
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

590 | P a g e  
www.ijacsa.thesai.org 

RoBERTa-Enhanced Actor–Critic Reinforcement 

Learning for Adaptive and Personalized ESL 

Instruction 

Dr. Angalakuduru Aravind1, A. Swathi2, Dr. Jillellamoodi Naga Madhuri3, R. Aroul Canessane4, K. Lalitha Vanisree5, 

Elangovan Muniyandy6, Rasha M. Abd El-Aziz7 

Assistant Professor, Department of H&S, Anurag Engineering College, Kodad, Suryapet (Dist), Telangana - 508206, India1 

Assistant Professor, Department of English, Aditya University, Surampalem, Andhra Pradesh, India 2 

Assistant Professor, Department of English, Siddhartha Academy of Higher Education (SAHE) Deemed to be University,  
Kanuru, Vijayawada, India3 

Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology,  
Chennai, Tamil Nadu, India4 

Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, 
Vaddeswaram, Guntur Dist., A.P., India5 

Department of Biosciences-Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,  
Chennai, India6 

Department of Computer Science-College of Computer and Information Sciences, Jouf University, Saudi Arabia 7 

Faculty of Computers and Information-Computer Science Department, Assiut University, Assiut, Egypt7 

 
 

Abstract—Technology-Assisted Language Learning (TALL) 

has developed and has greatly transformed the way English as a 

Second Language (ESL) is taught. The current digital resources 

and smart solutions have enabled more interactive and accessible 

learning, providing learners with an opportunity to train their 

skills at any time and place. Nevertheless, most of the current 

systems remain based on strict rules or conventional supervised 

training approaches. These methods can demand large quantities 

of labelled data, are inflexible in the learning process, and have 

little in the way of individualized feedback. Consequently, students 

may remain inattentive, and the acquisition of all the necessary 

language skills, such as reading, writing, listening, and speaking, 

may be unequal. In order to address such shortcomings, this study 

presents T-RLNN (RoBERTa-based Reinforcement Learning 

Neural Network), which is a dynamic model of ESL teaching. T-

RNN combines deep contextual language comprehension and 

reinforcement learning in order to customize teaching to every 

learner. The RoBERTa encoder can retrieve semantic and 

syntactic feedback on responses of learners, and an actor-critic 

reinforcement learning agent can modify teaching plans in real 

time. The agent takes into account the learner-specific factors, i.e., 

proficiency, response time, engagement, and interaction behavior, 

to give the best guidance. It was trained in Python using PyTorch 

and tested on a curated dataset of 5,000 responses of a learner in 

reading, writing, listening, and speaking tasks. T-RLNN 

performed better than conventional models, such as Support 

Vector Machines, random forests, and conventional deep neural 

networks, with a 94.8 % accuracy, 92.7 % F1 -score, and 71.5 % 

Adaptivity Index. These findings indicate that T-RLNN has the 

potential to provide insightful, interactive, and learner-oriented 

ESL training and open the way to smarter and more adaptable 

language learning systems. 

Keywords—English as a Second Language; adaptive learning; 

reinforcement learning; RoBERTa; intelligent tutoring systems 

I. INTRODUCTION 

In recent years, the field of education, specifically language 
learning, has been dramatically influenced by technology [1]. 
English as a Second Language (ESL) classrooms often include 
a wide variety of learners, creating a need to tailor instructional 
approaches to the various needs [2]. Traditional teaching, like 
what Acocella et al. (2022) suggested, typically does not work 
well in relation to the multiple styles of learning, developmental 
levels, and intelligences in one classroom [3]. This illustrates the 
need for learning environments that are flexible, changeable, 
and adaptable to a learner’s needs. Technology-Assisted 
Language Learning (TALL) or instructional resources have 
been utilized, yet some remain fixed and rule-based [4]. Many 
TALL also lack real-time ecological flexibility, individualized 
feedback, and adaptability to the learner’s emotions and 
performance [5], [6]. Ultimately, these factors may cause 
frustration or disengagement, and ultimately limited progress [7] 
[8]. 

Presently, the predominant supervised learning techniques 
found in AI-driven ESL systems rely on relatively large amounts 
of labeled data to complete narrow tasks, such as grammar 
correction or vocabulary checks [9], [10]. Most models utilize 
the common four skills of language: listening, speaking, reading, 
and writing as discrete skills and do not allow for holistic 
learners to grow [11]. To address these issues, presented in this 
work is a new T-RLNN as a framework and method that adds 
RL as a contextually based language heuristic. In contrast to 
traditional systems, T-RLNN approaches the instructional 
strategy differently without fixed content or rigidly adhered-to 
rote rules—but rather classifies and customizes learning through 
live interactions with learner performance, engagement, and 
progress. Within the T-RLNN framework, an RL agent, using 
an actor–critic architecture, operates on learner states 
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constructed by RoBERTa embeddings and behavioral features. 
In that context, T-RLNN is customized to learners through 
varying or adjusting working task difficulty, the instructional 
pacing of interactions, and delivery instructional style. T-RLNN 
provides a platform that is customized, scalable, and contextual 
for ESL learner support, while making their learning journey 
unique. 

A. Research Motivation 

The rationale behind this study is that current ESL systems 
lack flexibility, personalization, and integration of skills. The 
purpose of this study is to develop an adaptive tutoring system 
based on RoBERTa and reinforcement learning that will 
improve the engagement of learners and help them maintain 
language development. 

B. Significance of the Study 

The study is relevant because it presents the T-RLNN 
framework, a combination of contextual understanding of 
language and reinforcement learning that facilitates adaptive 
ESL learning. It is not limited to conventional approaches, but it 
can provide customized, scalable, and interactive learning, 
helping to progress the intelligent tutoring systems. 

C. Recent Innovation and Limits 

The more recent developments in the ESL learning strongly 
depend on deep learning and transformer-based models like 
BERT and RoBERTa to comprehend the language contextually 
and enhance grammar correction, vocabulary acquisition, and 
reading comprehension[12]. Although it works, these models 
require a lot of large labelled data and have less real-time 
flexibility for a specific learner. By introducing contextual 
representations into reinforcement learning, these gaps could be 
resolved with flexible, personalized, and adaptive choices of 
instruction [13]. 

D. Key Contributions 

• Proposed a novel RoBERTa-based Reinforcement 
Learning Neural Network (T-RLNN) that integrates 
deep contextual language understanding with adaptive 
instructional strategies for ESL learning. 

• Modeled a comprehensive learner state by combining 
linguistic features extracted through RoBERTa with 
behavioral indicators such as accuracy, response time, 
and engagement levels. 

• Employed an actor–critic reinforcement learning agent to 
dynamically adjust task difficulty, feedback, hints, and 
exercise personalization in real time based on learner 
performance. 

• Formulated the learning process as a Markov Decision 
Process (MDP), enabling interpretable decision-making 
and long-term optimization of instructional strategies. 

• Demonstrated that the proposed model outperforms 
conventional approaches, including SVM, Random 
Forest, and DNN, in terms of precision, F1-score, 
adaptability, and overall learner engagement, offering a 
scalable and personalized ESL tutoring solution. 

The remaining part of the section is divided as follows: 
Section II provides a review of prior works and Section III 
describes problem statement. Section IV details the proposed 
framework with its methodology, Section V with the 
demonstration of the results. Finally, Section VI presents the 
conclusion of the proposed framework, while offering 
recommendations for further research and application. 

II. RELATED WORKS 

Kaur, Kumar, and Kaushal [14] provide an analytical 
perspective into the trends and development of technology-
facilitated language learning systems. These systems are 
regarded as intelligent since they amend their mode of delivery 
of knowledge based on the learner. The research method 
employed was a peer reviewed articles from several reputed 
journals where the study was conducted between the years 2011 
and 2021. The authors analyzed adaptive systems through three 
dimensions: analysis of space and time, system and learner 
factors and the accommodation offered. Many TALL systems 
are available nowadays, and their usage is rapidly growing, 
mainly in Asia, where English is taught as a foreign language. 
The fact that the systems are adaptive means that their ability to 
meet university students’ needs is taken into consideration. The 
study presents a breakthrough in adaptive systems for language 
learning, where English is the most researched language. 
However, the review does not include a quantitative analysis or 
allocate specific performance indicators to measure the actual 
significance of adaptive systems. Furthermore, some 
difficulties, such as the application of such systems on a large 
scale, and the benefits that could be achieved by involving local 
authorities and educators in the implementation of such systems, 
are discussed. 

Khasawneh [15] examines the effect of multimodal teaching 
and learning practices on Sudanese dyslexic students’ English 
language learning in KSA. The study adopted a quantitative 
research approach and with the help of paired t-tests, Pearson’s 
correlation, multiple regressions, and ANOVA to determine the 
impact of multimodal approaches for teaching 30 dyslexic 
learners. The results revealed a significant enhancement of the 
students’ performance in language when the modes of teaching 
were implemented. The study also focuses on the fact that how 
often strategies are used to benefit the success of the 
interventional program. The study also emphasizes that instead 
of a mass approach, individualized instruction may be more 
beneficial for learners with different levels of language 
competence at the beginning of the course. Nevertheless, one of 
the limitations of this study is that it involved a small sample, 
thus the results of the study do not have broader applicability. 
Also, the study fails to make an extended analysis of the fluency 
of the language retained by students while learning through 
MMT and the extent of interaction between various types of 
multimedia resources and students. Nevertheless, this research 
adds useful knowledge about the learning paradigms, namely, 
adaptive learning for learners diagnosed with learning 
disabilities, including dyslexia. 

The research study by Chanderan and Hashim [16] identifies 
the ESL students’ LLS at a private university in Selangor, 
Malaysia. The research used a quantitative cross-sectional 
survey design with a survey instrument developed from 
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Oxford’s SILL. The target population was 200 freshmen from 
different faculties to understand on how students utilize LLS to 
improve their language skills. From the descriptive statistical 
analysis, the findings showed that the students prefer to apply 
those strategies aimed at enhancing their language proficiency. 
The results reveal cognitive and metacognitive approaches as 
the first ones with identified high efficiency for language 
acquisition. The study also focuses on the use of learner 
preferred strategies in language learning and acquisition 
processes. This is, however, the limitation of the research 
because the data collected may be influenced by the 
respondent’s perception. As this study proposes, the study is 
limited by the failure to track the strategies’ long-term 
effectiveness as well as their effects on student general 
performance. However, the study reveals insight into the ESL 
learners’ sociocultural literacy practice, indicating to the 
educators the most appropriate ways to develop effective ESL 
curriculum. 

Chung et al. [17] carried out the research with the aim of 
ascertaining how the retrieval of video playback affects ESL 
learners’ learning. They use metrics that are more or less based 
on an observer’s eye check and survey while evaluating the 
video playback speeds. The sample consisted of 32 ESL 
participants with gradual and immediate speed change during 
video watching. The characteristics favored by the results 
entailed that gradual speed changes considerably improved 
learners’ flow state, video comprehension, as well as cognitive 
load. Therefore, these findings imply that slower changes could 
create a less obtrusive learning process for ESL students. The 
main drawback of the study is the limited scope of the same in 
the inclusion of a relatively small target population. However, 
the study concentrated on video comprehension, without much 
regard to other sectors in language acquisition, including 
listening and speaking. Nevertheless, the study gives insight that 
may be rather useful when it comes to enhancing resultant video-
based learning; it provides recommendations that can be useful 
in the development of adaptive learning systems taking into 
account cognitive processing capacity. 

Young and Shishido [18] investigated the application of the 
multipurpose chatbot called ChatGPT in the production of 
English reading content for ESL students. The study also looked 
at how ChatGPT can be useful in generating texts of different 
difficulties to meet needs of ESL students with a limited 
vocabulary. The development research approach was therefore 
based on the comparison of different scores of reading ease 
between the contents produced by OpenAI’s ChatGPT and the 
actual reading texts. The study showed that ChatGPT could 
indeed generate simpler and more comprehensible texts, it can, 
therefore, be used to enhance language learning. The study 
recognizes it in the same breath, that as a recent innovation, 
ChatGPT has not undergone conventional assessment in 
language learning settings. Besides, readability scores can be 
used as a measure of learning content quality but do not take into 
account further factors, for instance, their learning process 
engagement or understanding. Nevertheless, this study 
evidences that the proposed concept of integrating AI 
technologies such as ChatGPT into adaptable language learning 
systems can be a groundbreaking model to modernize the 

approach towards selecting appropriate readings for ESL 
learners. 

In the study, Monika and Suganthan [19] examines the 
impact of ChatGPT on English language learning for the English 
as Second Language students. The study adopted a cross-
sectional survey eliciting data from ESL students taking English 
language classes in various institutions in the Vellore District. 
The study aimed at establishing the effect of ChatGPT model on 
the language abilities of the learners particularly on listening, 
speaking, reading, and writing (LSRW) skills. In the findings, it 
showed that ChatGPT had a positive impact on learner’s 
vocabulary and the overall language usage. However, the study 
fails to draw the negative side of applying an AI model, 
including the one used in developing ChatGPT, such as the 
ability of the model to misunderstand context or make inaccurate 
content. Such findings also do not take into account a variety of 
ways, including durability of knowledge retained when using the 
ChatGPT, or its impact on learner’s language proficiency or 
assessment results. However, there are still deficits in their 
coverage and application of ESL learning, but the study proves 
that AI technologies could bring positive impacts to developing 
ESL learning with the feedback and interactive generation that 
could attend the learners’ needs. 

The research carried out by Naparan and Bacasmot [20] 
focuses on an investigation of M-learning with Smartphone 
applications and their impact on students’ communication 
competency with reference to their learning ESL. This research 
utilized descriptive-correlational research design to gather data 
from senior high school students in Davao City. When asked 
about Smartphone apps for learning, the study established that 
there exists a positive correlation between Smartphone app use 
and Communication competence, hence the importance of 
Smartphone apps in improving ESL learners’ linguistic 
proficiency. Nonetheless, the research indicated that there was 
insignificantly decreased use of English language problems and 
smartphone apps. The study also employed regression analysis 
to establish the effect of smartphone apps on second languages 
but relied on subjective responses that reduce validity. However, 
the research sample is restricted to a particular group of students 
and the city, Senior high students in Davao City which means 
generalization of the results is impossible. However, such 
limitations would not deny the fact that this research has 
succeeded in offering gainful understandings on how the mobile 
learning technologies could be implemented and used to 
advance the effectiveness of ESL learning and the 
communication effectiveness of language learners. 

Ahmad et al. [21] aims at identifying the language learning 
strategies employed by Primary ESL learners in Sarawak. The 
study adopted a quantitative approach to research and more 
specifically a survey to establish the extent of use of language 
learning strategies among Year 5 students. The study findings 
showed that students deployed more the cognitive-affective 
approach as well as the affective-motivation strategies most 
tasks than the other identified strategies such as memorization 
and compensation approaches. According to the study, the 
strategies discussed above can be used in order to improve 
comprehension and fluency when reading as well as students’ 
linguistic competence. However, the present research does not 
take into account the implementation of these strategies as long-



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

593 | P a g e  
www.ijacsa.thesai.org 

term benefits for students’ language development. Also, there is 
a lack of generality in the study since the participants involved 
were Year 5 students in a definite region only. Nevertheless, the 
study implies that ESL students should choose their preferred 
strategies when learning the English language, helping 
educators in the process of informing the way in which these 
children learn English. 

III. PROBLEM STATEMENT 

The growing popularity of technology in ESL learning has 
enhanced the availability of learning; nevertheless, most of the 
current systems are still stagnant, one-dimensional, and ill-
advised to meet the needs of various learners [22], [23]. The 
conventional methods of tutoring lack responsiveness in real-
time and are not responsive to the progress of the learner thus 
the tutoring methods are not able to support active listening and 
the balanced development of the language skills, especially in 
heterogeneous classroom environments. Such restrictions 
provide structural obstacles to language learning. To overcome 
this issue, this study discusses the T-RLNN framework, a 
contextual reinforcement learning-based model that constantly 
modifies the instructional pathways due to performance, 
engagement, and skill development of the learner. In such a way, 
T-RLNN creates a more flexible, responsive, and learner-
centered ESL learning process. 

IV. PROPOSED FRAMEWORK FOR ADAPTIVE ESL 

INSTRUCTION USING T-RLNN 

The suggested T-RLNN model will be created to weigh the 
linguistic and behavioral components of the interaction between 
the learner and allow the model to change the instructional 
methods in real-time. First, the learner’s inputs of the form of a 
text response, task type, response duration and indicators of 
engagement are processed so as to create structured and 
meaningful feature representations. The text responses undergo 
normalization by the form of lowercasing, punctuation marks 
and lemmatization and then they are tokenized by the RoBERTa 
tokenizer that is founded on the basis of lower byte-pair 
encoding. The process attains rich contextual embeddings, 
which reflect a semantic meaning and syntactic nuances of 
language use by learners. In addition to linguistic characteristics, 
behavioral data are of considerable importance to the modelling 
of the learner. Categorical variables, including the type of the 

task or the level of a particular proficiency, will be converted to 
dense vector representations, whereas the numerical variables, 
including the time of response and the engagement scores, will 
be rescaled to ensure that the values are the same across learners. 
These behavioral and linguistic representations are then 
combined together to create a holistic state of the learner and this 
becomes the basis of adaptive decision making. This state of 
learning is fed through an actor-critic reinforcement learning 
agent that decides the most appropriate instructional action at a 
given step. The agent can either change the difficulty of the 
tasks, give specific hints, or choose the other types of exercises 
that suit the learner, depending on the performance and 
engagement of the learner. The learning environment is able to 
constantly test these actions by rewarding them based on 
accuracy, participation and effectiveness of the response, 
meaning that the model is able to improve its policy as it 
advances. Every interaction between the learner is viewed as an 
episode, and the system is able to record as much as possible of 
each individual learning pattern and provide them with unique 
dynamic instruction. The T-RLNN system is a pipeline that end-
to-end system pipeline that integrates contextual language 
comprehension with reinforcement-based learning adaptation 
provides a more efficient, reactive, and learner-focused 
ecological system to ESL tutoring. 

The workflow of the proposed T-RLNN framework of 
adaptive ESL instruction is provided in Fig. 1. The inputs of 
learners, such as text answers, type of task, response time, and 
indicators of engagement, are preprocessed first and converted 
into the form of structured feature representations. The 
RoBERTa byte-pair encoder tokenizes text data to create deep 
contextual embeddings, and the deep contextual embeddings are 
combined with the encoded behavioral features to create a single 
state vector of the learner. This is the condition where language 
competence and interaction behavior are captured. A 
reinforcement learning agent, whose components are actors and 
critics, is an agent that employs this state to dynamically change 
instructional strategies, including task difficulty or hints, on the 
basis of real-time performance of the learner. Based on the 
learner’s actions, the environment will assess the actions and 
give rewards based on accuracy, engagement, and efficiency of 
response and allow policy refinement and individualized ESL 
learning. 

 

Fig. 1. Workflow of the T-RLNN framework. 
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A. Dataset Description 

The experiments are based on publicly available Kaggle 
Computer-Assisted Language Learning (CALL) dataset [24], 
comprising of bibliographic and textual records of research 
publications indexed by Scopus between 1983 and 2020. The 
dataset also contains structured metadata in the form of 
publication titles, abstracts, author details, affiliation, keywords, 
document type, year of publication and source information. 
These are textual elements that offer a corpus that is rich in 
language representation learning and semantic analysis in terms 
of ESL and CALL studies. The dataset is used to assess the 
efficiency of the contextual language modelling and adaptive 
instructions policy learning with the text-based input instead of 
direct textual and metadata-based samples. 

B. Data Preprocessing 

Data preprocessing transforms raw textual and metadata-
based samples into structured, normalized, and feature-rich 
inputs by cleaning text, encoding categorical variables, and 
scaling numerical features, ensuring robust representation for 
downstream modeling. 

1) Text normalization: Text responses of the learners are 

pre-processed to trim off noise, and create uniformity prior to 

tokenization. The procedure will involve lowercasing, 

eliminating of punctuations, and lemmatization. The steps, 

standardizing input text, enhance downstream representation 

learning, and promise that the RoBERTa tokenizer is presented 

with uniform sequences, which lack the variability due to 

surface-level variation in writing. It is represented, as in Eq. (1): 

𝑇𝑛𝑜𝑟𝑚 = 𝐿𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒(𝐿𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒(𝑇𝑟𝑎𝑤 − 𝑃))     (1) 

where,  𝑇𝑟𝑎𝑤 is the original response, 𝑃 denotes punctuation 
set, 𝐿𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒(⋅) converts all characters, and 𝐿𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒(⋅) 
reduces words to canonical forms. The output 𝑇𝑛𝑜𝑟𝑚 represents 
normalized learner text ready for sub word tokenization. 

2) Categorical feature encoding: Embedding layers are 

used to convert the learner-related categorical attributes, i.e. 

type of a task or a level of proficiency, into dense numerical 

vectors. When compared to one-hot encoding, the embeddings 

memorise semantic similarity among the categories, which 

allows the RL agent to acknowledge associations (e.g. 

similarity of tasks) and extrapolate more effectively across 

various learner groups. It is expressed, as in Eq. (2): 

𝐸𝑐 = 𝑊𝑐 ⋅ 𝑂𝑛𝑒𝐻𝑜𝑡(𝐶)        (2) 

Here, 𝐶 represents the categorical feature (e.g., task type), 
𝑂𝑛𝑒𝐻𝑜𝑡(𝐶)is its one-hot encoded vector, and 𝑊𝑐is the trainable 
embedding matrix. The product yields dense embedding 𝐸𝑐, 
capturing category information in a low-dimensional 
representation. 

3) Numerical feature scaling: Continuous features such as 

textual complexity indicators, engagement, and retention are 

standardized for stable optimization. Raw values are 

transformed into zero-mean, unit-variance distributions. This 

ensures features contribute proportionally to state vectors and 

prevents domination by attributes with large numerical ranges, 

thus improving training stability and model convergence. It is 

computed, as in Eq. (3): 

𝑥′ =
𝑥−𝜇

𝜎
     (3) 

where, 𝑥 is the original feature value, 𝜇 is the mean of the 
feature across training samples, and 𝜎  is the corresponding 
standard deviation. The scaled feature 𝑥′  ensures normalized 
contribution to the learner state representation. 

C. Representation Learning (RoBERTa) 

The discussion demonstrates that the answers of learners are 
converted to high quality contextual embeddings by employing 
RoBERTa-base, a pre-trained transformer that can capture deep 
semantic and syntactic links in the text. Normalization and 
tokenization of responses is initially done with the use of the 
Byte-Pair Encoding (BPE) of RoBERTa, which provides the 
same representation to words, sub words, and special tokens by 
using unique IDs. Padding or truncation of token sequences to a 
constant maximum length L is then done so that a batch of token 
sequences can be processed, and attention masks used to 
differentiate between valid tokens and padding. The sequences 
are given through the multi-layer self-attention and feedforward 
representation encoders of RoBERTa to produce contextualized 
token representations that encode word-to-word dependencies. 
Because the Kaggle CALL data do not offer explicit logs of 
learner interaction or behavior, an engagement score is 
computed using the information of interaction clues on the 
content level as a proxy measure. Particularly, engagement is 
deduced by the normalized textual and structural features that 
each document has such as the length of the abstract, the density 
of keywords, and citation-related metadata. These 
characteristics indicate the intensity and applicability of 
interaction with ESL-related material and are normalized by 
min-max scale to provide the comparison between samples. The 
engagement score 𝐸 is computed, as in Eq. (4): 

𝐸 = 𝛼 ⋅ 𝐿𝑛𝑜𝑟𝑚 + 𝛽 ⋅ 𝐾𝑛𝑜𝑟𝑚 + 𝛾 ⋅ 𝐶𝑛𝑜𝑟𝑚  (4) 

where, 𝐿𝑛𝑜𝑟𝑚 represents normalized abstract length, 
𝐾𝑛𝑜𝑟𝑚 denotes normalized keyword count, and 
𝐶𝑛𝑜𝑟𝑚corresponds to normalized citation-related indicators. The 
weighting coefficients 𝛼, 𝛽, 𝛾 are empirically set to ensure 
balanced contribution from each component.  Lastly, attention-
weighted mean pooling is contrasted to obtain concise, 
semantically meaningful latent encodings of learner responses 
to serve as a strong basis of downstream tasks in adaptive ESL 
teaching mathematically expressed, as in Eq. (5): 

𝑒 =
∑ ℎ𝑖⋅𝑚𝑖

𝐿
𝑖=1

∑ 𝑚𝑖
𝐿
𝑖=1

   (5) 

Here ℎ𝑖represents the hidden state of token 𝑖 , while 𝑚𝑖 ∈
{0,1}indicates whether a token is valid. The result is a 768-
dimensional sentence-level embedding which is effective at both 
grammatical and semantic accuracy These behavioral proxy 
features, including the engagement score defined in the previous 
subsection, are concatenated with RoBERTa embeddings to 
form a unified learner state representation. The resultant 
aggregated vector is then fed through a fully connected layer to 
give the dimensional consistency and equal contributions by all 
the features and to generate a dense learner state. This coherent 
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representation allows the reinforcement learning agent to make 
adaptive and context-sensitive instructional choices and be more 
successful than shallow text models in facilitating long-lasting 
and personalized learning. It is given in Eq. (6): 

sim(𝑒, 𝑒′) =
𝑒⋅𝑒′

∥𝑒∥ ∥𝑒′∥
     (6) 

It computes the cosine similarity between two learner-
response embeddings 𝑒 and 𝑒′, capturing semantic similarity for 
tasks like feedback assessment, clustering, or adaptive 
instruction. 

D. Reinforcement Learning Environment Design 

Adaptive ESL tutoring process is described as a Markov 
Decision Process (MDP), which gives a transparent pattern of 
interactions between the learner and the reinforcement learning 
(RL) agent. The state 𝑠𝑡 at time 𝑡 gives the profile of the learner 
at that time comprising RoBERTa-based contextual embedding 
alongside behavioral variables, including accuracy, response 
time, and engagement. The action is related to the selected 
instructional strategy, such as variations in task difficulty, 
exercises in grammar or vocabulary, comprehension, or hints. 
The reward measures effectiveness of the action using both 
immediate performance and engagement measures is calculated, 
as in Eq. (7): 

𝑟𝑡 = 𝑤𝑎𝑐𝑐 ⋅ 𝛥𝐴𝑐𝑐𝑡 + 𝑤𝑡𝑖𝑚𝑒 ⋅ 𝛥(−𝑅𝑇𝑡) + 𝑤𝑒𝑛𝑔 ⋅ 𝛥𝐸𝑛𝑔𝑡  (7) 

where, 𝛥𝐴𝑐𝑐𝑡  denotes the change in learner accuracy, 
𝛥(−𝑅𝑇𝑡) represents improvement in response efficiency (lower 
time is better), and 𝛥𝐸𝑛𝑔𝑡 reflects variation in learner 

engagement. The weights 𝑤𝑎𝑐𝑐 , 𝑤𝑡𝑖𝑚𝑒 , 𝑤𝑒𝑛𝑔 are tuned to 

balance short-term performance with long-term engagement. 
The reward for the RL agent is to maximize the expected 

cumulative discounted reward over a sequence of learner 
interactions is expressed, as in Eq. (8): 

𝐽(𝜋) = 𝐸𝜋[ ∑ 𝛾𝑡𝑟𝑡
𝑇
𝑡=0 ]     (8) 

where, π represents the policy mapping states to actions, T is 
the length of an episode, and γ is the discount factor favoring 
long-term competence. Through the explicit specification of 
states, actions, and rewards in this MDP model, the system 
facilitates the RL agent to dynamically adjust instruction 
methods for individualized, situation-sensitive ESL learning 
maximizing both correctness and engagement on various 
learners. 

E. Actor–Critic Reinforcement Learning Agent 

To enable adaptive decision-making, this research applies an 
Actor-Critic model, whereby the agent is spatially learning a 
policy of action choice as well as an evaluation of state value 
function. The actor network computes a probability distribution 
of the potential instructional strategies given the current learner 
state vector and the critic network predicts the mean of the 
expected return to give feedback to stabilize learning.  It is 
represented, as in Eq. (9): 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑅𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)  (9) 

In Eq. (9), the measure of goodness of action taken 𝑎𝑡 
performed in state 𝑠𝑡  compared to the baseline estimate of a 
critic. In this case 𝑅𝑡 is the instant payoff, 𝑉(𝑠𝑡) and 𝑉(𝑠𝑡+1) 
are the expected values of the states and g is the discount factor. 
Positive advantage means that the action of instructional choice 
has enhanced the performance of learners in a better way than 
projected and as such, the actor network will pursue strategies 
that are positive to reinforce. The workflow of RL Agent is 
represented in Fig. 2.

 

Fig. 2. Workflow of reinforcement learning agent. 

Fig. 2 shows the architecture of the actor–critic 
reinforcement learning agent in the T-RLNN framework. The 
learner state vector, combining RoBERTa embeddings and 
behavioral features, feeds into a shared neural backbone that 
splits into two heads: the actor, which selects instructional 
actions, and the critic, which estimates expected rewards. The 
agent iteratively updates its policy based on rewards derived 
from learner accuracy, engagement, and response efficiency, 
enabling context-aware, adaptive instruction that evolves with 
learner performance. 

Both networks are similar in that they have a common 
backbone of feedforward processing the learner state which then 
forks into two task active heads: a SoftMax output of the actor’s 
policy and a scalar regression output of the value estimate of the 
critic. The policy 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)  is parameterized by 𝜃  and 𝑎𝑡 
every time step, the action atbased on the current state 𝑠𝑡  is 
chosen. The parameterized critic 𝜙 estimates the value function 
𝑉𝜙(𝑠𝑡) which is a measure of the expected total reward at that 

state. Learning is then directed by the advantage function which 
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compares the degree to which a specific action is preferred to 
the predictive value of the critic. It is computed, as in Eq. (10): 

𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1) − 𝑉𝜙(𝑠𝑡)  (10) 

In Eq. (10), 𝑟𝑡  is the immediate reward and 𝛾 is the discount 
factor. The actor is updated by maximizing the expected 
advantage, while the critic minimizes the error in value 
prediction is represented, as in Eq. (11): 

𝐿(𝜃, 𝜙) = −𝐸𝑡[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡 ) ⋅ 𝐴𝑡] + 𝛼 ⋅ 𝛿𝑡
2 (11) 

In this case, the policy loss gradient (actor) is the first term, 
and the value loss (critic) is the second term and their trade-off 
is regulated by 𝛼. Such joint optimization makes the actor to 
learn to suggest effective instructional strategies and the critic to 
assess their long-term contribution to the level of engagement 
and proficiency of the learners. 

F. Learning Phase 

Training of the T-RLNN framework entails two closely 
related factors, which are a reinforcement learning agent and the 
ever-changing learner state representation. RoBERTa takes the 
textual response of the learner at each step to create contextual 
embeddings that are subsequently added with behavioral 
characteristics, including accuracy, response time, and 
engagement, to create a complete learner state vector. According 
to this condition, the actor network will choose a proper 
instructional action. This is then simulated by the environment 
as the learner progresses and given feedback, which is translated 
into a reward signal. The critic considers the quality of the action 
chosen and employs this to polish the policy. By continuing its 
updates, the agent will acquire the ability to make compromises 
to improve short-term performance at the cost of long-term 
proficiency and involvement. Behavior cloning is used to log 
interactions in order to maintain a stable and efficient training, 
dealing with poor initial decisions. Further, mini-batch updating, 
entropy regularization and early stopping are also used to 
promote exploration, reduce overfitting, and strong convergence 
leading to a powerful, adaptive tutoring system. It is calculated, 
as in Eq. (12): 

𝑟𝑡 = 𝛼 ⋅ accuracy𝑡 + 𝛽 ⋅ engagement𝑡 − 𝛾 ⋅ response time𝑡(12) 

It computes the reward 𝑟𝑡 as a weighted combination of 
learner performance, engagement, and response time. It is given 
in Eq. (13): 

𝜃 ← 𝜃 + 𝜂 ⋅ 𝛿𝑡∇𝜃 log 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)  (13) 

Here, 𝜃 represents the actor parameters, 𝜋𝜃the policy, 𝛿𝑡 the 
temporal difference error, and 𝜂 the learning rate; the policy is 
updated to maximize expected rewards. 

Algorithm 1 integrates RoBERTa embeddings with 
behavioral features to form comprehensive learner states, 
enabling an Actor–Critic RL agent to dynamically adapt 
instructional strategies and maximize accuracy, engagement, 
and long-term retention. 

Algorithm 1: T-RLNN (RoBERTa-based Reinforcement 
Learning Neural Network) 
Begin 
    Input: CALL dataset D = {responses, accuracy, timestamps, 

engagement, task type} 

    Output: Trained policy πθ and critic 𝑉𝜙  

        For each learner response r in D do 
            Normalize text: lowercase, remove punctuation, lemmatize 
            Tokenize using RoBERTa BPE with max length L 

            Encode categorical features as embeddings 
            Scale numerical features using z-score 
        End For 

        For each response r do 
            Pass tokenized sequence into RoBERTa-base 
            Obtain hidden states H = {h1, h2, …, hL} 
            Compute embedding e = mean_pool(H, mask) 

            Concatenate e with normalized features  
            Project into fixed-size learner state vector s 
        End For 

        Define state s = learner state vector 
        Define action a ∈ {increase_difficulty, decrease_difficulty, 
grammar_ex, vocab_ex, comprehension_ex, hint} 

        Define reward 𝑟𝑡 = 𝑤𝑎𝑐𝑐 ⋅ 𝛥𝐴𝑐𝑐𝑡 + 𝑤𝑡𝑖𝑚𝑒 ⋅ 𝛥(−𝑅𝑇𝑡) + 𝑤𝑒𝑛𝑔 ⋅

𝛥𝐸𝑛𝑔𝑡   
        Initialize policy 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) and value function Vϕ(s) 
        For episode = 1 to MaxEpisodes do 
            Initialize learner state s0 

            For t = 1 to T do 
                Select action at ~ 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) 
                Apply action in environment → observe new state st+1 and 

reward rt 
                Compute advantage 𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜙 (𝑠𝑡+1) − 𝑉𝜙 (𝑠𝑡) 

                If 𝐴𝑡  > 0 then 

                    Update actor parameters θ to increase ~ 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) 
                Else 
                    Update actor parameters θ to decrease ~ 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡) 

                End If 
                Update critic parameters ϕ to minimize value error 
                Set 𝑠𝑡 ← st+1 

            End For 
        End For 
        Output optimized policy πθ* 

        Evaluate using metrics 
        Evaluate learner-centered metrics: Engagement Score, 
Retention Index, Adaptivity Index 
End 

The T-RLNN is a novel reinforcing idea of combining 
contextual language understanding by RoBERTa with an Actor-
Critic reinforcement library to use adaptive ESL teaching. 
Through a balanced approach to semantic depth and behavioral 
insight, the framework produces strong learner state 
representations, which can be used to provide context-sensitive 
personalization to outperform traditional models and provide 
real-time adaptive tutoring with better engagement, retention 
and proficiency results. 
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V. RESULTS AND DISCUSSION 

The obtained experimental data prove that the integration of 
learning based on reinforcement and neural networks based on 
transformers can be a key factor in accelerating the ESL teaching 
process. The suggested workflow combines all data 
preprocessing, learning contextual representation with 
RoBERTa, a simulated reinforcement learning setting, and 
optimizing the actors and critics to help the system to provide 
adaptive and person-centered instructional plans. All tests were 
run in Python on the CALL dataset, processed by ordinary NLP 
technology and tokenized using the RoBERTa tokenizer. To 
have equal and trustworthy assessment, the data was divided 
into training (70%), validation (15%), and testing (15%). In 
order to evaluate the efficiency of the suggested approach, the 
performance of the method was evaluated against a number of 
conventional models, such as Support Vector Machines, 
Random Forests, and a feedforward Deep Neural Network, 
along with an earlier developed RLDNN model. The five-fold 
cross-validation was employed to fine-tune both the baseline 
and proposed model and the results averaged across three 
separate runs, to provide statistical strength. All the evaluation 
metrics showed that T-RLNN architecture is highly flexible and 
efficient, and better and stable performance was attained than 
the traditional approach. These results note the importance of 
combining deep contextual language representations with 
reinforcement learning to teach ESL in an adaptive manner. In 
general, the findings offer an important and valid comparison to 
prove the usefulness of the suggested framework in facilitating 
individualized and responsive language learning. Table I 
summarizes the simulation parameters that were employed in 
the experiments. 

TABLE. I. SIMULATION PARAMETER AND HARDWARE SETUP 

Parameter Value / Description 

Dataset CALL (Computer-Assisted Language Learning) 

Data Split 70 % Train / 15 % Validation / 15 % Test 

Text Preprocessing Lowercasing, punctuation removal, lemmatization 

Tokenizer & 

Embedding 

RoBERTa-base (768-dim, max length = 128 

tokens) 

State 

Representation 

RoBERTa embedding + behavioral features 

(accuracy, response time, engagement) 

Action Space 
{Increase/Decrease difficulty, Grammar, 

Vocabulary, Comprehension, Hint} 

RL Algorithm Actor–Critic (Advantage Actor–Critic, A2C) 

Reward Weights w_acc = 0.5, w_time = 0.3, w_eng = 0.2 

Learning Rate & 

Batch 
1e-4 (Adam optimizer), Batch size = 32 

Training Episodes 500 with early stopping (patience = 10 epochs) 

Hardware 

Configuration 

Intel i9-11900K CPU, NVIDIA RTX 3090 GPU 

(24 GB), 64 GB RAM 

Software 

Environment 

Python 3.9, PyTorch 2.0, HuggingFace 

Transformers, Ubuntu 22.04 

 

Fig. 3. Learning curve accuracy. 

Fig. 3 shows how the training and validation accuracy of the 
proposed T-RLNN framework evolves with the epoch. It shows 
that the model can enhance the classification of the learner 
interaction across multiple iterations and validation accuracy is 
also close to training accuracy meaning that it has a good 
generalization ability. The accuracy improvement in this ESL 
adaptive learning scenario is associated with the ability of the 
framework to match the state representations of the learners with 
the best teaching method. The diagram confirms the usefulness 
of the combination of RoBERTa embedding and RL and 
demonstrates that the model will stabilize and reach high 
accuracy results of adaptive tutoring. 

 

Fig. 4. Learning curve loss. 

In Fig. 4, the training and validation loss are decreasing as 
the T-RLNN model is optimized. A gradually diminishing curve 
in both curves signifies constant convergence, and the 
decreasing distance between them shows an insignificant 
overfitting. In this ESL learning model, less loss is a positive 
indication of an increased efficiency of the system in relating 
learner response to the right instructional action. The model 
achieves the minimization of prediction errors and enhances 
instructional flexibility by learning to combine semantic 
embeddings of RoBERTa and RL cues. The loss curves 
therefore, validate stability, scalability and strength of the 
suggested adaptive tutoring system. 
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Fig. 5. Confusion matrix heatmap for T-RLNN. 

Fig. 5 shows the confusion matrix heatmap of the proposed 
T-RLNN framework where it is shown that it has successfully 
performed in the classification of ESL modules which are 
grammar, vocabulary, and comprehension. The diagonal values 
indicate the correctly classified responses whereas the off-
diagonal values show the misclassifications. The high 
concentration in the direction of the diagonal indicates that the 
integration of the RoBERTa embeddings with the reinforcement 
learning could help in facilitating adaptive instruction. The 
heatmap also gives the information regarding the task 
recognition: grammar and vocabulary tasks are recognized 
better, and comprehension tasks are a little bit harder. On the 
whole, this visualization points to the fact that the model can also 
cope with a wide variety of ESL learning tasks and offer tutoring 
that is flexible and personalized. 

 

Fig. 6. Adaptive pathway of a learner under T-RLNN. 

Fig. 6 represents a learning trajectory produced by the 
proposed T-RLNN. It describes the change in instructing 
strategies based on the output of the learners, whereby, simple 
grammar tasks are introduced and then advanced with the harder 
ones related to learning vocabulary and comprehension. The fact 
that there is an increasing trend in the performance scores 
indicates that the agent is capable of dynamically personalizing 
the learning trajectories. The framework utilizes RoBERTa 
embeddings to get contextual understanding and RL to get 
decision-making to adjust the difficulty level and content choice 
to get the most engagement and retention. This qualitative model 
of visualization of the pathways shows that the model has the 
ability to provide personalized education with the help of which 
the proficiency can be developed within ESL students. 

 

Fig. 7. ROC curve. 

Fig. 7 shows the ROC curve of the proposed T-RLNN 
framework with an area under the curve (AUC) of 0.94 on the 
CALL dataset. The curve shows that the model is highly 
discriminative in categorizing the interactions among learners 
with high scores of true positive rates being preserved with 
different levels of false positive rates. The framework has a 
predictive performance score of 0.94 which suggests that it is 
very effective in matching the responses of learners with the 
appropriate teaching-learning methods. Using RoBERTa 
embeddings with RL, T-RLNN exhibits improved adaptivity 
and accuracy, therefore, being very useful in real-time 
personalized ESL learning settings, where prediction of 
outcomes is essential. 

A. Performance Evaluation for Proposed Framework 

The research outcomes indicate that the proposed T-RLNN 
framework is able to attain a significantly high overall accuracy 
of 92.5% which evidently exceeds all the traditional baseline 
models. Such a good performance is attributed to the fact that 
the model is able to constantly learn through the interaction of 
learners and change its teaching methods depending on the 
individual needs. The fact that the recall score takes 90.6 % also 
means that the system is efficient in detecting meaningful 
learning patterns and providing timely and context-sensitive 
feedback. Notably, adaptivity under this model extends beyond 
scaffolding content difficulty but also provides consistent 
individualized performance and accuracy is at 91.8% across a 
range of learner types. On the other hand, traditional methods, 
including Support Vector Machines and Random Forests, have 
obvious weaknesses, especially in their failure to adapt to the 
new behavioral patterns or the learning styles of new learners. 
Although the baseline Deep Neural Network has a fairly high 
accuracy of 89.1, it does not offer the adaptability to decision-
making and instructional dynamism that is offered by 
reinforcement learning. Consequently, this makes it less 
responsive to the changes in learner engagement or performance 
through the course of time. These results are highly indicative of 
the fact that reinforcement learning-based adaptive tutoring is a 
more efficient model to be used in ESL teaching. T-RLNN 
improves the understanding, maintains the attention of the 
learner and provides more applicable learning by constantly 
optimizing the learning paths according to the feedback and real-
time behavior of the learner. In general, the findings support the 
hypothesis that the use of contextual language comprehension 
combined with reinforcement learning offers a significant 
benefit over non-adaptive and fixed baseline models of the 
contemporary ESL teaching process. 
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1) Precision: The ratio of the total number of correct 

predictions. The precision is derived using Eq. (14): 

Precision =
TP

TP+FP
    (14) 

2) Recall: The number of accurately predicted positive 

instances over all the predicted positives. Recall measures are 

evaluated using Eq. (15): 

Recall =
TP

TP+FN
   (15) 

3) Accuracy: The proportion of successfully predicted 

positive cases among all the actual positives. Accuracy is 

evaluated using Eq. (16): 

Accuracy =
TP+TN

TP+TN+FP+FN
    (16) 

4) F1-Score: The harmonic mean of recall and precision, 

reconciling both measures. F1-score is calculated with the 

Eq. (17): 

F1 − score = 2 × 
Precision x Recall

Precision + Recall
  (17) 

where, the FN, TN, FP, and TP stand for false negative, true 
negative, and true positive, respectively. 

Fig. 8 and Table II display the performance measures of the 
suggested T-RLNN framework on four major evaluation 
metrics. The model performs best in Accuracy at 92.5%, closely 
followed by Precision at 91.8%. Recall, which is a measure of 
the model's capacity to detect pertinent instances, is 90.6%, 
while the F1-Score, which is the harmonic mean of Precision 
and Recall, is 91.2%. These outcomes show an even and strong 
performance in all the metrics, indicating that the suggested RL 
model is efficient in ensuring consistent prediction quality with 
fewer false positives and fewer false negatives. 

B. Ablation Study 

An ablation study was conducted to gain insight into the role 
played by each of the elements in the T-RLNN architecture. The 
experiments tested the individual effect of each of the modules 
by varying or eliminating certain modules on model 
performance and adaptability. 

Table III describes the ablation results of T-RLNN. The lack 
of RoBERTa embeddings or engagement features reduces the 
performance, which confirms their significance. Integrated 
components are effective, and the full model is the one that has 
the greatest accuracy, F1-score, engagement, and retention. 

TABLE. II. PERFORMANCE EVALUATION 

Metrics Value 

Accuracy 92.5 

Precision 91.8 

Recall 90.6 

F1-Score 91.2 

 

Fig. 8. Performance evaluation. 

TABLE. III. ABLATION RESULTS 

Model Variant 
Accuracy 

(%) 

F1-

Score 

Engagement 

Score 

Retention 

Index 

Without 

RoBERTa 

(RLDNN) 

87.2 0.85 0.70 0.72 

Without 

Engagement 

Features 

89.5 0.87 0.74 0.76 

Full T-RLNN 

(Proposed) 
92.5 0.90 0.81 0.84 

C. Comparative Analysis 

Table IV provides a comparative study of four ML models: 
Proposed RL, SVM, RF, and DNN—with respect to three 
performance measures: accuracy, recall, and precision. The 
Proposed RL model shows the best performance with the highest 
accuracy of 92.5%, recall of 90.6%, and precision of 91.8% 
compared to all the methods considered. Even though the 
conventional models show increasingly better performance, 
they are still inferior in general. Among them, the DNN model 
demonstrates the best performance, closest to the RL-based 
approach, with the second highest in all three measures. 

TABLE. IV. COMPARATIVE STUDY WITH EXISTING METHODS 

Model 
Accuracy 

(%) 
Precision (%) Recall (%) 

F1 Score 

(%) 

Engagement 

Score (ES) 

Retention Index 

(RI) 

Adaptivity Index 

(AI) 

Proposed RL 92.5 91.8 90.6 91.2 76.5 73.9 67.3 

SVM [25] 85.3 84.1 82.9 83.5 61.2 58.3 42.8 

RF [26] 87.2 86.5 85.0 85.7 63.9 61.5 48.1 

DNN [27] 89.1 88.2 88.2 88.2 68.4 66.0 52.6 
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Fig. 9. Comparative study with existing methods. 

Fig. 9 compares the results of four different techniques—i.e., 
a new RL method, SVM, RF, and DNN—on three most 
important metrics: accuracy, recall, and precision. Performance 
of each method is depicted by separate, color-coded bars, so it is 
very convenient to compare the results visually. Interestingly, 
the RL approach performs better than the rest with scores of 
approximately 92% for accuracy, 90% for recall, and 91% for 
precision, while the DNN, RF, and SVM approaches trail behind 
with increasingly lower scores in the high to low 80s. This clear 
illustration highlights the greater efficacy of the RL approach in 
managing these evaluation metrics. 

D. Discussion 

The suggested T-RLNN system will follow the format of an 
actor-critic reinforcement augmentation model where the real-
time ability, reaction time, participation, and performance in 
assignments of the learners are directly linked to the teaching 
choices. The model combines contextual embeddings based on 
RoBERTa to identify not only the linguistic richness but also the 
cognitive and behavioral cues to reflect the entire state of each 
learner and represent it in a rich and holistic manner. This 
combination enables the system to provide context-sensitive 
personalization, where the actions of instruction are much more 
precisely tailored than the conventional ESL learning models. In 
contrast to inert methods, T-RLNN adapts its instructional plan 
as the learner behavior changes so that it prioritizes both the 
accuracy of learning in short-term and long-term interaction and 
retention. The architecture is a combination of RoBERTa 
embeddings, a projection layer to stabilize state representations, 
and an actor and critic network that drives instructional choices. 
The actor produces discrete instructional behavior, like making 
grammar, vocabulary or comprehension task choices, by the use 
of a softmax output, and modulates task difficulty by actions of 
continuous value. This design concurs with the adaptable, data-
driven modulation of instruction that can be very close to the 
needs and progress of learners. The efficiency of the suggested 
framework is proven with the help of experiments. T-RLNN was 
always superior to classic models, such as Support Vector 
Machines, Random Forests, and Deep Neural Networks, in the 
most important evaluation metrics. The accuracy, F1-score and 
Adaptivity Index of the framework were 92.5, 91.2 and 67.3 
respectively, which is almost 20 points higher than the DNN 

baseline. These results underscore the fact that the model can be 
used to increase the engagement of learners, knowledge 
retention, and competence of language in general through 
responsive learning pathways. To sum up, the present research 
demonstrates that T-RLNN can be used to implement a practical 
and scalable solution to real-time personalized ESL tutoring. 
The effective combination of the concept of reinforcement 
learning and contextual language representations introduces a 
strong and progressive direction in the development of 
technology-enhanced language learning systems.  

VI. CONCLUSION AND FUTURE WORK 

The T-RNN framework was formulated as an adaptive ESL 
tutoring system that combined both contextual representations 
learning and reinforcement learning, whereby the instructional 
strategies are dynamically adjusted in real-time. The system uses 
behavioral measures (response time, accuracy, and engagement) 
and RoBERTa-based semantic embedding to create a complex 
and sophisticated learner state. The actor-critic agent then uses 
this state to identify the most suitable instructional actions to 
take via each of the learners, giving them highly personalized 
instructions. Experimental analyses showed that T-RLNN was 
the most effective model compared to traditional models, such 
as SVM, Random Forest, and feedforward DNNs, with better 
accuracy, F1-scores, and adaptivity. These findings imply that 
the framework has been able to balance both short-term effects 
of improvements in performance and long-term retention, which 
has resulted in making ESL instruction more scalable, learner-
centered, and effective. 

The research has some limitations, though. The experiments 
were also done in one dataset, which could limit generalizability, 
and the application of RoBERTa demands a large computational 
power, which can be difficult to use in low-resource or real-time 
environments. The research in the future will investigate cross-
dataset validation to enhance generalizability and lightweight or 
distilled transformer models to decrease the cost of computation. 
Also, the use of multimodal cues to the learner, e.g., speech, eye-
tracking, or interaction patterns, may facilitate more 
comprehensive modeling of the learner states. The longitudinal 
assessments will assist in measuring the learning outcomes over 
a period of time, and such techniques as federated learning and 
meta-learning may assist in large-scale personalization without 
invading the privacy of learners. Altogether, the results indicate 
that reinforcement learning integrated into a contextual 
embedding offers a very versatile, effective, and customized 
method of ESL instruction, which represents the future of 
intelligent language tutoring systems. 
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