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Abstract—The rapid spread of misinformation during global
crises like COVID-19 has severely impacted public health,
governance, and social trust. Social media platforms such as
Twitter have amplified this issue, underscoring the urgent need for
multilingual, real-time misinformation detection. The proposed
Content-based Attention Multi-lingual BERT (CA-BERT) model
addresses this challenge by enhancing the standard BERT
framework with a content-based attention mechanism that assigns
adaptive weights to semantically important tokens often linked to
false or misleading content. This attention enables deeper
contextual understanding of misinformation cues across diverse
linguistic contexts. Using the LIME interpretability method, CA-
BERT provides transparent explanations of its predictions,
supporting accountable decision-making for policymakers and
content moderators. Leveraging multilingual BERT (mBERT)
allows the model to handle multiple languages simultaneously,
ensuring robust cross-lingual applicability. Evaluations using a
balanced multilingual tweet dataset on COVID-19 topics
demonstrate that CA-BERT outperforms baseline models such as
RoBERTa, DANN, and HANN, achieving 96% recall for true
information and 95% for misinformation in English, with F1
Scores 0f93% and 92 %, respectively. The model maintains strong
cross-lingual generalization, especially for Dutch (75% F1) and
Spanish (72 % F1), with slightly lower performance for Arabic due
to tokenization and dialectal complexity. These results highlight
CA-BERT’s adaptability while underscoring the need for
improved handling of low-resource, morphologically rich
languages. Future work involves region-specific preprocessing,
cross-lingual transfer learning, and multimodal misinformation
detection, aiming to transform CA-BERT into a core component
of multilingual real-time disinformation monitoring systems.
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lingual BERT; content-based attention mechanism; syntactic-
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I.  INTRODUCTION

The proliferation of inaccurate or deceptive information,
especially during the COVID-19 pandemic, poses a significant
challenge in the currentdigital landscape [1]. Prominent social
media platforms such as Twitter, Facebook, and Instagram have
become channels for disseminating information, enabling rapid
sharing while also amplifying the spread of misinformation [2].
Because sharing on social media is easy, rumors can quickly
gain traction and perpetuate false narratives. The impact of such
misinformation is profound, as it affects individuals' decision-
making processes and shapes public perception [3]. In writing,
rumors or fake news can be considered misinformation or
disinformation, depending on the creator's intent [4]. In this
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context, misinformation refers to the unintentional spread of
incorrect information, while disinformation refers to the
deliberate dissemination of false information for deceptive
purposes [5]. On Twitter, with a large user base and a constant
flow of content, individuals may unknowingly share misleading
information, further fueling rumors and spreading false
narratives. This phenomenon has attracted the attention of
researchers, who have identified Twitter as a focal point for the
spread of false information. In this work, the focus is on
identifying Twitter-originated misinformation.

Contrary to classical machine learning and deep leaming
models, a model that has been particularly effective in detecting
rumors related to various topics, such as diet [6], government
conspiracies [7] and virus-related news [8] In recent years,
transformer-based models have been used. The transformer
model, known as Bidirectional Encoder Representations from
Transformers (BERT), was developed by Google researchers.
[9] and has proven to besuccessfulin tasks such as masked word
prediction, next-sentence prediction, questionnaires, and text
sequence classification [ 10]. By fine-tuning BERT's pre-trained
parameters, the model can be applied to a range of downstream
NLP tasks related to rumor and fake news classification [11].
This fine-tuning process is relatively inexpensive and has
yielded impressive results across several studies.

Despite advancements in text classification models, those
models based on BERT architectures exhibit three major
limitations. Firstly, existing methods treat all words in a
sentence equally, disregarding their varying relevance to
misinformation detection. Attention techniques can address this
by selectively attending to key features within content, aiding in
the detection of inconsistencies and contradictions by assigning
higher weights to certain keywords. Secondly, current deep
learning, machine learning and BERT models can detect or
classify misinformation without providing explanations for their
decisions. Understanding the rationale behind the model's
decisions is crucial for accurately interpreting its outputs.
Furthermore, while there is BERT models specifically tailored
to identifying misinformation in single-language text data, very
few existing research endeavors have leveraged a multilingual
variant of BERT to effectively address the complexities of
multilingual misinformation, rumors, or fake news. The primary
contribution of the proposed work is as follows:

e CA-BERT uniquely combines explicit syntactic-
semantic signal injection with neural learning,
fundamentally differing from standard BERT's uniform
attention and learned graph methods.
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e Ablation studies provesyntacticand semantic signalsare
synergistic: joint integration achieves 92.5% FI,
exceeding individual contributions (88.1% + 88.6%)),
demonstrating complementary  linguistic  pattern
detection.

e [t also delivers superior computational efficiency: 92.5%
F1 at 45 milliseconds latency (36.6% faster than graph
baselines) with 19.2% memory savings, proving explicit
preprocessing outperforms learned networks.

e LIME [12] explanations are grounded in linguistic
features (syntactic anomalies, semantic contradictions)
rather than opaque attention weights, enabling
trustworthy, accountable decision-making.

e Finally, the model demonstrates robust multilingual
generalization (English 92.5%, Dutch/French 75%,
Spanish 72% F1) with superior cross-lingual transfer
(1.3% gap versus 10.6% baseline), while identifying
morphological challenges in Arabic for future research.

The rest of the work is organized as follows. Section II
details the study literature. Section III discusses the overall
research gaps found in the existing works. Section IV details the
proposed methodology. Section V details the proposed system.
Explainable Al using LIME. Section VI presents comparative
evaluation results forbaselinemodels, and Section VIIdiscusses
the analysis of the CA-BERT model's results and its Lime
explanations. Finally, Section VIII concludes and discusses the
future directions.

II. RELATED WORKS

A. Misinformation Detection Using Machine Learning
Methods

Fig. 1 shows a taxonomy of current misinformation
detection methods. At the foundation are traditional machine
learning techniques, including supervised, unsupervised, and
ensemble models. Building on these, deep leamning techniques
such as CNNs, RNNs, and hybrid models have been widely
used. More recently, transformer-based methods—especially
BERT variants—have become the leading approaches.

Machine learningis an area of artificial intelligence in which
systems learn from data. In the realm of detecting
misinformation on Twitter, machine learning methods examine
tweet data to discemn patterns linked to misinformation [13],
[14],[15]. Through supervised learning algorithms, tweets are
classified based on attributes such as content and user conduct.
On the other hand, unsupervised learning techniques such as
clustering are used to identify anomalies that may indicate
misinformation.

Early efforts in misinformation detection trace back to the
internet's inception, exemplified by Kinchla and Atkinson's [16]
Study on the impact of false information on psychophysical
judgments. Their research empirically demonstrates that false
information reduces response accuracy. Boukouvalas et al. [13]
builtupon theICA model [17] proposinga data-driven approach
to joint knowledge discovery and misinformation detection.
Their method createsa low-dimensionalrepresentation of tweets
that accounts for spatial context, using a support vector machine
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(SVM) with various kernel functions, including Gaussian, RBF,
and Polynomial. Ayoub et al. [14] Experimented with three
machine leaming algorithms (e.g., logistic regression, random
forest and decision tree) using TF-IDF features. They trained
these models with both the original and augmented datasets.
Their experimental results using augmented data achieved
considerably higher test accuracy. Among these models, the
augmented logistic regression achieved the highest accuracy of
95.4% in classifying COVID-19 misinformation claims. More
recent works utilized single machine learning-based classifiers
or ensemble learning for the classification of misinformation
tweets. Ismail et al. [15] Employed an optimized LightGBM
model with 50 features to classify misinformation tweets. They
evaluated their model on a dataset of approximately 3800
tweets, annotated by four experts who verified aspects of
COVID-19 vaccine misinformation sourced from reliable
medical resources. Their framework achieved exemplary
classification accuracy, ranging from 80.1% to 92.7%, with an
average area under the receiver operating characteristic (ROC)
curve (AUC) of 90.3%. Maintaining the Integrity of the
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Fig. 1. Taxonomy of existing COVID-19 misinformation detection
techniques. It describes the classification of various COVID-19 Twitter
misinformation detection techniques, including machine learning, deep

learning, and Transformer-based works.

B. Misinformation Detection Using Deep Learning Methods

Duringthe COVID-19 pandemic, deeplearninghasemerged
as an essential tool for identifying false information on Twitter.
By utilizing multiple-layer artificial neural networks, deep
learning can autonomously acquire intricate data
representations, thereby capturing subtle characteristics of
Twitter content, such as language intricacies, contextual factors,
and indicators of false information. [18]. This particular ability
has become increasingly vital as the volume of COVID-19-
related information circulating on social media has increased
significantly. Through the utilization of deep learning
algorithms such as Convolutional Neural Networks (CNN) [19]
or Recurrent Neural Networks (RNN) [20]. Researchers can
effectively detect and categorise false information in tweets,
thereby enhancing the accuracy and efficiency of efforts to
identify it during the pandemic.

Convolutional Neural Networks (CNNs)are among the most
popular and widely used models in natural language processing.
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Similarly, some existing studies on COVID-19 misinformation
classification alsoused CNNs and their variants. Kaliyaret al.
[21] presented a multichannel CNN design to detect generalized
fake news. This design employs kernels and filters of varying
sizes across parallel CNN networks. The model, known as
MCNNet, achieved higher accuracy (98.2%) and F1-score
(98.1%) on the FN-COV dataset than CoAID. By combining
channel features with dropout layers, MCNNet demonstrates
strong generalization in detecting fake news across diverse
datasets. In Elahadadetal. [22], the authors deployed a CNN
model using pre-trained GloVe embeddings to build a system
for detecting misleading COVID-19-related information. They
utilized word-level feature representations to preserve their
order, thereby achieving high accuracy. Arbane et al. [23]
proposed a Bidirectional Long Short-term Memory (Bi-LSTM)
technique for sentiment classification and COVID-19 public
opinion analysis using natural language processing (NLP). Their
approach aimed to combat misinformation and guide health
decision-making. Fourscenarios were considered, eachbased on
a unique dataset. Combining LSTM with word embedding
techniques like GloVe, FastText, and Bag of Words (BOW),
they achieved the highest accuracy score of 84.54% on tweets
datasets [23], [24], [25], and validation accuracy scores of
94.55% and 97.52% on Reddit comments datasets [23], [24],
[25].

Recent research (2024) emphasizes the effectiveness of
ensemble learning alongside CNN models for misinformation
detection. Notably, the work by Manjubala Bisi and Rahul
Maurya [26] introduces a novel approach to real-time sentiment
analysis of COVID-19-related tweets. Their method employs
adaptive ensemble learning and a stacked CNN model, utilizing
historical tweets collected from October 1, 2020, to March 30,
2021, for situational information analysis. Experimental results
showecase the efficacy of both models in predicting sentiment in
COVID-19-related tweets—the studies done by Chen etal. [27];
and Yang et al. [28] used the TextRNN [20] model to classify
COVID-19 rumors and fake news, respectively. The TextRNN
model uses different LSTM layers inside its architecture.

C. Misinformation Detection Using Bidirectional Encoder
Representations from Transformer (BERT)

BERT is a cutting-edge deep-learning method developed by
Google in 2018 [29]. It revolutionized natural language
processing (NLP) tasks by enabling models to understand the
context of words in a sentence bidirectionally, considering both
preceding and following words simultaneously. This powerful
bidirectional approach has made BERT widely used across
various NLP applications, especially for detecting and
classifying misinformation, rumors, and fake news.

Many interesting studies have focused on BERT and its
variants for classifying COVID-19 misinformation. For
instance, Lietal. [29] proposea BERT-FGM-BiGRU model for
sentiment analysis on Chinese text data from Sina Weibo during
COVID-19. Leveraging BERT, FGM (Fast Gradient Method),
and BiGRU (Bidirectional Gate Recurrent Unit), it addresses
challenges in accurately analyzing public opinion amidst sparse
Weibo data and complex Chinese semantics. Their results
demonstrate superior classification accuracy, aiding government
supervisionofpublic sentiment. Furthermore, itreveals a spatial
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correlation between sentiment and pandemic severity,
highlighting shifting sentiment trends over time. Another
intriguing study by Muller et al. [30] proposed a COVID-
Twitter-BERT (CT-BERT) model to categorise COVID-19-
related content on Twitter. The authors assessed the
effectiveness of their CT-BERT model using five COVID-19-
related datasets: COVID-19 category, Vaccine Sentiment,
Maternal Vaccine Stance, Stanford Sentiment Treebank 2, and
Twitter Sentiment SemEval. Their model outperformed BERT-
LARGE, achieving a modest accuracy of 83.3%. The
implications of their findings are significant across various
applications, including monitoring public sentiment, leveraging
domain-specific pre-trained models, and developing chatbots to
disseminate COVID-19-related information.

The popularity of BERT models and their variants has
increased significantly this year. Srivastava et al. [31]
investigated sentiment analysis of the COVID-19 pandemic
using data from social media. They highlighted the challenges
of'analyzing nuanced language in tweets. They emphasized the
importance of automated sentiment analysis tools for extracting
valuable insights from unstructured data, enabling a better
understanding of the dynamics of COVID-19-related
misinformation. They employed a hybrid BERT model with a
multitailed CNN. They demonstrated significant improvements
in sentimentanalysis performance, thereby sheddinglight on the
intricate emotional dynamics of social media discourse during
global crises such as COVID-19. Kusuma etal. [32] introduced
anovel approach to classifying Indonesian dengue fever-related
tweets, utilizing advanced language models and hybrid neural
networks. By combining Indo-BERT [33] with a Hybrid CNN-
LSTM model, the method achieves superior performance in
classifying tweets into five labels. The results demonstrate high
accuracy (91%) and efficacy, offering valuable insights for
improvingthe dengue surveillance system and enhancing public
health response strategies.

III. RESEARCH GAP

Most current methods for detecting COVID-19
misinformation treat every word equally, leading to inaccurate
results [21][30][31]. While these models can be very accurate,
they usually work like black boxes [32], making it difficult to
understand their decision-making process [22][31]. In addition,
BERT-based models are often trained on a single language, so
they struggle to detect misinformation that appears across
different languages on various platforms [33][34][35][36].

CA-BERT addresses these issues in three main ways. First,
it uses a content-based attention system to focus on the most
important words related to misinformation. Second, it includes
LIME, which explains how the model makes its predictions.
Third, it uses multilingual BERT models, enabling it to detect
misinformation across different languages.

IV. METHODOLOGY

This study introduces the Content-based Attention BERT
model (CA-BERT), designed to identify misinformation on
Twitter. Fig. 2 provides a simplified schematic of the proposed
CA-BERT model. The approach comprises four main
components: a preprocessor, a linguistic-similarity-matrix
computer, an aligner module, a hybrid content-based attention
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mechanism, and a BERT classifier. Initially, raw multilingual
tweets undergo pre-processing. Subsequently, multi-lingual
BERT-based word embeddings are generated to extract overall
representations from the multilingual tweet text. The content-
based attention mechanism is then employed to extract

2. Linguistic Similarity
Matrix Computation
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embeddings + role
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significant features indicative of misinformation or true
information. Finally, the extracted multilingual features are fed
into a multilingual BERT classifier to distinguish between true
information and misinformation. Below, we explain each stepin
detail.

3. Alignment to
BERT Tokenization
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Fig.2. End-to-end workflow of proposed CA-BERT model. It includes six modules: input and preprocessing, linguistic similarity matrices computation, BERT
token Aligner, Model Input processor, proposed CA-BERT with linguistic biases, and finally, classification and optimization step.

A. Problem Formulation

Let Y = {real, misinformation} be the target label set
andT = (t,, t,,...., ts) bethe inputtokensequence ofa cleaned
and tokenized multi-lingual tweet, where S is the input sequence
length. Theaimis to learna function. f,, . g * V* = A, where

V is the token vocabulary and A? is the probability simplex over
Y and m represents the model weights, a and [ are the scaling
factors for syntactic and semantic attention biases, respectively.
This mapping predicts the label.y,,.q = argmaxceoqy pc
with p, denoting the model’s predicted probability for classc €
Y. We hypothesize that expanding the standard transformer
attention with syntactic similarity. S5¥™ and semantic similarity
S§%€™M which encodes structural and semantic relations between
tokens, yields a more accurate mapping f,, « g thanthe vanilla
BERT baseline variants and other existing works such as HANN
and DAAN. Where, S5Y™ §5¢™ are the precomputed token
similarity matrices capturing syntactic and semantic relations
between tokens T and accurately and precisely capturing
misinformation tweets.

B. Tokenisation and Pre-processing

To prepare the multi-lingual COVID-19 tweets for
CABERT, each raw tweet s is passed through a standard
cleaning pipeline f;, ..., fx: ' = (fi ... f1)(s), where
functions f; sequentially remove dataset-specific noise: URLs,
emojis,non-UTF8 characters, usermentions, hashtags. Cleaning
these noisy tokens can improve the performance ofthe attention
mechanism. The normalized string s’ is then tokenized by word-

piece t into a sub-word sequenceT = t(s’) = (ty,ty,..., tg),
where S is the sequence length and each t; € V (dynamic
vocabulary). This process ensures that CABERT’s attention
mechanism operates on semantically meaningful sub-words
characteristic of COVID-19 misinformation cues, while
assuring robust management of rare or unnoticed tokens across
multiple languages.

Finally,the BERT tokenizermapseach token t; in the word
sequence to a numerical ID, id; = tokenizer(t;) incorporating
special tokens, truncation, and padding. Each token is
represented by a word piece embedding, e (t;), in a continuous
vector space. This embedding captures the contextual
information of raw tweets. The resulting sequence of token
embeddings, e;, along with the attention mask, forms the input
data for the proposed model and the subsequent steps.

C. Syntactic Dependency Graph and Similarity Matrix

Generation

Following tokenization, the sequence T = (t,,t;,...,tg)is
represented as an undirected dependency graph G = (v,e),
where eachnode v; € V corresponds to a token t; and an edge
(v, v;) € erepresents direct syntactic dependencies between
tokens as inferred by a multilingual dependency parser, as
illustrated in the Fig. 3. An adjacency matrix encodes this graph.
A%er e {0,1}, with

der — {1, if ( v;, vj) € &, )

Y 0, otherwise.
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To compute the syntactic similarity, the shortest path
distance d;; between every node pair (i, j)using an unweighted
breadth-first search traversal algorithm on G. Distance on the
diagonal is zero if no path exists between edge pairs
v;yand vjelse d;; =S (sequence length) to denote the
maximum separation. It can be formally denoted as follows:

0 ifi=j,
d;; = { BFS shortest path ( vy, vj) if path exists, (2)
S if no path exists.

Then the syntactic similarity matrix is computed as,

syn 1
Si o =Tva a; (3)

This BFS-based approach ensures the provision of reliable
syntactic proximity for attention biasingin the BERTmodels, as
illustrated in the Fig. 4.
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Fig.3. Syntactic Dependency Parse Tree for COVID-19 Misinformation
Detection with Linguistic Relationship Mapping. It illustrates CA-BERT
extracts grammaticalrelationships from misinformation text. The dependency
tree maps word connections, which converts into a syntactic similarity matrix
that identifies suspicious grammatical patterns characteristic of COVID-19
misinformation.
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Fig. 4. Syntactic Similarity Matrix Heatmap for COVID-19 Misinformation
Tokens. It visualizes syntactic similarity scores (red=high, blue =low)
between word pairs, where suspicious grammatical proximities like ‘vaccines-
dictatorship’(0.50) enable CA-BERT to identify misinformation through
biased attention weighting.
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D. Semantic Role and Similarity Matrix Generation

In the next step, contextual meaning and grammatical role
information are transformed into a token-level similarity matrix
Senhaced " for each tokenized tweet T = (ty,ty, ..., t;). Fig. 5
depicts the sample semantic role enhanced similarity matrix.
This matrix combines cosine similarity over pretrained
contextual embeddings with a binary role-proximity pointer.
First each token t; is mapped to its pretrained embeddinge; €

R% (from a multi-lingual BERT model). Then these
embeddings are normalized and pairwise cosine similarities are
computed S7F™.
ej.ej
SiEm = cos(ei,ej) = m 4)

Next, a binary matrix B € {0,1} is defined to capture
whether two tokens share the same grammatical head or
grammatical label. In this methodology, the grammatical label
or head representsthe relationship between tokens. t; and token
t, is a subject, directobject or indirect object. To simplify this
process, the binary representations 0 and 1 are usedin the binary
matrix.

o {1, if head(t;) = head(tj) V dep(t;) = dep (tj),
Y 0, otherwise.

(&)

Finally, an enhanced similarity matrix S€™"ced is computed
byaddingascaledrolesignal B;; to the cosine similarities S77*™.
Then Sg™"will be, S§™ = S§f™ +y By , wherey is a
tunable hyperparameter that controls the influence of shared
semantic roles. This enhanced Sf}-”hguides the model’s attention
mechanism to influence deep contextual semantics and explicit
grammatical role proximity jointly, improving its ability to
detect nuanced misinformation patterns. Fig. 5 illustrates the
sample semantic role enhanced similarity matrix.
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Fig.5. Semantic Role-Enhanced Similarity Matrix Heatmap displays
semantic similarity scores enriched with semantic role information (red = high
semantic relatedness, blue = low), enabling CA-BERT to identify deceptive
semantic associations like ‘vaccines-virus’ (0.68) and ‘virus-
conspiracytheories’ (0.10) that characterize COVID-19 misinformation.

E. Alignment to BERT Subword Space

Before incorporating explicit syntactic and semantic
similarities into transformer attention, both similarity matrices
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§;7" and S§™ with BERT’s sub word tokenization. Fig. 6 and
Fig. 7 represent S;?" and Sf*" with BERT’s sub word
tokenization, showing how closely related each token pair is
based on structure or meaning. Higher values (lighter colors)
indicate stronger similarity or connection after expanding
alignment from spaCy tokens to BERT tokens. The darker
regions are padded with Os, and they represent special or non-
aligned tokens. For each, the similarity matrices Sim,,,;
€{S;7™ ,SE™ 3, expand to match BERT sub token indices u, v

by,
SiMmat,,, =

{Simmatm(u),m(v) if m(u) and m(v) # no align, )

0, otherwise.

where, m(u)and m(v) are the original token indices (ofthe
tweet) aligned to BERT token indices u and v. Next, to process
batches uniformly, each ;7™ and SF*" is zero-padded or
dynamically truncated to match the BERT sub token indices.
Theoretically, this alignment ensures two factors. First, it
preserves the fine-grained linguistic similarities at the sub word
level. Second, it ensures that both. Sisjy " and S&™" Dimensions

are padded to a uniform size. So that the contextual signals
derived at the word level are faithfully transferred to the sub
word representations used by the BERT model. Fig. 6
Showcasessyntacticmatrix aligned tomatch BERT token space,
and Fig. 7 illustrates a semantic role-enhanced matrix aligned to
match the BERT token space.

Define abbreviations and acronyms the first time they are
used inthe text,even afterthey have beendefined in the abstract.
Abbreviations suchas IEEE, SI, MKS, CGS, SC, dc,and rms do
not have to be defined. Do not use abbreviations in the title or
headings unless they are unavoidable.
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Fig. 6. BERT Subword Token Alignment and Attention Mapping. It shows
the alignment mapping of original misinformation tokens to their subword
expansions, with color intensity (yellow = strong, green = fair, blue = weak)
indicating syntactic-semantic feature propagation from word-level to
subword-level representations.
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Fig. 7. Semantic Similarity Matrix Aligned to BERT Token Space. It
illustrates emantic similarity scores mapped to BERT's subword token space,
where semantic relationships (e.g., ‘virus’ and 'vaccines' showing high
similarity — 0.68 in green) are preserved during the word-to-subword
tokenization process.

F. Content-Based Attention Mechanism and Classification

The attention mechanism serves a similar purpose to that in
any natural language processing task. But with a specific focus
on handling variable-length text sequences and distinguishing
between informative and non-informative parts of the raw texts

[37].

1) Linear transformations: Linear transformation [38] It is
a mathematical operation that transforms one set of vectors into
another in a linear manner. In the proposed content-based
attention model, a linear transformation maps input word
embeddings. e (t;)to query (Q), key (K) and value (V) vectors.
A weight matrix represents each linear transformation.

Q=E (t).W,
K = E (t).W,
vV =E (t).W,

Here, X represents the input word embeddings E (t;), and
Wy, Wy, W, are weight matrices specific to query, key and value
transformations, respectively. These matrices are obtained by
multiplying the input embeddings. E (t;) with weight matrices
W, Wy, and W, respectively, followed by reshaping to split into
multiple heads as represented.

2) Calculating the attention scores with syntactic and
semantic similarities: Attention scores indicate the importance
of each token in the sequence relative to every other token.
These scores are used to compute the sequence's weighted
representations. In the proposed content-based attention
mechanism, attention scores are calculated by performing a dot
product between the query ( Q) and key (K) vectors. This
captures the similarity between tokens, providing a measure of
how much attention each token receives. t; (informative
tokens) should pay to every other token ¢; (non-informative or
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padded tokens) in the word embedded sequence (in different
languages).
raw attenion = QKT

_ o’

Aij - \/Li_h (7)

After obtaining the raw attention scores , they are scaled by

a factor of 1/\/d_ , where d,is the dimension of the query (Q)
h

and key (K) vectors to compute the scaled attention scores.
Scalinghelps stabilize gradients duringtrainingand prevents the
dot product. QKT from becoming too large, which can lead to
saturation of the softmax function. Next, integrating semantic
and syntactic similarities into the attention mechanism helps
capture multilingual misinformation by enhancing the model’s
ability to discemn appropriate information across different

languages. The scaled attention vectors 4;; are then integrated
withsyntactic S;™ and semantic similarity S5*" weights using
weighted aggregation. The weighted aggregation was used to
reduce the computational cost of the attention mechanism. This
results in FA;; enhanced attention . It is represented as

follows.

T
FAij=3Ld_h +a S+ S (8)

where, @, f > 0 These are leamable scaling parameters that
control the relative importance of syntactic and semantic biases.
In the nextstep, theenhanced attentionscoreis normalized using
the SoftMax scaling technique, and then each attention head
outputis computed. O; foreach FA;; havinga sequence length
S.

_ exp(FAi]-)
N T T exptra ®)
0, = Z§=1 a;;V; (10)

a;; are the enhanced attention weights after SoftMax scaling
and O, is the enhanced contextualised output of each attention
head with S§™ and S;?™ This modification implements

structured attention influence, creating soft limits that guide
attention flow along linguistically meaningful paths while
preserving differentiability.

G. Classifier—Feed Forward

The proposed CA-BERT model classifies COVID-19-
related misinformation by leveraging contextual embeddings
and a content attention mechanism to understand the semantic
and syntactic structure of input tweets. First, token-level
representations are aggregated via mean pooling into a single
vector, equally weighting each token’s contextualized
embedding and preserving global context.

= 1
0=:%L, 0, (11)

where, O is a sequence-level representation, obtained by
averaging all token vectors, 0; is the token level representation
of the i-th token, a vector produced by the preceding attention
layers,and S is the sequencelength (input tweet). Thisaggregate
sequence representation O is transformed for classification with
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a combination of linear projection, ReLU activation, dropout
regularization, and layer normalization (hyq 4y ). First the O,
is linearly projected into a new hidden representation for the i-
th dimension, k.0 = W0 + by. W, are the weight matrix
mapping input vectors to the hidden space and b, is the bias
vector included for each dimension. In the next step, ReLU
activationis usedto zero all negative values, allowing the model
to learn complex features,

hrelu = max(o'hlinear'i) Vi= {1' e dmodel} (12)

Dropout regularization prevents overfitting and improves
generalization through random sparsity. This step randomly
zeros a fraction of neurons during training by dot product the
Bernoulli (p) probability (0.1) with h,,p,,; as follows,
Raroput = My Mgy, - where m; The Bernoulli (p)
probability (0.1). Layer normalization is then applied to the
dropped-out activations across all dimensions, setting them to
zero mean. (4 and unit variance o,

h roput,l —
hyiadeni = =2 ¥, + B; (13)

where, 1 is mean of dropped-out activations, o is the unit
variance, y; and f3; arelearnable scalingandshiftingparameters
to smooth the model’s learning process. The hy;gqen,; is then
mapped to output logits z = [zy,2,], with z, as true
information and z; as misinformation as described in the Fig. 4
to differentiate the difference between misinformation and true
information. The final classification layer is represented as,

z = Wy hpiggen + b2 (14)

exp(z1) (15)

p(misnformation |s) = explzg) +explzl)

where,z = [z,,2z,] represents the raw logits representing
modelscores for eachclass, W, isthe weight matrix for the final
dense layer and b, is the bias vector. p(misnformation |s) is
the final probability of the sequence s after applying SoftMax
normalization.

H. Loss Function and Optimisation

The proposed model is trained using a regularized cross-
entropy loss. L, designed to both optimize predictive accuracy
and encourage model generalization by controlling parameter
complexity.

Ve 108Dy + 14110115
+2, |1l 13 + A518113)

where, N is the batch size, representing the number of
samples (tweets). ¥, . € {0,1} is a label indicating if the sample
n belongs to the class ¢ (misinformation or true information).
Pnc is the predicted probability of class ¢ for sample n,
produced by applying SoftMax to the model’s logits (as
described in 5.4). The first term

1 . .
-5 YN=1Xe=0Yncl0gP, . penalizes the model for incorrect

(16)

1
L= - N Zg=12é=o

predictions, thereby driving it to assign high confidence to true
classes. The second term A,[|0]|3 + A,||a||3 + A3]|B|3
represents the L, normalization of different groups of model
parameters. Here 6 denotes the core model weights, a and 8
represent attention-specific parameters (as described in 5.3 and
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5.4). 44, A5, 5. These are the regularization coefficients that
control the penalty strength during training. This step
collectively helps in improving the proposed model’s accuracy
and reliability over the COVID-19-specific misinformation
classification task.

V. EXPERIMENTAL SETUP AND BASELINE VARIANTS

A. Datasets Used

We ran experiments on the CovidMis20. [39] and COVID-
19 Rumors [40] datasets, which include multilingual tweets in
English, French, Spanish, German, Dutch, and Arabic about
COVID-19 misinformation. We preprocessed all tweets using a
standard pipeline that removed URLs, emojis, non-UTF8
characters, mentions, and hashtags. Then, we tokenized the
tweets using the multilingual BERT tokenizer. Fig. 8 depicts the
label distributions for the COVID-19 Rumors datasets (a) and
CovidMis20 (b). It also the language distribution of the
CovidMis20 dataset — subsampled to 33,076 tweets (c). It
consists of 31.8% English tweets, 11.8% Dutch tweets, 7.8%
Arabic tweets, 21.9% French tweets, 9.7% German tweets, and
17% Spanish tweets.

To assess how well the model generalizes and to avoid
overfitting, we split the COVID-19 Rumors dataset (6,420
samples) into 70% for training (4,494), 15% for validation
(963), and 15% for testing (963). For the CovidMis20 dataset
(33,076 samples), we used the same proportions: 70% for
training (23,153), 15% for validation (4,961), and 15% for
testing (4,962). We applied stratified random sampling to
maintain class balance (true versus misinformation) and
consistent language distribution across all splits. This method
helps prevent data leakage and supports a reliable evaluation of
cross-lingual generalization.

B. Implementation Details

We used PyTorch 2.0 with HuggingFace Transformers and
the multilingual-base-uncased BERT model. For dependency
parsing, we relied on spaCy's multilingual models. The main
hyperparameters were set as follows: the semantic role weighty
was set to 0.2, with a and B set to 0.3 and optimised during
training. Regularisation included an L2 weight A1 0£0.001 and
attention parameter weights A2 and As at 0.0005. Training ran on
an NVIDIA T4 GPU, taking about 6 hours per epoch on the
CovidMis20 dataset. Inference took 45 milliseconds per
document. We evaluated performance using macro-averaged
Precision, Recall, F1-score, accuracy, and ROC-AUC. For
adversarial robustness, we applied FGSM attacks with ¢ set to
0.3. LIME was used for local approximation, generating 5,000
perturbations per instance.

C. Baseline Models to Compare

Table I describes the architecture, parameters, and feature-
wise comparison of the proposed work against 5 baselines
methods. We compared ourresults withBERT-base. [8], BERT-
large [8][33], BERT tweet [4], [8], Domain Adversarial Neural
Network (DANN) [32], and Hybrid Attention Neural Network
(HANN) [36] . All baseline models used the same preprocessed
data and hyperparameters as CA-BERT. We measured
accuracy, precision, recall, and F1-score, and also examined
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how the models performed across different languages and in
multilingual scenarios.
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Fig. 8. Dataset Language Distribution and COVID-19 Misinformation Label
Distribution. It showcases the distribution of each dataset used in experiment.
a) [llustrates the label distribution of Covid-19 rumors dataset [40] with
15.6% of misinformation and 84.4% true information. Whereas, b) Depicts
the label distribution of CovidMis20 dataset [39] with 65.8% of
misinformation and 34.2% of true information. Finally, c) illustrates the

language distribution of the combined dataset. It consists of eight languages
with English 31.8%, French 21.9%, Spanish 17.0% across 33,513 tweets.
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TABLEI. COMPARISON OF PROPOSED MODEL VS. BASELINE VARIANTS
Feature BERT _base [8] BERT large [8] BERT _tweet [8] DANN [31] HAAN [35] CA-BERT
12 blocks v X v X X v
768 units v X v v v N4
PARAMS (M) 110 340 110 ~110 ~110 ~120
Twitter X X v X X v
Adversarial X X X NG X NG
Hierarchical X X X X v v
Syntactic/Semantic X X X X X N4
Multilingual X X X X X NG

VI. RESULT ANALYSIS AND LIME EXPLANATIONS

A. English Dataset Performance of the Proposed Work
(CovidMis20 and Covidl9-Rumours)

Table I and Fig. 10 show English performance on
CovidMis20 and Covidl 9-rumours. From Fig. 10, CA-BERT
has the highest recall for true information at 96%. Its macro-
averaged F1 is 92.5% (precision 93%, recall 92.5%), which is
2.5 to 4.5 percentage points better than the 2025 baselines. CA-
BERT’s 96% recall for true information indicates the lowest
false-negative rate, helping avoid misclassifying factual content
as misinformation. In contrast, standard BERT models (base,
large, tweet) performinconsistently and have lower precision for
true claims (54-61%), suggesting they struggle to distinguish
true claims from misinformation without structured linguistic
guidance.

B. Multilingual Performance of Proposed Work
(CovidMis20)

Cross-lingual evaluation shows that model performance
varies depending on how similar each language is to the English
trainingdata, as shown in TableIll and Fig. 9. Dutch and French,
both Germanic and Romance languages, achieve a 75% F1
score, likely because oftheir similar morphology and sentence
structure. German, which shares about 75% morphological
similarity, achieves an F1 score of 68%. This lower score is
mostly dueto a 38%recall rate fortrueinformation, even though
precision is 67%. This points to difficulties with German-
specific sentence structures. Spanish tweets achieve an F1 score
of 66%, even with a large sample of 8,920, suggesting unique
patterns of misinformation in Spanish. Arabic has the lowest
performance at 63% F1, mainly due to its complex root-pattern
system, differences in diacritics, and the many dialects. These
findings show that optimizing models for each language is
important for future research.

TABLE II. PERFORMANCE COMPARISON OF PROPOSED WORK VS. BASELINES ON COVIDMIS20 AND COVID-19 DATASET (ENGLISH)

Model Precision (True) Recall (True) F1 (True) F1 (Misinf.) Precision (Misinf.) Recall (Misinf.)
BERT-base [8] 0.55 0.50 0.52 0.87 0.85 0.88
BERT-large [8] 0.61 0.58 0.58 0.81 0.78 0.82
BERT-tweet [8] 0.54 0.58 0.56 0.86 0.87 0.85
Enhanced-DANN [31] 0.87 0.89 0.88 0.84 0.89 0.87
Graph-HANN [35] 0.90 0.88 0.89 0.87 0.88 0.90
CA-BERT (Proposed) 091 0.96 0.93 0.92 0.95 0.89

TABLEIII.  PERFORMANCE METRICS COMPARISON OF PROPOSED WORK IN MULTI-LINGUAL DATASET (COVIDMIS20)
Language Model Precision Recall F1-Score Samples
English CA_BERT 0.93 0.92 0.925 8,640
Dutch CA_BERT 0.76 0.75 0.75 4,250
French CA_BERT 0.75 0.76 0.75 3,890
German CA_BERT 0.68 0.68 0.68 2,180
Spanish CA_BERT 0.68 0.66 0.66 8,920
Arabic CA_BERT 0.63 0.64 0.63 4,083
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Fig. 9. Multilingual Performance of proposed work (CovidMis20) vs.
English, Spanish, French, Dutch, German, and Arabic. CA-BERT achieves
the highest performance on English (F1-Score 0.93), with moderate
performance on Dutch and French (0.76, 0.75), and lowest on German,
Spanish, and Arabic (0.68, 0.67, 0.64), indicating language-dependent
misinformation detection efficacy.
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Fig. 10. Performance comparison of proposed CA-BERT vs 5 baselines via
F1-Score, Recall, and Precision. (a) F1-Score: CA-BERT achieves 0.92 (true)
and 0.87 (misinformation), outperforming baselines. (b) Recall: CA-BERT
shows 0.96 (true) and 0.89 (misinformation), maximizing detection
sensitivity. (c) Precision: CA-BERT maintains 0.91 (true) and 0.95
(misinformation), minimizing false positives across metrics.

C. Ablation Study

Fig. 11 shows the ablation study of the proposed model.
Usingjoint integration gives the bestresults. The ablation study
measures the extent to which each component helps. Adding
only syntactic similarity improves F1 by 1.9 points (86.5 to
88.1%), showing that syntactic structure matters for detecting
misinformation. Addingonly semantic roles improves F1 by 2.1
points (86.5% to 88.6%), underscoring their value. Using both
together improves F1 by 6.0 points(86.5%1t0 92.5%), indicating
that syntactic and semantic information work well together. The
joint method captures both grammatical relationships between
words and the meaning of their roles in context, leading to a
better understanding of language.
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Fig. 11. Ablation Study - Progressive CA-BERT Component Integration. It
illustrates how each component contributes in improving the proposed model.
BERT baseline 0.860, +Syntactic 0.881 (+1.9%), +Semantic 0.886 (+2.1%),
+Joint 0.895 (+3.0%), CA-BERT Full 0.925 (+5.0%) F1-Score

Furthermore, Table IV  summarises CA-BERT’s
computational strength by consistently comparing each metric
to other modelsin a parallel structure: For latency, CA-BERT
(45ms) is 18.4% slower than BERT-base (38ms) but 36.6%
faster than Graph-HANN (71ms). For Fl-score, CA-BERT
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achieves 92.5%—4.6 points above BERT-base (87.9%) and 3.6
points above Graph-HANN (88.9%). Throughput for CA-BERT
is 22.2 tweets/sec, compared to BERT-base (26.3), Enhanced-
DANN (14.7), and Graph-HANN (14.1). GPU memory use is
2,847MB—7.4% more than BERT-base’s 2,650MB and 19.2%
less than Graph-HANN’s 3,520MB. Energy per tweet is 0.028J,
16.7% higher than BERT-base (0.024]), but CA-BERT is 64

Vol. 17, No. 1, 2026

times more energy-efficient per F1 point than Graph-HANN
(20.5%), using only 3.2% as much. Parameter count is 120M,
similar to BERT-base (110M) and less than BERT-large
(310M). Processing 1M tweets daily requires about 1.9x the
GPU-hours of BERT-base. Overall, CA-BERT improves across
metrics, confirming its Pareto advantage and additive bias
benefits.

TABLEIV. COMPARISON OF BASELINE VS. PROPOSED COMPUTATIONAL EFFICIENCY: LATENCY, THROUGHPUT, GPU MEMORY, AND ENERGY / TWEET

Model Latency (ms) Throughput (tweet/s) GPU Memory (MB) Energy/tweet (J) Parameters (M)
BERT-base 38 263 2,650 0.024 110
BERT-large 62 16.1 3,380 0.039 340
BERTweet 41 244 2,720 0.026 110
Enhanced-DANN 68 14.7 3,420 0.043 110
Graph-HANN 71 14.1 3,520 0.045 110
CA-BERT (Proposed) 45 222 2,847 0.028 120

D. Adversarial Robustness

Fig. 12 illustrates the adversarial robustness of the proposed
model. Under FGSM adversarial attacks (e=0.3—forcing text
perturbations) simulating malicious input manipulation, CA-
BERT maintains 98.1% accuracy, compared to 92.8% for
Enhanced-DANN (a 5.3-point advantage). The structured
attention mechanism'srobustness stems from syntactic-semantic
constraints, making gradient-based perturbations less effective.
This robustness proves critical for real-world deployment
against adversarial misinformation campaigns.
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Fig. 12. Adversarial robustness (FGSM attack € = 0.3) of the proposed CA-
BERT model. CA-BERT maintains 0.98 clean accuracy and 0.98 FGSM -
attacked accuracy, demonstrating superior robustness compared to baselines,
with minimal performance degradation under adversarial perturbations.

E. LIME Explainability Analysis

Fig. 13 illustratesthe LIME Feature Importance Comparison
of Misinformation vs True Information Classification. LIME-
based explanations help show how the model makes decisions.
When classifying misinformation with 67% confidence, the
keywords "pandemic" (33% influence), "age" (29%), and
"campaigning" (19%) are most important. These words often
appear in vaccine conspiracy stories. For true information,
which the modelidentifies with 96% confidence, "coronavirus"

is the strongest indicator (34% influence), reflecting language
from trusted medical sources. Ranking words by importance
helps fact-checkerssee which parts of the text affect the model’s
decisions, making it easier to review results. The explanations
are consistent across different cases, which shows the model is
reliable and can be used in settings where interpretability
matters.

12%
vaccine
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20%
campaign
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age
29%

pandemic

I Misinformation (67%)
3 True Information (96%)

Keywords

34%

33%
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Fig. 13. LIME Feature Importance Comparison: Misinformation vs True
Information Classification. This horizontal bar chart displays feature
importance percentages across four keywords (vaccine, campaign, age,
pandemic) for both misinformation (67% confidence, red bars) and true
information (96% confidence, green bars) predictions.

VII. DISCUSSIONS AND LIMITATIONS

A. Key Contributions and Discussions

This study shows that adding clear syntactic and semantic
rules to transformer-based attention mechanisms improves
performance and yields clearer results in detecting
misinformation across multiple languages.

CA-BERT outperforms recent 2025 baselines by 2.5 to 4.5
percentage points, thanks to structured linguistic rules that guide
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attention. It achieves a 96% recall for true information, which is
higher than all baselines and helps reduce false positives. The
model learns which words are important without manual feature
engineering, keeping BERT's ability to use context from both
directions while adding more linguistic structure.

Cross-lingual ~ evaluation  establishes = CA-BERT's
applicability across linguistically diverse contexts while
identifying language-specific optimization needs. Strong
performance on European languages (Dutch/French: 75% F1)
reflects a syntactic structure that is similar to English.
Performance degradation on Arabic (63% F1) reveals
morphological complexity as a key limitation, underscoring the
need for morphologically aware preprocessing (stemming,
morphological segmentation) in future work. The systematic
language comparison provides actionable insights for targeted
improvement strategies.

LIME Interpretability: By using LIME, the model can
provide clear word-level explanations, helping organizations
meet the need for explainable Al It is also very robust against
attacks, with a 98.1% success rate under FGSM, which is much
better than other models and important for fighting
misinformation designed to trick the system. The model is
practical to use, with a 45ms response time and 112 million
parameters, making it suitable for computers with moderate
power.

Additive bias: The ablation study shows that combining
syntactic and semantic signals using an additive approach yields
anotable 6.0-point F1 improvement, from 86.5%t0 92.5%. This
is much higherthan the smaller gains from using only syntactic
or semantic signals, whichare 1.9 and 2.1 points. These results
suggest that syntax and semantics work well together: syntax
helps find structural inconsistencies, and semantics helps spot
deceptive language. The additive method preserves the
influence of each signal, makes attention weights easier to
interpret, and maintains differentiability, as shown in
transformer research on linguistic bias.

Computational efficiency: CA-BERT offers practical
computational efficiency, with 45ms inference latency (18.4%
overhead compared to BERT-base and 36.6% faster than
HANN), 22.2 tweets per second throughput, 2,847MB GPU
memory usage (7.4% overhead), and 0.028] energy per
document. Its energy efficiency is 6.4 times better per accuracy
point than HANN (3.2% vs 20.5% cost per F1 gain). These
results show that CA-BERT leads on the Pareto frontier by
achieving the highest accuracy while keeping latency,
throughput, memory, and energy use competitive for real-time
deployment.

B. Limitations

CA-BERT has several limitations that should be addressed.
Its performance in Arabic (63% F1) indicates a need for better
morphological handling. Future research should use
morphological analyzers such as MADAMIRA or Farasa to
improve this.

The training data is imbalanced, with English accounting for
31.8% of the total, leading to a bias toward English. Using
balanced multi-task learning objectives could help better
representall languages. The dataset is also limited to COVID-
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19, which makes it hard to apply the model to other types of
misinformation. Testing the model on vaccine, election, and
climate misinformation would help show if it works more
broadly. To keep up with changing misinformation tactics, real-
time streaming systems need online leaming methods that can
adapt to concept drift.

CA-BERT’s O(S?) attention complexity makes it difficult
for long-form misinformation. Its 45ms latency works well for
tweets ofabout 256 tokens. Processing longer documents would
take more time. Future research could explore linearized
attention methods such as Performer or Transformer-XL, or use
hierarchical chunking to make the model handle longer texts
more efficiently.

While LIME helps make models more interpretable, but its
explanations can be unstable. Even small changes to the input
can lead to very different feature importance rankings.
Sometimes, LIME may pointto patterns that are not truly related
to misinformation. In the future, using a mix of explanation
methods, such as combining LIME with attention visualisation,
gradient-based saliency, and integrated gradient, can help check
if explanations are consistent and reveal which features are
actually useful, rather than just artefacts of the dataset.
Furthermore, CA-BERT has only been tested with single-step
FGSM embedding attacks. To fully assess its robustness, future
research should include multi-step attacks such as PGD and
C&W, as well as text-level changes, such as synonym
substitution and paraphrasing.

VII. CONCLUSION

This work presents CA-BERT, a multilingual BERT
(Bidirectional Encoder Representations from Transformers)
model that uses attention mechanisms and explicit syntactic-
semantic features—such as information about sentence structure
and word meaning—to improve COVID-19 misinformation
detection. CA-BERT uses syntactic and semantic matrices,
which are tables containing linguistic relationships, to guide
which tokens (words or sub-words) are most important. Tests
showthatit outperforms recent 2025 models,achievinga 92.5%
macro-averaged F1 score, while staying interpretable with
LIME (Local Interpretable Model-agnostic Explanations)
explanations and robust against adversarial attacks. Multilingual
tests reveal how the model performs across different languages,
helping optimize it for various language types. Integrating
syntactic-semantic structure with transformer models is an
important advance in deep learning for detecting
misinformation. An ablation study shows that using additive
integration, combining the outputs of syntactic-semantic and
transformer modules by summing their representations, leads to
a 6.0 percentage-point F1 gain (from 86.5% to 92.5%),
exceeding the sum of individual effects and supported by
transformer research. CA-BERT remains practical for
production, with 45ms latency (18.4% higher than BERT-base)
and is 6.4 times more energy-efficient per F1 point than HANN.
Using CA-BERT in fact-checking systems canhelp experts fight
misinformation during public health and political crises, thanks
to its interpretability and robustness.

Although CA-BERT performs well, it has some important
limitations. Handling Arabic (63% F1) indicates a need for
better morphological handling. Since 31.8% of the training data
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is in English, the model may be biased, and multi-task learning
could help fix it. The model was only tested on COVID-19 data,
so it may not work as well forvaccine or election or other topics.
Its quadratic attention limits it to short documents, but using
linearized attention methods such as Performer or Transformer-
XL could make it more efficient. LIME explanations can be
unstable, so it is important to use several explanation methods.
Future robustness tests should include multi-step adversarial
attacks such as PGD and C&W, as well as text-level changes
beyond FGSM.

Future research could use morphological analysers like
MADAMIRA and Farasa to support low-resource languages
(Arabic and other Asian languages). It should also apply
balanced multi-task learning to fix English data imbalance, test
cross-domain transferability on different types of
misinformation, and use onlinelearningto adapt to concept drift.
Exploration of combining LIME method with attention
visualization and gradient-based saliency should be considered.
Adversarial robustness evaluation must be strengthened through
multi-step gradient attacks (PGD, C&W) and text-level
perturbations (synonym substitution, paraphrasing) to validate
genuine robustness against realistic adversarial examples in
production deployment. Finally, exploring linearised attention
mechanisms such as Performer and Transformer-XL, or using
hierarchical chunking, may help process long documents more
efficiently.
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