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Abstract—Cryptocurrency fraud campaigns often rely on
large-scale social-media diffusion to recruit victims, normalize
false claims, and coordinate multi-level marketing behavior. This
study examines the dynamics ofthe One Coin scam. It proposes an
influence-maximization (IM)-driven workflow for identifying
high-impact accounts whose intervention can reduce future
misinformation diffusion. A directed Twitter engagement network
from retweet/reply interactions is constructed and studied, and the
accounts that should be prioritized for intervention to reduce the
reach offuture scam-promoting misinformation are identified. We
evaluate six seed selection strategies: Degree, Betweenness,
PageRank, k-core, CELF (lazy greedy), and Reverse Influence
Sampling (RIS) under the classical Independent Cascade (IC) and
Linear Threshold (LT) diffusion models using a weighted-cascade
parameterization when ground-truth transmission probabilities
are unavailable. Across the tested seed budgets, CELF achieves the
highest expected spread, but with the highest computational cost.
At the largest seed budget, Degree is effectively tied with CELF
(within 0.09% under LT and 1.4% under IC), indicating a hub-
dominated engagement structure in which simple reach-based
heuristics can be highly competitive. RIS provides a strong
quality—efficiency trade-off, remaining within approximately
9.7% (LT) and 9.5% (IC) of CELF while requiring substantially
less computation. We further introduce a community-aware
variant using Leiden partitions and proportional seed allocation
to improve cross-community coverage; at larger budgets, this
improves methods sensitive to seed over-concentration, increasing
LT spread by about 9.8% for k-core and 8.6% for RIS. Overall,
the results quantify practical trade-offs between spread and
runtime for deployable suppression workflows and show when
community-aware planning better aligns with the heterogeneous
structure of scam recruitment ecosystems.
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I INTRODUCTION

Online social networks have become a primary channel for
disseminating both legitimate information and harmful content.
Fraudulent investment narratives are especially sensitive to viral
diffusion: repeated exposure can create perceived legitimacy,
recruit new participants, and sustain the financial incentives of a
scam ecosystem. OneCoin, a cryptocurrency launched in 2014,
has been described by U.S. prosecutors as a multibillion-dollar
global fraud scheme, with prosecutions and public warnings
continuing over several years (U.S. Department of Justice
[11[2][3]. From a network-science perspective, such campaigns
can be studied as diffusion processes on an interaction graph,
where certain accounts play outsized roles in initiating and
amplifying narratives.

A key practical question is: Which accounts should be
prioritized for intervention to most effectively curb the spread of
scam-promoting misinformation? Intervention may include
platform trust-and-safety actions, targeted fact-checking
prompts, or counter-messaging allocation. This problem relates
to influence maximization (IM): given a graph and a diffusion
model, IM selects a small seed set of nodes (accounts to which
an intervention or corrective exposure is applied) to maximize
the expected diffusion reach [4]. In misinformation suppression
settings, these seeds represent the most leverageable points for
disruption or for seeding corrective information, aligning
conceptually with competing-cascade work on limiting
misinformation [5]. We focus on OneCoin because it is a well-
documented, large-scale fraud campaign with extensive public
enforcement records and warnings, making it a realistic case for
studying diffusion-driven recruitment dynamics. This work
provides the following contributions:

e A reproducible workflow to build a directed OneCoin
interaction network from Twitter engagement signals

(retweets and replies), and to model propagation under
IC and LT diffusion [4].

e A comparative experimental study of classic heuristics
(Degree, Betweenness, PageRank, k-core), CELF-
accelerated greedy selection [6], and Reverse Influence
Sampling (RIS) [7] on thesamedataset and seed bud gets.

e A community-aware variant using Leiden partitions [8],
with proportional seed allocation across communities,
demonstrates how community constraints affect
diffusion and runtime.

The remainder of this study is organized as follows:
Section Il will cover the related work and background. In
Section III, the conceptual pipeline of the proposed OneCoin
misinformation diffusion study is detailed. Section IV presents
the experiments and evaluations, and we conclude in Section V.

1L RELATED WORK

A. Influence Maximization and Scalable Algorithms

Kempeetal. formalized IMunder the ICand LT models and
showed that expected spread is monotone and submodular,
enabling a (1—1/e) approximation via greedy selection [4].
Because naive greedy requires many spread estimations,
Leskovec et al. proposed CELF (Cost-Effective Lazy Forward),
which reduces recomputation of marginal gains while
preserving greedy quality [6]. To scale IM to large graphs, RIS-
type methods estimate influence by sampling reverse-reachable
(RR) sets, yielding near-linear-time algorithms with provable
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approximation guarantees [ 7], [22]. Recent surveys summarize
these algorithm families and extensions to dynamic and
competitive settings [10]—[12].

B. Misinformation Diffusion and Influence Blocking

A central line of work models misinformation containment
as a competitive diffusion problem, where a 'good' campaign
(e.g., corrective information) competes with a 'bad' campaign
(misinformation) [5]. Subsequent studies have proposed
variations that incorporate awareness raising, time constraints,
refutation, and vertex blocking, yielding influence-blocking
maximization objectives and algorithms [13]-[15]. While our
experiments evaluate classical IM under IC/LT to characterize
which accounts can most amplify diffusion, the intervention
interpretation is consistent with this containment literature:
identifying a small set of high-leverage accounts where friction,
monitoring, or corrective seeding can meaningfully reduce
cascade potential.

C. Community Structure and Community-Aware Influence

Maximization. Diffusion often concentrates within dense
communities and crosses communities via a smaller set of
bridging accounts, motivating community-aware IM that
allocates seeds across communities to improve coverage and
diversity [16]-{18]. Reliable community detection is therefore
important when community boundaries constrain seeding
decisions. Leiden improves upon Louvain by refining partitions
to ensure well-connected communities and often achieves
higher-quality modularity solutions efficiently [8]. In this study,
we use Leiden as a principled preprocessing step and evaluate
how proportional community allocation changes both spread
and runtime in a real scam-engagement network.

Positioning of this study. Prior work has extensively
developed IM algorithms and misinformation containment
models, but fewer studies provide end-to-end, reproducible
evaluations of how classic IM baselines, scalable RIS methods,
and community-aware constraints trade off effectiveness and
runtime in a documented cryptocurrency scam setting. Our
contribution is to ground this comparison in a OneCoin
engagement network and to quantify when community-aware
allocation improves cross-community coverage and, at
sufficient budgets, overall diffusion reach.

1I1. METHODOLOGY

This study investigates how OneCoin scam-related
misinformation can propagate through a Twitter interaction
network. It demonstrates how influence maximization [9] canbe
used to identify a small set of high-influence accounts. To
address misinformation propagation in social networks, this
study combines information diffusion models, influence
evaluation, and influence maximization (see Fig. 1). A directed,
weighted engagement graph is constructed from retweet/reply
links and analyzed under two widely used diffusion models,
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Independent Cascade (IC) and Linear Threshold (LT), with a
parameter-free weighted-cascade setting based on each node's
in-degree, enabling principled propagation simulation when
accurate transmission probabilities are unavailable.
Significantly, integrating Leiden community detection and
enforcing community-proportional seed allocation changes the
seed composition toward broader sub-community coverage. Six
seed-selection strategies (Degree, Betweenness, PageRank, k-
core, CELF, and RIS) were used across multiple seed budgets to
achieve the most significant expected spread consistent with
submodular maximization theory, but at substantially higher
computational cost. Also, we show that, in influence
maximization methods, itis essential to provide a strongspread-
time compromise suitable for scalable analyses, and that simple
heuristics remain competitive across several budgets due to the
network's sparse, hub-dominated engagement structure.

A. Data Collection and Case Context (OneCoin Scam

Misinformation)

In this subsection, we represent the input evidence used to
study diffusion: OneCoin-related Twitter content and
engagement traces (e.g., tweets promoting the scam narrative
and retweets/replies that amplify it). In misinformation-
suppression framing, the goal isnot only to describe content, but
to capture who amplifies whom and how narratives propagate
through user-to-user interactions. In practice, this stage yields:
1) a set of users, 2) interaction events (retweet/reply), and 3)
timestamps and metadata that can later support time-sliced
diffusion analyses. The OneCoin case is well documented as a
large fraud scheme by official authorities, motivating a realistic
misinformation setting for network-based interventions.
Operationally, the data layer comprises OneCoin-related social-
media traces (e.g., posts and engagements). In this work, the
emphasis is on engagement events (retweets/replies) because
they are direct, observable signals of information amplification
and conversational diffusion, enabling network-based modeling,

B. Interaction-Network Construction (Twitter Engagement

Graph)

This subsection maps raw engagement events into a directed
graph suitable for diffusion modeling. We define a directed
weighted interactionnetwork G = (V, E, W), where each node
v € Vrepresents a user account and each directed edge (u, v) €
Eindicates thatuser uinteracted with content produced by user
v (retweet/reply). Edge weight w,, counts repeated
engagements to capture the intensity of interaction. This
representation is widely used because diffusion and influence
processes can be simulated on graphs and optimized over node
sets [4]. The resulting structure is typically sparse and exhibits
heterogeneous degree distributions, which motivates comparing
both optimization-based methods (e.g., greedy/CELF, RIS) and
centrality-based heuristics that may perform well in hub-
dominated graphs.
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Fig. 1. Conceptual pipeline of the proposed OneCoin misinformation diffusion study.

C. Community Detection (Leiden Partitioning)

Community structure is central to misinformation diffusion
because amplification frequently occurs within dense clusters,
while a smaller number of accounts facilitates cross-community
transmission. To capture this structure, we apply the Leiden
algorithm in Fig. 2 to obtaina partition C = {Cj, ..., C,.}. Leiden
is specifically chosen because it addresses known weaknesses of
Louvain by improving community connectivity and providing
stronger guarantees about partition quality (well-connected
communities), while remaining efficient [8]. In the proposed
research problem, communities represent sub-audiences or
recruitment circles; identifying them supports targeted
suppression strategies that aim to reduce cascade potential
across the ecosystem rather than within only one dense group.
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Fig.2. Community detection of the Leiden algorithm.

D. Diffusion Models for Misinformation Propagation

This subsection formalizes how misinformation may spread
in the constructed graph. Independent Cascade (IC). Starting
from a seed set S, diffusion proceeds in discrete steps. When
node ubecomes active, it gets a single opportunity to activate
each inactive neighbor vwith probability p,,,,. Eq. (1) clearly
states the influence (spread) function as:

a(8) = E[I A(S) 1] (1)
where, A(S) is the final set of activated nodes[4].Linear
Threshold (LT). Each node vsamples a threshold. 8,, € [0,1].

Node vactivates when the cumulative influence of its active in-
neighbors reaches the threshold [see Eq. (2)]:

()

LT is frequently interpreted as "accumulated exposure" or
social reinforcement, which is conceptually appropriate for the
persuasion-like adoption of misinformation [4]. Weighted-
cascade parameterization. When accurate transmission
probabilities are unavailable, a standard practical setting, as
mentioned in Eq. (3) and Eq. (4), is:

1
= (1c) 3)
deg & & C))

This equalizes influence contribution across in-neighbors of
each node.

ZuEN_(v)nA Wy 2 6

Puv =

Wuv
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E. Influence Maximization Objective (Identifying High-

Impact Accounts for Suppression)

This subsection establishes the optimization target. Given a
budget k, the classical influence maximization (IM) problem
seeks: Under IC and LT, g (:)is monotone and submodular,
which supports near-optimal approximation via greedy selection
with provable guarantees [4]. In the suppression setting, the
same optimization identifies accounts whose intervention (e.g,
friction, monitoring, counter-messaging exposure, or de-
amplification) can most strongly reduce future diffusion
potential across the misinformation network, conceptually
aligned with misinformation limitation via competing
campaign/mitigation strategies.

F. Seed-Selection

This subsection corresponds to "Algorithms" in the diagram
and details the families evaluated.

1) Centrality/structural heuristics (fast baselines):

a) Out-degree prioritizes nodes with many outgoing
neighbors (high immediate reach).

b) Betweenness centrality captures brokerage/bridge
positions that can connect communities; the classic formulation
is based on Freeman's betweenness centrality [19].

¢) PageRank assigns global importance to nodes in
directed graphs, initially introduced in the context of web link
analysis [20].

d) k-core (core number) identifies nodes embedded in
cohesive substructures; foundational discussion is linked to
minimum-degree core decomposition [21].

2) Greedy influence maximization with CELF acceleration.
Greedy selection iteratively adds the node with maximum
marginal gain in Eq. (5):

A=0(SU ) —o(S) (5)

But repeated spread estimation is expensive. CELF reduces

computation via lazy marginal-gain updates while preserving
greedy behavior and is widely used as a strong quality baseline

[4].

3) Reverse Influence Sampling (RIS): RIS approximates
o(S) using random reverse-reachable (RR) sets; selecting
nodes that cover the most RR sets provides a scalable
approximation with theoretical grounding, making RIS-type
methods suitable for large graphs and repeated experiments
[22].

G. Community-Aware Influence Maximization

After computing communities {C;}, we impose a coverage
constraint by distributing the seed budget across communities
(e.g., proportional allocation) as mentioned below in Eq. (6) and
Eq. (7):

1Gl

ko~ ket (6)

14

Yiki=k (7)
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And then select k; seeds within each community using the
same ranking/optimization method (Degree/CELF/RIS/etc),
producing [Eq. (8)]:

S=U;Si 1S 1=k )]

The scientific rationale is that misinformation ecosystems
are heterogeneous; community-aware seeding mitigates the risk
of concentrating interventions in a single dense cluster and
supports broader, cross-community mitigation strategies. The
choice of Leiden strengthens this component because
community integrity (connectivity/quality) influences
downstream allocation and interpretation.

IV. RESULTS AND DISCUSSION

A. Network Summary and Evaluation Setting

The OneCoin interaction network is modeled as a directed
engagement graph built fromretweet/replyrelations. The details
of the datasets are shown in Table I. Across all experiments,
diffusion is evaluated under the two standard influence
models—Independent Cascade (IC) and Linear Threshold
(LT)—using the weighted-cascade normalization (equal
influence share across a node's in-neighbors) to parameterize
edge influence when ground-truth probabilities are unavailable.
This modelingchoiceis consistent with the classical formulation
of diffusion-based influence maximization [4].

TABLE . DATASET STATISTICS
Number of nodes 5415
Number of edges 6117
Average Degree 2.2327
Maximum Degree 1582

B. Influence Spread Under the LT Model

Fig. 3 compares the expected influence spread achieved by
Degree, CELF, k-core, Betweenness, PageRank, and RIS under
LT acrossbudgets k = {5,10,15,20,25,30}. Three patterns are
salient. First, CELF and Degree dominate across budgets, with
the highest spreads observedatlarger k; forexample,at k = 30,
CELF reaches =1620.9 activated users while Degree reaches
~1619.5, indicating that, on this dataset, a simple out-degree
heuristic is highly competitive once the seed budget is moderate
to large. Second, RIS consistently provides a strong quality—
efficiency trade-off, tracking the leading methods closely as k
increases (e.g., ~1463.2 at k=30), which aligns with the design
objective of RIS-style algorithms: scalable approximation to
near-greedy performance via reverse-reachable sampling [22].
Third, the structural centrality baselines (Betweenness,
PageRank, k -core) improve gradually with increasing k but
typically remain below CELF/Degree; this suggests that, in the
OneCoin engagement network, large cascades are more strongly
driven by outward amplification capacity (high out-degree and
greedy marginal gain) than by purely bridge-based shortest-path
control.
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Fig. 3. Influence spread achieved by the evaluated seed-selection methods
under the LT diffusion model on the OneCoin dataset.

C. Influence Spread Under the IC Model

Under IC (see Fig. 4), the ranking trends are mainly
consistent with LT. CELF achieves the most significant
expected spread across budgets, reflecting the theoretical

motivation for greedy selection under submodular influence
functions [4]. Atk = 30, CELF reaches =1597.9, followed by
Degree at =1576.2. RIS remains competitive (<1445.8 atk =
30), again reinforcing its role as a practical large-scale
alternative to greedy [22]. An additional observation is the
instability of PageRank at minimal budgets (e.g., atk =5,
PageRank produces very low spread). In directed engagement
graphs, PageRank can rank nodes that are globally "prestigious"
but not necessarily effective at outward activation (e.g., under
the diffusion parameterization, limited outgoing influence
pathways). As k increases, PageRank begins to include more
structurally active accounts, and its spread becomes comparable
to that of other centralities.

OneCoin Twitter Dataset
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Fig. 4. Influence spread achieved by the evaluated seed-selection methods
under the IC diffusion model on the OneCoin dataset.

D. Runtime Comparison Under LT and IC

Fig. 5 (LT) and Fig. 6 (IC) report the total runtime per
method (seed selection and spread evaluation). The
computational cost is dominated by two factors: 1) the

Vol. 17, No. 1, 2026

complexity of constructing the seed set and 2) the repeated
spread estimation required by the evaluation protocol.

1) CELF is substantially more expensive than all
alternatives because it relies on repeated marginal-gain
evaluations (even with lazy updates) [4]. Concretely, the total
runtime is ®15.44 s under LT and =35.87 s under IC, both of
which are far lower than those of the other methods.

2) Heuristic methods are operationally efficient. Degree
and PageRank have very low seed-selection costs and total
times, typically under a few seconds, in these runs.

3) Betweenness is moderately expensive relative to other
heuristics due to shortest-path—based centrality computation,
which explains its higher total time, even though it does not
match the top-performing spreads.

Overall, the runtime plots supporta practical conclusion:
CELF maximizes spread but is least suitable for frequent
recomputation. At the same time, RIS and Degree offer the best
"deployable" trade-off between spread and runtime.

OneCoin Twitter Dataset
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Fig. 5. Totalcomputational time (in seconds) required by each seed-selection
method under the LT diffusion model on the OneCoin dataset.
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Fig. 6. Totalcomputational time (in seconds) required by each seed-selection
method under the IC diffusion model on the OneCoin dataset.
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E. Community-Aware Results with Leiden

Fig. 7 and Fig. 8 examine the effect of incorporating Leiden
communities and enforcing community-aware seed allocation
under LT. Leiden is chosen because it is designed to avoid
poorly connected community partitions and to produce higher-
quality communities efficiently, which is essential when
community boundaries are used to constrain seeding decisions

[8].

OneCoin Twitter Dataset
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Fig. 7. Influence spread achieved by the evaluated seed-selection methods
under the LT diffusion model on the OneCoin data communities using the
Leiden algorithm.
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Fig. 8. Totalcomputational time (in seconds) required by each seed-selection
method underthe LT diffusion modelon the OneCoin data communities using
the Leiden algorithm.

The results show a clear coverage—concentration trade-off:

e For Degree and CELF, community constraints typically
reduce spread at small-to-mid budgets (e.g., aroundk =
10—15), because the unconstrained versions tend to
concentrate seeds in the single densest, most cascade-
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prone region of the graph; community-aware allocation
forces distributing seeds across multiple communities,
which can reduce immediate cascade size. For methods
that are sensitive to seed "over-concentration" effects,
community awareness canbe beneficial. Notably, k-core
and RIS improve at larger budgets under Leiden
constraints. For example, at k = 30, k-core increases
from =1445.5 (global LT) to =1587.4 (Leiden-aware
LT), and RIS increases from =1463.2 to =1589.1. This
indicates that, once enough budget is available,
spreading seeds across communities helps capture
multiple diffusion pockets simultaneously, improving
overall reach while also achieving Dbetter
representativeness across the misinformation ecosystem.

e Community-aware allocation also stabilizes methods that
can fail at minimal budgets (e.g., PageRank at k = 5),
because the constraint prevents all seeds from being
drawn from a narrow set of globally ranked nodes and
instead enforces multi-community representation.

e Runtime under the Leiden-aware pipeline (see Fig. 8)
remains within a few seconds for all methods in these
runs, as the added community-detection step is
computationally modestrelativeto greedy marginal-gain
recomputation, consistent with Leiden's known
efficiency properties [8].

F. Discussion and Interpretation

Across both diffusion models, the results follow established
influence-maximization theory: greedy selection is near-optimal
under monotone submodular spread, which explains CELF's
consistently highest spread [4], [6]. The runtime gap is also
expected because CELF still relies on repeated marginal-gain
estimation (even with lazy updates) [6]. The strong performance
of the Degree heuristic (nearly matching CELF at larger k)
indicates that the OneCoin engagement graph is sparse and hub-
dominated; in such graphs, immediate outward reach can
approximate marginal gains well. RIS provides a strong near-
greedy alternative with substantially lower runtime, consistent
with reverse-reachable (RR) set sampling methods designed for
near-linear-time approximation [7], [22].

Community-aware seeding changes the intervention
footprint. By allocating seeds proportionally across Leiden
communities, the approach discourages concentrating
interventions in a single dense cluster and instead targets
multiple sub-audiences. This explains the observed coverage—
concentration trade-off: at small-to-mid budgets, coverage
constraints can reduce the single largest cascade, while at larger
budgets they can improve overall reach by activating multiple
diffusion pockets in parallel, consistent with community-based
IM objectives[16]-{18]. Leidenis a suitable choice because it
refines partitions to ensure well-connected communities,
improvingthe reliability of downstream community-constrained
seeding [8].

G. Limitations and Threats to Validity

Our evaluation has limitations in modeling and data. IC and
LT are simplified abstractions that omit content semantics,
heterogeneous susceptibility, recommender effects, and time-
varyingexposure. Weighted-cascadenormalization is a standard
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practical parameterization when true edge probabilities are
unknown [4], but it may not match platform-specific
amplification dynamics and can affect which nodes appear
influential. The engagement network is built from observable
retweets/replies and is sensitive to collection choices (keywords,
time window, API limits), missing/deleted/private content, and
automated accounts, which can introduce sampling bias and
missing edges. These factors can affect both community
detection and seed ranking. Results from OneCoin may also not
generalize to other scam domains. Future work should
incorporate temporal diffusion (time-sliced graphs), explicit
competitive/containment objectives [5], robustness checks over
alternative probability parameterizations, and hybrid models
that combine network structure with content/account-level
signals (e.g., credibility and bot likelihood).

V. CONCLUSION

This study presented a diffusion-based, community-aware
influence-maximization workflow to support the suppression of
scam-related misinformation in the OneCoin Twitter
engagement ecosystem. Using a directed interaction graph of
5,415 accounts and 6,117 engagement edges, we evaluated six
seed-selection strategies under IC and LT diffusion, using the
weighted-cascade parameterization [4]. CELF achieved the
largest expected spread (e.g., ~1620.9 under LT and =1597.9
under IC at k=30), butrequired the most computation (<1544 s
under LT; =35.87 s under IC), reflecting the cost of repeated
marginal-gain evaluation despite lazy acceleration [6]. RIS
delivered a strong near-greedy alternative with substantially
lower runtime, consistent with RR-set sampling guarantees and
prior evidence of practical efficiency [7], [22].

Integrating Leiden community detection and proportional
seed allocation shifted seed composition toward broader sub-
community coverage, which is operationally meaningful for
scam ecosystems sustained by multiple semi-separated
recruitment clusters [8]. At larger budgets, community-aware
allocation can also improve diffusion reach for methods that
otherwise over-concentrate seeds (e.g., k-core and RIS under
LT). Overall, the results provide actionable guidance for
mitigation planning: greedy-quality methods maximize reach
when offline computation is acceptable, while RIS and simple
degree-based heuristics offer deployable trade-offs between
spread and runtime for scalable, repeatedly updated intervention
workflows.

Future research should move beyond static-graph IC/LT
simulations by incorporating temporal dynamics, competitive
influence-blocking objectives, and sensitivity analyses over
propagation parameters, while enriching network signals with
content and account-level features to better represent real
platform diffusion and enforcement constraints.
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