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Abstract—The integration of Large Language Models (LLMs)
into clinical decision support systems represents a significant
advancement in healthcare informatics. This study presents a
comprehensive evaluation framework for benchmarking LLM-
generated dental treatment recommendations using BERT Score
as the primary semantic similarity metric. We evaluated Claude
Opus 4.5 as a Clinical Decision Support System (CDSS) across 116
dental case reports extracted from the Case Reports in Dentistry
journal (2024-2025), spanning nine dental specialties. The BERT
Score was calculated using the RoOBERTa-large model to measure
semantic alighment between Al-generated treatment plans and
gold-standard published treatments. Results demonstrated strong
semantic alignment with a mean BERT Score F1 0f0.8199 with a
standard deviation of 0.0144 (95 per cent confidence interval:
0.8172-0.8225), significantly exceeding the 0.80 threshold (z =
14.90, p < 0.001, 4 = 1.38). Cross-specialty analysis revealed
consistent performance across all nine dental domains (Kruskal-
Wallis H = 3.07, p = 0.879), indicating robust generalizability. A
significant negative correlation was observed between BERT
Score and response time (p =-0.371, p <0.001), suggesting a speed-
accuracy trade-off in LLM reasoning. This study contributes a
reproducible benchmarking methodology for evaluating LLM
performance in specialized clinical domains and demonstrates the
potential of BERT Score as a scalable evaluation metric for Al-
generated clinical text.
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I.  INTRODUCTION

The rapid advancement of Large Language Models (LLMs)
has catalyzed transformative applications in healthcare,
particularly in clinical decision support systems (CDSS) [1].
These models demonstrateremarkable capabilities in processing
and generating medical text, offering potential solutions for
diagnostic assistance, treatment planning, and clinical
documentation [2]. However, the deployment of LLMs in high-
stakes clinical environments necessitates rigorous evaluation
methodologies that can accurately assess the semantic fidelity
and clinical relevance of Al-generated recommendations [3].

Traditional evaluation metrics for natural language
generation, such as BLEU (Bilingual Evaluation Understudy)

and ROUGE (Recall-Oriented Understudy for Gisting
Evaluation), rely primarily on n-gram overlap between
generated and reference texts [4]. While these metrics provide
valuable insights for machine translation and summarization
tasks, they exhibit significant limitations in clinical contexts
where semantic equivalence often transcends lexical similarity.
Clinical terminology frequently admits multiple valid
expressions for identical concepts; for instance, "necrotic pulp"
and "non-vital tooth" are clinically synonymous yet lexically
distinct, resulting in artificially low scores under traditional
metrics [5].

BERT Score addresses these limitations by leveraging
contextual embeddings from transformer-based models to
compute semantic similarity at the token level [6]. By
representing words in a high-dimensional vector space that
captures contextual meaning, BERT Score can recognize
semantic equivalence between different surface forms of the
same clinical concept. This capability is particularly valuable in
medical domains where paraphrasing is common and clinical
correctness should not be penalized by lexical variation [7].

Dentistry presents unique challenges for Al evaluation due
to its specialized terminology, procedural complexity, and the
critical importance of spatial reasoning [8]. Dental clinical
decisions require integration of patient history, clinical
examination findings, and radiographic interpretation, a
triangulation of evidence that tests the reasoning capabilities of
LLMs. Recent benchmarking studies have demonstrated
variable performance of LLMs across dental specialties, with
models achieving high accuracy on standardized examinations
but exhibiting inconsistencies in complex case-based reasoning
[9][10].

Claude Opus 4.5, released by Anthropic, represents a
reasoning-optimized LLM architecture featuring extended
context windows (200,000 tokens) and inference-time compute
scaling through its "Thinking" mechanism [11]. These
architectural innovations suggest potential advantages for
complex clinical reasoning tasks that require maintaining
coherent logical chains across extensive patient histories.
However, systematic evaluation of Claude Opus 4.5 in dental
clinicaldecisionsupport remains limitedin the current literature.

614 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

While prior studies have evaluated LLMs on dental
examinations using multiple-choice accuracy metrics [9] [10],
these approaches cannot capture the nuanced semantic
alignment required for open-ended clinical reasoning tasks.
Furthermore, existing benchmarks predominantly assess single-
specialty performance, leaving cross-specialty generalizability
largely unexplored. This study addresses these methodological
gaps by introducing a BERT Score-based evaluation framework
specifically designed for open-ended dental treatment
recommendations—a context where multiple semantically
equivalent but lexically distinct responses may be clinically
valid.

The primary contributions of this study are threefold. First,
we establish a reproducible, training-free semantic evaluation
pipeline that enables scalable assessment of LLM-generated
clinical text without requiring domain-specific fine-tuning or
retrieval augmentation. Second, we provide empirical evidence
of cross-specialty generalizability by demonstrating consistent
BERT Score performance across nine dental disciplines,
addressing the critical question of whether LLM clinical
reasoning transfers across subspecialty boundaries. Third, we
characterize the speed-accuracy relationship in dental CDSS
applications, offering practical insights for real-time clinical
deployment where response latency affects usability. These
contributions extend beyond dental informatics to inform
evaluation methodology for LLM-based clinical decision
support systems across medical domains.

The remainder of this study is organized as follows:
SectionII reviews related work on LLM applications in dental
clinical decision support, evaluation metrics for clinical text
generation, and existing benchmarking frameworks for
healthcare Al. Section Il details the methodology, including
data collection from the Case Reports in Dentistry journal,
dental specialty classification, Al configuration with structured
prompting, and BERT Score calculation procedures. Section IV
presents the results encompassing overall BERT Score
performance, cross-specialty analysis, and speed-accuracy
correlations. Section V discusses the interpretation of findings,
clinical implications, and study limitations. Finally, Section VI
concludes with key contributions and directions for future
research.

II. RELATED WORK

A. Large Language Models in Dental Clinical Decision
Support

The application of Large Language Models in dentistry has
expanded rapidly, with multiple model families demonstrating
varying capabilities across clinical tasks. Kim et al. evaluated
LLM performance on the Korean Dental Licensing
Examination, finding that GPT-4 achieved 75.2% accuracy
compared to GPT-3.5's 53.8%, establishing a clear generational
performance gap [9]. Dashtiet al. extended this analysisto U.S.
dental examinations, reporting similar patterns with GPT-4
reaching 80.1% accuracy versus 67.3% for GPT-3.5[12]. Wu et
al. conducted multi-dimensional evaluation of LLMs in dental
implantology, comparing ChatGPT, DeepSeek, Grok, Gemini,
and Qwen acrossclinical consensusand caseanalysis tasks[13].
These findings indicate substantial improvement in dental
knowledge representation across model generations, though
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both studies relied exclusively on multiple-choice question
formats.

Beyond accuracy metrics, recent studies have begun
characterizing operational parameters relevant to clinical
deployment. Nguyen et al. quantified the speed-accuracy trade-
off in oral and maxillofacial surgery multiple-choice tasks,
demonstrating that reasoning-optimized models achieve 12-
18% higher accuracy at the cost of 3-5x increased response
latency [14]. This trade-off has direct implications for real-time
clinical decision support, where response time affects usability
and workflow integration. However, whether this relationship
holds for open-ended clinical reasoning tasks as opposed to
multiple-choice selection remains unexplored.

Comparative benchmarking across model families has
revealed distinct performance profiles and highlighted the
importance of model selection for specific clinical applications.
Wau et al. conducted a multi-dimensional evaluation in dental
implantology comparing five major LLMs, finding that GPT-4
achieved the highest accuracy (78.5%) followed by Gemini
(72.1%), Claude 3 (69.8%), Qwen (65.4%), and DeepSeek
(61.2%) across clinical consensus and case analysis tasks [10].
Notably, performance rankings varied by task type—Claude
demonstrated stronger performance on complex case analysis
requiring multi-step reasoning, while GPT-4 excelled on factual
recall tasks. Fujimoto et al. evaluated LLMs specifically in
dental anesthesiology, reporting that ChatGPT-4 achieved
51.2% accuracy compared to Claude 3 Opus at 47.4% and
Gemini 1.0 at 43.6% on Japanese board certification questions
[15]. Hou et al. benchmarked multiple LLMs on the Dental
Admission Test, with GPT-4 achieving 76.8% overall accuracy
while demonstrating particular strength in reading
comprehension (84.2%) compared to perceptual ability sections
(68.1%) [16].

Despite these advances, critical methodological limitations
persist in current dental LLM evaluation. First, the predominant
reliance on multiple-choice question formats constrains
assessment to recognition-based rather than generation-based
clinical reasoning [17]. Real clinical decision-making requires
synthesizing patientinformationinto coherent treatment plans—
a generative task fundamentally different from selecting among
predetermined options. Second, existing studies predominantly
evaluate single-specialty performance, leaving cross-specialty
generalizability largely unexplored. Whether LLM clinical
reasoning transfers across dental subspecialty boundaries
remains an open question with significant implications for
deployment scope. Third, Claude Opus 4.5, Anthropic's latest
reasoning-optimized model featuring extended context windows
(200,000 tokens) and inference-time compute scaling, remains
systematically unevaluated in dental clinical decision support
contexts despite architectural innovations potentially
advantageous for complex clinical reasoning.

B. Evaluation Metrics for Clinical Text Generation

Traditional NLP evaluation metrics exhibit well-
documented limitations in clinical contexts that motivate the
adoption of embedding-based alternatives. BLEU (Bilingual
Evaluation Understudy) and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) rely on n-gram overlap,
penalizing semantically equivalent paraphrases common in
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clinical documentation [17]. For instance, "extraction of non-
restorable tooth" and "removal of hopeless dentition" convey
identical clinical meaning but share minimal lexical overlap,
yielding artificially low BLEU/ROUGE scores. Hanna and
Bojar [6] demonstrated through fine-grained analysis that these
metrics correlate poorly with human judgment (Pearson » <04)
for semantic equivalence tasks, particularly when surface-form
variation is high—a characteristic inherent to clinical
terminology where multiple valid expressions exist for identical
concepts.

BERT Score addresses these limitations by leveraging
contextual embeddings from transformer-based models to
compute semantic similarity at the token level [4]. Zhang et al.
introduced the framework demonstrating superior correlation
with human judgment (Pearson »=0.73) compared to BLEU (»
=0.41) and ROUGE (r = 0.38) across multiple natural language
generation tasks [4]. The metric computes precision, recall, and
F1 scores through greedy matching of contextualized token
embeddings, capturing meaning beyond surface-level lexical
pattems. Precision measures whether generated content is
semantically supported by the reference, recall assesses
coverage of reference content, and F1 provides a balanced
harmonic mean. This capability is particularly valuable in
clinical domains where terminology variation is common and
semantic correctness should not be penalized by lexical
diversity.

Domain adaptation techniques have further enhanced
semantic evaluation accuracy for medical text, though their
application to open-ended clinical text generation remains
limited. BioBERT [18], pretrained on over 18 billion words
from PubMed abstracts and PMC full-text articles, demonstrates
improved performance on biomedical named entity recognition,
relation extraction, and question answering tasks compared to
general-domain BERT. ClinicalBERT [4], trained on
approximately 2 million clinical notes from the MIMIC-III
database, achieves superiorresults onclinical concept extraction
and hospital readmission prediction by capturing the distinctive
linguistic patterns of clinical documentation. PubMedBERT [4]
employs domain-specific vocabulary and pretraining
exclusively on biomedical literature, outperforming mixed-
domain models on the Biomedical Language Understanding
Evaluation (BLUE) benchmark. More recently, Koroleva et al.
[19] demonstrated that domain-adapted embeddings improve
semantic similarity measurement for clinical trial outcomes,
achieving higher correlation with expert annotations than
general-domain alternatives.

However, these domain-adaptedmodelshave been primarily
validated on classification, extraction, and structured prediction
tasks rather than open-ended text generation evaluation.
Whether the advantages of biomedical pretraining transfer to
semantic similarity assessment of generated clinical
recommendations remains an open empirical question.
Furthermore, no systematic comparison exists between the
general-domain BERT Score (using RoBERTa-large) and
domain-adapted variants (BioBERTScore, ClinicaBERTScore)
for dental clinical text specifically. This study employs
RoBERTa-largeas the backbonemodel based on itsstatus as the
recommended defaultin the BERT-score library and its robust
cross-domain performance [20]. This choice provides a
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conservative  baseline—success  with  general-domain
embeddings suggests even stronger potential with domain
adaptation, while failure would not be attributable to domain
mismatch.

C. Benchmarking Frameworks for Healthcare Al

The development of standardized benchmarking datasets has
accelerated healthcare Al evaluation while revealing persistent
methodological gaps. Zhu et al. [20] introduced DentalBench, a
bilingual benchmark comprising over 36,000 questions across
16 dental subfields, including operative dentistry,
prosthodontics, orthodontics, and oral surgery. This
comprehensive dataset enables systematic cross-specialty
comparison but relies exclusively on multiple-choice formats.
Hou et al. [16] benchmarked LLMs on the Dental Admission
Test, providing comparative performance data across model
families witha detailed analysis of performance variation across
test sections. Huang et al. [5] presented a comprehensive survey
on evaluating LLM applications in medical settings, identifying
accuracy, safety, clinical relevance, and explainability as key
evaluation dimensions that should be assessed in combination
rather than in isolation.

Recent methodological advances emphasize
multidimensional evaluation frameworks that extend beyond
single accuracy metrics. Sivaramakrishnan et al. [21] evaluated
LLMs for dental patient education materials using BERT Score
alongside readability indices (Flesch-Kincaid, SMOG) and
clinical relevance assessments by domain experts,
demonstrating that semantic similarity alone incompletely
captures communication quality. Zheng et al. [22] proposed
hierarchical divide-and-conquer approaches for fine-grained
alignment in LLM-based medical evaluation, decomposing
complex clinical reasoning into assessable sub-components.
These frameworks recognize that no single metric fully captures
clinical utility, advocating for complementary quantitative and
qualitative assessments tailored to specific use cases.

Despite these advances, existing benchmarking frameworks
exhibit limitations that constrain their applicability to real-world
clinical decision support evaluation. The predominant MCQ
format assesses knowledge recall rather than clinical reasoning
synthesis—aclinicianmustnot onlyidentify correct answers but
generate coherent, contextually appropriate treatment plans
fromunstructured patient information [ 1 7]. Current benchmarks
lack standardized semantic similarity metrics for open-ended
response evaluation, relying instead on binary correctness
judgments that cannot capture partial credit, near-miss
responses, or alternative valid approaches. It is uncommon to
systematically evaluate cross-specialty generalizability; models
may perform well in knowledge-intensive domains but poorly in
procedural or spatial reasoning, but single-specialty benchmarks
are unable to identify this variation [8]. Finally, speed-accuracy
trade-offs critical for real-time clinical deployment are
inconsistently reported across studies, limiting practical
implementation guidance.

C. Research Gap and Study Positioning

The preceding review identifies three convergent gaps that
motivate the present study. First, an evaluation methodology
gap: existing dental LLM benchmarks predominantly employ
MCQ-based accuracy metrics that cannot assess open-ended
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clinical reasoning quality, where multiple semantically
equivalent responses may be valid. Semantic similarity metrics
like BERT Score offer a principled alternative for evaluating
generated clinical text but remain underutilized in dental Al
evaluation. Second, a cross-specialty evidence gap: whether
LLM clinical reasoning generalizes across dental subspecialties
is largely unexplored, yet this question has direct implications
for deployment scope, safety boundaries, and clinical workflow
integration. Third, a model coverage gap: Claude Opus 4.5,
featuring architectural innovations including extended context
windows and inference-time reasoning optimization, potentially
advantageous for complex clinical decision-making, lacks
systematic evaluation in dental clinical decision support.

This study addresses these gaps by establishinga BERT
Score-based benchmarking framework for evaluating open-
ended dental treatment recommendations. Unlike MCQ-based
approaches that assess recognition accuracy, our framework
evaluates the semantic alignment between Al-generated and
expert-authored treatment plans—capturing clinical reasoning
quality through continuous similarity scores rather than binary
correctness judgments. By systematically evaluating
performance across nine dental specialties using 116 published

Phase 1: Data Collection

Case Reports in Dentistry
Journal (2024-2025)

Case Input Extraction
+ Demographics
+ Clinical findings

203 articles screened
+ Diagnostic data

l l

Claude Opus 4.5

Inclusion Criteria:
= Single case format €DSS Configuration
+ Complete treatment plan structured Prompting

« English language

l 1

Final Dataset

(System Prompt}

Al-Generated Output:
n =116 case reports. » Treatment recommendations

9 dental specialties * Response time logged

Fig. 1.

Inclusioncriteriacomprised: 1)publication type classified as
"case report" in journal metadata; 2) complete case presentation
including patient demographics, chief complaint, clinical
findings, diagnostic workup, and treatment plan sections; 3)
single-case format with clearly identifiable treatment outcomes;
4) English language publication. Exclusion criteria included: a)
case series presenting multiple patients, as these confound
treatment-case matching; b) reports lacking explicit treatment
plan descriptions; ¢) cases focused primarily on diagnostic
imaging or laboratory findings without therapeutic intervention;
d) letters to the editor, commentaries, or review articles
misclassified as case reports. The final dataset comprised 116
case reports meeting all inclusion criteria.

B. Dental Specialty Classification

Cases were classified into dental specialties using a
keyword-based algorithm with title weighting. The
classification system assigned cases to nine specialty categories:
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case reports, we provide empirical evidence regarding cross-
specialty generalizability that informs appropriate deployment
boundaries. The methodology offers a reproducible, training-
free evaluation pipeline applicable to any LLM without
requiringdomain-specific fine-tuning or retrieval augmentation,
facilitating standardized comparison across model families and
enabling longitudinal tracking of model performance across
version updates.

III. METHODOLOGY

A. Study Design and Data Collection

This cross-sectional study evaluated Claude Opus 4.5 as a
clinical decision support system using published dental case
reports as the evaluation corpus. The overall study workflow is
illustrated in Fig. 1, comprising four sequential phases: 1) data
collection and preprocessing, 2) Al-generated treatment
recommendation, 3) BERT Score calculation, and 4) statistical
analysis. This design enables systematic comparison between
Al-generated and expert-authored treatment plans while
controlling for case complexity through the use of published
cases with documented outcomes for the period 2024 to 2025.

Phase 3: BERT Score Phase 4: Analysis

=

Descriptive Statistics
Mean, 5D, 95% CI

Text Extraction:
Candidate: Al treatment plan

Reference: Published treatment

RoBERTa-large

Median, Range

Inferential Tests:
Contextual Embeddings = One-sample t-test
Cosine Similarity = Kruskal-Wallis H

Greedy Matching

1 | !

BERT Score Metrics:

+ Spearman p

Effect Sizes;
+ Precision
+ Cohen's d
* Recall
« Epsilan-squared (£7)
« F1 Score

Study workflow of benchmarking LLM for CDSS using BERT score.

Oral and Maxillofacial Surgery, Orthodontics, Endodontics,
Prosthodontics, Implantology, Pediatric Dentistry, Periodontics,
Oral Medicine and Pathology, and Conservative Dentistry.
Keywords were derived from established dental specialty
nomenclature and weighted by occurrence in article titles (2x)
versus body text (1x). Cases matching multiple specialties were
assigned to the category with the highest weighted keyword
frequency.

C. Al Configuration and Prompt Engineering

Claude Opus 4.5 was configured as a Clinical Decision
Support System through structured system prompting. The
prompt established: 1) Role definition as CDSS for dental
healthcare professionals; 2) Explicit limitations stating
recommendations require clinical validation; 3) Reference
standards including FDI World Dental Federation notation and
ICD-10/ICD-11 classification systems; 4) Structured response
format comprising clinical findings analysis, differential
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diagnosis, treatment recommendations, referral considerations,
and diagnostic codes. The model was accessed via the Claude
Website without fine-tuning, retrieval augmentation, or
embedding modifications to evaluate baseline capabilities.

D. BERT Score Calculation

BERT Score was computed using the bert-score Python
library (version 0.3.13) with RoBERTa-large as the backbone
model. Foreachcase, thecandidate text comprised thetreatment
recommendation section of Claude's response, while the
reference text comprised the treatment plan section from the
published case report. BERT Score computes precision, recall,
and F1 scores by: 1) generating contextual embedding for all
tokens in candidate and reference texts; 2) computing pairwise
cosine similarity between token embedding; 3) calculating
greedy matching to maximize similarity scores; 4) aggregating
token-level scores into sentence-level metrics. The F1 score,
representing the harmonic mean of precision and recall, served
as the primary evaluation metric.

E. Statistical Analysis

Statistical analyses were performed using AMOVI Desktop
2.6.44. Descriptive statistics included mean, standard deviation,
median, and 95% confidence intervals for BERT Score metrics.
Distribution normality was assessed usingthe Shapiro-Wilk test.
One-sample t-test evaluated whether the mean BERT Score
significantly exceeded the 0.80 threshold, with Cohen's d
calculated for effect size. Cross-specialty comparison employed
the Kruskal-Wallis H test due to unequal group sizes, with
epsilon-squared (€?) as the effect size measure. Spearman’s rank
correlation assessed the relationship between BERT Score and
response time. Statistical significance was set at o = 0.05.

IV. RESULTS

A. Dataset Characteristics

The dataset comprised 116 dental case reports distributed
across nine specialties. Oral and Maxillofacial Surgery
represented the largest category (n = 56, 48.3%), followed by
Orthodontics and Endodontics (n = 14 each, 12.1%),
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B. Overall BERT Score Performance

Claude Opus 4.5 demonstrated strong semantic alignment
with published treatment plans. The mean BERT Score F1 was
0.8199 +£0.0144 (95% CI: 0.8172-0.8225), with a median of
0.8191 and a range of 0.7782-0.8618. The Shapiro-Wilk test
confirmed normal distribution (W= 0.994, p = 0.856). Precision
(mean=0.8140£0.0161)and recall (mean = 0.8252+0.0198)
values indicated balanced performance in capturing reference
content while avoiding extraneous information. BERT Score F1
>0.80 was attained in 107 (92.2%) of the 116 cases.

One-sample t-test confirmed that the mean BERT Score
significantly exceeded the 0.80 threshold (= 14.90,df=115,p
< 0.001). Cohen's d = 1.38 indicated a large effect size,
demonstrating substantial performance above the acceptability
benchmark. Table II summarizes the overall performance
metrics.

TABLEII. OVERALL BERT SCORE PERFORMANCE METRICS
Metric Value 95% CI
BERT Score F1 (Mean + SD) 0.8199+0.0144 | [0.8172,0.8225]

BERT Score Precision 0.8140+0.0161 [0.8110,0.8169]

BERT Score Recall

0.8252+0.0198

[0.8216,0.8289]

Median F1

0.8191

0.7782-0.8618

Range (Min-Max)
Cases 2 0.80 threshold

107 (92.2%) -

C. Cross-Specialty Performance Analysis

BERT Score F1 demonstrated consistent performance across
dental specialties. Mean scores ranged from 0.8088 (Pediatric
Dentistry) to 0.8273 (Implantology), with all specialties
exceeding the 0.80 threshold. Kruskal-Wallis H testrevealed no
statistically significant differences among specialties (H=3.07,
df=18,p=0.879), with epsilon-squared (&2) = 0.026 indicating a
negligible effect size. This finding suggests robust
generalizability of Claude Opus 4.5 across diverse dental

. clinical scenarios. Table III presents specialty-specific
Prosthodontics (n = 13, 11.2%), Implantology (n = 7, 6.0%), erformance p p ty-sp
Pediatric Dentistry (n =5, 4.3%), Periodontics (n = 3, 2.6%), p '

O > o .
Oral Medicine and Pathology (n= 3, 2.6%), and Conservative TABLEIIL.  BERT SCORE FI PERFORMANCE BY DENTAL SPECIALTY
Dentistry (n = 1, 0.9%). Table I presents the complete
distribution. Specialty n Mean SD 95% CI
Oral & Maxillofacial [0.8159,
TABLE L. DISTRIBUTION OF CASE REPORTS BY DENTAL SPECIALTY Surgery 36 08200 | 0.0155 0.8241]
. [0.8147,
Dental Specialty n % Orthodontics 14 0.8211 | 0.0122 0.8275]
Oral and Maxillofacial Surgery 56 483 Endodontics 14 08173 | 00121 | [03110.
Orthodontics 14 12.1 ?6855213562]
Endodontics 14 121 Prosthodontics 13 0.8200 | 0.0088 0.8248]
Prosthodontics 13 11.2 Implantology 7 0.8273 | 0.0181 508210379]’
Implantology 7 6.0

— - Pediatric Dentistry 5 0.8088 | 0.0186 [0.7926,
Pediatric Dentistry 5 43 0.8251]

- - ) ) [0.8127,
Periodontics 3 2.6 Periodontics 3 0.8198 0.0063 08270]
Oral Medicine and Pathology 3 2.6 grétl}ll 1 Medicine & 3 08217 | 0.0232 E)Oé7498504,
Conservative Dentistry 1 0.9 athology . ]

Conservative 1 0.8255
Total 116 100.0 Dentistry : B B
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D. Response Time and Speed-Accuracy Trade-off

Mean response time was 34.79 £ 18.63 seconds (median=
32.0 seconds, range = 6-98 seconds). Spearman rank correlation
revealed a significant negative relationship between BERT
Score F1 and response time (p =-0.371, p < 0.001), indicating
that faster responses were associated with higher semantic
alignment scores. This counterintuitive finding suggests that
cases elicitingclear, well-structured Alresponses (higher BERT
Scores) also required less processing time, potentially reflecting
case complexity rather than a simple speed-accuracy trade-off.
Table IV summarizes the overall statistical analysis.

TABLEIV. STATISTICAL ANALYSIS SUMMARY

Analysis Statistic p
Normality (Shapiro-Wilk) W=0.994 0.856
One-sample t-test (vs. 0.80) t=1490,df=115 <0.001
Effect size (Cohen's d) d=1.38 (large) -
Cross-specialty (Kruskal-Wallis) H=3.07,df=8 0.879

. . g = 0.026

Effect size (Epsilon-squared) (negligible) -
Correlation (Spearman) p=-0371 <0.001

V. DISCUSSION

A. Interpretation of BERT Score Performance

The observed mean BERT Score F1 of 0.8199 represents
strong semantic alignment between Al-generated and expert-
authored treatment recommendations. This performance
significantly exceeds the 0.80 threshold typically considered
acceptable for clinical text evaluation [19]. The large effect size
(Cohen's d = 1.38) indicates that Claude Opus 4.5 consistently
generates treatment recommendations that capture the semantic
content of published clinical decisions, supporting its potential
utility as a clinical decision support tool.

The balanced precision (0.8140) and recall (0.8252) scores
indicate that the model neither omits critical treatment
components, which would diminish recall, nor introduces
clinically unsubstantiated or extraneous recommendations—
often characterized as hallucinations—which  would
compromise precision. This metrical equilibrium is particularty
imperative in clinical contexts where both informational
completeness and semantic accuracy are essential for
maintaining patient safety [23]. Furthermore, the narrow
confidence interval of 0.8172-0.8225 reflects consistent
performance across diverse case presentations.

B. Cross-Specialty Generalizability

The absence of significant performance differences across
dental specialties (p = 0.879) represents a notable finding. Prior
benchmarking studies have documented substantial variation in
LLM performance across medical subspecialties, with models
often excelling in knowledge-intensive domains while
struggling with procedural or spatial reasoning tasks [24]. The
consistent performance observed in this study suggests that
Claude Opus 4.5's reasoning architecture may provide more
robust generalization across diverse clinical scenarios than
earlier model generations.
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However,the unequal distribution of cases across specialties
(48.3% in Oral and Maxillofacial Surgery) warrants caution in
generalizing these findings. Smaller specialty subgroups may
have insufficient statistical power to detect meaningful
differences. Future studies should employ stratified sampling to
ensure adequate representation across all dental specialties [25].

C. Speed-Accuracy Relationship

The significant negative correlation between BERT Score
and response time (p =-0.371) presents an interesting departure
fromthe expected speed-accuracytrade-off documented in other
LLM benchmarking studies[14]. This relationship may reflect
that straightforward cases with clear treatment pathways elicit
both faster responses and higher semantic alignment with
published recommendations. Complex or ambiguous cases
requiring extended reasoning may produce lower BERT Scores
due to legitimate treatment variability rather than model error.

D. Limitations of BERT Score in Clinical Evaluation

While BERT Score provides valuable insights into semantic
similarity, several limitations must be acknowledged. First,
semantic similarity does not guarantee clinical correctness; a
response may be semantically similar to a reference while
containing factually incorrect recommendations [26]. Second,
BERT Score exhibits reduced sensitivity to numerical values;
dosage errors (e.g., "S5 mg" vs "500 mg") may not be adequately
penalized due to similar contextual embeddings [27]. Third, the
metric does not capture reasoning quality or logical consistency
in treatment sequencing.

These limitations underscore the importance of
multidimensional evaluation frameworks that combine
automated semantic metrics with expert clinical review, safety
assessments, and guideline concordance checks [28]. BERT
Score should be viewed as a scalable screening tool rather than
a definitive measure of clinical validity.

E. Implications for Clinical Decision Support Implementation

Theresults support the potential deploymentof Claude Opus
4.5 as a clinical decision support tool in dental practice, with
appropriate safeguards. The model demonstrates the capacity to
generate semantically appropriate treatment recommendations
across multiple specialties, potentially assisting clinicians with
treatment planning, documentation, and educational
applications [29]. However, the model should function as a
"copilot" requiring human oversight rather than an autonomous
diagnostic system [30].

Future implementation should incorporate 1) explicit
uncertainty quantification in model outputs; 2) integration with
domain-specific knowledge bases and clinical guidelines; 3)
mandatory clinician review before treatment execution; and 4)
continuous monitoring for performance degradation or
emerging error patterns [31]. The ethics and governance
framework proposed by Rokhshad et al. provides a valuable
foundation for the responsible deployment of LLMs in dental
clinical settings [32].

F. Study Limitations

Several limitations should be considered when interpreting
these results. First, the use of published case reports as ground
truth assumes that reported treatments represent optimal clinical
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decisions, which may not always hold. Second, the study
evaluated text-based clinical reasoning without incorporating
radiographic or other imaging data essential to dental diagnosis.
Third, the cross-sectional design cannot assess longitudinal
performance stability or model drift. Fourth, the evaluation
relied solely on automated BERT Score metrics without expert
clinical review of individual outputs. Finally, the unequal
specialty distribution may limit generalizability to
underrepresented domains.

VI.  CONCLUSION

This study establisheda BERT Score-based benchmarking
framework for evaluating LLM performance in dental clinical
decision support. Claude Opus 4.5 demonstrated strong
semantic alignment with published treatment recommendations
(mean BERT Score F1 = 0.8199 = 0.0144), significantly
exceeding the 0.80 acceptability threshold (t = 14.90, p <0.001,
Cohen's d = 1.38) with consistent performance across nine
dental specialties (Kruskal-Wallis H = 3.07, p = 0.879). The
study contributes a reproducible, training-free semantic
evaluation pipeline for open-ended clinical text, provides the
first cross-specialty generalizability evidence for dental LLM
evaluation, and characterizes the speed-accuracy relationship
relevant to clinical deployment.

Several limitations should be acknowledged, including the
absence of expert clinical validation, reliance on text-based
reasoning without radiographic data, and unequal specialty
distribution. The findings support the potential of LLMs as
clinical decision supporttools in dentistry whilehighlighting the
need for comprehensive evaluation frameworks that extend
beyond semantic similarity to encompass clinical accuracy,
safety, and guideline adherence. Future research should
integrate expert clinical validation, multimodal evaluation
incorporating radiographic  interpretation, comparative
benchmarking across LLM families, and prospective studies in
clinical deployment settings. The standardization of evaluation
methodologies will be essential as LLM applications in
healthcare continue to expand
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