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Abstract—Smishing has become a severe cybersecurity threat. 

Attackers now use AI and social engineering to craft more 

sophisticated campaigns. To address this challenge, this study 

proposes a dual-layer detection framework. It combines cyber 

threat intelligence (CTI), machine learning, and a large language 

model (LLM). The framework uses 22 features built from 2,811 

real SMS messages. These features are categorized as content-

based, context-based, and Indicators of Compromise (IOC)-based 

features. Five machine learning models were evaluated. XGBoost, 

trained with a 70% training, 10% validation, and 20% test split, 

achieved the best performance. It had a recall of 92.08% and an 

F1-score of 94.66%. For borderline cases, the study experimented 

with 4 LLMs (including GPT-4o and LLaMA 3). They served as a 

semantic verification layer. All models achieved a recall rate above 

98.5% and produced human-readable explanations. The study 

demonstrated that these 4 models are complementary verifiers 

rather than main classifiers. The results show that structured 

threat intelligence used during feature engineering improves 

machine learning model performance. With semantic reasoning, 

the framework also generates accessible reports for non-

specialists. This lowers the barrier for effective smishing detection. 
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I. INTRODUCTION 

Smishing remains one of the most widespread cyber threats 
globally, resulting in significant economic losses [1]. According 
to the latest report from the Anti-Phishing Working Group, both 
the frequency and complexity of such attacks have continued to 
rise recently [2]. 

Although most organizations train staff to avoid phishing 
attacks, such efforts are of limited value. Cybersecurity 
awareness training does not relate to autonomous detection of 
phishing attacks [3]. Humans struggle to recognize cyberattacks 
due to stress, burnout, or security fatigue. Cybercriminals 
exploit these weaknesses as attack points [4]. For this reason, 
technical methods must be stable. Technology faces two main 
challenges. First, AI enables phishing that is almost 
indistinguishable from natural writing, often powered by LLMs 
[5]. Another study found that AI-generated content is more 
effective than human-written content [6]. These contents are 
also easier to bypass commercial anti-phishing systems [7]. 
Second, while existing detection systems perform well, 
interpretability is still challenging for users of neural network-
based techniques [8]. 

The purpose of CTI is to provide high-dimensional 
intelligence features. These help models understand deeper 
tactical threat characteristics, not just static content. Thus, the 

CTI guidance feature project upgrades content recognition to 
context and intent recognition. This approach systematically 
enhances the test model’s performance and robustness. It is 
distinct from traditional attack identification, which only 
analyzes content [9], [10]. In addition, LLMs extract rich 
semantic representations and generate coherent, human-
readable interpretations [11]. Some similar studies have been 
proposed in theory, but experimental evidence is lacking [12]. 
Combining CTI-guided feature engineering with an LLM is 
crucial for decision support and model transparency. There is a 
gap in related research on mobile platforms. 

To address these issues, this study suggests a two-part 
smishing detection model for mobile platforms. The first part 
uses a CTI-driven feature engineering machine learning model 
for real-time detection. LLMs are then used for cross-validation 
and explanation. This collaborative design aims to achieve 
efficient detection with better precision and decision 
transparency. 

The primary contributions of this research can be 
summarized as follows: 

This research introduces a CTI-guided feature engineering 
framework, which integrates content and contextual metrics to 
enhance detection accuracy and model adaptability against 
smishing attacks. 

A novel two-layer detection architecture that combines an 
ensemble learning-based classifier with an LLM for semantic 
verification. 

A novel role for LLMs in smishing detection as explainable 
validators, assisting security analysts in improving 
interpretability. 

The remainder of this study is structured as follows: 
Section II provides a comprehensive review of prior studies on 
smishing threats, feature engineering and detection approaches; 
Section III elaborates on the proposed dual-layer framework, 
including dataset description, feature engineering, model 
construction, and an LLM-driven semantic verification 
mechanism; Section IV presents the experimental evaluation 
and analyzes the model performance of the machine learning 
model and the two-layer integration framework. Finally, 
Section V concludes the study and highlights prospective 
directions for future research. 

II. RELATED WORK 

The rising sophistication of smishing attacks, especially 
those enhanced by artificial intelligence (AI), represents a major 
challenge for cybersecurity defenses. This literature review 
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addresses three aspects to provide background for this research. 
First, it reviews the evolution of smishing and AI-enabled 
attacks, focusing on unique mechanisms and emerging threats. 
Next, it explores how CTI can support detection and assist with 
feature engineering. Finally, it evaluates current phishing 
detection techniques, from traditional machine learning to 
modern LLMs, and compares their strengths and weaknesses in 
tackling adaptive threats. 

A. Smishing Emerges and AI-Driven Threats 

Smishing is a type of phishing carried out via mobile text 
messages. It uses social engineering content as the attack 
payload. The main goal is to deceive recipients and get them to 
click on malicious links, exposing private information [13]. 
Early smishing attacks used many generic messages to deceive 
a small group of targets. The mobile internet has since changed 
the threat landscape. From 2005 to 2015, attackers expanded 
their attacks to include channels such as SMS, instant messaging, 
and spoofed websites. From 2015 to 2025, attackers began using 
advanced automation and artificial intelligence. These tools 
produce highly personalized, compelling content and increase 
the success rate of attacks [14]. 

Recently, a study by [6] demonstrates, from a red-team 
perspective, that content generated by AI is more compelling 
than that written by humans. Quantitatively, AI spear-phishing 
agents have been shown to perform 23% more effectively than 
humans [15]. While attacks become smarter, detection 
technologies have not been upgraded in parallel, leaving gaps in 
effective, low-cost detection solutions. 

B. CTI in Feature Engineering 

CTI is a systematic security methodology focused on 
collecting, analyzing, and disseminating information about 
potential or current cyber threats, aiming to provide actionable 
insights to support cybersecurity decision-making [16], [17]. 

In the field of threat detection, CTI plays a fundamental role. 
While feature engineering approaches are commonly used to 
detect phishing, they struggle to handle AI-driven smishing that 
uses unstable keywords, ambiguous intentions, and changing 
content. CTI can be used to enhance the dimensions of features 
across multiple domains, URLs, IPs, and threat indicators. 

A study proposed integrating PhishTank data with threat 
intelligence to build a hybrid deep learning model for email 
phishing, as noted in [12]. This study observed that 
cybersecurity threat databases from VirusTotal, PhishTank, and 
Google Safe Browsing can improve the detection of malicious 
URLs and phishing attempts. The study [18] developed a cyber-
threat intelligence platform that aggregates data from honeypots 
and open-source intelligence to detect and prevent phishing 
attacks. The platform focuses on threat sharing. In [19], a large-
scale framework was proposed for extracting text-based attack 
patterns from CTI reports, with a focus on classifying attack 
issues. The study [20] proposed an entity recognition (NER) 
method to extract structured STIX-based CTI features, which 
achieved 81.65% accuracy in STIX attack pattern classification. 
In [9], this study used CTI-based features derived from search 
engines and WHOIS records for malicious URL detection, 
achieving 7.8% higher accuracy and 6.7% fewer false positives 
with a random forest model and MLP ensemble. 

Previous research has attempted to incorporate CTI to 
classify attack types and detect phishing emails, achieving high 
performance, but research on smishing combined with CTI 
remains sparse. 

C. Detection Approaches from Machine Learning to LLMs 

Artificial intelligence (AI) represents a broad category in 
computing technology. Machine learning is a subset of AI that 
learns patterns from data. Within AI, generative AI encompasses 
a range of capabilities, with large language models as the most 
important subset. While traditional machine learning offers 
resource savings, LLMs provide language understanding and 
generation capabilities. The evolution of AI technologies has 
also driven the gradual movement of detection methods from 
machine learning to large language model-based solutions. The 
traditional ML-based detection schemes, as well as deep 
learning and LLM-based approaches, have been reviewed below. 

First, feature-based machine learning methods typically rely 
on manually engineering features such as URL length and the 
number of special characters, and they use this knowledge to 
train classification models for phishing attack identification. A 
study in [21] employed GPT-4o to generate 63 email simulations 
of phishing attack payloads and construct 47 new stylometric 
features for AI-generated phishing detection. Then, we 
employed the XGBoost model for detection, which showed the 
best performance. An innovative approach to extensible 
artificial intelligence (XAI) for feature selection, which not only 
improves the accuracy of phishing website identification but 
also enables modelling of phishing sites and delivers 
interpretable results, thereby fostering greater trust among 
stakeholders, was proposed in [22]. Additionally, a parameter- 
tuning approach for phishing URL detection was proposed in 
[23], which used three tuning strategies: data balancing, 
hyperparameter optimization, and feature selection. The results 
show that feature selection significantly improves the accuracy 
and performance of the gradient boosting model. These indicate 
that feature selection is crucial for traditional machine learning 
models, but there remains room for improvement in feature 
performance. 

Deep learning-based detection methods leverage neural 
networks to learn hierarchical features from input data, 
overcoming the limitations of manual feature engineering. For 
example, the author in [24] proposed a deep learning framework 
that leverages URL features to detect phishing. This framework 
offers benefits in terms of speed and accuracy, but it still doesn't 
address the black-box problem. The hybrid GRU+CNN model 
proposed in [25] uses the Kaggle dataset, which contains more 
than 2.5 million samples of URLs labelled as "phishing." The 
CNN model’s accuracy is 98%. However, real-time 
performance is not demonstrated. Although deep learning 
achieves high performance in some scenarios, it poses additional 
challenges for real-time response applications owing to its 
black-box nature and high computational requirements. 

Recently, with the rise of LLMs, most methods have adopted 
LLMs as core detectors. Optimization of LLMs typically 
involves pre-training or fine-tuning a specialized detector on 
phishing data, along with prompt engineering. In [26], two 
LLMs were fine-tuned on 573,880 phishing and benign URLs, 
achieving a high accuracy of 99.86%, with performance close to 
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that of state-of-the-art general-purpose LLMs. However, it also 
confirms that generalized LLMs still perform as well as 
dedicated LLMs in specific domains. The study [27] used five 
generic LLMs evaluated across three phishing datasets, and the 
results show that GPT-4 Turbo is the best-performing LLM 
under one-shot prompting, and the interpretations are highly 
readable. The study [28] compared the performance of fine-
tuning and prompt engineering in phishing URL detection. The 
results demonstrated that fine-tuning can improve prompt 
engineering's accuracy from 92.9% to 97.3%, but prompt 
engineering has the advantage of fast development. A 
PhishBERT pre-trained model for phishing URL detection was 
proposed in [29]. The results are very satisfactory, but it 
consumes significant infrastructure, including 10 NVIDIA 
V100 servers. Pre-training a model needs strong infrastructure 
support, while fine-tuning consumes slightly lower 
computational resources. Prompt engineering offers easy access 
and still acceptable performance. To summarize the above, the 
LLM for smishing detection is highly readable and suitable for 
intensive interpretation. However, most research focuses only 
on the LLM itself and does not consider the illusion of LLMs, 
leaving a gap in combining LLMs and ML for detection. 

Therefore, although existing research has demonstrated the 
enormous potential of CTI for guiding feature engineering, it 
also leaves a clear gap for improvement in smishing detection. 
To address this limitation, this research explores the systematic 
use of structured cyber threat intelligence features for building a 
lightweight, accurate, and understandable smishing detection 
model. 

III. METHODOLOGY 

This study proposes a dual-layer detection framework (see 
Fig. 1) to address two critical challenges: the escalating 
sophistication of AI-driven smishing attacks and the lack of 
interpretability in the detection framework. Layer 1 performs 
rapid interception, while Layer 2 handles cross-verification and 
explanation. 

 
Fig. 1. Dual synergistic defense model. 

A. System Architecture 

A dual-layer detection framework process flow (see Fig. 2) 
is proposed in this study, consisting of two core pipelines. First, 
this study constructed a dataset and engineered 22 CTI-driven 
features out of it. These features are used to train and evaluate 

the optimal machine learning model. Subsequently, the machine 
learning model’s output, together with the original smishing 
content, is formatted into a structured prompt. This prompt is 
then fed into the LLMs for cross-validation and interpretation. 
Finally, the framework produces highly accurate, human-
readable detection results. 

 
Fig. 2. Process flow of the hybrid smishing detection framework. 

B. Dataset 

This study uses a publicly available dataset, derived from 
SmishTank (https://smishtank.com/dataset). The advantage of 
this dataset is that it provides real-world SMS texts and their 
corresponding classification labels, with 22 feature dimensions. 
To enhance data coverage, this study employed a web crawler 
to collect additional samples from the source platform, 
expanding the dataset to 2,811 entries, as summarized in Table I. 

TABLE I.  DATASET SUMMARY 

Data Source Total Samples Legitimate Smishing 

SmishTank 2,811 1,799 1,012 

To expand the number and coverage of data samples, we 
collected smishing records from SmishTank in real-time, as 
shown in Fig. 3, which displays the raw message content, 
associated URLs, and metadata used during dataset construction. 

Upon obtaining the dataset, this study constructs the 22 
features shown in Table II based on the CTI guidance and the 
existing literature, which categorizes IOC into three categories:  
content, context and IOC. CTI-driven feature set for smishing 
detection is given in Table II. 
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Fig. 3. Example of a smishing sample collected from SmishTank. 

TABLE II.  FEATURE CONSTRUCTION 

ID Feature Name ID Feature Name 

1 sender_country_code 12 contains_financial_ref 

2 sender_number_prefix 13 contains_forged_identity 

3 receive_time 14 contains_account_ref 

4 has_virus_malicious 15 contains_contact_instruction 

5 has_virus_malware 16 has_verify_term 

6 has_virus_detected 17 has_reward_term 

7 tls_issuer 18 has_action_require 

8 count_characters 19 has_login_term 

9 has_command_tone 20 is_ip_in_url 

10 has_threat_feature 21 domain_entropy 

11 has_urgency_feature 22 is_url_shortener 

IOC features such as has_virus_malicious, 
has_virus_malware, and has_virus_detected are obtained from 
external threat intelligence repositories, which explicitly 
identify malicious attacks and are therefore more reliable. 
Content features are a form of linguistic fingerprinting. They 
capture lexical and semantic patterns that differ from ordinary 
communication, reflecting the attacker’s social engineering 
strategies. A key advantage of this category is its robustness; 
even if attackers modify domains or IP addresses, their linguistic 
habits and manipulation techniques are harder to conceal. 
Contextual features represent environmental cues that often go 
unnoticed individually but exhibit statistically meaningful 
patterns at scale, such as abnormal sending times. These three 
categories form a comprehensive feature set that enhances the 
model’s ability to detect diverse smishing behaviors . 

C. Machine Learning for Smishing Detection Model 

This study employs five model selection methods: LR, SVM, 
RF, XGBoost, and GBDT. The selected classifiers represent 

complementary learning paradigms commonly used in security 
detection tasks. The linear model LR serves as the baseline, with 
SVM added. Tree-based and ensemble models (RF, GBDT, and 
XGBoost) are used to capture nonlinear interactions among 
CTI-driven features. 

To ensure fair comparison and reproducibility, each model 
was configured using commonly adopted baseline parameter 
settings. Only limited, model-specific tuning was applied to 
control overfitting, prioritizing robustness and generalization 
over aggressive optimization. 

The dataset is divided into training, validation, and test sets 
using a 70:10:20 ratio to balance learning capacity, parameter 
selection, and unbiased evaluation. Recall is emphasized as the 
primary metric, since missing a smishing message incurs a 
higher risk than issuing a false alarm. The F1 score is reported 
as a complementary metric to reflect the overall detection 
balance. Additionally, inference latency and memory 
consumption are evaluated to assess deployment feasibility on 
mobile devices. Finally, this study selects the best ML model as 
a detector for Layer 1 after evaluation. 

D. LLM-Based Semantic Analysis and Cross-Verification 

Four LLMs serve as interpreters and auxiliary detectors at 
Layer-2 to address the limitations of traditional machine 
learning models in interpretability and decision transparency. 
This layer is implemented in three parts: LLM prompt 
preparation, prompt execution, and result analysis. All four 
LLMs are evaluated using the same prompt and input structure 
to ensure comparability between models. 

LLM prompt preparation: This study constructs a prompt 
that implements three functions in Fig. 4. Input the evaluation 
result of the ML for the LLM to evaluate whether it agrees or 
not, and give 0-100 as the likelihood of recognizing a phishing 
attack. Then extract the attack clues from the SMS payload and 
display them. In the end, explain the reason that the message is 
judged as a phishing attack. 
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Fig. 4. Prompt for semantic verification. 

Prompt execution: 1/5 of the dataset (2,811) is selected as 
the evaluation dataset. The LLM evaluator selects four LLMs 
for comparative evaluation: GPT-4o, GPT-4 Mini, Gemini 2.5 
Pro, and LLaMA3.1-8B, which include two large-parameter 
models and two small-parameter models. Consistent prompt 
requests for evaluation results were sent to the four LLMs 
simultaneously. 

Statistical analysis: In the final analysis stage, this study 
focuses on 3 dimensions: recognition accuracy, interpretation 
clarity, and semantic cue consistency. 

In this coordination mechanism, Layer-1 addresses high-
speed, low-cost detection, and Layer-2 provides interpretability, 
semantic robustness, and human-readable explanations. 

IV. RESULTS AND DISCUSSION 

To validate the effectiveness of the proposed framework, this 
section presents the experimental results in three key parts: the 
performance of the machine learning models, the outcomes of 
the feature engineering process, and the analysis of the large 
language model’s semantic verification. 

A. Result of Machine Learning Model 

To validate the effectiveness of the first layer of the proposed 
framework, this study conducts comparative experiments on 
five machine learning classifiers: LR, SVM, RF, GBDT, and 
XGBoost in a dataset divided into training, validation, and 
testing sets in a ratio of 70:10:20. 

The results of the validation set, shown in Table III, indicate 
that the integrated learning model achieves a better balance 
among detection accuracy, recall, and robustness. Among them, 
XGBoost achieved the best performance on key metrics 
(Recall=94.12%, F1-Score=96.00%, Accuracy=97.16%), while 
Random Forest and GBDT also maintained high recall and AUC 
values (98.94% and 98.77%, respectively). These results 
demonstrate that the integrated model has a significant 
advantage in capturing smishing signals. 

TABLE III.  PERFORMANCE VERIFICATION ON VALIDATION SET 

Model Precision Recall F1-Score Accuracy AUC 

LR 98.86% 85.29% 91.58% 94.33% 97.83% 

SVM 95.24% 78.43% 86.02% 90.78% 95.35% 

RF 95.00% 93.14% 94.06% 95.74% 98.94% 

GBDT 96.00% 94.12% 95.05% 96.45% 98.77% 

XGBoost 97.96% 94.12% 96.00% 97.16% 98.76% 

The results in Table IV further confirm the stability of the 
integrated model, with XGBoost maintaining the highest recall 
values, as with the RF model. Unfortunately, the precision of the 
RF model is also lower than that of XGBoost. Although the 
difference between GBDT and XGBoost is small, XGBoost still 
outperforms GBDT across most metrics. Comparing the 
validation and test sets, both indicate that XGBoost achieves 
better, more balanced results. 

TABLE IV.  PERFORMANCE VERIFICATION ON TEST SET 

Model 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

AUC 

(%) 

LR 97.60 80.69 88.35 92.35 97.56 

SVM 92.99 72.28 81.34 88.08 95.21 

RF 92.96 91.58 92.27 94.48 98.14 

GBDT 95.83 91.09 93.40 95.37 97.97 

XGBoost 95.36 91.58 93.43 95.37 98.43 

To assess the applicability of the five models to mobile 
devices, reasoning efficiency was measured. The results in 
Table V show that the overall inference performance is 
significantly lightweight. The single-sample inference latency of 
all models is in the millisecond range, and the maximum 
memory consumption during inference is only about 45 KB. 
However, XGBoost shows high efficiency in the inference phase, 
with an average latency of only 0.005 ms and a memory 
consumption of 8.56 KB, the lowest among all models. 

TABLE V.  MODEL INFERENCE TIME AND MEMORY USAGE 

Model 
Avg time 

(ms) 

Max time 

(ms) 

Avg mem 

(KB) 

Max mem 

(KB) 

Logistic 

Regression 
0.002 0.003 45.30 45.44 

SVM 0.057 0.060 45.29 45.43 

Random Forest 0.047 0.048 45.66 45.79 

GBDT 0.006 0.007 45.54 45.67 

XGBoost 0.005 0.008 8.56 8.65 

In Table VI, based on previous studies, we found that the 
higher the number of features, the better the model's 
performance tends to be. However, this study achieved 
relatively balanced performance using 22 features. The results 
of [30] used nearly twice as many features as this study, yet the 
precision was similar. Similarly, [22] used nearly 4 times as 
many features as this study. In addition, comparing the studies 
of [30] and [31], this study maintains robust precision, recall, 
and F1-score on a much larger sample size of 2811, suggesting 
that it achieves a more generalized and practical feature system 
with fewer features. 
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TABLE VI.  COMPARATIVE RESULTS OF SMISHING DETECTION STUDIES 

Stud

y 

Feature

s 

Sample

s 

Precisio

n 

Recal

l 

F1-

Score 

Accurac

y 

[21] 43 63 96.0% 
96.0

% 

96.0

% 
96.0% 

[22] 87 2,288 97.0% 
97.0

% 

97.0

% 
96.8% 

[31] 12 620 92.2% 
92.2

% 

92.2

% 
92.2% 

This 

study 
22 2,811 95.4% 

91.6

% 

93.4

% 
95.4% 

In summary, XGBoost shows the best balancing ability in 
the first-layer framework of this study. First, XGBoost achieves 
the most balanced results across all recognition metrics and 
maintains the highest recall and F1 score. Second, in the 
inference phase, XGBoost's average latency is only 0.005 ms, 
and its memory consumption is about 8.56 KB, making it better 
than other models and especially suitable for deployment on 
resource-constrained mobile devices. Finally, XGBoost 
achieves stable, competitive results in this study with only 22 
features, unlike previous studies that relied on much larger 
feature sets to achieve high performance. Based on these three 
lines of evidence, XGBoost achieves an optimal balance among 
performance, efficiency, and deployability and should be 
selected as a layer-1 model. 

B. Feature Engineering with CTI 

Smishing attacks are "semantically deceptive", "irregularly 
formatted", and "highly variant in content". Content features 
alone are not enough, so this study introduces CTI to enhance 
the traditional features. Therefore, this study introduces CTI to 
enhance the traditional features. To analyze the impact of CTI-
guided features on mods, the XGBoost Gain on Feature 
Importance and a correlation heatmap were used. 

The XGBoost gains the top twenty features in Fig. 5. This 
further demonstrates that the IOC metrics have_virus_detected 
and have_virus_malicious are the two most contributing to the 
model, followed by TLS issuer. Also, in the case of social 
engineering features, has_login_term, has_action_required and 
has__verify_term features also occupy an important position. 
This shows that IOC features are more valuable than social 
engineering features. 

 
Fig. 5. Top-20 feature importance by XGBoost gain. 

A strong association between has_virus_malware and 
has_virus_detected is observed in the correlation heatmap 

(Fig. 6). The correlation between social engineering features is 
also strong, whereas the correlation between IOC features and 
the middle of social engineering features is weak. These features 
confirm the independence of the 22 features. 

After the import of CTI, the importance of IOC features 
among the top twenty is significantly increased. It indicates that 
when attack clues are predicted in an attack sample, it is more 
likely to be a smishing attack, which is more distinguishable 
than traditional content features. In addition, the correlation 
between IoC features is high, and the correlation between IoC 
features and social engineering features is weak, while there is 
also internal aggregation between social engineering features. 
This study suggests that CTI features do not duplicate traditional 
features’ information but introduce new dimensions. 

 
Fig. 6. Correlation heatmap of constructed features. 

C. Result of LLMs 

In the LLM cross-validation and semantic analysis phase, a 
total of 562 samples were selected for evaluation. The study first 
obtained the Layer-1 XGBoost classifier’s predictions and 
compared with those of four LLMs. A representative boundary 
case was further examined to assess the model’s semantic 
interpretation capabilities. 

Since interpretation clarity and semantic cue consistency 
lack universally accepted objective measurements, this study 
treats them as proxy metrics. Interpretation clarity is defined as 
whether the LLM-generated explanation contains all required 
semantic components specified in the prompt and is consistent 
with the final decision, and it is measured by the proportion of 
samples satisfying these criteria. Semantic cue consistency is 
defined as the degree of overlap in identified smishing-related 
cues across different LLMs when analyzing the same message. 

From Table VII, it is observed that the higher-parameter 
LLMs demonstrate higher performance in smishing detection. 
GPT-4o and Gemini-2.5 Pro both reduced the number of false 
negatives (FN) to 1, significantly outperforming XGBoost, 
which produced 14 FN on the same evaluation set. Among the 
models, Gemini-2.5 Pro achieved the most balanced overall 
performance. 
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TABLE VII.  CROSS-VERIFICATION PERFORMANCE COMPARISON 

Model TP FP FN TN 

XGBoost 188 6 14 354 

Llama3.1-8B 199 355 3 3 

GPT-4omini 200 346 2 12 

GPT-4o 201 351 1 7 

Gemini-2.5pro 201 350 1 8 

In addition to their predictive accuracy, an important 
advantage of LLMs is their ability to generate contextually 
relevant, human-readable explanations. To illustrate this 
capability, Fig. 7 presents a representative boundary case for the 
XGBoost classifier. The message contains social engineering-
related keywords such as "refund" and "reply", which frequently 
appear in smishing messages, leading the feature-based model 
to classify it as phishing in the absence of explicit threat 
indicators. In contrast, the LLM identified the message as benign 
by recognizing that it originated from a legitimate “temu.com” 
source and followed the structure of a standard customer service 
notification. This example demonstrates the LLM’s ability to 
capture higher-level semantic and organizational contexts that 
are difficult to model using handcrafted features alone. 

 
Fig. 7. LLM analysis sample for smishing detection. 

D. Limitations 

This study has several limitations. First, the dataset is 
primarily derived from SmishTank and may not fully capture the 
diversity of smishing campaigns across regions and languages, 
potentially affecting generalizability. Second, the effectiveness 
of CTI-guided features depends on the availability and quality 
of external threat intelligence, and incomplete or outdated CTI 
may reduce the contribution of IOC-related features. Third, 
although the LLM layer enhances semantic verification and 
interpretability, it involves additional computational overhead 
and is subject to known robustness issues; however, its impact 
is limited by its role as a secondary verifier rather than the 
primary detector. 

From a security perspective, this design limits the impact of 
adversarial manipulation, as potential prompt injection or output 
manipulation at the LLM layer cannot directly bypass the CTI-
guided machine learning decision in the first layer. 

In addition, an explicit ablation study isolating CTI-driven 
features from traditional content- and context-based features is 
not conducted, as several CTI indicators are intrinsically 
integrated into the feature space. Nevertheless, feature 
importance and correlation analyses indicate that CTI features 
provide complementary and non-redundant information. 

These limitations define the scope within which the 
experimental results should be interpreted. 

V. CONCLUSION AND FUTURE WORK 

Traditional smishing detection approaches face challenges 
balancing computational efficiency, expressive feature 
representation, and boundary-case identification. To address 
these issues, this study proposes a lightweight dual-layer 
detection framework that integrates a CTI-guided machine 
learning classifier with an LLM-based semantic verification 
module. 

Experimental results show that XGBoost provides efficient 
and accurate first-layer detection, while the LLM layer 
complements it by improving recall and interpretability in 
ambiguous cases. This collaborative design achieves a practical 
balance between detection performance, transparency, and 
deployability in resource-constrained environments. 

Future work will focus on expanding the dataset to cover 
multiple languages and regions, integrating more dynamic CTI 
sources, and conducting systematic ablation and cross-dataset 
evaluations to further quantify feature contributions and 
generalization. In addition, optimizing the cost and robustness 
of the LLM layer remains an important direction for large-scale 
deployment. 
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