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Abstract—The integration of Large Language Models (LLMs) 

into clinical decision support systems represents a significant 

advancement in healthcare informatics. This study presents a 

comprehensive evaluation framework for benchmarking LLM-

generated dental treatment recommendations using BERT Score 

as the primary semantic similarity metric. We evaluated Claude 

Opus 4.5 as a Clinical Decision Support System (CDSS) across 116 

dental case reports extracted from the Case Reports in Dentistry 

journal (2024-2025), spanning nine dental specialties. The BERT 

Score was calculated using the RoBERTa-large model to measure 

semantic alignment between AI-generated treatment plans and 

gold-standard published treatments. Results demonstrated strong 

semantic alignment with a mean BERT Score F1 of 0.8199 with a 

standard deviation of 0.0144 (95 per cent confidence interval: 

0.8172-0.8225), significantly exceeding the 0.80 threshold (t = 

14.90, p < 0.001, d = 1.38). Cross-specialty analysis revealed 

consistent performance across all nine dental domains (Kruskal-

Wallis H = 3.07, p = 0.879), indicating robust generalizability. A 

significant negative correlation was observed between BERT 

Score and response time (ρ = -0.371, p < 0.001), suggesting a speed-

accuracy trade-off in LLM reasoning. This study contributes a 

reproducible benchmarking methodology for evaluating LLM 

performance in specialized clinical domains and demonstrates the 

potential of BERT Score as a scalable evaluation metric for AI-

generated clinical text. 
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I. INTRODUCTION 

The rapid advancement of Large Language Models (LLMs) 
has catalyzed transformative applications in healthcare, 
particularly in clinical decision support systems (CDSS) [1]. 
These models demonstrate remarkable capabilities in processing 
and generating medical text, offering potential solutions for 
diagnostic assistance, treatment planning, and clinical 
documentation [2]. However, the deployment of LLMs in high-
stakes clinical environments necessitates rigorous evaluation 
methodologies that can accurately assess the semantic fidelity 
and clinical relevance of AI-generated recommendations [3]. 

Traditional evaluation metrics for natural language 
generation, such as BLEU (Bilingual Evaluation Understudy) 

and ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation), rely primarily on n-gram overlap between 
generated and reference texts [4]. While these metrics provide 
valuable insights for machine translation and summarization 
tasks, they exhibit significant limitations in clinical contexts 
where semantic equivalence often transcends lexical similarity. 
Clinical terminology frequently admits multiple valid 
expressions for identical concepts; for instance, "necrotic pulp" 
and "non-vital tooth" are clinically synonymous yet lexically 
distinct, resulting in artificially low scores under traditional 
metrics [5]. 

BERT Score addresses these limitations by leveraging 
contextual embeddings from transformer-based models to 
compute semantic similarity at the token level [6]. By 
representing words in a high-dimensional vector space that 
captures contextual meaning, BERT Score can recognize 
semantic equivalence between different surface forms of the 
same clinical concept. This capability is particularly valuable in 
medical domains where paraphrasing is common and clinical 
correctness should not be penalized by lexical variation [7]. 

Dentistry presents unique challenges for AI evaluation due 
to its specialized terminology, procedural complexity, and the 
critical importance of spatial reasoning [8]. Dental clinical 
decisions require integration of patient history, clinical 
examination findings, and radiographic interpretation, a 
triangulation of evidence that tests the reasoning capabilities of 
LLMs. Recent benchmarking studies have demonstrated 
variable performance of LLMs across dental specialties, with 
models achieving high accuracy on standardized examinations 
but exhibiting inconsistencies in complex case-based reasoning 
[9][10]. 

Claude Opus 4.5, released by Anthropic, represents a 
reasoning-optimized LLM architecture featuring extended 
context windows (200,000 tokens) and inference-time compute 
scaling through its "Thinking" mechanism [11]. These 
architectural innovations suggest potential advantages for 
complex clinical reasoning tasks that require maintaining 
coherent logical chains across extensive patient histories. 
However, systematic evaluation of Claude Opus 4.5 in dental 
clinical decision support remains limited in the current literature. 
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While prior studies have evaluated LLMs on dental 
examinations using multiple-choice accuracy metrics [9] [10], 
these approaches cannot capture the nuanced semantic 
alignment required for open-ended clinical reasoning tasks. 
Furthermore, existing benchmarks predominantly assess single-
specialty performance, leaving cross-specialty generalizability 
largely unexplored. This study addresses these methodological 
gaps by introducing a BERT Score-based evaluation framework 
specifically designed for open-ended dental treatment 
recommendations—a context where multiple semantically 
equivalent but lexically distinct responses may be clinically 
valid. 

The primary contributions of this study are threefold. First, 
we establish a reproducible, training-free semantic evaluation 
pipeline that enables scalable assessment of LLM-generated 
clinical text without requiring domain-specific fine-tuning or 
retrieval augmentation. Second, we provide empirical evidence 
of cross-specialty generalizability by demonstrating consistent 
BERT Score performance across nine dental disciplines, 
addressing the critical question of whether LLM clinical 
reasoning transfers across subspecialty boundaries. Third, we 
characterize the speed-accuracy relationship in dental CDSS 
applications, offering practical insights for real-time clinical 
deployment where response latency affects usability. These 
contributions extend beyond dental informatics to inform 
evaluation methodology for LLM-based clinical decision 
support systems across medical domains. 

The remainder of this study is organized as follows: 
Section II reviews related work on LLM applications in dental 
clinical decision support, evaluation metrics for clinical text 
generation, and existing benchmarking frameworks for 
healthcare AI. Section III details the methodology, including 
data collection from the Case Reports in Dentistry journal, 
dental specialty classification, AI configuration with structured 
prompting, and BERT Score calculation procedures. Section IV 
presents the results encompassing overall BERT Score 
performance, cross-specialty analysis, and speed-accuracy 
correlations. Section V discusses the interpretation of findings, 
clinical implications, and study limitations. Finally, Section VI 
concludes with key contributions and directions for future 
research. 

II. RELATED WORK 

A. Large Language Models in Dental Clinical Decision 

Support 

The application of Large Language Models in dentistry has 
expanded rapidly, with multiple model families demonstrating 
varying capabilities across clinical tasks. Kim et al. evaluated 
LLM performance on the Korean Dental Licensing 
Examination, finding that GPT-4 achieved 75.2% accuracy 
compared to GPT-3.5's 53.8%, establishing a clear generational 
performance gap [9]. Dashti et al. extended this analysis to U.S. 
dental examinations, reporting similar patterns with GPT-4 
reaching 80.1% accuracy versus 67.3% for GPT-3.5 [12]. Wu et 
al. conducted multi-dimensional evaluation of LLMs in dental 
implantology, comparing ChatGPT, DeepSeek, Grok, Gemini, 
and Qwen across clinical consensus and case analysis tasks [13]. 
These findings indicate substantial improvement in dental 
knowledge representation across model generations, though 

both studies relied exclusively on multiple-choice question 
formats. 

Beyond accuracy metrics, recent studies have begun 
characterizing operational parameters relevant to clinical 
deployment. Nguyen et al. quantified the speed-accuracy trade-
off in oral and maxillofacial surgery multiple-choice tasks, 
demonstrating that reasoning-optimized models achieve 12-
18% higher accuracy at the cost of 3-5× increased response 
latency [14]. This trade-off has direct implications for real-time 
clinical decision support, where response time affects usability 
and workflow integration. However, whether this relationship 
holds for open-ended clinical reasoning tasks as opposed to 
multiple-choice selection remains unexplored. 

Comparative benchmarking across model families has 
revealed distinct performance profiles and highlighted the 
importance of model selection for specific clinical applications. 
Wu et al. conducted a multi-dimensional evaluation in dental 
implantology comparing five major LLMs, finding that GPT-4 
achieved the highest accuracy (78.5%) followed by Gemini 
(72.1%), Claude 3 (69.8%), Qwen (65.4%), and DeepSeek 
(61.2%) across clinical consensus and case analysis tasks [10]. 
Notably, performance rankings varied by task type—Claude 
demonstrated stronger performance on complex case analysis 
requiring multi-step reasoning, while GPT-4 excelled on factual 
recall tasks. Fujimoto et al. evaluated LLMs specifically in 
dental anesthesiology, reporting that ChatGPT-4 achieved 
51.2% accuracy compared to Claude 3 Opus at 47.4% and 
Gemini 1.0 at 43.6% on Japanese board certification questions 
[15]. Hou et al. benchmarked multiple LLMs on the Dental 
Admission Test, with GPT-4 achieving 76.8% overall accuracy 
while demonstrating particular strength in reading 
comprehension (84.2%) compared to perceptual ability sections 
(68.1%) [16]. 

Despite these advances, critical methodological limitations 
persist in current dental LLM evaluation. First, the predominant 
reliance on multiple-choice question formats constrains 
assessment to recognition-based rather than generation-based 
clinical reasoning [17]. Real clinical decision-making requires 
synthesizing patient information into coherent treatment plans—
a generative task fundamentally different from selecting among 
predetermined options. Second, existing studies predominantly 
evaluate single-specialty performance, leaving cross-specialty 
generalizability largely unexplored. Whether LLM clinical 
reasoning transfers across dental subspecialty boundaries 
remains an open question with significant implications for 
deployment scope. Third, Claude Opus 4.5, Anthropic's latest 
reasoning-optimized model featuring extended context windows 
(200,000 tokens) and inference-time compute scaling, remains 
systematically unevaluated in dental clinical decision support 
contexts despite architectural innovations potentially 
advantageous for complex clinical reasoning. 

B. Evaluation Metrics for Clinical Text Generation 

Traditional NLP evaluation metrics exhibit well-
documented limitations in clinical contexts that motivate the 
adoption of embedding-based alternatives. BLEU (Bilingual 
Evaluation Understudy) and ROUGE (Recall-Oriented 
Understudy for Gisting Evaluation) rely on n-gram overlap, 
penalizing semantically equivalent paraphrases common in 
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clinical documentation [17]. For instance, "extraction of non-
restorable tooth" and "removal of hopeless dentition" convey 
identical clinical meaning but share minimal lexical overlap, 
yielding artificially low BLEU/ROUGE scores. Hanna and 
Bojar [6] demonstrated through fine-grained analysis that these 
metrics correlate poorly with human judgment (Pearson r < 0.4) 
for semantic equivalence tasks, particularly when surface-form 
variation is high—a characteristic inherent to clinical 
terminology where multiple valid expressions exist for identical 
concepts. 

BERT Score addresses these limitations by leveraging 
contextual embeddings from transformer-based models to 
compute semantic similarity at the token level [4]. Zhang et al. 
introduced the framework demonstrating superior correlation 
with human judgment (Pearson r = 0.73) compared to BLEU (r 
= 0.41) and ROUGE (r = 0.38) across multiple natural language 
generation tasks [4]. The metric computes precision, recall, and 
F1 scores through greedy matching of contextualized token 
embeddings, capturing meaning beyond surface-level lexical 
patterns. Precision measures whether generated content is 
semantically supported by the reference, recall assesses 
coverage of reference content, and F1 provides a balanced 
harmonic mean. This capability is particularly valuable in 
clinical domains where terminology variation is common and 
semantic correctness should not be penalized by lexical 
diversity. 

Domain adaptation techniques have further enhanced 
semantic evaluation accuracy for medical text, though their 
application to open-ended clinical text generation remains 
limited. BioBERT [18], pretrained on over 18 billion words 
from PubMed abstracts and PMC full-text articles, demonstrates 
improved performance on biomedical named entity recognition, 
relation extraction, and question answering tasks compared to 
general-domain BERT. ClinicalBERT [4], trained on 
approximately 2 million clinical notes from the MIMIC-III 
database, achieves superior results on clinical concept extraction 
and hospital readmission prediction by capturing the distinctive 
linguistic patterns of clinical documentation. PubMedBERT [4] 
employs domain-specific vocabulary and pretraining 
exclusively on biomedical literature, outperforming mixed-
domain models on the Biomedical Language Understanding 
Evaluation (BLUE) benchmark. More recently, Koroleva et al. 
[19] demonstrated that domain-adapted embeddings improve 
semantic similarity measurement for clinical trial outcomes, 
achieving higher correlation with expert annotations than 
general-domain alternatives. 

However, these domain-adapted models have been primarily 
validated on classification, extraction, and structured prediction 
tasks rather than open-ended text generation evaluation. 
Whether the advantages of biomedical pretraining transfer to 
semantic similarity assessment of generated clinical 
recommendations remains an open empirical question. 
Furthermore, no systematic comparison exists between the 
general-domain BERT Score (using RoBERTa-large) and 
domain-adapted variants (BioBERTScore, ClinicalBERTScore) 
for dental clinical text specifically. This study employs 
RoBERTa-large as the backbone model based on its status as the 
recommended default in the BERT-score library and its robust 
cross-domain performance [20]. This choice provides a 

conservative baseline—success with general-domain 
embeddings suggests even stronger potential with domain 
adaptation, while failure would not be attributable to domain 
mismatch. 

C. Benchmarking Frameworks for Healthcare AI 

The development of standardized benchmarking datasets has 
accelerated healthcare AI evaluation while revealing persistent 
methodological gaps. Zhu et al. [20] introduced DentalBench, a 
bilingual benchmark comprising over 36,000 questions across 
16 dental subfields, including operative dentistry, 
prosthodontics, orthodontics, and oral surgery. This 
comprehensive dataset enables systematic cross-specialty 
comparison but relies exclusively on multiple-choice formats. 
Hou et al. [16] benchmarked LLMs on the Dental Admission 
Test, providing comparative performance data across model 
families with a detailed analysis of performance variation across 
test sections. Huang et al. [5] presented a comprehensive survey 
on evaluating LLM applications in medical settings, identifying 
accuracy, safety, clinical relevance, and explainability as key 
evaluation dimensions that should be assessed in combination 
rather than in isolation. 

Recent methodological advances emphasize 
multidimensional evaluation frameworks that extend beyond 
single accuracy metrics. Sivaramakrishnan et al. [21] evaluated 
LLMs for dental patient education materials using BERT Score 
alongside readability indices (Flesch-Kincaid, SMOG) and 
clinical relevance assessments by domain experts, 
demonstrating that semantic similarity alone incompletely 
captures communication quality. Zheng et al. [22] proposed 
hierarchical divide-and-conquer approaches for fine-grained 
alignment in LLM-based medical evaluation, decomposing 
complex clinical reasoning into assessable sub-components. 
These frameworks recognize that no single metric fully captures 
clinical utility, advocating for complementary quantitative and 
qualitative assessments tailored to specific use cases. 

Despite these advances, existing benchmarking frameworks 
exhibit limitations that constrain their applicability to real-world 
clinical decision support evaluation. The predominant MCQ 
format assesses knowledge recall rather than clinical reasoning 
synthesis—a clinician must not only identify correct answers but 
generate coherent, contextually appropriate treatment plans 
from unstructured patient information [17]. Current benchmarks 
lack standardized semantic similarity metrics for open-ended 
response evaluation, relying instead on binary correctness 
judgments that cannot capture partial credit, near-miss 
responses, or alternative valid approaches. It is uncommon to 
systematically evaluate cross-specialty generalizability; models 
may perform well in knowledge-intensive domains but poorly in 
procedural or spatial reasoning, but single-specialty benchmarks 
are unable to identify this variation [8]. Finally, speed-accuracy 
trade-offs critical for real-time clinical deployment are 
inconsistently reported across studies, limiting practical 
implementation guidance. 

C. Research Gap and Study Positioning 

The preceding review identifies three convergent gaps that 
motivate the present study. First, an evaluation methodology 
gap: existing dental LLM benchmarks predominantly employ 
MCQ-based accuracy metrics that cannot assess open-ended 
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clinical reasoning quality, where multiple semantically 
equivalent responses may be valid. Semantic similarity metrics 
like BERT Score offer a principled alternative for evaluating 
generated clinical text but remain underutilized in dental AI 
evaluation. Second, a cross-specialty evidence gap: whether 
LLM clinical reasoning generalizes across dental subspecialties 
is largely unexplored, yet this question has direct implications 
for deployment scope, safety boundaries, and clinical workflow 
integration. Third, a model coverage gap: Claude Opus 4.5, 
featuring architectural innovations including extended context 
windows and inference-time reasoning optimization, potentially 
advantageous for complex clinical decision-making, lacks 
systematic evaluation in dental clinical decision support. 

This study addresses these gaps by establishing a BERT 
Score-based benchmarking framework for evaluating open-
ended dental treatment recommendations. Unlike MCQ-based 
approaches that assess recognition accuracy, our framework 
evaluates the semantic alignment between AI-generated and 
expert-authored treatment plans—capturing clinical reasoning 
quality through continuous similarity scores rather than binary 
correctness judgments. By systematically evaluating 
performance across nine dental specialties using 116 published 

case reports, we provide empirical evidence regarding cross-
specialty generalizability that informs appropriate deployment 
boundaries. The methodology offers a reproducible, training-
free evaluation pipeline applicable to any LLM without 
requiring domain-specific fine-tuning or retrieval augmentation, 
facilitating standardized comparison across model families and 
enabling longitudinal tracking of model performance across 
version updates. 

III. METHODOLOGY 

A. Study Design and Data Collection 

This cross-sectional study evaluated Claude Opus 4.5 as a 
clinical decision support system using published dental case 
reports as the evaluation corpus. The overall study workflow is 
illustrated in Fig. 1, comprising four sequential phases: 1) data 
collection and preprocessing, 2) AI-generated treatment 
recommendation, 3) BERT Score calculation, and 4) statistical 
analysis. This design enables systematic comparison between 
AI-generated and expert-authored treatment plans while 
controlling for case complexity through the use of published 
cases with documented outcomes for the period 2024 to 2025. 

 
Fig. 1. Study workflow of benchmarking LLM for CDSS using BERT score. 

Inclusion criteria comprised: 1) publication type classified as 
"case report" in journal metadata; 2) complete case presentation 
including patient demographics, chief complaint, clinical 
findings, diagnostic workup, and treatment plan sections; 3) 
single-case format with clearly identifiable treatment outcomes; 
4) English language publication. Exclusion criteria included: a) 
case series presenting multiple patients, as these confound 
treatment-case matching; b) reports lacking explicit treatment 
plan descriptions; c) cases focused primarily on diagnostic 
imaging or laboratory findings without therapeutic intervention; 
d) letters to the editor, commentaries, or review articles 
misclassified as case reports. The final dataset comprised 116 
case reports meeting all inclusion criteria.  

B. Dental Specialty Classification 

Cases were classified into dental specialties using a 
keyword-based algorithm with title weighting. The 
classification system assigned cases to nine specialty categories: 

Oral and Maxillofacial Surgery, Orthodontics, Endodontics, 
Prosthodontics, Implantology, Pediatric Dentistry, Periodontics, 
Oral Medicine and Pathology, and Conservative Dentistry. 
Keywords were derived from established dental specialty 
nomenclature and weighted by occurrence in article titles (2×) 
versus body text (1×). Cases matching multiple specialties were 
assigned to the category with the highest weighted keyword 
frequency. 

C. AI Configuration and Prompt Engineering 

Claude Opus 4.5 was configured as a Clinical Decision 
Support System through structured system prompting. The 
prompt established: 1) Role definition as CDSS for dental 
healthcare professionals; 2) Explicit limitations stating 
recommendations require clinical validation; 3) Reference 
standards including FDI World Dental Federation notation and 
ICD-10/ICD-11 classification systems; 4) Structured response 
format comprising clinical findings analysis, differential 
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diagnosis, treatment recommendations, referral considerations, 
and diagnostic codes. The model was accessed via the Claude 
Website without fine-tuning, retrieval augmentation, or 
embedding modifications to evaluate baseline capabilities. 

D. BERT Score Calculation 

BERT Score was computed using the bert-score Python 
library (version 0.3.13) with RoBERTa-large as the backbone 
model. For each case, the candidate text comprised the treatment 
recommendation section of Claude's response, while the 
reference text comprised the treatment plan section from the 
published case report. BERT Score computes precision, recall, 
and F1 scores by: 1) generating contextual embedding for all 
tokens in candidate and reference texts; 2) computing pairwise 
cosine similarity between token embedding; 3) calculating 
greedy matching to maximize similarity scores; 4) aggregating 
token-level scores into sentence-level metrics. The F1 score, 
representing the harmonic mean of precision and recall, served 
as the primary evaluation metric. 

E. Statistical Analysis 

Statistical analyses were performed using JAMOVI Desktop 
2.6.44. Descriptive statistics included mean, standard deviation, 
median, and 95% confidence intervals for BERT Score metrics. 
Distribution normality was assessed using the Shapiro-Wilk test. 
One-sample t-test evaluated whether the mean BERT Score 
significantly exceeded the 0.80 threshold, with Cohen's d 
calculated for effect size. Cross-specialty comparison employed 
the Kruskal-Wallis H test due to unequal group sizes, with 
epsilon-squared (ε²) as the effect size measure. Spearman’s rank 
correlation assessed the relationship between BERT Score and 
response time. Statistical significance was set at α = 0.05. 

IV. RESULTS 

A. Dataset Characteristics 

The dataset comprised 116 dental case reports distributed 
across nine specialties. Oral and Maxillofacial Surgery 
represented the largest category (n = 56, 48.3%), followed by 
Orthodontics and Endodontics (n = 14 each, 12.1%), 
Prosthodontics (n = 13, 11.2%), Implantology (n = 7, 6.0%), 
Pediatric Dentistry (n = 5, 4.3%), Periodontics (n = 3, 2.6%), 
Oral Medicine and Pathology (n = 3, 2.6%), and Conservative 
Dentistry (n = 1, 0.9%). Table I presents the complete 
distribution. 

TABLE I.  DISTRIBUTION OF CASE REPORTS BY DENTAL SPECIALTY 

Dental Specialty n % 

Oral and Maxillofacial Surgery 56 48.3 

Orthodontics 14 12.1 

Endodontics 14 12.1 

Prosthodontics 13 11.2 

Implantology 7 6.0 

Pediatric Dentistry 5 4.3 

Periodontics 3 2.6 

Oral Medicine and Pathology 3 2.6 

Conservative Dentistry 1 0.9 

Total 116 100.0 

B. Overall BERT Score Performance 

Claude Opus 4.5 demonstrated strong semantic alignment 
with published treatment plans. The mean BERT Score F1 was 
0.8199 ± 0.0144 (95% CI: 0.8172-0.8225), with a median of 
0.8191 and a range of 0.7782-0.8618. The Shapiro-Wilk test 
confirmed normal distribution (W = 0.994, p = 0.856). Precision 
(mean = 0.8140 ± 0.0161) and recall (mean = 0.8252 ± 0.0198) 
values indicated balanced performance in capturing reference 
content while avoiding extraneous information. BERT Score F1 
≥ 0.80 was attained in 107 (92.2%) of the 116 cases. 

One-sample t-test confirmed that the mean BERT Score 
significantly exceeded the 0.80 threshold (t = 14.90, df = 115, p 
< 0.001). Cohen's d = 1.38 indicated a large effect size, 
demonstrating substantial performance above the acceptability 
benchmark. Table II summarizes the overall performance 
metrics. 

TABLE II.  OVERALL BERT SCORE PERFORMANCE METRICS 

Metric Value 95% CI 

BERT Score F1 (Mean ± SD) 0.8199 ± 0.0144 [0.8172, 0.8225] 

BERT Score Precision 0.8140 ± 0.0161 [0.8110, 0.8169] 

BERT Score Recall 0.8252 ± 0.0198 [0.8216, 0.8289] 

Median F1 0.8191 - 

Range (Min-Max) 0.7782 - 0.8618 - 

Cases ≥ 0.80 threshold 107 (92.2%) - 

C. Cross-Specialty Performance Analysis 

BERT Score F1 demonstrated consistent performance across 
dental specialties. Mean scores ranged from 0.8088 (Pediatric 
Dentistry) to 0.8273 (Implantology), with all specialties 
exceeding the 0.80 threshold. Kruskal-Wallis H test revealed no 
statistically significant differences among specialties (H = 3.07, 
df = 8, p = 0.879), with epsilon-squared (ε²) = 0.026 indicating a 
negligible effect size. This finding suggests robust 
generalizability of Claude Opus 4.5 across diverse dental 
clinical scenarios. Table III presents specialty-specific 
performance. 

TABLE III.  BERT SCORE F1 PERFORMANCE BY DENTAL SPECIALTY 

Specialty n Mean SD 95% CI 

Oral & Maxillofacial 

Surgery 
56 0.8200 0.0155 

[0.8159, 

0.8241] 

Orthodontics 14 0.8211 0.0122 
[0.8147, 

0.8275] 

Endodontics 14 0.8173 0.0121 
[0.8110, 

0.8236] 

Prosthodontics 13 0.8200 0.0088 
[0.8152, 

0.8248] 

Implantology 7 0.8273 0.0181 
[0.8139, 

0.8407] 

Pediatric Dentistry 5 0.8088 0.0186 
[0.7926, 

0.8251] 

Periodontics 3 0.8198 0.0063 
[0.8127, 

0.8270] 

Oral Medicine & 

Pathology 
3 0.8217 0.0232 

[0.7954, 

0.8480] 

Conservative 

Dentistry 
1 0.8255 - - 
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D. Response Time and Speed-Accuracy Trade-off 

Mean response time was 34.79 ± 18.63 seconds (median = 
32.0 seconds, range = 6-98 seconds). Spearman rank correlation 
revealed a significant negative relationship between BERT 
Score F1 and response time (ρ = -0.371, p < 0.001), indicating 
that faster responses were associated with higher semantic 
alignment scores. This counterintuitive finding suggests that 
cases eliciting clear, well-structured AI responses (higher BERT 
Scores) also required less processing time, potentially reflecting 
case complexity rather than a simple speed-accuracy trade-off. 
Table IV summarizes the overall statistical analysis. 

TABLE IV.  STATISTICAL ANALYSIS SUMMARY 

Analysis Statistic p 

Normality (Shapiro-Wilk) W = 0.994 0.856 

One-sample t-test (vs. 0.80) t = 14.90, df = 115 < 0.001 

Effect size (Cohen's d) d = 1.38 (large) - 

Cross-specialty (Kruskal-Wallis) H = 3.07, df = 8 0.879 

Effect size (Epsilon-squared) 
ε² = 0.026 

(negligible) 
- 

Correlation (Spearman) ρ = -0.371 < 0.001 

V. DISCUSSION 

A. Interpretation of BERT Score Performance 

The observed mean BERT Score F1 of 0.8199 represents 
strong semantic alignment between AI-generated and expert-
authored treatment recommendations. This performance 
significantly exceeds the 0.80 threshold typically considered 
acceptable for clinical text evaluation [19]. The large effect size 
(Cohen's d = 1.38) indicates that Claude Opus 4.5 consistently 
generates treatment recommendations that capture the semantic 
content of published clinical decisions, supporting its potential 
utility as a clinical decision support tool. 

The balanced precision (0.8140) and recall (0.8252) scores 
indicate that the model neither omits critical treatment 
components, which would diminish recall, nor introduces 
clinically unsubstantiated or extraneous recommendations—
often characterized as hallucinations—which would 
compromise precision. This metrical equilibrium is particularly 
imperative in clinical contexts where both informational 
completeness and semantic accuracy are essential for 
maintaining patient safety [23]. Furthermore, the narrow 
confidence interval of 0.8172–0.8225 reflects consistent 
performance across diverse case presentations. 

B. Cross-Specialty Generalizability 

The absence of significant performance differences across 
dental specialties (p = 0.879) represents a notable finding. Prior 
benchmarking studies have documented substantial variation in 
LLM performance across medical subspecialties, with models 
often excelling in knowledge-intensive domains while 
struggling with procedural or spatial reasoning tasks [24]. The 
consistent performance observed in this study suggests that 
Claude Opus 4.5's reasoning architecture may provide more 
robust generalization across diverse clinical scenarios than 
earlier model generations. 

However, the unequal distribution of cases across specialties 
(48.3% in Oral and Maxillofacial Surgery) warrants caution in 
generalizing these findings. Smaller specialty subgroups may 
have insufficient statistical power to detect meaningful 
differences. Future studies should employ stratified sampling to 
ensure adequate representation across all dental specialties [25]. 

C. Speed-Accuracy Relationship 

The significant negative correlation between BERT Score 
and response time (ρ = -0.371) presents an interesting departure 
from the expected speed-accuracy trade-off documented in other 
LLM benchmarking studies [14]. This relationship may reflect 
that straightforward cases with clear treatment pathways elicit 
both faster responses and higher semantic alignment with 
published recommendations. Complex or ambiguous cases 
requiring extended reasoning may produce lower BERT Scores 
due to legitimate treatment variability rather than model error. 

D. Limitations of BERT Score in Clinical Evaluation 

While BERT Score provides valuable insights into semantic 
similarity, several limitations must be acknowledged. First, 
semantic similarity does not guarantee clinical correctness; a 
response may be semantically similar to a reference while 
containing factually incorrect recommendations [26]. Second, 
BERT Score exhibits reduced sensitivity to numerical values; 
dosage errors (e.g., "5 mg" vs "500 mg") may not be adequately 
penalized due to similar contextual embeddings [27]. Third, the 
metric does not capture reasoning quality or logical consistency 
in treatment sequencing. 

These limitations underscore the importance of 
multidimensional evaluation frameworks that combine 
automated semantic metrics with expert clinical review, safety 
assessments, and guideline concordance checks [28]. BERT 
Score should be viewed as a scalable screening tool rather than 
a definitive measure of clinical validity. 

E. Implications for Clinical Decision Support Implementation 

The results support the potential deployment of Claude Opus 
4.5 as a clinical decision support tool in dental practice, with 
appropriate safeguards. The model demonstrates the capacity to 
generate semantically appropriate treatment recommendations 
across multiple specialties, potentially assisting clinicians with 
treatment planning, documentation, and educational 
applications [29]. However, the model should function as a 
"copilot" requiring human oversight rather than an autonomous 
diagnostic system [30]. 

Future implementation should incorporate 1) explicit 
uncertainty quantification in model outputs; 2) integration with 
domain-specific knowledge bases and clinical guidelines; 3) 
mandatory clinician review before treatment execution; and 4) 
continuous monitoring for performance degradation or 
emerging error patterns [31]. The ethics and governance 
framework proposed by Rokhshad et al. provides a valuable 
foundation for the responsible deployment of LLMs in dental 
clinical settings [32]. 

F. Study Limitations 

Several limitations should be considered when interpreting 
these results. First, the use of published case reports as ground 
truth assumes that reported treatments represent optimal clinical 
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decisions, which may not always hold. Second, the study 
evaluated text-based clinical reasoning without incorporating 
radiographic or other imaging data essential to dental diagnosis. 
Third, the cross-sectional design cannot assess longitudinal 
performance stability or model drift. Fourth, the evaluation 
relied solely on automated BERT Score metrics without expert 
clinical review of individual outputs. Finally, the unequal 
specialty distribution may limit generalizability to 
underrepresented domains. 

VI. CONCLUSION 

This study established a BERT Score-based benchmarking 
framework for evaluating LLM performance in dental clinical 
decision support. Claude Opus 4.5 demonstrated strong 
semantic alignment with published treatment recommendations 
(mean BERT Score F1 = 0.8199 ± 0.0144), significantly 
exceeding the 0.80 acceptability threshold (t = 14.90, p < 0.001, 
Cohen's d = 1.38) with consistent performance across nine 
dental specialties (Kruskal-Wallis H = 3.07, p = 0.879). The 
study contributes a reproducible, training-free semantic 
evaluation pipeline for open-ended clinical text, provides the 
first cross-specialty generalizability evidence for dental LLM 
evaluation, and characterizes the speed-accuracy relationship 
relevant to clinical deployment. 

Several limitations should be acknowledged, including the 
absence of expert clinical validation, reliance on text-based 
reasoning without radiographic data, and unequal specialty 
distribution. The findings support the potential of LLMs as 
clinical decision support tools in dentistry while highlighting the 
need for comprehensive evaluation frameworks that extend 
beyond semantic similarity to encompass clinical accuracy, 
safety, and guideline adherence. Future research should 
integrate expert clinical validation, multimodal evaluation 
incorporating radiographic interpretation, comparative 
benchmarking across LLM families, and prospective studies in 
clinical deployment settings. The standardization of evaluation 
methodologies will be essential as LLM applications in 
healthcare continue to expand 
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