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Abstract—Technology-Assisted Language Learning (TALL)
has developed and has greatly transformed the way English as a
Second Language (ESL) is taught. The current digital resources
and smart solutions have enabled more interactive and accessible
learning, providing learners with an opportunity to train their
skills at any time and place. Nevertheless, most of the current
systems remain based on strict rules or conventional supervised
training approaches. These methods can demand large quantities
of labelled data, are inflexible in the learning process, and have
little in the way ofindividualized feedback. Consequently, students
may remain inattentive, and the acquisition of all the necessary
language skills, such as reading, writing, listening, and speaking,
may be unequal. In order to address such shortcomings, this study
presents T-RLNN (RoBERTa-based Reinforcement Learning
Neural Network), which is a dynamic model of ESL teaching. T-
RNN combines deep contextual language comprehension and
reinforcement learning in order to customize teaching to every
learner. The RoBERTa encoder can retrieve semantic and
syntactic feedback on responses of learners, and an actor-critic
reinforcement learning agent can modify teaching plans in real
time. The agent takes into account the learner-specific factors, i.e.,
proficiency, response time, engagement, and interaction behavior,
to give the best guidance. It was trained in Python using PyTorch
and tested on a curated dataset of 5,000 responses of a learner in
reading, writing, listening, and speaking tasks. T-RLNN
performed better than conventional models, such as Support
Vector Machines, random forests, and conventional deep neural
networks, with a 94.8 % accuracy, 92.7 % F1 -score, and 71.5 %
Adaptivity Index. These findings indicate that T-RLNN has the
potential to provide insightful, interactive, and learner-oriented
ESL training and open the way to smarter and more adaptable
language learning systems.

Keywords—English as a Second Language; adaptive learning;
reinforcement learning; RoBERTa; intelligent tutoring systems

I.  INTRODUCTION

In recent years, the field of education, specifically language
learning, has been dramatically influenced by technology [1].
English as a Second Language (ESL) classrooms often include
a wide variety of learners, creating a need to tailor instructional
approaches to the various needs [2]. Traditional teaching, like
what Acocella et al. (2022) suggested, typically does not work
well in relation to the multiple styles of leaming, developmental
levels,and intelligencesin one classroom [3]. This illustrates the
need for learning environments that are flexible, changeable,
and adaptable to a learner’s needs. Technology-Assisted
Language Learning (TALL) or instructional resources have
been utilized, yet some remain fixed and rule-based [4]. Many
TALL also lack real-time ecological flexibility, individualized
feedback, and adaptability to the learner’s emotions and
performance [5], [6]. Ultimately, these factors may cause
frustration or disengagement, and ultimately limited progress [7]

[8].

Presently, the predominant supervised learning techniques
found in Al-driven ESL systems rely on relatively large amounts
of labeled data to complete narrow tasks, such as grammar
correction or vocabulary checks [9],[10]. Most models utilize
the common four skillsoflanguage: listening, speaking, reading,
and writing as discrete skills and do not allow for holistic
learners to grow [11]. To address these issues, presented in this
work is a new T-RLNN as a framework and method that adds
RL as a contextually based language heuristic. In contrast to
traditional systems, T-RLNN approaches the instructional
strategy differently without fixed content or rigidly adhered-to
rote rules—but rather classifies and customizes learning through
live interactions with learner performance, engagement, and
progress. Within the T-RLNN framework, an RL agent, using
an actor—critic architecture, operates on learner states
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constructed by ROBERTa embeddings and behavioral features.
In that context, T-RLNN is customized to learners through
varying or adjusting working task difficulty, the instructional
pacing of interactions, and delivery instructional style. T-RLNN
provides a platform that is customized, scalable, and contextual
for ESL learner support, while making their leaming journey
unique.

A. Research Motivation

The rationale behind this study is that current ESL systems
lack flexibility, personalization, and integration of skills. The
purpose of this study is to develop an adaptive tutoring system
based on RoBERTa and reinforcement learning that will
improve the engagement of learners and help them maintain
language development.

B. Significance of the Study

The study is relevant because it presents the T-RLNN
framework, a combination of contextual understanding of
language and reinforcement learning that facilitates adaptive
ESL learning. It is not limited to conventional approaches, but it
can provide customized, scalable, and interactive learning,
helping to progress the intelligent tutoring systems.

C. Recent Innovation and Limits

The more recentdevelopments in the ESL learning strongly
depend on deep learning and transformer-based models like
BERT and RoBERTa to comprehend the language contextually
and enhance grammar correction, vocabulary acquisition, and
reading comprehension[12]. Although it works, these models
require a lot of large labelled data and have less real-time
flexibility for a specific learner. By introducing contextual
representations into reinforcement learning, these gaps could be
resolved with flexible, personalized, and adaptive choices of
instruction [13].

D. Key Contributions

e Proposed a novel RoBERTa-based Reinforcement
Learning Neural Network (T-RLNN) that integrates
deep contextual language understanding with adaptive
instructional strategies for ESL learning.

e Modeled a comprehensive learner state by combining
linguistic features extracted through RoOBERTa with
behavioral indicators such as accuracy, response time,
and engagement levels.

e Employedan actor—critic reinforcementlearningagentto
dynamically adjust task difficulty, feedback, hints, and
exercise personalization in real time based on learner
performance.

e Formulated the learning process as a Markov Decision
Process (MDP), enabling interpretable decision-making
and long-term optimization of instructional strategies.

e Demonstrated that the proposed model outperforms
conventional approaches, including SVM, Random
Forest, and DNN, in terms of precision, F1-score,
adaptability, and overall learner engagement, offering a
scalable and personalized ESL tutoring solution.
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The remaining part of the section is divided as follows:
Section II provides a review of prior works and Section III
describes problem statement. Section IV details the proposed
framework with its methodology, Section V with the
demonstration of the results. Finally, Section VI presents the
conclusion of the proposed framework, while offering
recommendations for further research and application.

II. RELATED WORKS

Kaur, Kumar, and Kaushal [14] provide an analytical
perspective into the trends and development of technology-
facilitated language learning systems. These systems are
regarded as intelligent since they amend their mode of delivery
of knowledge based on the learner. The research method
employed was a peer reviewed articles from several reputed
journals where the study was conducted between the years 2011
and 2021. The authors analyzed adaptive systems through three
dimensions: analysis of space and time, system and leamer
factors and the accommodation offered. Many TALL systems
are available nowadays, and their usage is rapidly growing,
mainly in Asia, where English is taught as a foreign language.
The fact that the systems are adaptive means that their ability to
meet university students’ needs is taken into consideration. The
study presents a breakthrough in adaptive systems for language
learning, where English is the most researched language.
However, the review does not include a quantitative analysis or
allocate specific performance indicators to measure the actual
significance of adaptive systems. Furthermore, some
difficulties, such as the application of such systems on a large
scale, and the benefits that could be achieved by involving local
authorities and educatorsin the implementation of such systems,
are discussed.

Khasawneh [ 15] examines the effect of multimodal teaching
and learning practices on Sudanese dyslexic students’ English
language leamning in KSA. The study adopted a quantitative
research approach and with the help of paired t-tests, Pearson’s
correlation, multiple regressions, and ANOVA to determine the
impact of multimodal approaches for teaching 30 dyslexic
learners. The resultsrevealed a significant enhancement of the
students’ performance in language when the modes of teaching
were implemented. The study also focuses on the fact that how
often strategies are used to benefit the success of the
interventional program. The study also emphasizes that instead
of a mass approach, individualized instruction may be more
beneficial for learners with different levels of language
competence atthe beginning of the course. Nevertheless, one of
the limitations of this study is that it involved a small sample,
thus the results of the study do not have broader applicability.
Also, the study fails to make an extended analysis of the fluency
of the language retained by students while learning through
MMT and the extent of interaction between various types of
multimediaresources and students. Nevertheless, this research
adds useful knowledge about the leaming paradigms, namely,
adaptive learning for learners diagnosed with learning
disabilities, including dyslexia.

Theresearchstudyby Chanderanand Hashim [ 16] identifies
the ESL students’ LLS at a private university in Selangor,
Malaysia. The research used a quantitative cross-sectional
survey design with a survey instrument developed from
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Oxford’s SILL. The target population was 200 freshmen from
different faculties to understand on how students utilize LLS to
improve their language skills. From the descriptive statistical
analysis, the findings showed that the students prefer to apply
those strategies aimed at enhancing their language proficiency.
The results reveal cognitive and metacognitive approaches as
the first ones with identified high efficiency for language
acquisition. The study also focuses on the use of leamer
preferred strategies in language learning and acquisition
processes. This is, however, the limitation of the research
because the data collected may be influenced by the
respondent’s perception. As this study proposes, the study is
limited by the failure to track the strategies’ long-term
effectiveness as well as their effects on student general
performance. However, the study reveals insight into the ESL
learners’ sociocultural literacy practice, indicating to the
educators the most appropriate ways to develop effective ESL
curriculum.

Chung et al. [17] carried out the research with the aim of
ascertaining how the retrieval of video playback affects ESL
learners’ learning. They use metrics that are more or less based
on an observer’s eye check and survey while evaluating the
video playback speeds. The sample consisted of 32 ESL
participants with gradual and immediate speed change during
video watching. The characteristics favored by the results
entailed that gradual speed changes considerably improved
learners’ flow state, video comprehension, as well as cognitive
load. Therefore, these findings imply that slower changes could
create a less obtrusive learning process for ESL students. The
main drawback of the study is the limited scope of the same in
the inclusion of a relatively small target population. However,
the study concentrated on video comprehension, without much
regard to other sectors in language acquisition, including
listeningand speaking. Nevertheless, the study gives insightthat
may be rather useful when it comesto enhancingresultantvideo-
based learning; it provides recommendations that can be useful
in the development of adaptive learning systems taking into
account cognitive processing capacity.

Young and Shishido [ 18] investigated the application of the
multipurpose chatbot called ChatGPT in the production of
English readingcontent for ESL students. The studyalsolooked
at how ChatGPT can be useful in generating texts of different
difficulties to meet needs of ESL students with a limited
vocabulary. The development research approach was therefore
based on the comparison of different scores of reading ease
between the contents produced by OpenAl’s ChatGPT and the
actual reading texts. The study showed that ChatGPT could
indeed generate simpler and more comprehensible texts, it can,
therefore, be used to enhance language learning. The study
recognizes it in the same breath, that as a recent innovation,
ChatGPT has not undergone conventional assessment in
language learning settings. Besides, readability scores can be
used as ameasureoflearming contentquality but do not take into
account further factors, for instance, their learning process
engagement or understanding. Nevertheless, this study
evidences that the proposed concept of integrating Al
technologies such as ChatGPT into adaptable language learning
systems can be a groundbreaking model to modernize the
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approach towards selecting appropriate readings for ESL
learners.

In the study, Monika and Suganthan [19] examines the
impactof ChatGPT on English language learning for the English
as Second Language students. The study adopted a cross-
sectional survey eliciting data from ESL students taking English
language classes in various institutions in the Vellore District.
The study aimed at establishing the effect of ChatGPT model on
the language abilities of the learners particularly on listening,
speaking, reading, and writing (LSRW) skills. In the findings, it
showed that ChatGPT had a positive impact on learmer’s
vocabulary and the overall language usage. However, the study
fails to draw the negative side of applying an Al model,
including the one used in developing ChatGPT, such as the
ability of themodelto misunderstand context or make inaccurate
content. Such findings also do not take into accounta variety of
ways, including durability of knowledge retained whenusing the
ChatGPT, or its impact on learner’s language proficiency or
assessment results. However, there are still deficits in their
coverage and application of ESL learning, but the study proves
that Altechnologies could bring positive impacts to developing
ESL learning with the feedback and interactive generation that
could attend the learners’ needs.

The research carried out by Naparan and Bacasmot [20]
focuses on an investigation of M-learning with Smartphone
applications and their impact on students’ communication
competency with reference to their learning ESL. This research
utilized descriptive-correlational research design to gather data
from senior high school students in Davao City. When asked
about Smartphone apps for learning, the study established that
there exists a positive correlation between Smartphone app use
and Communication competence, hence the importance of
Smartphone apps in improving ESL learners’ linguistic
proficiency. Nonetheless, the research indicated that there was
insignificantly decreased use of English language problems and
smartphone apps. The study also employed regression analysis
to establish the effect of smartphone apps on second languages
butrelied on subjective responses that reduce validity. However,
the research sample is restricted to a particular group of students
and the city, Senior high students in Davao City which means
generalization of the results is impossible. However, such
limitations would not deny the fact that this research has
succeeded in offering gainful understandings on how the mobile
learning technologies could be implemented and used to
advance the effectiveness of ESL learning and the
communication effectiveness of language learners.

Ahmad etal. [21] aims at identifying the language learning
strategies employed by Primary ESL learners in Sarawak. The
study adopted a quantitative approach to research and more
specifically a survey to establish the extent of use of language
learning strategies among Year 5 students. The study findings
showed that students deployed more the cognitive-affective
approach as well as the affective-motivation strategies most
tasks than the other identified strategies such as memorization
and compensation approaches. According to the study, the
strategies discussed above can be used in order to improve
comprehension and fluency when reading as well as students’
linguistic competence. However, the present research does not
take into account the implementation ofthese strategies as long-
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term benefits for students’ language development. Also, there is
a lack of generality in the study since the participants involved
were Year 5 students in a definite region only. Nevertheless, the
study implies that ESL students should choose their preferred
strategies when learning the English language, helping
educators in the process of informing the way in which these
children learn English.

III. PROBLEM STATEMENT

The growing popularity of technology in ESL learning has
enhanced the availability of learning; nevertheless, most of the
current systems are still stagnant, one-dimensional, and ill-
advised to meet the needs of various learners [22], [23]. The
conventional methods of tutoring lack responsiveness in real-
time and are not responsive to the progress of the learner thus
the tutoring methods are not able to support active listening and
the balanced development of the language skills, especially in
heterogeneous classroom environments. Such restrictions
provide structural obstacles to language leaming. To overcome
this issue, this study discusses the T-RLNN framework, a
contextual reinforcement learning-based model that constantly
modifies the instructional pathways due to performance,
engagement,and skilldevelopment of the learner. In sucha way,
T-RLNN creates a more flexible, responsive, and leamer-
centered ESL learning process.

IV. PROPOSED FRAMEWORK FOR ADAPTIVE ESL
INSTRUCTION USING T-RLNN

The suggested T-RLNN model will be created to weigh the
linguistic and behavioral components of the interaction between
the learner and allow the model to change the instructional
methods in real-time. First, the learer’s inputs of the form of a
text response, task type, response duration and indicators of
engagement are processed so as to create structured and
meaningful feature representations. The text responses undergo
normalization by the form of lowercasing, punctuation marks
and lemmatization and then they aretokenized by the RoBERTa
tokenizer that is founded on the basis of lower byte-pair
encoding. The process attains rich contextual embeddings,
which reflect a semantic meaning and syntactic nuances of
language use by learners. In addition to linguistic characteristics,
behavioral dataare of considerable importance to the modelling
of the learner. Categorical variables, including the type of the
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task or the level of a particular proficiency, will be converted to
dense vector representations, whereas the numerical variables,
including the time of response and the engagement scores, will
berescaled to ensurethat the values arethe same acrosslearners.
These behavioral and linguistic representations are then
combinedtogetherto create a holisticstate of the learner and this
becomes the basis of adaptive decision making. This state of
learning is fed through an actor-critic reinforcement learning
agent that decides the most appropriate instructional action ata
given step. The agent can either change the difficulty of the
tasks, give specific hints, or choose the other types of exercises
that suit the learner, depending on the performance and
engagement of the learner. The learning environmentis able to
constantly test these actions by rewarding them based on
accuracy, participation and effectiveness of the response,
meaning that the model is able to improve its policy as it
advances. Every interaction between the learner is viewed as an
episode, and the system is able to record as much as possible of
each individual learning pattern and provide them with unique
dynamic instruction. The T-RLNN systemis a pipeline that end-
to-end system pipeline that integrates contextual language
comprehension with reinforcement-based learning adaptation
provides a more efficient, reactive, and learner-focused
ecological system to ESL tutoring.

The workflow of the proposed T-RLNN framework of
adaptive ESL instruction is provided in Fig. 1. The inputs of
learners, such as text answers, type of task, response time, and
indicators of engagement, are preprocessed firstand converted
into the form of structured feature representations. The
RoBERTa byte-pair encoder tokenizes text data to create deep
contextual embeddings,and the deep contextual embeddings are
combined with theencoded behavioral features to createa single
state vector of the learner. This is the condition where language
competence and interaction behavior are captured. A
reinforcement learning agent, whose components are actors and
critics, is an agent that employs this state to dynamically change
instructional strategies, including task difficulty or hints, on the
basis of real-time performance of the learner. Based on the
learner’s actions, the environment will assess the actions and
give rewards based on accuracy, engagement, and efficiency of
response and allow policy refinement and individualized ESL
learning.

Actor-Critic
Reinforcement
learning Agent

Evaluation

Fig. 1. Workflow of the T-RLNN framework.
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A. Dataset Description

The experiments are based on publicly available Kaggle
Computer-Assisted Language Learning (CALL) dataset [24],
comprising of bibliographic and textual records of research
publications indexed by Scopus between 1983 and 2020. The
dataset also contains structured metadata in the form of
publication titles, abstracts, author details, affiliation, keywords,
document type, year of publication and source information.
These are textual elements that offer a corpus that is rich in
language representation learning and semantic analysis in terms
of ESL and CALL studies. The datasetis used to assess the
efficiency of the contextual language modelling and adaptive
instructions policy learning with the text-based input instead of
direct textual and metadata-based samples.

B. Data Preprocessing

Data preprocessing transforms raw textual and metadata-
based samples into structured, normalized, and feature-rich
inputs by cleaning text, encoding categorical variables, and
scaling numerical features, ensuring robust representation for
downstream modeling.

1) Text normalization: Text responses of the learners are
pre-processed to trim off noise, and create uniformity prior to
tokenization. The procedure will involve lowercasing,
eliminating of punctuations, and lemmatization. The steps,
standardizing input text, enhance downstream representation
learning, and promise thatthe ROBERTa tokenizer is presented
with uniform sequences, which lack the variability due to
surface-level variation in writing. Itis represented, as in Eq. (1):

Tyorm = Lemmatize(Lowercase(T,,, — P)) (1)

where, T,,,, is the original response, P denotes punctuation
set, Lowercase(-) converts all characters, and Lemmatize(-)
reduces words to canonical forms. The output T,,,-,, represents
normalized learner text ready for sub word tokenization.

2) Categorical feature encoding: Embedding layers are
used to convert the learner-related categorical attributes, i.e.
type of a task or a level of proficiency, into dense numerical
vectors. When compared to one-hot encoding, the embeddings
memorise semantic similarity among the categories, which
allows the RL agent to acknowledge associations (e.g
similarity of tasks) and extrapolate more effectively across
various learner groups. It is expressed, as in Eq. (2):

E. =W, -OneHot(C) 2)

Here, C represents the categorical feature (e.g., task type),
OneHot(C)is its one-hot encoded vector, and IW.is the trainable
embedding matrix. The product yields dense embedding E,
capturing category information in a low-dimensional
representation.

3) Numerical feature scaling: Continuous features such as
textual complexity indicators, engagement, and retention are
standardized for stable optimization. Raw values are
transformed into zero-mean, unit-variance distributions. This
ensures features contribute proportionally to state vectors and
prevents domination by attributes with large numerical ranges,
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thus improving training stability and model convergence. It is
computed, as in Eq. (3):

x'=F (3)

where, x is the original feature value, u is the mean of the
feature across training samples, and o is the corresponding
standard deviation. The scaled feature x’ ensures normalized
contribution to the learner state representation.

C. Representation Learning (RoBERTa)

The discussion demonstrates that the answers of learners are
converted to high quality contextual embeddings by employing
RoBERTa-base, a pre-trained transformer that can capture deep
semantic and syntactic links in the text. Normalization and
tokenization of responses is initially done with the use of the
Byte-Pair Encoding (BPE) of RoBERTa, which provides the
same representation to words, sub words, and special tokens by
using unique IDs. Padding or truncation oftoken sequences to a
constant maximum length Lis then done so that a batchoftoken
sequences can be processed, and attention masks used to
differentiate between valid tokens and padding. The sequences
are given through the multi-layer self-attention and feedforward
representation encoders of RoOBERTa to produce contextualized
token representations that encode word-to-word dependencies.
Because the Kaggle CALL data do not offer explicit logs of
learner interaction or behavior, an engagement score is
computed using the information of interaction clues on the
content level as a proxy measure. Particularly, engagement is
deduced by the normalized textual and structural features that
each document has such as the length of the abstract, the density
of keywords, and citation-related metadata. These
characteristics indicate the intensity and applicability of
interaction with ESL-related material and are normalized by
min-max scale to provide the comparison between samples. The
engagement score E is computed, as in Eq. (4):

E=a Lyym+ B Knorm+V Crorm 4

where, L,,-n represents normalized abstract length,
K,orm denotes normalized keyword count, and
Cormeorresponds to normalized citation-related indicators. The
weighting coefficients «, 8,y are empirically set to ensure
balanced contribution from each component. Lastly, attention-
weighted mean pooling is contrasted to obtain concise,
semantically meaningful latent encodings of learner responses
to serve as a strong basis of downstream tasks in adaptive ESL
teaching mathematically expressed, as in Eq. (5):

L
Y ey

e = T
Tiimy

(%)

Here h;represents the hidden state of token i, whilem; €
{0,1}indicates whether a token is valid. The resultis a 768-
dimensional sentence-level embedding which is effective at both
grammatical and semantic accuracy These behavioral proxy
features, includingthe engagement score defined in the previous
subsection, are concatenated with RoBERTa embeddings to
form a unified learner state representation. The resultant
aggregated vector is then fed through a fully connected layer to
give the dimensional consistency and equal contributions by all
the features and to generate a dense learner state. This coherent
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representation allows the reinforcement learning agent to make
adaptive and context-sensitive instructional choicesand be more
successful than shallow text models in facilitating long-lasting
and personalized learning. It is given in Eq. (6):

ee'

!
llell e 1l

(6)

It computes the cosine similarity between two learmer-
response embeddings e and e’, capturing semantic similarity for
tasks like feedback assessment, clustering, or adaptive
instruction.

sim(e,e') =

D. Reinforcement Learning Environment Design

Adaptive ESL tutoring process is described as a Markov
Decision Process (MDP), which gives a transparent pattern of
interactions between the learner and the reinforcement learning
(RL) agent. The state s, at time t gives the profile ofthe leamer
at that time comprising RoOBERTa-based contextual embedding
alongside behavioral variables, including accuracy, response
time, and engagement. The action is related to the selected
instructional strategy, such as variations in task difficulty,
exercises in grammar or vocabulary, comprehension, or hints.
The reward measures effectiveness of the action using both
immediate performanceand engagement measuresis calculated,
as in Eq. (7):

Tt = Wacee* AACCt + Weime A(_RTt) + Weng * AEngt (7)

where, AAcc;, denotes the change in learner accuracy,
A(—RT,) represents improvement in response efficiency (lower
time is better), and AEng, reflects variation in leamer
engagement. The weights Wgeo , Wyjpme » Weng are tuned to
balance short-term performance with long-term engagement.
The reward for the RL agent is to maximize the expected
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cumulative discounted reward over a sequence of learner
interactions is expressed, as in Eq. (8):

J(m) = E.[Xi-ov'r] ®)

where, 7 represents the policy mapping states to actions, T is
the length of an episode, and y is the discount factor favoring
long-term competence. Through the explicit specification of
states, actions, and rewards in this MDP model, the system
facilitates the RL agent to dynamically adjust instruction
methods for individualized, situation-sensitive ESL leaming
maximizing both correctness and engagement on various
learners.

E. Actor—Critic Reinforcement Learning Agent

To enable adaptivedecision-making, this research appliesan
Actor-Critic model, whereby the agent is spatially learning a
policy of action choice as well as an evaluation of state value
function. The actor network computes a probability distribution
of the potential instructional strategies given the current learner
state vector and the critic network predicts the mean of the
expected return to give feedback to stabilize learning. It is
represented, as in Eq. (9):

A(spap) = Ry +yV(ser1) = V(s )

In Eq. (9), the measure of goodness of action taken a,
performed in state s, compared to the baseline estimate of a
critic. In this case R, is the instant payoff, V(s,) andV(s;,)
are the expected values of the states and g is the discount factor.
Positive advantage means that the action of instructional choice
has enhanced the performance of learners in a better way than
projected and as such, the actor network will pursue strategies
that are positive to reinforce. The workflow of RL Agent is
represented in Fig. 2.

Reward r

Agent |

7

Features ,7

Controller Action

Policy a Environment

State s

Fig.2. Workflow of reinforcement learning agent.

Fig. 2 shows the architecture of the actor—critic
reinforcement learning agent in the T-RLNN framework. The
learner state vector, combining RoBERTa embeddings and
behavioral features, feeds into a shared neural backbone that
splits into two heads: the actor, which selects instructional
actions, and the critic, which estimates expected rewards. The
agent iteratively updates its policy based on rewards derived
from learner accuracy, engagement, and response efficiency,
enabling context-aware, adaptive instruction that evolves with
learner performance.

Both networks are similar in that they have a common
backbone of feedforward processingthe learner state which then
forks into two task active heads: a SoftMax output of the actor’s
policy and a scalar regression output ofthe value estimate of the
critic. The policy mgy(a; | s;) is parameterized by 8 and a,
every time step, the action atbased on the current state s; is
chosen. The parameterized critic ¢p estimates the value function
V4 (s¢) which is a measure of the expected total reward at that

state. Learning is then directed by the advantage function which

595|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

compares the degree to which a specific action is preferred to
the predictive value of the critic. It is computed, as in Eq. (10):

A =1+ ¥V (Sp41) — Vi (S) (10)

In Eq. (10), 7; is the immediate reward and y is the discount
factor. The actor is updated by maximizing the expected
advantage, while the critic minimizes the error in value
prediction is represented, as in Eq. (11):

L(6,$) = —Et[logmg(a, | s;) - A] +a - 67 (In

In this case, the policy loss gradient (actor) is the first term,
and the valueloss (critic) is the second term and their trade-off
is regulated by a. Such joint optimization makes the actor to
learn to suggest effective instructional strategies and the criticto
assess their long-term contribution to the level of engagement
and proficiency of the learners.

F. Learning Phase

Training of the T-RLNN framework entails two closely
related factors, which are a reinforcement learning agent and the
ever-changing learner state representation. ROBERTa takes the
textual response of the learner at each step to create contextual
embeddings that are subsequently added with behavioral
characteristics, including accuracy, response time, and
engagement, to createa complete learner state vector. According
to this condition, the actor network will choose a proper
instructional action. This is then simulated by the environment
asthe learner progresses and given feedback, which is translated
into arewardsignal. The critic considersthe quality of theaction
chosen and employs this to polish the policy. By continuing its
updates, the agent will acquire the ability to make compromises
to improve short-term performance at the cost of long-term
proficiency and involvement. Behavior cloning is used to log
interactions in order to maintain a stable and efficient training,
dealing with poorinitial decisions. Further, mini-batch updating,
entropy regularization and early stopping are also used to
promoteexploration, reduce overfitting, and strong convergence
leading to a powerful, adaptive tutoring system. It is calculated,
as in Eq. (12):

T, = a - accuracy, + 8 - engagement, — y - response time,(12)

It computes the reward 7; as a weighted combination of

learner performance, engagement, and response time. It is given
in Eq. (13):

0<0+n-6,Vglog mg(a; | s,) (13)

Here, 6 represents the actor parameters, mgthe policy, 6, the
temporal difference error, and 1 the learning rate; the policy is
updated to maximize expected rewards.

Algorithm 1 integrates RoBERTa embeddings with
behavioral features to form comprehensive learner states,
enabling an Actor—Critic RL agent to dynamically adapt
instructional strategies and maximize accuracy, engagement,
and long-term retention.
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Algorithm 1: T-RLNN (RoBERTa-based Reinforcement
Learning Neural Network)
Begin

Input: CALL dataset D = {responses, accuracy, timestamps,
engagement, task type}
Output: Trained policy 18 and critic Vy
For each learner responserin D do
Normalize text: lowercase, remove punctuation, lemmatize
Tokenize using RoBERTa BPE with max length L
Encode categorical features as embeddings
Scale numerical features using z-score
End For
For each responser do
Pass tokenized sequence into RoBERTa-base
Obtain hidden states H = {h1, h2, ..., hL}
Compute embedding e = mean_pool(H, mask)
Concatenate e with normalized features
Project into fixed-size learner state vector s
End For
Define state s = learner state vector
Define action a € ({increase_difficulty, decrease_difficulty,
grammar_ex, vocab_ex, comprehension_ex, hint}
Define reward 1y = W - AAcct + Wiime - A(—RT;) + Wepg -
AEng:
Initialize policy gy (a; | s¢) and value function Vo(s)
For episode = 1 to MaxEpisodes do
Initialize learner state sO
Fort=1toTdo
Select action at ~ mg(a; | s¢)
Apply action in environment - observe new statest+1 and
reward rt
Compute advantage A; =11 + YV (S¢41) — Vip (S¢)

If A; >0 then

Update actor parameters 6 to increase ~mgy(a; | s¢)
Else

Update actor parameters 0 to decrease ~mgy(a; | s¢)
End If

Update critic parameters ¢ to minimize value error
Set s; & st+l
End For
End For
Output optimized policy m0*
Evaluate using metrics
Evaluate learner-centered metrics:
Retention Index, Adaptivity Index
End

Engagement Score,

The T-RLNN is a novel reinforcing idea of combining
contextual language understandingby RoBERTa with an Actor-
Critic reinforcement library to use adaptive ESL teaching
Through a balanced approach to semantic depth and behavioral
insight, the framework produces strong learner state
representations, which can be used to provide context-sensitive
personalization to outperform traditional models and provide
real-time adaptive tutoring with better engagement, retention
and proficiency results.
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V. RESULTS AND DISCUSSION

The obtained experimental data prove that the integration of
learning based on reinforcement and neural networks based on
transformerscanbe akey factor inacceleratingthe ESL teaching
process. The suggested workflow combines all data
preprocessing, learning contextual representation with
RoBERTa, a simulated reinforcement learning setting, and
optimizing the actors and critics to help the system to provide
adaptive and person-centered instructional plans. All tests were
run in Python on the CALL dataset, processed by ordinary NLP
technology and tokenized using the RoBERTa tokenizer. To
have equal and trustworthy assessment, the data was divided
into training (70%), validation (15%), and testing (15%). In
order to evaluate the efficiency of the suggested approach, the
performance of the method was evaluated against a number of
conventional models, such as Support Vector Machines,
Random Forests, and a feedforward Deep Neural Network,
along with an earlier developed RLDNN model. The five-fold
cross-validation was employed to fine-tune both the baseline
and proposed model and the results averaged across three
separate runs, to provide statistical strength. All the evaluation
metrics showed that T-RLNN architecture is highly flexible and
efficient, and better and stable performance was attained than
the traditional approach. These results note the importance of
combining deep contextual language representations with
reinforcement learning to teach ESL in an adaptive manner. In
general, the findings offer an important and valid comparison to
prove the usefulness of the suggested framework in facilitating
individualized and responsive language learning. Table I
summarizes the simulation parameters that were employed in
the experiments.

TABLE. 1. SIMULATION PARAMETER AND HARDWARE SETUP
Parameter Value / Description
Dataset CALL (Computer-Assisted Language Learning)
Data Split 70 % Train / 15 % Validation / 15 % Test

Text Preprocessing | Lowercasing, punctuation removal, lemmatization

Tokenizer & RoBERTa-base (768-dim, max length =128
Embedding tokens)
State RoBERTa embedding + behavioral features

Representation (accuracy, response time, enga gement)

{Increase/Decrease difficulty, Grammar,

Action Space Vocabulary, Comprehension, Hint}

RL Algorithm Actor—Critic (Advantage Actor—Critic, A2C)
Reward Weights w_acc=0.5, w_time=0.3,w _eng=0.2
Leamning Rate & . L

Batch le-4 (Adam optimizer), Batch size =32

Training Episodes 500 with early stopping (patience = 10 epochs)

Hardware Intel i9-11900K CPU, NVIDIA RTX 3090 GPU
Configuration (24 GB), 64 GB RAM

Software Python 3.9, PyTorch 2.0, HuggingFace
Environment Transformers, Ubuntu 22.04
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Learning Curve: Accuracy vs. Epochs
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Fig.3. Learning curve accuracy.

Fig. 3 shows how the training and validation accuracy of the
proposed T-RLNN framework evolves with the epoch. It shows
that the model can enhance the classification of the leamer
interaction across multiple iterations and validation accuracy is
also close to training accuracy meaning that it has a good
generalization ability. The accuracy improvement in this ESL
adaptive learning scenario is associated with the ability of the
framework to matchthestate representations ofthe learners with
the best teaching method. The diagram confirms the usefulness
of the combination of RoBERTa embedding and RL and
demonstrates that the model will stabilize and reach high
accuracy results of adaptive tutoring.

Learning Curve: Loss vs. Epochs
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Fig. 4. Learming curve loss.

In Fig. 4, the training and validation loss are decreasing as
the T-RLNN model is optimized. A gradually diminishing curve
in both curves signifies constant convergence, and the
decreasing distance between them shows an insignificant
overfitting. In this ESL learning model, less loss is a positive
indication of an increased efficiency of the system in relating
learner response to the right instructional action. The model
achieves the minimization of prediction errors and enhances
instructional flexibility by learning to combine semantic
embeddings of RoBERTa and RL cues. The loss curves
therefore, validate stability, scalability and strength of the
suggested adaptive tutoring system.
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Canfusion Matrix Heatmap for T-RLNN
Grammar Vocabulary Comprehension

Grammar 10

Vocabulary 7

True Label

Predicted Label
Fig.5. Confusion matrix heatmap for T-RLNN.

Fig. 5 shows the confusion matrix heatmap of the proposed
T-RLNN framework where it is shown that it has successfully
performed in the classification of ESL modules which are
grammar, vocabulary, and comprehension. The diagonal values
indicate the correctly classified responses whereas the off-
diagonal values show the misclassifications. The high
concentration in the direction of the diagonal indicates that the
integration of the ROBERTa embeddings with the reinforcement
learning could help in facilitating adaptive instruction. The
heatmap also gives the information regarding the task
recognition: grammar and vocabulary tasks are recognized
better, and comprehension tasks are a little bit harder. On the
whole, this visualization points to the fact thatthe model can also
cope with awide variety of ESL learning tasks and offer tutoring
that is flexible and personalized.

Adaptive Pathway of a Learner under T-RLNN

2

Performance Score (%)

start Grammar Easy

Retention Boost
Learning Steps

Fig. 6. Adaptive pathway of a learner under T-RLNN.

Fig. 6 represents a learning trajectory produced by the
proposed T-RLNN. It describes the change in instructing
strategies based on the output of the learners, whereby, simple
grammar tasks are introduced and thenadvanced with the harder
onesrelatedto leaming vocabulary and comprehension. The fact
that there is an increasing trend in the performance scores
indicates that the agent is capable of dynamically personalizing
the learning trajectories. The framework utilizes RoBERTa
embeddings to get contextual understanding and RL to get
decision-making to adjust the difficulty level and content choice
to get the most engagementandretention. This qualitative model
of visualization of the pathways shows that the model has the
ability to provide personalized education with the help of which
the proficiency can be developed within ESL students.
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ROC Curve for T-RLNN Framework
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Fig.7. ROC curve.

Fig. 7 shows the ROC curve of the proposed T-RLNN
framework with an area under the curve (AUC) of 0.94 on the
CALL dataset. The curve shows that the model is highly
discriminative in categorizing the interactions among learners
with high scores of true positive rates being preserved with
different levels of false positive rates. The framework has a
predictive performance score of 0.94 which suggests that it is
very effective in matching the responses of learners with the
appropriate teaching-leaming methods. Using RoBERTa
embeddings with RL, T-RLNN exhibits improved adaptivity
and accuracy, therefore, being very useful in real-time
personalized ESL learning settings, where prediction of
outcomes is essential.

A. Performance Evaluation for Proposed Framework

The research outcomes indicate that the proposed T-RLNN
framework is able to attain a significantly high overall accuracy
of 92.5% which evidently exceeds all the traditional baseline
models. Such a good performance is attributed to the fact that
the model is able to constantly leamn through the interaction of
learners and change its teaching methods depending on the
individual needs. The fact that the recall score takes 90.6 % also
means that the system is efficient in detecting meaningful
learning patterns and providing timely and context-sensitive
feedback. Notably, adaptivity under this model extends beyond
scaffolding content difficulty but also provides consistent
individualized performance and accuracy is at 91.8% across a
range of learner types. On the other hand, traditional methods,
including Support Vector Machines and Random Forests, have
obvious weaknesses, especially in their failure to adapt to the
new behavioral patterns or the learning styles of new learmers.
Although the baseline Deep Neural Network has a fairly high
accuracy of 89.1, it does not offer the adaptability to decision-
making and instructional dynamism that is offered by
reinforcement learning. Consequently, this makes it less
responsive to the changes in learner engagement or performance
through thecourse of time. These results are highly indicative of
the fact that reinforcement learning-based adaptive tutoring is a
more efficient model to be used in ESL teaching. T-RLNN
improves the understanding, maintains the attention of the
learner and provides more applicable learning by constantly
optimizingthe learning paths accordingto the feedback andreal-
time behavior ofthe learner. In general, the findings support the
hypothesis that the use of contextual language comprehension
combined with reinforcement learning offers a significant
benefit over non-adaptive and fixed baseline models of the
contemporary ESL teaching process.
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1) Precision: The ratio of the total number of correct
predictions. The precision is derived using Eq. (14):

TP
TP+FP

Precision =

(14)

2) Recall: The number of accurately predicted positive
instances over all the predicted positives. Recall measures are
evaluated using Eq. (15):

TP
TP+FN

Recall =

(15)

3) Accuracy: The proportion of successfully predicted
positive cases among all the actual positives. Accuracy is
evaluated using Eq. (16):

TP+TN

Accuracy = ——
Y = TP TN+FP+EN

(16)
4) Fl-Score: The harmonic mean of recall and precision,
reconciling both measures. Fl-score is calculated with the
Eq. (17):
Precision x Recall

Fl—score=2 X —————— (17)
Precision + Recall

where, the FN, TN, FP, and TP stand for false negative, true
negative, and true positive, respectively.

Fig. 8 and Table Il display the performance measures of the
suggested T-RLNN framework on four major evaluation
metrics. The model performs best in Accuracy at 92.5%, closely
followed by Precision at 91.8%. Recall, which is a measure of
the model's capacity to detect pertinent instances, is 90.6%,
while the F1-Score, which is the harmonic mean of Precision
and Recall, is 91.2%. These outcomes show an even and strong
performance in all the metrics, indicating that the suggested RL
model is efficient in ensuring consistent prediction quality with
fewer false positives and fewer false negatives.

B. Ablation Study

An ablation study was conducted to gain insight into the role
playedby each ofthe elements in the T-RLNN architecture. The
experiments tested the individual effect of each of the modules
by varying or eliminating certain modules on model
performance and adaptability.

Table Il describes the ablation results of T-RLNN. The lack
of RoBERTa embeddings or engagement features reduces the
performance, which confirms their significance. Integrated
components are effective, and the full model is the one that has
the greatest accuracy, F1-score, engagement, and retention.
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TABLE. I1. PERFORMANCE EVALUATION
Metrics Value
Accuracy 925
Precision 91.8
Recall 90.6
F1-Score 91.2

Perfarmance Metrics of Proposed RL Model

92.5%

Percentage (%)

F1-Score

Precision Recall

Accuracy

Fig.8. Performance evaluation.
TABLE.III. ABLATION RESULTS
. Accuracy F1- Engagement Retention
Model Variant (%) Score Score Index
Without
RoBERTa 87.2 0.85 0.70 0.72
(RLDNN)
Without
Engagement 89.5 0.87 0.74 0.76
Features
Full TRLNN 92.5 090 | 081 0.84
(Proposed)

C. Comparative Analysis

Table IV provides a comparative study of four ML models:
Proposed RL, SVM, RF, and DNN—with respect to three
performance measures: accuracy, recall, and precision. The
Proposed RLmodel showsthebest performance with the highest
accuracy of 92.5%, recall of 90.6%, and precision of 91.8%
compared to all the methods considered. Even though the
conventional models show increasingly better performance,
they are still inferior in general. Among them, the DNN model
demonstrates the best performance, closest to the RL-based
approach, with the second highest in all three measures.

TABLE.IV. COMPARATIVE STUDY WITH EXISTING METHODS
Accuracy s o o F1 Score Engagement Retention Index Adaptivity Index
Model (%) Precision (%) Recall (%) (%) Score (ES) (RI) (AI)
Proposed RL 925 91.8 90.6 91.2 76.5 73.9 67.3
SVM [25] 853 84.1 829 83.5 61.2 583 42.8
RF [26] 87.2 86.5 85.0 85.7 63.9 61.5 48.1
DNN [27] 89.1 88.2 88.2 88.2 68.4 66.0 52.6
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Fig.9. Comparative study with existing methods.

Fig. 9 comparesthe results of fourdifferent techniques—ie.,
a new RL method, SVM, RF, and DNN—on three most
important metrics: accuracy, recall, and precision. Performance
of each method is depicted by separate, color-coded bars, so it is
very convenient to compare the results visually. Interestingly,
the RL approach performs better than the rest with scores of
approximately 92% for accuracy, 90% for recall, and 91% for
precision,whilethe DNN, RF,and SVM approaches trail behind
with increasingly lower scores in the high to low 80s. This clear
illustration highlights the greater efficacy ofthe RL approach in
managing these evaluation metrics.

D. Discussion

The suggested T-RLNN system will follow the format of an
actor-critic reinforcement augmentation model where the real-
time ability, reaction time, participation, and performance in
assignments of the learners are directly linked to the teaching
choices. The model combines contextual embeddings based on
RoBERTato identify not only thelinguistic richness butalso the
cognitive and behavioral cues to reflectthe entire state of each
learner and represent it in a rich and holistic manner. This
combination enables the system to provide context-sensitive
personalization, where the actions of instruction are much more
precisely tailored thanthe conventional ESL learningmodels. In
contrast to inert methods, T-RLNN adapts its instructional plan
as the learner behavior changes so that it prioritizes both the
accuracy of learning in short-term and long-term interaction and
retention. The architecture is a combination of RoBERTa
embeddings, a projection layer to stabilize state representations,
and an actorand critic network that drives instructional choices.
The actor produces discrete instructional behavior, like making
grammar, vocabulary or comprehension task choices, by the use
of'a softmax output, and modulates task difficulty by actions of
continuous value. This design concurs with the adaptable, data-
driven modulation of instruction that can be very close to the
needs and progress of learners. The efficiency of the suggested
frameworkis provenwith thehelp of experiments. T-RLNN was
always superior to classic models, such as Support Vector
Machines, Random Forests, and Deep Neural Networks, in the
most important evaluation metrics. The accuracy, F1-score and
Adaptivity Index of the framework were 92.5,91.2 and 67.3
respectively, which is almost 20 points higher than the DNN
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baseline. These results underscore the factthat the model can be
used to increase the engagement of learners, knowledge
retention, and competence of language in general through
responsive learning pathways. To sum up, the present research
demonstratesthat T-RLNN can be used to implement a practical
and scalable solution to real-time personalized ESL tutoring.
The effective combination of the concept of reinforcement
learning and contextual language representations introduces a
strong and progressive direction in the development of
technology-enhanced language learning systems.

VI. CONCLUSION AND FUTURE WORK

The T-RNN framework was formulated as an adaptive ESL
tutoring system that combined both contextual representations
learning and reinforcement learning, whereby the instructional
strategiesaredynamically adjustedin real-time. The systemuses
behavioral measures (response time, accuracy, and engagement)
and RoBERTa-based semantic embedding to createa complex
and sophisticated learner state. The actor-critic agent then uses
this state to identify the most suitable instructional actions to
take via each of the learners, giving them highly personalized
instructions. Experimental analyses showed that T-RLNN was
the most effective model compared to traditional models, such
as SVM, Random Forest, and feedforward DNNs, with better
accuracy, F1-scores, and adaptivity. These findings imply that
the framework has been able to balance both short-term effects
ofimprovements in performance and long-term retention, which
has resulted in making ESL instruction more scalable, learner-
centered, and effective.

The research has some limitations, though. The experiments
were also donein one dataset, which could limit generalizability,
and the application of RoOBERTa demands a large computational
power, which canbe difficultto use in low-resource or real-time
environments. The research in the future will investigate cross-
dataset validation to enhance generalizability and lightweight or
distilled transformer models to decrease the cost of computation.
Also,the use of multimodal cues to the learner, e.g., speech, eye-
tracking, or interaction patterns, may facilitate more
comprehensive modeling of the learner states. The longitudinal
assessments will assist in measuring the learning outcomes over
a period of time, and such techniques as federated learning and
meta-learning may assistin large-scale personalization without
invading the privacy of learners. Altogether, the results indicate
that reinforcement learning integrated into a contextual
embedding offers a very versatile, effective, and customized
method of ESL instruction, which represents the future of
intelligent language tutoring systems.
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