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Abstract—Cryptocurrency fraud campaigns often rely on 

large-scale social-media diffusion to recruit victims, normalize 

false claims, and coordinate multi-level marketing behavior. This 

study examines the dynamics of the One Coin scam. It proposes an 

influence-maximization (IM)-driven workflow for identifying 

high-impact accounts whose intervention can reduce future 

misinformation diffusion. A directed Twitter engagement network 

from retweet/reply interactions is constructed and studied, and the 

accounts that should be prioritized for intervention to reduce the 

reach of future scam-promoting misinformation are identified. We 

evaluate six seed selection strategies: Degree, Betweenness, 

PageRank, k-core, CELF (lazy greedy), and Reverse Influence 

Sampling (RIS) under the classical Independent Cascade (IC) and 

Linear Threshold (LT) diffusion models using a weighted-cascade 

parameterization when ground-truth transmission probabilities 

are unavailable. Across the tested seed budgets, CELF achieves the 

highest expected spread, but with the highest computational cost. 

At the largest seed budget, Degree is effectively tied with CELF 

(within 0.09% under LT and 1.4% under IC), indicating a hub-

dominated engagement structure in which simple reach-based 

heuristics can be highly competitive. RIS provides a strong 

quality–efficiency trade-off, remaining within approximately 

9.7% (LT) and 9.5% (IC) of CELF while requiring substantially 

less computation. We further introduce a community-aware 

variant using Leiden partitions and proportional seed allocation 

to improve cross-community coverage; at larger budgets, this 

improves methods sensitive to seed over-concentration, increasing 

LT spread by about 9.8% for k-core and 8.6% for RIS. Overall, 

the results quantify practical trade-offs between spread and 

runtime for deployable suppression workflows and show when 

community-aware planning better aligns with the heterogeneous 

structure of scam recruitment ecosystems. 
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I. INTRODUCTION 

Online social networks have become a primary channel for 
disseminating both legitimate information and harmful content. 
Fraudulent investment narratives are especially sensitive to viral 
diffusion: repeated exposure can create perceived legitimacy, 
recruit new participants, and sustain the financial incentives of a 
scam ecosystem. OneCoin, a cryptocurrency launched in 2014, 
has been described by U.S. prosecutors as a multibillion-dollar 
global fraud scheme, with prosecutions and public warnings 
continuing over several years (U.S. Department of Justice 
[1][2][3]. From a network-science perspective, such campaigns 
can be studied as diffusion processes on an interaction graph, 
where certain accounts play outsized roles in initiating and 
amplifying narratives. 

A key practical question is: Which accounts should be 
prioritized for intervention to most effectively curb the spread of 
scam-promoting misinformation? Intervention may include 
platform trust-and-safety actions, targeted fact-checking 
prompts, or counter-messaging allocation. This problem relates 
to influence maximization (IM): given a graph and a diffusion 
model, IM selects a small seed set of nodes (accounts to which 
an intervention or corrective exposure is applied) to maximize 
the expected diffusion reach [4]. In misinformation suppression 
settings, these seeds represent the most leverageable points for 
disruption or for seeding corrective information, aligning 
conceptually with competing-cascade work on limiting 
misinformation [5]. We focus on OneCoin because it is a well-
documented, large-scale fraud campaign with extensive public 
enforcement records and warnings, making it a realistic case for 
studying diffusion-driven recruitment dynamics. This work 
provides the following contributions: 

• A reproducible workflow to build a directed OneCoin 
interaction network from Twitter engagement signals 
(retweets and replies), and to model propagation under 
IC and LT diffusion [4]. 

• A comparative experimental study of classic heuristics 
(Degree, Betweenness, PageRank, k-core), CELF-
accelerated greedy selection [6], and Reverse Influence 
Sampling (RIS) [7] on the same dataset and seed budgets. 

• A community-aware variant using Leiden partitions [8], 
with proportional seed allocation across communities, 
demonstrates how community constraints affect 
diffusion and runtime. 

The remainder of this study is organized as follows: 
Section Ⅱ will cover the related work and background. In 
Section Ⅲ, the conceptual pipeline of the proposed OneCoin 
misinformation diffusion study is detailed. Section Ⅳ presents 
the experiments and evaluations, and we conclude in Section Ⅴ. 

II. RELATED WORK 

A. Influence Maximization and Scalable Algorithms 

Kempe et al. formalized IM under the IC and LT models and 
showed that expected spread is monotone and submodular, 
enabling a (1−1/e) approximation via greedy selection [4]. 
Because naive greedy requires many spread estimations, 
Leskovec et al. proposed CELF (Cost-Effective Lazy Forward), 
which reduces recomputation of marginal gains while 
preserving greedy quality [6]. To scale IM to large graphs, RIS-
type methods estimate influence by sampling reverse-reachable 
(RR) sets, yielding near-linear-time algorithms with provable 
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approximation guarantees [7], [22]. Recent surveys summarize 
these algorithm families and extensions to dynamic and 
competitive settings [10]–[12]. 

B. Misinformation Diffusion and Influence Blocking 

A central line of work models misinformation containment 
as a competitive diffusion problem, where a 'good' campaign 
(e.g., corrective information) competes with a 'bad' campaign 
(misinformation) [5]. Subsequent studies have proposed 
variations that incorporate awareness raising, time constraints, 
refutation, and vertex blocking, yielding influence-blocking 
maximization objectives and algorithms [13]–[15]. While our 
experiments evaluate classical IM under IC/LT to characterize 
which accounts can most amplify diffusion, the intervention 
interpretation is consistent with this containment literature: 
identifying a small set of high-leverage accounts where friction, 
monitoring, or corrective seeding can meaningfully reduce 
cascade potential. 

C. Community Structure and Community-Aware Influence 

Maximization. Diffusion often concentrates within dense 
communities and crosses communities via a smaller set of 
bridging accounts, motivating community-aware IM that 
allocates seeds across communities to improve coverage and 
diversity [16]–[18]. Reliable community detection is therefore 
important when community boundaries constrain seeding 
decisions. Leiden improves upon Louvain by refining partitions 
to ensure well-connected communities and often achieves 
higher-quality modularity solutions efficiently [8]. In this study, 
we use Leiden as a principled preprocessing step and evaluate 
how proportional community allocation changes both spread 
and runtime in a real scam-engagement network. 

Positioning of this study. Prior work has extensively 
developed IM algorithms and misinformation containment 
models, but fewer studies provide end-to-end, reproducible 
evaluations of how classic IM baselines, scalable RIS methods, 
and community-aware constraints trade off effectiveness and 
runtime in a documented cryptocurrency scam setting. Our 
contribution is to ground this comparison in a OneCoin 
engagement network and to quantify when community-aware 
allocation improves cross-community coverage and, at 
sufficient budgets, overall diffusion reach. 

III. METHODOLOGY 

This study investigates how OneCoin scam-related 
misinformation can propagate through a Twitter interaction 
network. It demonstrates how influence maximization [9] can be 
used to identify a small set of high-influence accounts. To 
address misinformation propagation in social networks, this 
study combines information diffusion models, influence 
evaluation, and influence maximization (see Fig. 1). A directed, 
weighted engagement graph is constructed from retweet/reply 
links and analyzed under two widely used diffusion models, 

Independent Cascade (IC) and Linear Threshold (LT), with a 
parameter-free weighted-cascade setting based on each node's 
in-degree, enabling principled propagation simulation when 
accurate transmission probabilities are unavailable. 
Significantly, integrating Leiden community detection and 
enforcing community-proportional seed allocation changes the 
seed composition toward broader sub-community coverage. Six 
seed-selection strategies (Degree, Betweenness, PageRank, k-
core, CELF, and RIS) were used across multiple seed budgets to 
achieve the most significant expected spread consistent with 
submodular maximization theory, but at substantially higher 
computational cost. Also, we show that, in influence 
maximization methods, it is essential to provide a strong spread-
time compromise suitable for scalable analyses, and that simple 
heuristics remain competitive across several budgets due to the 
network's sparse, hub-dominated engagement structure. 

A. Data Collection and Case Context (OneCoin Scam 

Misinformation) 

In this subsection, we represent the input evidence used to 
study diffusion: OneCoin-related Twitter content and 
engagement traces (e.g., tweets promoting the scam narrative 
and retweets/replies that amplify it). In misinformation-
suppression framing, the goal is not only to describe content, but 
to capture who amplifies whom and how narratives propagate 
through user-to-user interactions. In practice, this stage yields: 
1) a set of users, 2) interaction events (retweet/reply), and 3) 
timestamps and metadata that can later support time-sliced 
diffusion analyses. The OneCoin case is well documented as a 
large fraud scheme by official authorities, motivating a realistic 
misinformation setting for network-based interventions. 
Operationally, the data layer comprises OneCoin-related social-
media traces (e.g., posts and engagements). In this work, the 
emphasis is on engagement events (retweets/replies) because 
they are direct, observable signals of information amplification 
and conversational diffusion, enabling network-based modeling. 

B. Interaction-Network Construction (Twitter Engagement 

Graph) 

This subsection maps raw engagement events into a directed 
graph suitable for diffusion modeling. We define a directed 
weighted interaction network 𝐺 = (𝑉, 𝐸, 𝑊), where each node 
𝑣 ∈ 𝑉represents a user account and each directed edge (𝑢, 𝑣) ∈
𝐸indicates that user 𝑢interacted with content produced by user 
𝑣 (retweet/reply). Edge weight 𝑤𝑢𝑣  counts repeated 
engagements to capture the intensity of interaction. This 
representation is widely used because diffusion and influence 
processes can be simulated on graphs and optimized over node 
sets [4]. The resulting structure is typically sparse and exhibits 
heterogeneous degree distributions, which motivates comparing 
both optimization-based methods (e.g., greedy/CELF, RIS) and 
centrality-based heuristics that may perform well in hub-
dominated graphs. 
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Fig. 1. Conceptual pipeline of the proposed OneCoin misinformation diffusion study .

C. Community Detection (Leiden Partitioning) 

Community structure is central to misinformation diffusion 
because amplification frequently occurs within dense clusters, 
while a smaller number of accounts facilitates cross-community 
transmission. To capture this structure, we apply the Leiden 
algorithm in Fig. 2 to obtain a partition 𝒞 = {𝐶1,… , 𝐶𝑟}. Leiden 
is specifically chosen because it addresses known weaknesses of 
Louvain by improving community connectivity and providing 
stronger guarantees about partition quality (well-connected 
communities), while remaining efficient [8]. In the proposed 
research problem, communities represent sub-audiences or 
recruitment circles; identifying them supports targeted 
suppression strategies that aim to reduce cascade potential 
across the ecosystem rather than within only one dense group. 

 
Fig. 2. Community detection of the Leiden algorithm. 

D. Diffusion Models for Misinformation Propagation 

This subsection formalizes how misinformation may spread 
in the constructed graph. Independent Cascade (IC). Starting 
from a seed set 𝑆, diffusion proceeds in discrete steps. When 
node 𝑢becomes active, it gets a single opportunity to activate 
each inactive neighbor 𝑣with probability 𝑝𝑢𝑣 . Eq. (1) clearly 
states the influence (spread) function as: 

𝜎(𝑆) = 𝔼[∣ 𝐴(𝑆) ∣]                                    (1) 

where, 𝐴(𝑆) is the final set of activated nodes[4].Linear 
Threshold (LT). Each node 𝑣samples a threshold. 𝜃𝑣 ∈ [0,1]. 
Node 𝑣activates when the cumulative influence of its active in-
neighbors reaches the threshold [see Eq. (2)]: 

∑ 𝑤𝑢𝑣𝑢∈𝑁−(𝑣)∩𝐴 ≥ 𝜃𝑣 .                            (2) 

LT is frequently interpreted as "accumulated exposure" or 
social reinforcement, which is conceptually appropriate for the 
persuasion-like adoption of misinformation [4]. Weighted-
cascade parameterization. When accurate transmission 
probabilities are unavailable, a standard practical setting, as 
mentioned in Eq. (3) and Eq. (4), is: 

𝑝𝑢𝑣 =
1

deg−(𝑣)
(IC)                               (3) 

𝑤𝑢𝑣 =
1

deg −(𝑣)
(LT)                             (4) 

This equalizes influence contribution across in-neighbors of 
each node. 
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E. Influence Maximization Objective (Identifying High-

Impact Accounts for Suppression) 

This subsection establishes the optimization target. Given a 
budget 𝑘 , the classical influence maximization (IM) problem 
seeks: Under IC and LT, 𝜎(⋅)is monotone and submodular, 
which supports near-optimal approximation via greedy selection 
with provable guarantees [4]. In the suppression setting, the 
same optimization identifies accounts whose intervention (e.g., 
friction, monitoring, counter-messaging exposure, or de-
amplification) can most strongly reduce future diffusion 
potential across the misinformation network, conceptually 
aligned with misinformation limitation via competing 
campaign/mitigation strategies. 

F. Seed-Selection 

This subsection corresponds to "Algorithms" in the diagram 
and details the families evaluated. 

1) Centrality/structural heuristics (fast baselines): 

a) Out-degree prioritizes nodes with many outgoing 

neighbors (high immediate reach). 

b) Betweenness centrality captures brokerage/bridge 
positions that can connect communities; the classic formulation 

is based on Freeman's betweenness centrality [19]. 

c) PageRank assigns global importance to nodes in 

directed graphs, initially introduced in the context of web link 

analysis [20]. 

d) k-core (core number) identifies nodes embedded in 
cohesive substructures; foundational discussion is linked to 

minimum-degree core decomposition [21].  

2) Greedy influence maximization with CELF acceleration. 

Greedy selection iteratively adds the node with maximum 

marginal gain in Eq. (5): 

Δ = 𝜎(𝑆 ∪ {𝑣}) − 𝜎(𝑆)                        (5) 

But repeated spread estimation is expensive. CELF reduces 
computation via lazy marginal-gain updates while preserving 
greedy behavior and is widely used as a strong quality baseline 
[4]. 

3) Reverse Influence Sampling (RIS): RIS approximates 

𝜎(𝑆)  using random reverse-reachable (RR) sets; selecting 

nodes that cover the most RR sets provides a scalable 

approximation with theoretical grounding, making RIS-type 

methods suitable for large graphs and repeated experiments 

[22]. 

G. Community-Aware Influence Maximization 

After computing communities {𝐶𝑖}, we impose a coverage 
constraint by distributing the seed budget across communities 
(e.g., proportional allocation) as mentioned below in Eq. (6) and 
Eq. (7): 

𝑘𝑖 ≈ 𝑘 ⋅
∣𝐶𝑖∣

∣𝑉∣
                                  (6) 

∑ 𝑘𝑖𝑖 = 𝑘                                  (7) 

And then select 𝑘𝑖 seeds within each community using the 
same ranking/optimization method (Degree/CELF/RIS/etc), 
producing [Eq. (8)]: 

𝑆 = ⋃ 𝑆𝑖𝑖
, ∣ 𝑆𝑖 ∣= 𝑘𝑖                            (8) 

The scientific rationale is that misinformation ecosystems 
are heterogeneous; community-aware seeding mitigates the risk 
of concentrating interventions in a single dense cluster and 
supports broader, cross-community mitigation strategies. The 
choice of Leiden strengthens this component because 
community integrity (connectivity/quality) influences 
downstream allocation and interpretation. 

IV. RESULTS AND DISCUSSION 

A. Network Summary and Evaluation Setting 

The OneCoin interaction network is modeled as a directed 
engagement graph built from retweet/reply relations. The details 
of the datasets are shown in Table I. Across all experiments, 
diffusion is evaluated under the two standard influence 
models—Independent Cascade (IC) and Linear Threshold 
(LT)—using the weighted-cascade normalization (equal 
influence share across a node's in-neighbors) to parameterize 
edge influence when ground-truth probabilities are unavailable. 
This modeling choice is consistent with the classical formulation 
of diffusion-based influence maximization [4]. 

TABLE I.  DATASET STATISTICS 

Number of nodes 5415 

Number of edges 6117 

Average Degree 2.2327 

Maximum Degree 1582 

B. Influence Spread Under the LT Model 

Fig. 3 compares the expected influence spread achieved by 
Degree, CELF, 𝑘-core, Betweenness, PageRank, and RIS under 
LT across budgets 𝑘 = {5,10,15,20,25,30}. Three patterns are 
salient. First, CELF and Degree dominate across budgets, with 
the highest spreads observed at larger 𝑘; for example, at 𝑘 = 30, 
CELF reaches ≈1620.9 activated users while Degree reaches 
≈1619.5, indicating that, on this dataset, a simple out-degree 
heuristic is highly competitive once the seed budget is moderate 
to large. Second, RIS consistently provides a strong quality–
efficiency trade-off, tracking the leading methods closely as 𝑘 
increases (e.g., ≈1463.2 at 𝑘=30), which aligns with the design 
objective of RIS-style algorithms: scalable approximation to 
near-greedy performance via reverse-reachable sampling [22]. 
Third, the structural centrality baselines (Betweenness, 
PageRank, 𝑘 -core) improve gradually with increasing 𝑘 but 
typically remain below CELF/Degree; this suggests that, in the 
OneCoin engagement network, large cascades are more strongly 
driven by outward amplification capacity (high out-degree and 
greedy marginal gain) than by purely bridge-based shortest-path 
control. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 17, No. 1, 2026 

676 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 3. Influence spread achieved by the evaluated seed-selection methods 

under the LT diffusion model on the OneCoin dataset. 

C. Influence Spread Under the IC Model 

Under IC (see Fig. 4), the ranking trends are mainly 
consistent with LT. CELF achieves the most significant 
expected spread across budgets, reflecting the theoretical 
motivation for greedy selection under submodular influence 
functions [4]. At k = 30, CELF reaches ≈1597.9, followed by 
Degree at ≈1576.2. RIS remains competitive (≈1445.8 at k =
30 ), again reinforcing its role as a practical large-scale 
alternative to greedy [22]. An additional observation is the 
instability of PageRank at minimal budgets (e.g., at k = 5 , 
PageRank produces very low spread). In directed engagement 
graphs, PageRank can rank nodes that are globally "prestigious" 
but not necessarily effective at outward activation (e.g., under 
the diffusion parameterization, limited outgoing influence 
pathways). As k increases, PageRank begins to include more 
structurally active accounts, and its spread becomes comparable 
to that of other centralities. 

 
Fig. 4. Influence spread achieved by the evaluated seed-selection methods 

under the IC diffusion model on the OneCoin dataset. 

D. Runtime Comparison Under LT and IC 

Fig. 5 (LT) and Fig. 6 (IC) report the total runtime per 
method (seed selection and spread evaluation). The 
computational cost is dominated by two factors: 1) the 

complexity of constructing the seed set and 2) the repeated 
spread estimation required by the evaluation protocol. 

1) CELF is substantially more expensive than all 

alternatives because it relies on repeated marginal-gain 

evaluations (even with lazy updates) [4]. Concretely, the total 

runtime is ≈15.44 s under LT and ≈35.87 s under IC, both of 

which are far lower than those of the other methods. 

2) Heuristic methods are operationally efficient. Degree 

and PageRank have very low seed-selection costs and total 

times, typically under a few seconds, in these runs. 

3) Betweenness is moderately expensive relative to other 

heuristics due to shortest-path–based centrality computation, 

which explains its higher total time, even though it does not 

match the top-performing spreads. 

Overall, the runtime plots support a practical conclusion: 
CELF maximizes spread but is least suitable for frequent 
recomputation. At the same time, RIS and Degree offer the best 
"deployable" trade-off between spread and runtime. 

 
Fig. 5. Total computational time (in seconds) required by each seed-selection 

method under the LT diffusion model on the OneCoin dataset. 

 
Fig. 6. Total computational time (in seconds) required by each seed-selection 

method under the IC diffusion model on the OneCoin dataset. 
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E. Community-Aware Results with Leiden 

Fig. 7 and Fig. 8 examine the effect of incorporating Leiden 
communities and enforcing community-aware seed allocation 
under LT. Leiden is chosen because it is designed to avoid 
poorly connected community partitions and to produce higher-
quality communities efficiently, which is essential when 
community boundaries are used to constrain seeding decisions 
[8]. 

 
Fig. 7. Influence spread achieved by the evaluated seed-selection methods 

under the LT diffusion model on the OneCoin data communities using the 

Leiden algorithm. 

 
Fig. 8. Total computational time (in seconds) required by each seed-selection 

method under the LT diffusion model on the OneCoin data communities using 

the Leiden algorithm. 

The results show a clear coverage–concentration trade-off: 

• For Degree and CELF, community constraints typically 
reduce spread at small-to-mid budgets (e.g., around 𝑘 =
10– 15), because the unconstrained versions tend to 
concentrate seeds in the single densest, most cascade-

prone region of the graph; community-aware allocation 
forces distributing seeds across multiple communities, 
which can reduce immediate cascade size. For methods 
that are sensitive to seed "over-concentration" effects, 
community awareness can be beneficial. Notably, 𝑘-core 
and RIS improve at larger budgets under Leiden 
constraints. For example, at 𝑘 = 30 , 𝑘-core increases 
from ≈1445.5 (global LT) to ≈1587.4 (Leiden-aware 
LT), and RIS increases from ≈1463.2 to ≈1589.1. This 
indicates that, once enough budget is available, 
spreading seeds across communities helps capture 
multiple diffusion pockets simultaneously, improving 
overall reach while also achieving better 
representativeness across the misinformation ecosystem. 

• Community-aware allocation also stabilizes methods that 
can fail at minimal budgets (e.g., PageRank at 𝑘 = 5), 
because the constraint prevents all seeds from being 
drawn from a narrow set of globally ranked nodes and 
instead enforces multi-community representation. 

• Runtime under the Leiden-aware pipeline (see Fig. 8) 
remains within a few seconds for all methods in these 
runs, as the added community-detection step is 
computationally modest relative to greedy marginal-gain 
recomputation, consistent with Leiden's known 
efficiency properties [8]. 

F. Discussion and Interpretation 

Across both diffusion models, the results follow established 
influence-maximization theory: greedy selection is near-optimal 
under monotone submodular spread, which explains CELF's 
consistently highest spread [4], [6]. The runtime gap is also 
expected because CELF still relies on repeated marginal-gain 
estimation (even with lazy updates) [6]. The strong performance 
of the Degree heuristic (nearly matching CELF at larger k) 
indicates that the OneCoin engagement graph is sparse and hub-
dominated; in such graphs, immediate outward reach can 
approximate marginal gains well. RIS provides a strong near-
greedy alternative with substantially lower runtime, consistent 
with reverse-reachable (RR) set sampling methods designed for 
near-linear-time approximation [7], [22]. 

Community-aware seeding changes the intervention 
footprint. By allocating seeds proportionally across Leiden 
communities, the approach discourages concentrating 
interventions in a single dense cluster and instead targets 
multiple sub-audiences. This explains the observed coverage–
concentration trade-off: at small-to-mid budgets, coverage 
constraints can reduce the single largest cascade, while at larger 
budgets they can improve overall reach by activating multiple 
diffusion pockets in parallel, consistent with community-based 
IM objectives [16]–[18]. Leiden is a suitable choice because it 
refines partitions to ensure well-connected communities, 
improving the reliability of downstream community-constrained 
seeding [8]. 

G. Limitations and Threats to Validity 

Our evaluation has limitations in modeling and data. IC and 
LT are simplified abstractions that omit content semantics, 
heterogeneous susceptibility, recommender effects, and time-
varying exposure. Weighted-cascade normalization is a standard 
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practical parameterization when true edge probabilities are 
unknown [4], but it may not match platform-specific 
amplification dynamics and can affect which nodes appear 
influential. The engagement network is built from observable 
retweets/replies and is sensitive to collection choices (keywords, 
time window, API limits), missing/deleted/private content, and 
automated accounts, which can introduce sampling bias and 
missing edges. These factors can affect both community 
detection and seed ranking. Results from OneCoin may also not 
generalize to other scam domains. Future work should 
incorporate temporal diffusion (time-sliced graphs), explicit 
competitive/containment objectives [5], robustness checks over 
alternative probability parameterizations, and hybrid models 
that combine network structure with content/account-level 
signals (e.g., credibility and bot likelihood). 

V. CONCLUSION 

This study presented a diffusion-based, community-aware 
influence-maximization workflow to support the suppression of 
scam-related misinformation in the OneCoin Twitter 
engagement ecosystem. Using a directed interaction graph of 
5,415 accounts and 6,117 engagement edges, we evaluated six 
seed-selection strategies under IC and LT diffusion, using the 
weighted-cascade parameterization [4]. CELF achieved the 
largest expected spread (e.g., ≈1620.9 under LT and ≈1597.9 
under IC at k=30), but required the most computation (≈15.44 s 
under LT; ≈35.87 s under IC), reflecting the cost of repeated 
marginal-gain evaluation despite lazy acceleration [6]. RIS 
delivered a strong near-greedy alternative with substantially 
lower runtime, consistent with RR-set sampling guarantees and 
prior evidence of practical efficiency [7], [22]. 

Integrating Leiden community detection and proportional 
seed allocation shifted seed composition toward broader sub-
community coverage, which is operationally meaningful for 
scam ecosystems sustained by multiple semi-separated 
recruitment clusters [8]. At larger budgets, community-aware 
allocation can also improve diffusion reach for methods that 
otherwise over-concentrate seeds (e.g., k-core and RIS under 
LT). Overall, the results provide actionable guidance for 
mitigation planning: greedy-quality methods maximize reach 
when offline computation is acceptable, while RIS and simple 
degree-based heuristics offer deployable trade-offs between 
spread and runtime for scalable, repeatedly updated intervention 
workflows. 

Future research should move beyond static-graph IC/LT 
simulations by incorporating temporal dynamics, competitive 
influence-blocking objectives, and sensitivity analyses over 
propagation parameters, while enriching network signals with 
content and account-level features to better represent real 
platform diffusion and enforcement constraints. 
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