and testing on diverse waste image
samples that reflect real household conditions.

Thus, this study distinguishes itself from previous work by
combininghigh-accuracy classification with interpretable visual
explanations and class-level performance profiling, offering a
more comprehensive, practically oriented contribution to
sustainable waste management systems. This study makes four
main contributions. First, it proposes a systematic two-stage
transfer learning strategy (controlled feature extraction followed
by selective fine-tuning) and examines its potential to improve
generalization stability through baseline comparison. Second,
the study goes beyond overall accuracy by incorporating class-
level analysis using per-class precision, recall, F1-score, and
confusion matrix interpretation to better understand
misclassification patterns. Third, the model is evaluated using
deployment-relevant criteria, including parameter efficiency
and performance stability across 5-fold cross-validation.
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Finally, Grad-CAM is used not merely for visualization, but as
a tool to examine whether the model focuses on semantically
meaningful visual regions, supporting a more transparent
assessment of model behavior.

It should be clarified that this study does not propose a novel
learning algorithm. Instead, the contribution of this work lies in
the systematic integration and comprehensive evaluation of
established techniques, including transfer leaming, two-stage
training, class weighting, cross-validation, and explainability, to
construct a reliable, interpretable, and practically deployable
waste classification framework.

II. RESEARCH METHODOLOGY

A. System Design

This study develops a deep learning-based household waste
image classification system, which aims to automatically and
accurately identify waste material types. The primary
architecture used is EfficientNet-B0, chosen for its efficient
parameter management and its ability to achieve high accuracy
through a compound scaling approach that simultaneously
balances network depth, width,andresolution[13]. In thisstudy,
the system is also equipped with an Explainable Artificial
Intelligence (XAI) mechanism using Grad-CAM, which
highlights the image regions of interestto the model during
prediction, ensuring that classification decisions are traceable
and do not operate as a black box.

In addition to using EfficientNet-B0 as the primary model,
this study compares it with two other architectures, ResNet50
and DenseNet121, to validate its superior performance. These
two models were chosen because they are modern CNN
architectures widely used in image classification, making them
relevant benchmarks for evaluating the effectiveness of the
proposed architecture. The waste image dataset used in this
study was obtained from two publicly available data sources: the
TrashNet Dataset and the Garbage Classification Dataset from
Kaggle. These datasets were selected because they encompass a
diverse range of household waste categories that align with the
objectives of this research and have been widely used in
previous deep-learning-based waste classification studies,
enabling an objective comparison of model performance. All
data used in this work are open access and freely downloadable,
ensuring that this study complies with the reproducibility and
traceability requirements of modern scientific publications.

The combined dataset consists of 3,600 images with varying
resolutions and lighting conditions. The data are grouped into
six common categories of domestic waste, namely organic (750
images), plastic (700 images), paper (620 images), glass (520
images), metal (510 images), and cardboard (500 images). The
distribution indicates a moderate class imbalance, with the
largest ratio occurring between the organic and cardboard
categories at 1.5:1. Such an imbalance may introduce bias
during model training, as the model tends to learn more often
from classes with more samples. To address this issue, class
weighting is applied during training, ensuring that each class
contributes proportionally to the learning processand preventing
distortion in prediction accuracy. Before being processed by
EfficientNet-B0, all images underwent several preprocessing
steps, including resizing to 224 x 224 pixels to match
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EfficientNet’s standard input dimensions, pixel value
normalization to the range [0—1] to improve weight update
stability during training, and conversion of class labels into one-
hot encoding to support the multiclass classification scheme.
The dataset was then partitioned using stratified splitting into
70% for training, 20% for validation, and 10% for testing
Stratification was chosen to maintain proportional class
distribution within each subset, ensuring consistent data
representation throughout training, validation, and evaluation.
An example of the dataset used can be seen in Fig. 1 below:
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Fig. 1. Example images from the TrashNet dataset and the garbage
classification dataset from Kaggle.

With these characteristics, the dataset used in this study is
not only relevant to the household waste segregation context but
also sufficiently complex, making it a valid benchmark for
evaluatingthe performanceofthe EfficientNet-B0 classification
model enriched with explainable Al support. Augmentation was
then applied to increase visual variation and prevent overfitting,
The augmentation techniques applied included: rotation (0—
20°), 10% zoom, horizontal flip, width shift, height shift, and
rescaling. Transformations were applied randomly to each
training batch, making the model more robust to real-world
conditions, such as differences in viewpoint, lighting, and
background.

B. Training Strategy

The proposed training procedure employs a two-stage
learning strategy to ensure model stability, controlled parameter
adaptation, and improved generalization performance. This
approach is particularly effective for transfer learning
architectures such as EfficientNet-B0O, where pretrained
knowledge must be retained while enabling domain-specific
feature refinement.

Stage 1: Feature Extraction

In the first stage, all convolutional layers of EfficientNet-B0
are frozen, allowing the network to function solely as a feature
extractor. Only the classification head is trained during this
phase.

Hyperparameter settings:

e Optimizer: Adam

e Learning Rate (LR): 1 x 1073
e Epochs: 15

e Batch Size: 32
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Objective:

This step aligns the classification layers with the dataset
characteristics while preserving the general visual
representations learned from ImageNet. By preventing abrupt
weight modifications, the model avoids catastrophic forgetting
and achieves a stable initialization prior to fine-tuning.

Stage 2: Fine-Tuning

Once the classifier head has converged, the final 20 layers of
EfficientNet-BOareunfrozento allow deeper adaptation. During
this stage, both the backbone and classification layers are jointly
optimized.

Hyperparameter settings:
e Optimizer: Adam

e Learning Rate (LR): 1 x 107 (reduced to avoid
destabilizing pretrained weights)

e Additional Epochs: 15
Objective:

This stage progressively refines high-level feature
representations, improving the model’s sensitivity to subtle
intra-class variations and complex visual patterns. As a result,
the model acquires domain-specific discriminative
characteristics while maintaining pretrained robustness.

Callback Mechanism

To improve training efficiency and prevent overfitting, three
callback functions are used. These functions are shown in
Table I below:

TABLE . CALLBACK MECHANISM

Callback Purpose

EarlyStopping (patience Stops training when validation performance
=J5) does not improve

Automatically decreases LR when

R LROnPlat L
educeLROnPlateau stagnation is detected

Stores the best-performing weights during

ModelCheckpoint .
training

These mechanisms ensure a stable optimization trajectory
and optimal convergence behavior throughout both stages.

C. Performance Evaluation Method

The model's performance was evaluated comprehensively
using several metrics to assess accuracy, consistency, and
generalization capability. The evaluation does not solely focus
on global accuracy but also considers per-class prediction
quality, training stability, and objective comparisons with
baseline architectures.

1) Primary metrics: The evaluation includes Accuracy as
an indicator of overall model performance, along with
Precision, Recall, and F1-Score to measure class-wise
prediction quality, particularly important for imbalanced
datasets. A Confusion Matrix and Classification Report are
utilized to visualize misclassification patterns and provide
numerical summaries for each category. Additionally, a
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Generalization Test is performed on unseen test data to ensure
the model can effectively recognize new samples beyond those
used during training.

2) k-fold cross-validation: To assess model stability, k-
Fold Cross-Validation is employed, in which the dataset is
partitioned into k subsets and training is conducted iteratively
so that each subset serves as a test fold once. Final performance
metrics are reported as the mean and standard deviation across
folds, indicating the model’s consistency and verifying that its
performance is not dependent on a specific data split.

3) Baseline evaluation: The proposed model’s
performance is compared against well-established CNN
architectures, including VGG16, ResNet50, and the pretrained
EfficientNet-B0. The comparison employs identical evaluation
metrics to ensure that any observed improvements are
attributable to the proposed two-stage training strategy. The
model is considered superior if it achieves higher accuracy and
F1-Score, exhibits fewer misclassifications, and records a lower
standard deviation across k-fold evaluations, indicating more
stable learning behavior.

D. Explainability with Grad-CAM

To ensure that the model’s decision-making process can be
interpreted transparently, this study employs the Gradient-
weighted Class Activation Mapping (Grad-CAM) method as an
explainable Al approach. Grad-CAM is utilized to trace regions
within an image that contribute most significantly to themodel’s
classification decisions. The Grad-CAM procedure involves
several steps:

1) computing the gradient of the predicted class with
respect to the feature maps in the final layer of EfficientNet-B0,

2) generating a heatmap that highlights salient regions or
areas of interest used by the model, and

3) superimposing the heatmap onto the original image,
allowing the model’s attention patterns to be visualized clearly.

Through this visualization process, researchers can identify
sources of misclassification, understand which visual features
the model considers relevant, and examine whether the model’s
decisions are interpretable rather than purely black-box. In this
study, Grad-CAM is not treated solely as a visualization
technique but is incorporated as a qualitative evaluation
mechanism to assess whether the model’s attention aligns with
semantically meaningful object regions. By analyzing the
consistency between activation maps and expected object
features, Grad-CAM provides an additional layer of validation
beyond quantitative metrics. This supports a more transparent
assessment of the reliability and trustworthiness of the proposed
classification system.

III.  RESULTS AND DISCUSSION

A. Model Performance Evaluation

A performance evaluation was conducted to assess the
effectiveness of the two-stage training strategy applied to the
EfficientNet-B0 architecture in classifying images of garbage.
The training process began with a feature-extraction phase,
during which all EfficientNet-BO parameters were frozen and
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only the classification layer was trained using the Adam
optimizer witha learningrate of 1e-3, 15 epochs, and a batch
size of 32. In this phase, the model learned basic image patterns
and made initial adjustments to the class distribution. After the
initial performance stabilized, the process continued witha fine-
tuning phase, during which the final layers of EfficientNet-B0O
were partially unwrapped, and the model was retrained with a
lower learning rate of 1e-4 for 30 epochs. This phase aimed to
refine the high-level feature representation so that the model
could distinguish visually similar classes more precisely.

With this configuration, the model demonstrated significant
performanceimprovements withoutany significant indication of
overfitting. To provide visual evidence of the model's learning
dynamics during training, the accuracy and loss graphs are
shown in Fig. 2 below:
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Fig.2. (a)Training and validation accuracy, (b) Training and validation loss
for the EfficientNetB0O model

Accordingto Fig. 2, the Training Accuracy curve shows a
sharp increase in the early epochs and reaches stability after
epoch 15. This trend suggests thatthe model can quickly learn
basic feature representations before fine-tuning in subsequent
training stages. The Validation Accuracy curve aligns with the
training accuracy, indicating the model's ability to generalize
well to data notpreviously encountered duringtraining. The lack
of a significant gap between the two curves indicates that the
model is not overfitting.
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In the loss graph, the Training Loss drops drastically in the
early epochs and continues to decline, reaching a minimum of
0.2 at the end of training. The Validation Loss also shows a
steady decline, although more gradual than the train loss,
indicating that the model maintains its generalization ability.
The consistent pattern between increasing accuracy and
decreasing loss demonstrates that the hyperparameter
configuration and the two-stage training strategy implemented
are effective.

Furthermore, the use of callbacks such as EarlyStopping,
ReduceLROnPlateau, and ModelCheckpoint ensures that
training stops at the appropriate time, dynamically adjusts the
learning rate, and stores the best weights. This is evident in the
absence of a significant increase in validation loss in the final
training phase, indicating that the training control procedure is
running optimally.

B. Hyperparameters and Experiments

To achieve optimal model performance, the training process
involved two main stages: feature extraction and fine-tuning at
the end of the EfficientNet-BO architecture. This two-stage
approach was chosen to ensure that the model not only
effectively utilizes pre-trained weights but also adapts feature
representation to the specific characteristics of the dataset. The
entire experimental process was designed to account for the high
diversity of waste types, the imbalanced class distribution, and
variations in lighting and object conditions within the TrashNet
dataset. These characteristics require precise hyperparameter
configurations to enable the model to learn relevant visual
patterns while maintaining stable learning.

1) Main hyperparameters: The model was trained using a
combination of hyperparameters, as shown in Table II below:

TABLEII. TRAINING CONFIGURATION AND HYPERPARAMETER SETTINGS
Component Value Used
Model Architecture EfficientNet-BO
Optimizer (Stage-1) Adam
Leaming Rate (Stage-1) 1x10*
Optimizer (Stage-2) Adam
Learing Rate (Stage-2) 1x10°

Loss Function Categorical Cross-Entropy

Batch Size 32
Epochs (Stage-1) 15
Epochs (Stage-2) 15
Total Epochs 30
Callbacks EarlyStopping, ReduceLROnPlateau,

ModelCheckpoint

Class Weight Applied (to address dataset imbalance)

Rotation, Zoom, Shift, Flip, Brightness
Adjustment

Data Augmentation

2) Training stages: The training process was conducted in
two main stages to ensure that EfficientNet-BO not only
benefited from its pretrained weights but also adapted to the
dataset's variations in object appearance, lighting conditions,
and class imbalance.
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a) Feature extraction: In the first stage, all layers of
EfficientNet-B0 were frozen, with only the classification layers
at the end of the network trained. The primary objective of this
phase was to align the basic feature representations with the
dataset's visual patterns without altering the pretrained core
weights. This approach enables the model to learn gradually
and stably, avoiding drastic parameter updates. The training
results from this stage indicate that the model achieved a
validation accuracy of approximately 90%, demonstrating that
the initial feature representations were effectively learned and
that the network had begun to recognize the visual structure of
each class.

b) Fine-tuning: Once the model achieved sufficient
performance and stability during the first stage, training
continued by unfreezing the last 20 layers of EfficientNet-BO0.
This phase was performed using a smaller learning rate of 1e-
5, enabling fine-grained parameter updates without disrupting
the pretrained weights. Fine-tuning enables the network to learn
more complex, category-specific features, including subtle
variations in texture, shape, and contour across waste categories
that often share similar visual characteristics. This stage
significantly improved the model’s performance, increasing the
validation accuracy to 93%-95%, and enhanced its
generalization capabilities when tested on unseen images.

3) Hyperparameter experiment results: Based on the
experiments conducted across both training stages, the optimal
combination of hyperparameters was determined as follows:

e Adam + Learning Rate le-4 (Stage-1 — Feature
Extraction)

e Adam + Learning Rate le-5 (Stage-2 — Fine-Tuning)
e Batch size: 32
e Total epochs: 30

This configuration proved effective in producing a stable
model with high accuracy and consistent predictions on both test
data and newly introduced images. Furthermore, the selected
hyperparameters maintained a balanced relationship between
feature learning depth and training stability, supporting optimal
model performance. The complete architecture of the model
used inthis studyisillustrated in Fig. 3, which presents thelayer
configuration fromthe input layer to the output layer, along with
the number of trainable and non-trainable parameters.

| Layer (type) I Output Shape | Param ¥ I

Total params: 193 (16.73 ¥8)
Trainable params: 332,556 (1.27 MB
Non-trainable params: < 43 (15.46 MB)

Fig.3. Hyperparameters used.
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As shown in Fig. 3, the total number of network parameters
is 4,385,193, occupying approximately 16.73 MB of memory.
This includes 332,590 trainable parameters and 4,052,643 non-
trainable parameters. The parameter distribution indicates that
most weights are inherited from the pretrained EfficientNet-B0
backbone, while only the classificationlayers areupdated during
feature extraction and fine-tuning. Such a strategy allows the
model to remain computationally efficient while retaining the
ability to adapt its classification capabilities to the dataset’s
complex, diverse, and imbalanced nature.

C. Classification Results

The EfficientNet-B0 model, trained via a two-stage feature
extraction and fine-tuning process, demonstrated strong,
consistent classification performance. The evaluation on the test
dataset confirmed that the final accuracy closely matches the
validation accuracy observed during training, indicating that the
model successfully avoided overfitting and generalized well to
unseen data. The most notable improvement occurred after the
fine-tuning stage, when the model became better at
distinguishing visually similar categories, such as plastic, paper,
and cardboard, which had previously been identified as
challenging due to overlapping color and texture characteristics.

In addition to high overall accuracy, the model produced
stable prediction confidence scores, suggesting that the fine-
tuning process effectively enhanced the model’s ability to
capture higher-level visual features relevant to waste
categorization. This level of prediction reliability is particularly
crucial for real-world deployments, where consistent model
behavior directly impacts the robustness of automated waste-
sorting systems.

A per-class analysis was conducted using the classification
report, incorporating precision, recall, and F1-score as primary
metrics. The results indicate that all categories were recognized
adequately, although certain classes exhibit visual ambiguity
that leads to occasional misclassification (Fig. 4).

precision  recall fl-score support

cardboard 0.92 8.925 8.925 48
glass 2.920 0.920 2.920 5e
metal 0.884 0.927 0.905 4]
paper 2.982 0.9¢0 2.939 60
plastic 8.987 9.812 8.857 43
trash 9.636 1.000 9.778 14

Fig. 4. Per-class evaluation results.

Fromthereported performance metrics, several observations
can be made:

e Plastic and glass emerged as the best-performing
classes, achieving exceptionally high precision and
recall. Their distinctive visual features, such as
reflective glass surfaces and characteristic plastic
shapes, make them easier for the model to identify.

o The trash class recorded the lowest recall (0.778),
indicating that a portion of its samples were mistakenly
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assigned to other categories. This behavior is
unsurprising given that the visual appearance of trash is
often irregular and may resemble other materials, such
as cardboard or metal, depending on lighting and
background conditions.

e Metal and paper obtained satisfactory scores overall;
however, both categories exhibit measurable confusion.
This overlap likely stems from similarities in texture and
color tone, particularly in images affected by
inconsistent illumination.

Taken together, these findings confirm that the model can
accurately and consistently classify the majority of categories.
Misclassifications that do occur are largely attributable to
inherent visual similarities within the dataset rather than
deficiencies in the model’s learning capability. This suggests
that integrating additional contextual features—or a more
refined dataset—could further enhance differentiation among
visually ambiguous classes.

D. Confusion Matrix Analysis

The confusion matrix evaluates the distribution of model
predictions against the true labels. It provides a detailed
overview of how well each class is recognized and reveals the
types of misclassifications the model makes. As illustrated in
Fig. 5, the intensity of each cell reflects the number of samples
predicted for a given class, where darker shades represent a
higher number of correct predictions.

Confusion Matrix

glass  cardboard
.
=1
o
&

metal
'
-

Actual

paper

-0

plastic

] o 0 0 ] 14

trazh

cardboard glass metal paper plastsc trash
Predicted

Fig.5. Confusion matrix.

Based on Fig. 5, several key observations can be made:

e Cardboardis classified with high accuracy, with 37 out
of 40 samples correctly identified and only three minor
misclassifications. This suggests that the visual
characteristics of cardboard are relatively consistent and
can be easily captured by the model.

e Glass achieves 46 correct predictions out of 48, with
minimal confusion toward the metal and plastic classes.
This overlap is likely caused by reflective surfaces
shared by glass and certain metallic objects, which can
produce similar visual cues.

e Plastic exhibits thebest overall performance, with 39 out
of 40 samples predicted correctly. The distinct visual
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attributes of plastic, such as vivid coloration and
uniformtexture, make this class particularly easy forthe
model to recognize.

e Trash attains perfect precision but suffers from lower
recall. Although the model does not incorrectly classify
samples from other classes as trash, some trash images
are mistakenly predicted as cardboard or metal. This
behavior is expected, as the trash class lacks distinctive
visual features and often overlaps with other material

types.

e Themostsignificantconfusion arises between metal and
paper, suggesting visual ambiguity between these two
categories. Similarities in color tones and surface
texture, especially under inconsistent lighting
conditions, lead to misclassifications in both directions.

Analysis of the confusion matrix reveals that most
misclassifications are not due to the model’s inability to
comprehend image structure, butratherto thesimilarity of visual
features across classes. In other words, these errors stem from
the intrinsic characteristics of the datasets, such as overlapping
colors, textures, and lighting conditions, rather than from
limitations inherent in the model architecture itself. Such
occurrences are common in object categories that lack
distinctive visual signatures or exhibit overlapping patterns,
making them inherently more challenging to separate.

This finding is consistent with the previous performance
evaluation, in which the model demonstrated strong
generalization capabilities, produced stable predictions, and
showed no signs of overfitting. Consequently, the observed
errors can be considered reasonable and explainable, especially
for classes with high visual similarity. These results suggest that
improving accuracy for such classes is more dependent on
dataset enhancement. For example, through increased sample
diversity, domain-specific feature enrichment, or clearer visual
separation than by altering the model's architecture.

Similar conclusions have been reported in prior studies.
Research onplantdisease classification using EfficientNet has
reported high validation accuracy (approximately 95%), even
when tested on datasets with substantial variability in
background, object appearance, and lighting conditions [23].
Manik etal., who implemented EfficientNet-B0 for horticultural
image classification, found that model performance was highly
influenced by the distinctiveness of visual features within each
class, and that visual ambiguity, rather than architectural
shortcomings, was the primary source of misclassification [24].
A comparable observation was made by Huang et al. in rock
image classification, where visually similar texture and color
pattems led to higher misclassification rates even when
EfficientNet was combined with an attention mechanism [25].

Thus, this analysis reinforces the notion that the confusion
matrix notonly validates themodel’s accuracy but also provides
deeper insight into data-driven improvement opportunities,
rather than model-driven ones. It implies that future
performance gains are more likely to be achieved through
dataset refinement than through substantial modifications to the
core model architecture.
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E. k-Fold Cross-Validation

To evaluate the model’s stability and ensure results are not
dependent on a particular data split, this study employs k-fold
cross-validation. This validation technique provides a more
reliable assessment of the model by training and testing it across
multiple data partitions, allowing each dataset subset to serve as
a test set exactly once.

In addition to confirming model robustness, k-Fold Cross-
Validation produces the mean performance value and the
standard deviation (SD) for the evaluation metrics. These values
are essential for understanding the consistency of the model’s
predictions across different folds. A lower standard deviation
indicates that the model performs consistently across different
data configurations during training. The results of the k-Fold
Cross-Validation are presented in Table IIl below:

TABLE III. RESULTS OF K-FOLD CROSS-VALIDATION
Fold Accuracy Precision Recall F1-Score
Fold-1 0.934 0.938 0931 0.934
Fold-2 0.947 0951 0.943 0.946
Fold-3 0.952 0.955 0.949 0.952
Fold-4 0.938 0.941 0.935 0.938
Fold-5 0.945 0.947 0.942 0.944
Mean 0.943 0.946 0.940 0.943
Std. Dev +0.007 +0.006 +0.007 +0.006

Based on the table above, the average accuracy 0f94.3% and
a standard deviation of +0.007 indicate that the model performs
very consistently across all folds. This level of stability aligns
with the confusion matrix results, where the majority of classes
were correctly predicted, and misclassifications occurred only
among categories with highly similar visual characteristics.
Therefore, the k-Fold Cross-Validation results strengthen the
evidence that the proposed EfficientNet-B0O model is reliable,
stable, and consistent when applied to the waste classification
dataset.

F. Baseline Model Comparison

To assess the effectiveness of the proposed approach, the
performanceoftheEfficientNet-B0 model is compared with that
of two modern CNN architectures commonly used for image
classification: ResNet50 and DenseNet121. Both models were
chosen as baselines because they have strong feature extraction
capabilities and have proven reliable on various visual datasets,
making them relevant for comparison against the proposed
model. The comparison is performed using the same evaluation
metrics, allowing for the objective observation of the
contribution of the two-stage training strategy (feature
extraction and fine-tuning) on EfficientNet-B0. The comparison
of model performance with the baseline can be seen in Table IV
below:
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TABLEIV. COMPARISON OF BASELINE MODEL PERFORMANCE
- F1- Parameter
Model Accuracy | Precision | Recall Score ™)
ResNet50 0912 0917 0.909 0912 | 25.6
DenseNet121 | 0.928 0.931 0.923 0.926 | 7.98
gff‘c‘e“met' 0.943 0.946 0940 | 0943 | 4.38

Theresultsin Table IV showthat the proposed EfficientNet-
BO consistently outperforms ResNet50 and DenseNet121 across
all evaluation metrics. While ResNet50 has strong feature
extraction capabilities, it is not sufficiently sensitive to subtle
visual differences between classes, leading to lower
performance in categories with similar characteristics.
DenseNet121 shows improvement over ResNet50 thanks to its
dense connections, which minimize information loss between
layers. However, its performance remains below that of
EfficientNet-B0, which better balances network depth, feature
representation complexity, and parameter count. EfficientNet-
BO0's superiority stems primarily from its two-stage training
strategy, which gradually adjusts pre-trained weights, enabling
the model to learn relevant visual details without sacrificing
training stability.

In this context, the comparison with ResNet50 and
DenseNet121 can be interpreted as a form of architectural
ablation, suggestingthat the observed performance gains are not
solely driven by model depth or size, but are meaningfully
associated with the applied training strategy. Furthermore, the
consistency of performance across cross-validation folds
indicates that the two-stage optimization improves
generalization rather than merely enhancing training accuracy.

G. Grad-CAM Visualization

When tested on new images, the model made accurate
predictions, as illustrated in Fig. 6, where the predicted classand
confidence score are shown. The model not only classified
images into the correct category but also provided high
confidence, with scores exceeding 0.90 in most tests. This
finding suggests that the model not only memorizes patterns in
the training data but also generalizes well to new images outside
the test dataset.

cardboard115 jpg

cardboard115.Jpg(image/jpeg) - 16303 bytes, last moafied: 12/3/2025 - 100% done
Saving cardboardil5.jpg to cardboard11S (1).jpg

1/ —— @5 155ms/5tep

cardboard (99.93%)

Prediksi: cardboard (99.93%)

Fig. 6. Image prediction results.
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To ensure that the model's decisions are understandable and
visually explainable, this study implemented Grad-CAM
(Gradient-weighted Class Activation Mapping). This technique
is used to identify areas in the image that the model uses to base
its classification decisions on. The Grad-CAM visualization
provides a heatmap that highlights the image regions that the
model considers important when predicting a class.

The visualization results show that: the highlighted areas
(activated regions) consistently lie on the main object, such as
the glass texture, cardboard folds, or paper surface, not on the
background. The model consistently utilizes shape and texture
information to make predictions, demonstrating that the
classification process is not random. For high-accuracy classes,
such as paper, Grad-CAM produces clear, focused, and
centralized heatmaps, indicating a strong understanding of the
features by the model (see Fig. 7).

cardboard — 99.93%

Fig. 7. Grad-CAM visualization.

Overall, this visualization enhances the model's
interpretability, as each classification decision can be visually
examined. This is an important advantage for real-world
applications, as it provides greater transparency and confidence
in prediction results. Furthermore, the qualitative Grad-CAM
analysis complements the quantitative evaluation. Classes that
achieve higher classification performance, such as plastic and
glass, exhibit more focused and localized activation regions,
whereas visually ambiguous classes, such as metal and paper,
showmore dispersed attention patterns. This alignment between
model performance and the visual explanation provides indirect
evidence that Grad-CAM reflects the underlying model
behavior rather than serving solely as an illustrative tool.

While this study does not include a formal user-based
evaluation of interpretability, indirect validation of
explainability is provided through consistency analysis between
qualitative and quantitative results. Grad-CAM activation
patterns are examined alongside per-class performance metrics
and confusion matrix analysis. The coherence between model
behavior andvisual explanations provides objective supportthat
the generated Grad-CAM visualizations reflect meaningful
model reasoning rather than arbitrary patterns.

H. Computational Cost and Practical Deployment
Considerations

The proposed EfficientNet-BO model contains only 4.38
million parameters and occupies approximately 16.73 MB of
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memory, significantly smaller than ResNet50 (25.6 MB) and
DenseNet121 (7.98 MB) (see Table IV). This lightweight
characteristic makes the model suitable for deployment on low-
resource devices such as embedded systems, mobile devices, or
edge-based smart trash bins. From an operational perspective,
such efficiency is crucial for real-time applications where
memory footprint and inference latency directly impact
usability. Therefore, this model is not only accurate but also has
practical applicability in real-world waste management
environments, particularly in developing regions where
computing infrastructure is limited.

IV. CONCLUSION

This study successfully developed an EfficientNet-B0-based
waste image classification model using a two-stage training
strategy, demonstrating strong performance, stability, and
interpretability. Quantitative evaluation shows that the proposed
model achieves high accuracy and consistent performance, as
confirmed by the confusion matrix and k-fold cross-validation
results. Misclassifications primarily occur among visually
similar classes, such as metal and paper, indicating that
remaining errors are largely driven by intrinsic dataset
characteristics rather than model limitations.

Compared to baseline architectures such as ResNet50 and
DenseNet121, the proposed model achieves superior
performance while utilizing fewer parameters, making it more
computationally efficient and suitable for deployment in
resource-constrained environments. The Grad-CAM analysis
further supports the interpretability of the model, revealing that
predictions are consistently based on relevant object features
rather than background artifacts, which is an important
requirement for real-world Al applications.

Despite these promising results, several limitations remain.
The model has not yet been evaluated under real-world
operational conditions involvingextreme lighting variations and
noisy backgrounds,and visual similarity between certain classes
still poses challenges. In addition, this study does not address
potential security risks, such as data poisoning, adversarial
image manipulation, or malicious inputs, that could affect the
reliability of Al-based waste-sorting systems. Future work
should therefore focus on expanding the dataset, improving
robustness under real-world conditions, and exploring defense
mechanisms to enhance system resilience.

Overall, this research demonstrates that EfficientNet-BO
with a two-stage training strategy provides anaccurate, efficient,
stable, and interpretable solution for waste image classification.
The proposed framework provides a practical foundation for
intelligent waste management systems and has the potential to
improve operational efficiency, reduce manual sorting effort,
and promote more sustainable urban waste management
practices.

REFERENCES

[1] The World Bank, “Solid waste management,”2022.[Online]. Available:
https://www.worldbank.org/en/topic/urbandevelopment/brief/solid -
waste-management

[2] R.Rao,S. Singh, M. Salas, R. Kumar, A. Sarkar, Y. Wang, and L. Pal,
“Al-powered municipal solid waste management: A comprehensive
review from generation to utilization,” Frontiers in Energy Research, vol.
13, Art. no. 1670679, 2025, doi: 10.3389/fenrg.2025.1670679.

(3]

(4]

(5]

(6]

[7]

(8]

]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

(18]

[19

—

[20]

Vol. 17, No. 1, 2026

D. H. Itam, E. C. Martin, and I. T. Horsfall, “Enhanced convolutional
neural network methodology for solid waste classification utilizing data
augmentation techniques,” Waste Management Bulletin, vol. 2, no. 4, pp.
184-193,2024, doi: 10.1016/j.wmb.2024.11.002.

A. Maalouf and P. Agamuthu, “Waste management evolution in the last
five decades in developing countries: A review,” Waste Management &
Research, vol. 41,n0. 9, pp. 1420-1434,2023.

A. Q. A’yun, S. Suhartono, and T. M. Lestari, “Implementation of a
convolutional neural network in image-based waste classification,”
Journal of Applied Informatics and Computing (JAIC), vol. 9, no. 4, pp.
1778-1784,2025.

F. Fotovvatikhah, I. Ahmedy, R. M. Noor, and M. U. Munir, “A
systematic review of Al-based techniques for automated waste
classification,” Sensors, vol. 25, no. 10, Art. no. 3181, 2025.

W. M. Ardana and Kusrini, “Optimasi algoritma convolutional neural
network dengan arsitektur EfficientNet-BO dan ResNet-50 untuk
klasifikasi jenis sampah,” MALCOM: Indonesian Journal of Machine
Leaming and Computer Science, vol. 5, no. 4, pp. 1274-1286, 2025.

T. Kurniawan, K. Khadijah,and R. Kusumaningrum, “An efficient model
for waste image classification using EfficientNet-B0,” Jumal Teknik
Informatika (JUTIF), vol. 6, no. 3, pp. 1147-1158,2025.

W. Mulim, M. F. Revikasha,and N. Hanafiah, “Waste classification using
EfficientNet-B0,” in Proc. 1st Int. Conf. Computer Science and Artificial
Intelligence (ICCSAI), 2021, pp. 253-257.

A. A. A. G. S. Altikat, A. Gulbe, and S. Altikat, “Intelligent solid waste
classification using deep convolutional neural networks,” International
Journal of Environmental Science and Technology, vol. 19, no. 3, pp.
1285-1292,2022.

M. Nahiduzzaman etal., “An automated waste classification system using
deep leaming techniques: Toward efficient waste recycling and
environmentalsustainability,” Knowledge-Based Systems, vol. 310, Art.
no. 113028, 2025.

M. Castro-Bello et al., “Convolutional neural network models in
municipal solid waste classification,” Sustainability, vol. 17, no. 8, Art.
no.3523,2025, doi: 10.3390/su17083523.

M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for

convolutional neural networks,” in Proc. Int. Conf. Machine Learning
(ICML), 2019, pp. 6105-6114.

R. Risfendra, G. F. Ananda, and H. Setyawan, “Deep learning-based
waste classification with transferlearning using EfficientNet-B0 model,”
Jurmnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 4,
pp. 535-541,2024.

G. Celik, “Multi-layer feature fusion for high-accuracy solid waste
classification using a hybrid deep leaming model,” The Visual Computer,
pp. 1-23,2025.

H. Santoso, I. Hanif, H. Magdalena, and A. Afiyati, “A hybrid model for
dry waste classification using transfer leaming and dimensionality
reduction,” JOIV: InternationalJournalon Informatics Visualization, vol.
8,n0.2, pp. 623-634,2024.

M. M. Islam et al, “Effective waste classification framework via
enhanced deep convolutionalneural networks,” PLOS ONE, vol. 20, no.
4,2025,doi: 10.1371/journal.pone.0324294.

N. Li and Y. Chen, “Municipal solid waste classification and real-time
detection using deep learning methods,” Urban Climate, vol. 49, Art. no.
101462,2023.

Q. Zhang, Q. Yang, X. Zhang, Q. Bao, J. Su, and X. Liu, “Waste image
classification based on transfer learning and a convolutional neural
network,” Waste Management, vol. 135, pp. 150-157, 2021, doi:
10.1016/j.wasman.2021.08.038.

M. M. Islam, S. M. Hasan, M. R. Hossain, M. P. Uddin, and M. A.
Mamun, “Towards sustainable solutions: Effective waste classification
framework via enhanced deep convolutional neural networks,” PLOS
ONE, vol. 20, no. 6,¢0324294,2025.

G. 1. Sayed, M. Abd Elfattah, A. Darwish, and A. E. Hassanien,
“Intelligent and sustainable waste classification model based on multi-
objective beluga whale optimization and deep learning,” Environmental
Science and Pollution Research,vol. 31,no.21, pp. 31492-31510,2024.

588 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

[22] R. R. Selvaraju et al, “Grad-CAM: Visual explanations from deep [24] F. Y. Manik, S. Efendi, J. T. Tarigan,and M. S. Lydia, “Benchmarking
networks via gradient-based localization,” in Proc. IEEE Int. Conf. deep learmning models for visual classification and segmentation of
Computer  Vision (ICCv), 2017,  pp. 618-626, doi: horticultural commodities,” International Journal of Advanced Computer
10.1109/ICCV.2017.74. Science and Applications, vol. 16, no. 10,2025.

[23] J. G. Kotwal, R. Kashyap, and P. M. Shafi, “Artificial driving based [25] Z. Huang, L. Su, J. Wu, and Y. Chen, “Rock image classification based
EfficientNet for automatic plant leaf disease classification,” Multimedia on EfficientNet and triplet attention mechanism,” Applied Sciences, vol.
Tools and Applications, vol. 83, no. 13, pp. 38209-38240, 2024. 13, no. 5, Art. no. 3180, 2023.Huang, Z., Su, L., Wu, J., & Chen, Y.

(2023). Rock image classification based on EfficientNet and triplet
attention mechanism. Applied Sciences, 13(5), 3180.

589 |Page
www.ijacsa.thesai.org



