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Abstract—Alzheimer’s disease is a progressive 

neurodegenerative disorder for which early detection remains a 

significant challenge due to the complexity of clinical features and 

the high dimensionality of medical data. This study aims to 

improve the accuracy and reliability of Alzheimer’s disease 

detection by evaluating the performance of multiple machine 

learning algorithms integrated with intelligent feature selection 

strategies. Five classification models, Decision Tree, Naïve Bayes, 

Random Forest, Logistic Regression, and Deep Learning, were 

investigated under two experimental scenarios: without feature 

selection and with feature selection using Recursive Feature 

Elimination, Binary Particle Swarm Optimization, and Variance 

Threshold. Model performance was evaluated using K-fold cross-

validation based on accuracy, precision, recall, and F1-score 

metrics. The results demonstrate that feature selection 

consistently enhances classification performance, particularly for 

conventional machine learning models such as Random Forest and 

Logistic Regression. Although the Deep Learning model achieves 

competitive accuracy, its reduced precision and F1-score indicate 

limitations when applied to reduced feature spaces. These findings 

highlight the importance of incorporating appropriate feature 

selection techniques to address data complexity and improve the 

effectiveness of early Alzheimer’s disease detection. 
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I. INTRODUCTION 

Alzheimer's disease (AD) constitutes a chronic neurological 
dysfunction that develops gradually and has a significant impact 
on the cognitive abilities and daily activities of those affected. 
Individuals with Alzheimer's slowly experience a decline in 
thinking, memory, and even in performing the most basic tasks 
[1]. The main problem in detecting Alzheimer's disease is that 
its symptoms often develop gradually and are challenging to 
recognize in the early stages. This usually results in many cases 
being diagnosed when the disease is already quite severe, 
thereby reducing the effectiveness of medical intervention. 
Based on this, early detection of the disease is critical as a 
mitigation step to slow its progression and improve patient 
outcomes through appropriate treatment and therapy [2]. 
Advancements in technology have made it possible to examine 
peripheral blood and accurately measure Alzheimer's 
biomarkers during the initial phases of the disease, using 
methods that are cost-effective, non-invasive, and safe. This 

technique contributes to the clinical and biological 
characterization of cognitive impairment at an early stage by 
measuring Alzheimer's biomarkers in blood and brain structures 
in groups of participants classified based on their clinical 
cognitive phenotypes. Accurate diagnosis at the early stages of 
Alzheimer's will minimize risk factors and facilitate preventive 
monitoring [3]. 

Recent advances in artificial intelligence (AI) and machine 
learning (ML) have provided promising solutions in medical 
diagnosis, including the detection of Alzheimer's disease [4]. 
Machine Learning techniques can analyze large datasets and 
identify complex patterns that can detect Alzheimer's disease. 
ML algorithms utilize medical imaging, clinical records, genetic 
data, and cognitive assessments to improve diagnostic accuracy 
and enable early intervention [5]. Several researchers have 
employed this method, one of which is described by Jimenez-
Maggiora et al. Their work applies natural language processing 
(NLP) and artificial intelligence (AI) to streamline and unify the 
coding of adverse event data recorded by physicians in 
Alzheimer’s disease (AD) clinical trials. The study involves 
creating a gold-standard dataset of adverse events in AD, testing 
the performance of NLP-driven models in classifying such 
events, and examining whether automated coding can surpass 
physician coding in terms of efficiency, accuracy, reliability, 
and consistency [6]. The International Neurodegenerative 
Disorder Research Center (INDRC) applies artificial 
intelligence and machine learning (AI/ML) to create advanced, 
multidisciplinary analytical approaches that integrate 
neuroscience, biophysics and biochemistry, computer science 
and engineering, mathematics, along with clinical and 
population studies. Through these AI/ML-driven strategies, 
researchers can gain deeper insights into the mechanisms 
underlying Alzheimer’s disease and support the discovery of 
effective therapeutic options [7]. 

Wallensten conducted a subsequent study that integrated 
machine learning with medical records to facilitate the early 
detection of Alzheimer's disease (AD), thereby enabling timely 
intervention. The method used was Stochastic Gradient 
Boosting to identify predictive diagnoses of AD using primary 
healthcare data. By utilizing clinical data, including previous 
diagnoses and medical treatments, the sensitivity and specificity 
of diagnostic procedures will be improved [8]. Nilesh K and 
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Vinayak B used Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN) for classification in diagnosing Alzheimer's 
Disease [9]. Yue L, et al. built a predictive model using Deep 
Learning for MCI conversion. Deep Learning is applied to 
structural MRI to capture minor brain changes that characterize 
the pre-MCI phase. Predicting the conversion from normal 
cognition (NC) to MCI is essential for early detection and 
intervention [10]. 

In line with previous studies, we propose machine learning 
methods, including Decision Tree (DT), Random Forest (RF), 
Naïve Bayes (NB), Logistic Regression (LR), and Deep 
Learning (DL) to classify Alzheimer's disease cases. These 
methods were chosen because of their ability to handle complex 
medical datasets and provide interpretable results. In addition, 
DT and RF are highly effective in identifying non-linear 
relationships and essential features within the dataset [11]. This 

study proposes feature selection methods, including Binary 
Particle Swarm Optimization (BPSO), Recursive Feature 
Elimination (RFE), and Variance Threshold (VT), to develop a 
model with superior performance as a reference for early 
detection of Alzheimer's disease. 

II. METHOD 

This study was conducted through several systematic stages, 
namely: 1) data collection as the basis of the study, 2) Data pre-
processing is performed to ensure that the available data remains 
consistent and meets quality standards, 3) feature selection to 
eliminate irrelevant attributes and retain significant features, 4) 
building a classification model using the selected machine 
learning algorithm, and (5) evaluating the model's performance. 
The detailed stages of the study were illustrated in Fig. 1. 

 
Fig. 1. Research stages classification method. 
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Delay, M/F, Hand, Age, EDUC, SES, MMSE, CDR, eTIV, 
nWBV, and ASF. The dataset was then preprocessed by 
handling missing values, normalization, encoding, and 
removing less relevant features. For feature selection, we used 
three approaches: Binary Particle Swarm Optimization (BPSO), 
Recursive Feature Elimination (RFE), and Variance Threshold. 
The next step was to build classification models using five 
algorithms: Decision Tree (DT), Random Forest (RF), Naïve 
Bayes (NB), Logistic Regression (LR), and Deep Learning 
(DL). The final stage evaluated the classification models using 
accuracy, precision, recall, and F1-score to assess prediction 
accuracy, positive case detection, and overall performance 
balance. 

A. Decision Tree 

The Decision Tree is a structured classification method 
characterized by internal nodes that evaluate features, branches 
that map to specific decision criteria, and leaf nodes that provide 
the final output. This algorithmic approach is widely adopted 
across diverse research fields, particularly for prediction and 
prognostic modeling [12]. For example, Naswin used Decision 
Tree algorithm to distinguish between normal and pneumonia-
diagnosed X-ray images. Using pediatric X-ray data, this study 
applied a systematic data pre-processing strategy, including 
Canny segmentation and humoments feature extraction, to 
enhance performance [13]. 

The core of the Decision Tree algorithm was its ability to 
recursively split the data based on the features that provide the 
highest Information Gain (IG) or lowest Gini Impurity. The 
Decision Tree (DT) was a multilevel model that combines a 
series of basic tests in an efficient and integrated manner, where 
each test compares a numerical feature with a specific threshold 
value. The Information Gain metric determines the decrease in 
entropy when a dataset is divided. The computations for IG, 
Entropy, and Gain are carried out using Eq. (1)–(3) [14]. 

𝐼𝐺 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 (𝐷) − ∑
|𝐷|

𝐷V ∈Values(A)  𝑒𝑛𝑡ℎ𝑟𝑜𝑝ℎ𝑦 (𝐷𝑉)  (1) 

Where Entropy (D) was calculated as: 

𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 (𝐷) = ∑ 𝑃𝐼
𝐾
𝐼=1  log2( 𝑃𝐼)              (2) 

Alternatively, the Gini Impurity was calculated as: 

𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 (𝑆) − ∑ 𝑃2
𝐼𝐾

𝐼=1                       (3) 

B. Random Forest 

Random forest was a machine learning model used for 
classification and prediction. It was built from multiple decision 
trees, each trained on a random subset of data generated through 
bootstrap sampling [15]. The overall model performance can be 
affected if the individual trees have high correlation or low 
accuracy [16], [17]. 

To partition the data at each node, the algorithm utilizes 
indicators such as Information Gain, which are computed using 
specific mathematical formulations. A lower Gini Split value 
indicated that a feature is more effective in separating data into 
more homogeneous classes. By selecting the most informative 
features, the algorithm can improve its classification 
performance optimally [18]. The formula for calculating entropy 
using Eq. (4). 

𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 (𝐷) = ∑ 𝑃𝐼
𝐾
𝐼=1  log2( 𝑃𝐼)                        (4) 

where, 𝑝𝑖 represented the probability of each class in the 
dataset, the Information Gain was calculated by comparing the 
entropy before and after splitting using Eq. (5). 

𝐼𝐺 (𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 (𝐷) − ∑
|𝐷|

𝐷V ∈Values(A)  𝑒𝑛𝑡ℎ𝑟𝑜𝑝ℎ𝑦 (𝐷𝑉)  (5) 

Gini Split was a measurement in decision trees to determine 
how well a feature (variable) divided data into classes. Gini Split 
measures the impurity of data division. The lower the Gini value, 
the better the feature was at separating data by class. Gini Split 
could be calculated using Eq. (6). 

𝐺𝑖𝑛𝑖 𝑆𝑝𝑙𝑖𝑡 =∑ (
𝑛𝑖

𝑛
)𝑐

𝑖=1 𝑥 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑘𝑠(𝑆𝑖)               (6) 

C. Naïve Bayes (NB) 

The Naive Bayes algorithm was a probabilistic classification 
model rooted in Bayes' Theorem. Despite its "naive" assumption 
of conditional independence among features, an assumption that 
was not always valid in practice, the model often demonstrated 
robust performance, particularly in text classification tasks like 
spam filtering and sentiment analysis [19]. As a foundational 
approach in pattern recognition, the algorithm evaluates 
classification decisions by weighing the probabilities of each 
choice and its consequential implications [20][21]. 

In the context of Alzheimer's diagnosis, Naive Bayes 
computes the probability of a patient's class membership, 
Alzheimer's or non-Alzheimer's, based on a set of clinical and 
biometric features such as age, Mini-Mental State Examination 
(MMSE) score, Socioeconomic Status (SES), Atlas Scaling 
Factor (ASF), and Estimated Total Intracranial Volume [22]. 
These probability calculations are mathematically formulated 
based on the principles of Bayes' Theorem [23]. 

                                      𝑝 (𝑐|𝑥) =  
p (C| X).p(c)

𝑝(𝑥)
                                (7) 

Since Naïve Bayes assumed that each feature was 
independent, the likelihood could be calculated using Eq. (8). 

 (𝐶|𝑋) = (𝑋1|𝐶) × (𝑋2|𝐶) … .× 𝑃(𝑋𝑁|𝐶)                   (8) 

For continuous features, the probability (𝑋1|𝐶) was often 
modeled using a Gaussian (Normal) distribution, the Gaussian 
(Normal) distribution could be calculated using Eq. (9). 

𝑝(𝑐|𝑥) =  
1

√2𝜋𝜎2
 𝑒

−
−(xi−μ)2

2σ2              (9) 

D. Deep Learning 

Deep learning was a computational paradigm that utilizes 
artificial neural networks to mimic the biological architecture of 
the human brain. This method was fundamentally capable of 
analyzing unstructured data and automatically identifying 
relevant features [24]. 

Unlike traditional classification algorithms such as Logistic 
Regression or Naive Bayes, Deep Learning excels at capturing 
complex nonlinear patterns thanks to its layered architecture. In 
the context of medical diagnosis, specifically Alzheimer's, this 
model processed patient data such as age, Mini-Mental State 
Examination (MMSE) score, Socioeconomic Status (SES), 
Atlas Scaling Factor (ASF), and Estimated Total Intracranial 
Volume (eTIV) through a series of layers, including the input, 
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hidden, and output layers, to produce accurate classification 
decisions [25], [26]. 

The Deep Learning model used in this study was 
implemented as a feed-forward multilayer perceptron consisting 
of one input layer, two hidden layers, and one output layer. Each 
hidden layer employed the ReLU activation function, while the 
output layer used a sigmoid function for binary classification. 
The training process was conducted using the Adam optimizer 
with a learning rate of 0.001 and the binary cross-entropy loss 
function. To reduce the risk of overfitting on the relatively 
limited dataset, dropout regularization was applied during 
training. Model performance was evaluated using a K-fold 
cross-validation scheme to ensure stable and reproducible 
results. 

The prediction process in artificial neural networks was 
based on a linear combination of given features with certain 
weights in each neuron; the neuron calculation could use Eq. 
(10). 

= 𝑊𝑋 + 𝑏                                           (10) 

After the linear transformation, the result was passed to the 
activation function to add non-linearity. ReLU (Rectified Linear 
Unit) for hidden layers could be calculated using Eq. 
(11)[27][28]. 

(𝑧) = (0, 𝑧)                                          (11) 

During training, the model updated the weights W using an 
optimization algorithm, such as Stochastic Gradient Descent 
(SGD) or Adam Optimizer by decreasing the value of the loss 
function, which in binary classification was often Binary Cross-
Entropy. Binary Cross-Entropy can be calculated using Eq. (12). 

                   𝐿𝑜𝑠𝑠 =  ∑ [(𝑌𝐼 log (𝑌𝐼 )̂
1
𝑁 ] + (1 − 𝑌𝑖) log  (1 − 𝑦𝑖)̂         (12) 

E. Logistic Regression 

Logistic Regression (LR) is a prevalent analytical tool 
employed when the outcome variable is restricted to two 
categories, representing binary outcomes such as decision 
success or failure, or clinical status (diseased or healthy). This 
study employed logistic regression as a classical statistical 
method to model binary outcomes, choosing it for medical 
applications due to its high interpretability. Although machine 
learning methods often yield better performance on high-
dimensional data, their complexity makes them more 
challenging to understand and explain. In addition, on low-
dimensional data, the performance of machine learning methods 
tends to be comparable to that of logistic regression [29]. 

In the context of Alzheimer's diagnosis, Logistic Regression 
calculated the probability of a patient being in the Alzheimer's 
(1) or Non-Alzheimer's (0) class based on features such as age, 
MMSE (Mini-Mental State Examination) score, SES 
(Socioeconomic Status), ASF (Atlas Scaling Factor), and eTIV 
(Estimated Total Intracranial Volume)[30]. 

This model used the following formula to determine the 
probability that a patient would fall into a particular class. The 
likelihood of a class was calculated using a sigmoid function, as 
shown in Eq. (13) [31]: 

                              𝑃(𝑌 =  1|X) =  
1

1+𝑒−𝑍
                           (13) 

where z was defined as a linear combination of the input 
features using Eq. (14). 

𝑧 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛                 (14) 

and rms do not have to be defined. Do not use abbreviations 
in the title or heads unless they are unavoidable. 

 

F. Feature Selection 

1) Recursive Feature Elimination (RFE): Recursive 

Feature Elimination (RFE) was employed to systematically 

select the most significant features, serving as the primary 

feature selection technique in this machine learning study. The 

goal was to enhance the model's accuracy by simplifying the 

data. RFE removed features or attributes that had the lowest 

ranking scores[32]. RFE selects features based on their 

importance ranking through a recursive elimination 

process[33]. In addition, feature selection improved the 

performance of the model, such as in the CatBoost regression 

model[34]. Improving prediction accuracy for heart disease by 

combining gradient boosting with Recursive Feature 

Elimination (RFE-GB)[35]. 

2) Binary Particle Swarm Optimization (BPSO): In 

general, the PSO algorithm was designed to solve continuous 

optimization problems. To address challenges in discrete 

optimization, Kennedy and Eberhart developed a special 

variant called Binary PSO (BPSO), where they encoded the 

particle positions in binary form[36]. BPSO is a special version 

of the PSO algorithm used to choose between two options, 

namely 0 or 1. In BPSO, the particle velocity did not indicate 

how far they move, but rather how likely the value 0 was to 

change to 1, or vice versa (bit flipping) [37]. 

3) Variance Threshold (VT): To ensure only significant 

attributes are retained for classification, the Variance Threshold 

(VT) method is employed to eliminate features whose low 

statistical variance indicates minimal contribution to the overall 

process. By eliminating irrelevant variables, the classifier 

operated more efficiently and rapidly without compromising 

overall prediction accuracy [38]. This method was effective for 

removing features with low variation or those that only contain 

noise, especially in data measured on a uniform scale [39]. 

4) Evaluation: This study conducted a confusion matrix as 

the primary tool in the model evaluation process. The confusion 

matrix allowed for a comprehensive analysis of the model's 

performance by comparing predictions to actual classes. 

Through this assessment framework, various metrics such as 

accuracy, precision, recall, and F1-score can be calculated to 

evaluate the model’s effectiveness and accuracy  [40], [41], 

[42]. Therefore, the utilization of the confusion matrix in this 

study provided a solid foundation for evaluating the 

performance of the designed classification algorithm. Model 

effectiveness was assessed through metrics formulated in Eq.  

(15)-(18). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑛
 ∑ 𝑇𝑃𝑀+𝑇𝑁𝑀

𝑇𝑃𝑀+𝑇𝑁𝑀+𝐹𝑃𝑀+𝐹𝑁𝑀

𝑛
𝑚  =1  (15) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑛
 ∑ 𝑇𝑃𝑀

𝑇𝑃𝑀+𝐹𝑃𝑀

𝑛
𝑚  =1       (16) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑛
 ∑

𝑇𝑃𝑀

𝑇𝑃𝑀+𝐹𝑁𝑀

𝑛
𝑚  =1     (17) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑛
 ∑ 2∗ 𝑇𝑃𝑀

2∗𝑇𝑃𝑀+𝑇𝑃𝑀+𝐹𝑁𝑀

𝑛
𝑚  =1  (18) 

where, 

n = number of classes, m ∈ {1, 2, …n} = class index 

TP (True Positives) = elements of class m that the model 
correctly classifies. 

FNm (False Negatives) = elements of class m that were not 
recognized by the model (predicted as another class). 

TNm (True Negatives) = elements that were not from class 
m, and correctly not predicted as class m. 

FPm (False Positives) = elements that were not from class m, 
but are incorrectly predicted as part of class m. 

III. RESULTS AND DISCUSSION 

A. Results 

This study had two scenarios. The first scenario employed 
the dataset directly without feature selection, while the second 
scenario used a dataset that had undergone feature selection. 
They employed feature selection methods, including Binary 
Particle Swarm Optimization (BPSO), Recursive Feature 
Elimination (RFE), and Variance Threshold, to identify the most 
relevant attributes for Alzheimer's classification. The goal of 
feature selection was to optimize the model's performance in 
detecting Alzheimer's. This was achieved by prioritizing 
pertinent features to lower complexity and improve prediction 
efficacy. 

It processed the dataset using classification methods, 
including Decision Tree (DT), Random Forest (RF), Naïve 
Bayes (NB), Logistic Regression (LR), and Deep Learning 
(DL). They evaluated the model performance with K-Fold 
Cross-Validation. They chose K-Fold Cross-Validation because 
it provided more accurate and comprehensive results. This 
technique divided the data into several parts and then trained and 
tested the model alternately on each part. In this way, all data 
contributed to the evaluation process, reducing bias caused by 
uneven data splitting. 

The evaluation results, which represented the average of all 
folds, made the model's performance more stable and 
representative. Therefore, this study selected K-Fold Cross-
Validation as the primary method to ensure the quality and 
reliability of the model. This study compared model 
effectiveness using key evaluation metrics, each offering a 
distinct perspective on predictive capability. These metrics 
complemented each other in assessing accuracy, coverage, and 
balance of the model's predictions, particularly in the context of 
imbalanced data. By using these four metrics, the evaluation 
became more comprehensive and fairer in comparing the 
performance of different models. The evaluation results 
appeared in Fig. 2–5. 

B. Performance Comparison 

Fig. 2 presents a comparative evaluation of five ML 
algorithms, namely Random Forest, Naive Bayes, Decision 
Tree, , Deep Learning and Logistic Regression, that the study 
applied without using feature selection techniques. The study 
assessed each model using four standard evaluation metrics to 
achieve a thorough understanding of its classification 
effectiveness. The evaluation results showed that the Random 
Forest algorithm provided the best performance, with an 
accuracy and precision of 0.96 and a perfect recall of 1.00. This 
finding demonstrated the model's ability to identify all positive 
classes consistently. Logistic Regression also demonstrated 
stable and balanced performance across all metrics (0.95), which 
indicated reliability and consistency in the classification task. 

 
Fig. 2. Comparative performance evaluation in the absence of feature 

selection. 

Conversely, Naive Bayes produced a uniform score of 0.91 
across all metrics, which reflected moderate performance with 
low variability. The Decision Tree recorded the lowest scores, 
particularly in precision (0.81) and recall (0.79), which indicated 
limitations in handling complex data distributions. Meanwhile, 
Deep Learning achieved an accuracy of 0.90 but experienced a 
significant decline in recall (0.72) and F1-score (0.74), which 
demonstrated challenges in comprehensively detecting positive 
classes. 

Fig. 3 outlines a comparative study of five classification 
approaches, namely: Random Forest, Naive Bayes, Decision 
Tree, Deep Learning and Logistic Regression that the study 
optimized through feature selection using the Binary Particle 
Swarm Optimization (BPSO) method. Feature selection played 
a crucial role in machine learning modeling, as it improved 
model generalization, reduced data dimensionality, and 
enhanced computational efficiency. The evaluation results 
showed that Naive Bayes and Random Forest, combined with 
BPSO, achieved the highest and most consistent scores across 
all metrics (0.96), which indicated strong and stable 
classification capabilities. Logistic Regression also 
demonstrated balanced performance with a value of 0.95 on all 
metrics. Decision Tree experienced a significant increase, with 
precision and recall at 0.94 and accuracy at 0.93. Conversely, 
Deep Learning achieved an accuracy of 0.89 but exhibited a 
sharp decline in precision (0.59) and F1-score (0.62), which 
suggested challenges in classifying positive classes despite 
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feature selection. Overall, the integration of BPSO-based feature 
selection contributed positively to the performance 
improvement of most models, especially in terms of stability and 
classification effectiveness. These findings emphasized the 
importance of applying optimization techniques in the feature 
selection process to produce models that were more efficient, 
accurate, and adaptable to high-dimensional data. 

 
Fig. 3. Comparative performance evaluation of models with feature selection 

based on BPSO. 

 
Fig. 4. Comparative performance evaluation of models with feature selection 

based on RFE. 

The implementation of Recursive Feature Elimination 
(RFE) as a feature selection technique resulted in a consistent 
pattern of performance improvement across most of the tested 
classification algorithms. Based on the evaluation results shown 
in Fig. 4, RFE significantly contributed to increased accuracy 
and consistency in predictions. Random Forest and Decision 
Tree demonstrated the most prominent performance, recording 
accuracy scores of 0.98 and 0.97, respectively, with uniform 
precision, recall, and F1-score values. This indicated that both 
models responded highly to the feature simplification performed 

by RFE without losing their classification capacity. Logistic 
Regression also demonstrated stable performance, with a score 
of 0.95 across all metrics, which indicated that this model 
remained robust even when features were reduced. Naive Bayes 
consistently scored 0.93. It suggested that, although simple, this 
model still maintained competitive performance after feature 
selection was applied. Conversely, Deep Learning showed an 
imbalance among metrics, with an accuracy of 0.91 but much 
lower precision and F1-score (0.63 and 0.64). These findings 
suggested that neural network-based models required a more 
adaptive feature selection approach to match their internal 
architectural complexity. Overall, these results demonstrated 
that RFE enhanced the efficiency and accuracy of classical 
models. In contrast, its impact on complex models, such as Deep 
Learning, still required further exploration. 

 
Fig. 5. Comparative performance evaluation of models with feature selection 

based on VT. 
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models. However, its application to deep learning models 
required a more adaptive approach to structural complexity and 
data representation needs. 

C. Discussion 

This study evaluated the efficacy of five machine learning 
algorithms in detecting Alzheimer's Disease (AD) by integrating 
intelligent feature selection strategies. The analytical results 
demonstrate that the application of feature selection techniques 
consistently enhances the predictive capability of the models 
compared to using the dataset without feature selection. This 
aligns with the principle that dimensionality reduction, through 
methods such as Recursive Feature Elimination (RFE) and 
Binary Particle Swarm Optimization (BPSO), is capable of 
eliminating irrelevant attributes, thereby strengthening the 
model's generalization in identifying AD pathological patterns 
more accurately. 

The superiority of classical algorithms, particularly Random 
Forest (RF) and Logistic Regression (LR), is evident from their 
high-performance stability following feature optimization. 
Random Forest achieved peak performance with an accuracy of 
0.98 in the RFE scenario due to its ability to handle non-linear 
relationships and prioritize high-importance features. 
Meanwhile, Logistic Regression reached an accuracy of 0.97 
through the Variance Threshold (VT) combination, proving that 
on low-dimensional datasets, this statistical model is highly 
reliable because it provides excellent interpretability and 
efficiency in distinguishing binary classes between Alzheimer’s 
and non-Alzheimer’s patients. 

On the other hand, this study revealed a significant weakness 
in the Deep Learning (DL) architecture when subjected to 
conventional feature selection. Although the DL model 
maintained a competitive accuracy rate (ranging from 0.89 to 
0.92), there was a sharp decline in precision, recall, and F1-score 
metrics. This weakness stems from the fundamental 
characteristic of Deep Learning, which requires rich and 
complex feature representations to optimize weights within its 
hidden layers. The use of feature selection methods like VT or 
BPSO, which drastically reduce input, effectively hinders the 
model's ability to capture deeper non-linear patterns, resulting in 
less precise positive classifications. Consequently, a more 
adaptive feature selection approach is required to accommodate 
the architectural complexity of neural network models in 
medical diagnosis. 

IV. CONCLUSION 

Alzheimer's Disease (AD) is a gradually advancing 
neurodegenerative condition that substantially impairs cognitive 
abilities and adversely affects the overall quality of life of 
affected individuals. Early detection is a crucial aspect of 
mitigation strategies, as it allows for more effective medical 
interventions before extensive neurological damage occurs. 
Advances in technology, such as the use of artificial intelligence 
(AI) and machine learning (ML), have created novel avenues for 
more accurate and efficient diagnosis. 

This study evaluates the performance of five classification 
algorithms: Decision Tree, Random Forest, Naïve Bayes, 

Logistic Regression, and Deep Learning in two scenarios: 
without feature selection and with feature selection using Binary 
Particle Swarm Optimization (BPSO), Recursive Feature 
Elimination (RFE), and Variance Threshold (VT). The 
evaluation was conducted using K-fold cross-validation and four 
main metrics: accuracy, precision, recall, and F1-score. 

The results demonstrate that feature selection consistently 
enhances model performance, particularly in conventional 
classification algorithms. Random Forest and Logistic 
Regression demonstrate high accuracy and prediction stability 
after feature selection is applied. The RFE and BPSO methods 
make significant contributions to increasing accuracy and model 
efficiency. In contrast, VT is effective for simple models but less 
optimal for complex architectures, such as those used in deep 
learning. Although Deep Learning demonstrates competitive 
accuracy, the decline in precision and F1-score suggests the need 
for more adaptive feature selection approaches to accommodate 
the model's structural complexity. 

This study confirms that integrating intelligent feature 
selection techniques into machine learning models significantly 
enhances the accuracy and efficiency of early Alzheimer’s 
disease detection. The experimental results demonstrate that 
classical algorithms, such as Random Forest and Logistic 
Regression, achieve superior and stable performance when 
optimized with Recursive Feature Elimination (RFE) and 
Binary Particle Swarm Optimization (BPSO). These findings 
underscore the potential of AI-based diagnostic strategies as 
reliable, non-invasive tools for clinical intervention. 

However, this research acknowledges several limitations 
that provide a balanced perspective on the findings. First, while 
conventional feature selection methods significantly benefit 
classical models, they proved less optimal for Deep Learning 
architectures, leading to a notable decline in precision and F1-
scores. This suggests that the current feature selection approach 
may not fully accommodate the structural complexity and non-
linear representation needs of neural networks. Furthermore, the 
study relied on the Oasis Longitudinal dataset from Kaggle; 
therefore, the generalizability of these models to more diverse, 
real-world clinical populations require further validation. Future 
research should explore more adaptive, deep-learning-specific 
feature selection methods and incorporate multi-modal data to 
further refine diagnostic reliability. 
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