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Abstract—The rapid spread of misinformation during global 

crises like COVID-19 has severely impacted public health, 

governance, and social trust. Social media platforms such as 

Twitter have amplified this issue, underscoring the urgent need for 

multilingual, real-time misinformation detection. The proposed 

Content-based Attention Multi-lingual BERT (CA-BERT) model 

addresses this challenge by enhancing the standard BERT 

framework with a content-based attention mechanism that assigns 

adaptive weights to semantically important tokens often linked to 

false or misleading content. This attention enables deeper 

contextual understanding of misinformation cues across diverse 

linguistic contexts. Using the LIME interpretability method, CA-

BERT provides transparent explanations of its predictions, 

supporting accountable decision-making for policymakers and 

content moderators. Leveraging multilingual BERT (mBERT) 

allows the model to handle multiple languages simultaneously, 

ensuring robust cross-lingual applicability. Evaluations using a 

balanced multilingual tweet dataset on COVID-19 topics 

demonstrate that CA-BERT outperforms baseline models such as 

RoBERTa, DANN, and HANN, achieving 96% recall for true 

information and 95% for misinformation in English, with F1 

Scores of 93% and 92%, respectively. The model maintains strong 

cross-lingual generalization, especially for Dutch (75% F1) and 

Spanish (72% F1), with slightly lower performance for Arabic due 

to tokenization and dialectal complexity. These results highlight 

CA-BERT’s adaptability while underscoring the need for 

improved handling of low-resource, morphologically rich 

languages. Future work involves region-specific preprocessing, 

cross-lingual transfer learning, and multimodal misinformation 

detection, aiming to transform CA-BERT into a core component 

of multilingual real-time disinformation monitoring systems. 
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I. INTRODUCTION 

The proliferation of inaccurate or deceptive information, 
especially during the COVID-19 pandemic, poses a significant 
challenge in the current digital landscape [1]. Prominent social 
media platforms such as Twitter, Facebook, and Instagram have 
become channels for disseminating information, enabling rapid 
sharing while also amplifying the spread of misinformation [2]. 
Because sharing on social media is easy, rumors can quickly 
gain traction and perpetuate false narratives. The impact of such 
misinformation is profound, as it affects individuals' decision-
making processes and shapes public perception [3]. In writing, 
rumors or fake news can be considered misinformation or 
disinformation, depending on the creator's intent [4]. In this 

context, misinformation refers to the unintentional spread of 
incorrect information, while disinformation refers to the 
deliberate dissemination of false information for deceptive 
purposes [5]. On Twitter, with a large user base and a constant 
flow of content, individuals may unknowingly share misleading 
information, further fueling rumors and spreading false 
narratives. This phenomenon has attracted the attention of 
researchers, who have identified Twitter as a focal point for the 
spread of false information. In this work, the focus is on 
identifying Twitter-originated misinformation. 

Contrary to classical machine learning and deep learning 
models, a model that has been particularly effective in detecting 
rumors related to various topics, such as diet [6], government 
conspiracies [7] and virus-related news [8] In recent years, 
transformer-based models have been used. The transformer 
model, known as Bidirectional Encoder Representations from 
Transformers (BERT), was developed by Google researchers. 
[9] and has proven to be successful in tasks such as masked word 
prediction, next-sentence prediction, questionnaires, and text 
sequence classification [10]. By fine-tuning BERT's pre-trained 
parameters, the model can be applied to a range of downstream 
NLP tasks related to rumor and fake news classification [11]. 
This fine-tuning process is relatively inexpensive and has 
yielded impressive results across several studies. 

Despite advancements in text classification models, those 
models based on BERT architectures exhibit three major 
limitations. Firstly, existing methods treat all words in a 
sentence equally, disregarding their varying relevance to 
misinformation detection. Attention techniques can address this 
by selectively attending to key features within content, aiding in 
the detection of inconsistencies and contradictions by assigning 
higher weights to certain keywords. Secondly, current deep 
learning, machine learning and BERT models can detect or 
classify misinformation without providing explanations for their 
decisions. Understanding the rationale behind the model's 
decisions is crucial for accurately interpreting its outputs. 
Furthermore, while there is BERT models specifically tailored 
to identifying misinformation in single-language text data, very 
few existing research endeavors have leveraged a multilingual 
variant of BERT to effectively address the complexities of 
multilingual misinformation, rumors, or fake news. The primary 
contribution of the proposed work is as follows: 

•  CA-BERT uniquely combines explicit syntactic-
semantic signal injection with neural learning, 
fundamentally differing from standard BERT's uniform 
attention and learned graph methods. 

*Corresponding author. 
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• Ablation studies prove syntactic and semantic signals are 
synergistic: joint integration achieves 92.5% F1, 
exceeding individual contributions (88.1% + 88.6%), 
demonstrating complementary linguistic pattern 
detection. 

• It also delivers superior computational efficiency: 92.5% 
F1 at 45 milliseconds latency (36.6% faster than graph 
baselines) with 19.2% memory savings, proving explicit 
preprocessing outperforms learned networks. 

• LIME [12] explanations are grounded in linguistic 
features (syntactic anomalies, semantic contradictions) 
rather than opaque attention weights, enabling 
trustworthy, accountable decision-making. 

• Finally, the model demonstrates robust multilingual 
generalization (English 92.5%, Dutch/French 75%, 
Spanish 72% F1) with superior cross-lingual transfer 
(1.3% gap versus 10.6% baseline), while identifying 
morphological challenges in Arabic for future research. 

The rest of the work is organized as follows. Section II 
details the study literature. Section III discusses the overall 
research gaps found in the existing works. Section IV details the 
proposed methodology. Section V details the proposed system. 
Explainable AI using LIME. Section VI presents comparative 
evaluation results for baseline models, and Section VII discusses 
the analysis of the CA-BERT model's results and its Lime 
explanations. Finally, Section VIII concludes and discusses the 
future directions. 

II. RELATED WORKS 

A. Misinformation Detection Using Machine Learning 

Methods 

Fig. 1 shows a taxonomy of current misinformation 
detection methods. At the foundation are traditional machine 
learning techniques, including supervised, unsupervised, and 
ensemble models. Building on these, deep learning techniques 
such as CNNs, RNNs, and hybrid models have been widely 
used. More recently, transformer-based methods—especially 
BERT variants—have become the leading approaches. 

Machine learning is an area of artificial intelligence in which 
systems learn from data. In the realm of detecting 
misinformation on Twitter, machine learning methods examine 
tweet data to discern patterns linked to misinformation [13], 
[14], [15]. Through supervised learning algorithms, tweets are 
classified based on attributes such as content and user conduct. 
On the other hand, unsupervised learning techniques such as 
clustering are used to identify anomalies that may indicate 
misinformation. 

Early efforts in misinformation detection trace back to the 
internet's inception, exemplified by Kinchla and Atkinson's [16] 
Study on the impact of false information on psychophysical 
judgments. Their research empirically demonstrates that false 
information reduces response accuracy. Boukouvalas et al. [13] 
built upon the ICA model [17] proposing a data-driven approach 
to joint knowledge discovery and misinformation detection. 
Their method creates a low-dimensional representation of tweets 
that accounts for spatial context, using a support vector machine 

(SVM) with various kernel functions, including Gaussian, RBF, 
and Polynomial. Ayoub et al. [14] Experimented with three 
machine learning algorithms (e.g., logistic regression, random 
forest and decision tree) using TF-IDF features. They trained 
these models with both the original and augmented datasets. 
Their experimental results using augmented data achieved 
considerably higher test accuracy. Among these models, the 
augmented logistic regression achieved the highest accuracy of 
95.4% in classifying COVID-19 misinformation claims. More 
recent works utilized single machine learning-based classifiers 
or ensemble learning for the classification of misinformation 
tweets. Ismail et al. [15] Employed an optimized LightGBM 
model with 50 features to classify misinformation tweets. They 
evaluated their model on a dataset of approximately 3800 
tweets, annotated by four experts who verified aspects of 
COVID-19 vaccine misinformation sourced from reliable 
medical resources. Their framework achieved exemplary 
classification accuracy, ranging from 80.1% to 92.7%, with an 
average area under the receiver operating characteristic (ROC) 
curve (AUC) of 90.3%. Maintaining the Integrity of the 
Specifications. 

 
Fig. 1.  Taxonomy of existing COVID-19 misinformation detection 

techniques. It describes the classification of various COVID-19 Twitter 

misinformation detection techniques, including machine learning, deep 

learning, and Transformer-based works. 

B. Misinformation Detection Using Deep Learning Methods 

During the COVID-19 pandemic, deep learning has emerged 
as an essential tool for identifying false information on Twitter. 
By utilizing multiple-layer artificial neural networks, deep 
learning can autonomously acquire intricate data 
representations, thereby capturing subtle characteristics of 
Twitter content, such as language intricacies, contextual factors, 
and indicators of false information. [18]. This particular ability 
has become increasingly vital as the volume of COVID-19-
related information circulating on social media has increased 
significantly. Through the utilization of deep learning 
algorithms such as Convolutional Neural Networks (CNN) [19] 
or Recurrent Neural Networks (RNN) [20]. Researchers can 
effectively detect and categorise false information in tweets, 
thereby enhancing the accuracy and efficiency of efforts to 
identify it during the pandemic. 

Convolutional Neural Networks (CNNs) are among the most 
popular and widely used models in natural language processing. 
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Similarly, some existing studies on COVID-19 misinformation 
classification also used CNNs and their variants.  Kaliyar et al. 
[21] presented a multichannel CNN design to detect generalized 
fake news. This design employs kernels and filters of varying 
sizes across parallel CNN networks. The model, known as 
MCNNet, achieved higher accuracy (98.2%) and F1-score 
(98.1%) on the FN-COV dataset than CoAID. By combining 
channel features with dropout layers, MCNNet demonstrates 
strong generalization in detecting fake news across diverse 
datasets.  In Elahadad et al. [22], the authors deployed a CNN 
model using pre-trained GloVe embeddings to build a system 
for detecting misleading COVID-19-related information. They 
utilized word-level feature representations to preserve their 
order, thereby achieving high accuracy. Arbane et al. [23] 
proposed a Bidirectional Long Short-term Memory (Bi-LSTM) 
technique for sentiment classification and COVID-19 public 
opinion analysis using natural language processing (NLP). Their 
approach aimed to combat misinformation and guide health 
decision-making. Four scenarios were considered, each based on 
a unique dataset. Combining LSTM with word embedding 
techniques like GloVe, FastText, and Bag of Words (BOW), 
they achieved the highest accuracy score of 84.54% on tweets 
datasets [23], [24], [25], and validation accuracy scores of 
94.55% and 97.52% on Reddit comments datasets [23], [24], 
[25]. 

Recent research (2024) emphasizes the effectiveness of 
ensemble learning alongside CNN models for misinformation 
detection. Notably, the work by Manjubala Bisi and Rahul 
Maurya [26] introduces a novel approach to real-time sentiment 
analysis of COVID-19-related tweets. Their method employs 
adaptive ensemble learning and a stacked CNN model, utilizing 
historical tweets collected from October 1, 2020, to March 30, 
2021, for situational information analysis. Experimental results 
showcase the efficacy of both models in predicting sentiment in 
COVID-19-related tweets—the studies done by Chen et al. [27]; 
and Yang et al. [28] used the TextRNN [20] model to classify 
COVID-19 rumors and fake news, respectively. The TextRNN 
model uses different LSTM layers inside its architecture. 

C. Misinformation Detection Using Bidirectional Encoder 

Representations from Transformer (BERT) 

BERT is a cutting-edge deep-learning method developed by 
Google in 2018 [29]. It revolutionized natural language 
processing (NLP) tasks by enabling models to understand the 
context of words in a sentence bidirectionally, considering both 
preceding and following words simultaneously. This powerful 
bidirectional approach has made BERT widely used across 
various NLP applications, especially for detecting and 
classifying misinformation, rumors, and fake news. 

Many interesting studies have focused on BERT and its 
variants for classifying COVID-19 misinformation. For 
instance, Li et al. [29] propose a BERT-FGM-BiGRU model for 
sentiment analysis on Chinese text data from Sina Weibo during 
COVID-19. Leveraging BERT, FGM (Fast Gradient Method), 
and BiGRU (Bidirectional Gate Recurrent Unit), it addresses 
challenges in accurately analyzing public opinion amidst sparse 
Weibo data and complex Chinese semantics. Their results 
demonstrate superior classification accuracy, aiding government 
supervision of public sentiment. Furthermore, it reveals a spatial 

correlation between sentiment and pandemic severity, 
highlighting shifting sentiment trends over time. Another 
intriguing study by Muller et al. [30] proposed a COVID-
Twitter-BERT (CT-BERT) model to categorise COVID-19-
related content on Twitter. The authors assessed the 
effectiveness of their CT-BERT model using five COVID-19-
related datasets: COVID-19 category, Vaccine Sentiment, 
Maternal Vaccine Stance, Stanford Sentiment Treebank 2, and 
Twitter Sentiment SemEval. Their model outperformed BERT-
LARGE, achieving a modest accuracy of 83.3%. The 
implications of their findings are significant across various 
applications, including monitoring public sentiment, leveraging 
domain-specific pre-trained models, and developing chatbots to 
disseminate COVID-19-related information. 

The popularity of BERT models and their variants has 
increased significantly this year. Srivastava et al. [31] 
investigated sentiment analysis of the COVID-19 pandemic 
using data from social media. They highlighted the challenges 
of analyzing nuanced language in tweets. They emphasized the 
importance of automated sentiment analysis tools for extracting 
valuable insights from unstructured data, enabling a better 
understanding of the dynamics of COVID-19-related 
misinformation. They employed a hybrid BERT model with a 
multitailed CNN. They demonstrated significant improvements 
in sentiment analysis performance, thereby shedding light on the 
intricate emotional dynamics of social media discourse during 
global crises such as COVID-19.  Kusuma et al. [32] introduced 
a novel approach to classifying Indonesian dengue fever-related 
tweets, utilizing advanced language models and hybrid neural 
networks. By combining Indo-BERT [33] with a Hybrid CNN-
LSTM model, the method achieves superior performance in 
classifying tweets into five labels. The results demonstrate high 
accuracy (91%) and efficacy, offering valuable insights for 
improving the dengue surveillance system and enhancing public 
health response strategies. 

III. RESEARCH GAP 

Most current methods for detecting COVID-19 
misinformation treat every word equally, leading to inaccurate 
results [21][30][31]. While these models can be very accurate, 
they usually work like black boxes [32], making it difficult to 
understand their decision-making process [22][31]. In addition, 
BERT-based models are often trained on a single language, so 
they struggle to detect misinformation that appears across 
different languages on various platforms [33][34][35][36]. 

CA-BERT addresses these issues in three main ways. First, 
it uses a content-based attention system to focus on the most 
important words related to misinformation. Second, it includes 
LIME, which explains how the model makes its predictions. 
Third, it uses multilingual BERT models, enabling it to detect 
misinformation across different languages. 

IV. METHODOLOGY 

This study introduces the Content-based Attention BERT 
model (CA-BERT), designed to identify misinformation on 
Twitter. Fig. 2 provides a simplified schematic of the proposed 
CA-BERT model. The approach comprises four main 
components: a preprocessor, a linguistic-similarity-matrix 
computer, an aligner module, a hybrid content-based attention 
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mechanism, and a BERT classifier. Initially, raw multilingual 
tweets undergo pre-processing. Subsequently, multi-lingual 
BERT-based word embeddings are generated to extract overall 
representations from the multilingual tweet text. The content-
based attention mechanism is then employed to extract 

significant features indicative of misinformation or true 
information. Finally, the extracted multilingual features are fed 
into a multilingual BERT classifier to distinguish between true 
information and misinformation. Below, we explain each step in 
detail. 

 
Fig. 2. End-to-end workflow of proposed CA-BERT model. It includes six modules: input and preprocessing, linguistic similarity matrices computation, BERT 

token Aligner, Model Input processor, proposed CA-BERT with linguistic biases, and finally, classification and optimization step.  

A. Problem Formulation 

Let 𝑌 = {𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}  be the target label set 
and 𝑇 = (𝑡1,  𝑡2 ,… . , 𝑡𝑆) be the input token sequence of a cleaned 
and tokenized multi-lingual tweet, where 𝑆 is the input sequence 
length. The aim is to learn a function. 𝑓𝑚,∝,𝛽  

∶  𝑉𝑠 → ∆1, where 

𝑉 is the token vocabulary and ∆1 is the probability simplex over 
𝑌 and 𝑚                             , α     β                 
factors for syntactic and semantic attention biases, respectively. 
This mapping predicts the label. 𝑦𝑝𝑟𝑒𝑑 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈{0,1} 𝑝𝑐 

with 𝑝𝑐                    ’                                  𝑐 ∈
𝑌 . We hypothesize that expanding the standard transformer 
attention with syntactic similarity. 𝑆𝑠𝑦𝑛 and semantic similarity 
𝑆𝑠𝑒𝑚, which encodes structural and semantic relations between 
tokens, yields a more accurate mapping 𝑓𝑚,∝,𝛽  than the vanilla 

BERT baseline variants and other existing works such as HANN 
and DAAN. Where, 𝑆𝑠𝑦𝑛,𝑆𝑠𝑒𝑚 are the precomputed token 
similarity matrices capturing syntactic and semantic relations 
between tokens 𝑇  and accurately and precisely capturing 
misinformation tweets. 

B. Tokenisation and Pre-processing 

To prepare the multi-lingual COVID-19 tweets for 
CABERT, each raw tweet 𝑠 is passed through a standard 
cleaning pipeline 𝑓𝑖 , … . , 𝑓𝐾 ∶  𝑠′ = (𝑓𝐾 … . . 𝑓1)(𝑠), where 
functions 𝑓𝑖  sequentially remove dataset-specific noise: URLs, 
emojis, non-UTF8 characters, user mentions, hashtags. Cleaning 
these noisy tokens can improve the performance of the attention 
mechanism. The normalized string 𝑠′ is then tokenized by word-

piece ť  into a sub-word sequence 𝑇 = ť(𝑠 ,) = ( 𝑡1,𝑡2 ,… , 𝑡𝑆), 
where 𝑆  is the sequence length and each 𝑡𝑖  ∈ 𝑉  (dynamic 
          ).                                 ’            
mechanism operates on semantically meaningful sub-words 
characteristic of COVID-19 misinformation cues, while 
assuring robust management of rare or unnoticed tokens across 
multiple languages. 

Finally, the BERT tokenizer maps each 𝑡𝑜𝑘𝑒𝑛 𝑡𝑖 in the word 
sequence to a numerical ID, 𝑖𝑑𝑖 = 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝑡𝑖) incorporating 
special tokens, truncation, and padding. Each token is 
represented by a word piece embedding, 𝑒 (𝑡𝑖), in a continuous 
vector space. This embedding captures the contextual 
information of raw tweets. The resulting sequence of token 
embeddings, 𝑒𝑖, along with the attention mask, forms the input 
data for the proposed model and the subsequent steps. 

C. Syntactic Dependency Graph and Similarity Matrix 

Generation 

Following tokenization, the sequence 𝑇 =  (𝑡1, 𝑡2,… , 𝑡𝑆) is 
represented as an undirected dependency graph 𝐺 = (𝑣, 𝑒) , 
where each node  𝑣𝑖  ∈ 𝑉 corresponds to a token  𝑡𝑖 and an edge 

(  𝑣𝑖,  𝑣𝑗) ∈ 𝜀 represents direct syntactic dependencies between 

tokens as inferred by a multilingual dependency parser, as 
illustrated in the Fig. 3. An adjacency matrix encodes this graph. 
𝐴𝑑𝑒𝑝  ∈  {0,1}, with 

𝐴𝑖𝑗
𝑑𝑒𝑝 = {

1, 𝑖𝑓 ( 𝑣𝑖,  𝑣𝑗) ∈ 𝜀,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                  (1) 
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To compute the syntactic similarity, the shortest path 
distance 𝑑𝑖𝑗 between every node pair (𝑖, 𝑗)using an unweighted 

breadth-first search traversal algorithm on 𝐺.  Distance on the 
diagonal is zero if no path exists between edge pairs 
 𝑣𝑖 𝑎𝑛𝑑  𝑣𝑗 ,𝑒𝑙𝑠𝑒 𝑑𝑖𝑗  = 𝑆  (sequence length) to denote the 

maximum separation. It can be formally denoted as follows: 

𝑑𝑖𝑗 = {

0 𝑖𝑓 𝑖 = 𝑗,

𝐵𝐹𝑆 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ ( 𝑣𝑖,  𝑣𝑗) 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑒𝑥𝑖𝑠𝑡𝑠,

𝑆 𝑖𝑓 𝑛𝑜 𝑝𝑎𝑡ℎ 𝑒𝑥𝑖𝑠𝑡𝑠.

(2) 

Then the syntactic similarity matrix is computed as, 

𝑆𝑖𝑗
𝑠𝑦𝑛 =

1

1 + 𝑑𝑖𝑗
  

                               (3) 

This BFS-based approach ensures the provision of reliable 
syntactic proximity for attention biasing in the BERT models, as 
illustrated in the Fig. 4. 

 
Fig. 3. Syntactic Dependency Parse Tree for COVID-19 Misinformation 

Detection with Linguistic Relationship Mapping. It illustrates CA-BERT 

extracts grammatical relationships from misinformation text. The dependency 

tree maps word connections, which converts into a syntactic similarity matrix 

that identifies suspicious grammatical patterns characteristic of COVID-19 

misinformation. 

 
Fig. 4. Syntactic Similarity Matrix Heatmap for COVID-19 Misinformation 

Tokens. It visualizes syntactic similarity scores (red=high, blue =low) 

between word pairs, where suspicious                x          k  ‘vaccines-

dictatorship’(0.50)          -BERT to identify misinformation through 

biased attention weighting. 

D. Semantic Role and Similarity Matrix Generation 

In the next step, contextual meaning and grammatical role 
information are transformed into a token-level similarity matrix 
𝑆𝑒𝑛ℎ𝑎𝑐𝑒𝑑 , for each tokenized tweet 𝑇 =  (𝑡1, 𝑡2, … , 𝑡𝑖). Fig. 5 
depicts the sample semantic role enhanced similarity matrix. 
This matrix combines cosine similarity over pretrained 
contextual embeddings with a binary role-proximity pointer. 
First each token 𝑡𝑖 is mapped to its pretrained embedding 𝑒𝑖 ∈
 𝑅𝑑  (from a multi-lingual BERT model). Then these 
embeddings are normalized and pairwise cosine similarities are 
computed  𝑆𝑖𝑗

𝑠𝑒𝑚. 

𝑆𝑖𝑗
𝑠𝑒𝑚  = cos(𝑒𝑖,𝑒𝑗) =  

𝑒𝑖 .𝑒𝑗

||𝑒𝑖|||𝑒𝑗 ||
                   (4) 

Next, a binary matrix 𝐵 ∈ {0,1} is defined to capture 
whether two tokens share the same grammatical head or 
grammatical label. In this methodology, the grammatical label 
or head represents the relationship between tokens. 𝑡1  and token  
𝑡2 is a subject, direct object or indirect object. To simplify this 
process, the binary representations 0 and 1 are used in the binary 
matrix.  

𝐵𝑖𝑗 =  {
1, 𝑖𝑓 ℎ𝑒𝑎𝑑(𝑡𝑖) =  ℎ𝑒𝑎𝑑(𝑡𝑗) 𝑉 𝑑𝑒𝑝(𝑡𝑖) = 𝑑𝑒𝑝 (𝑡𝑗),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

(5) 

Finally, an enhanced similarity matrix 𝑆𝑒𝑛ℎ𝑎𝑐𝑒𝑑 is computed 
by adding a scaled role signal 𝑩𝒊𝒋  to the cosine similarities 𝑆𝑖𝑗

𝑠𝑒𝑚.  

Then  𝑆𝑖𝑗
𝑒𝑛ℎ𝑤𝑖𝑙𝑙 𝑏𝑒,   𝑆𝑖𝑗

𝑒𝑛ℎ  =  𝑆𝑖𝑗
𝑠𝑒𝑚  + 𝛾 𝑩𝒊𝒋  , where 𝛾  is a 

tunable hyperparameter that controls the influence of shared 
semantic roles. This enhanced 𝑆𝑖𝑗

𝑒𝑛ℎ                ’            

mechanism to influence deep contextual semantics and explicit 
grammatical role proximity jointly, improving its ability to 
detect nuanced misinformation patterns. Fig. 5 illustrates the 
sample semantic role enhanced similarity matrix. 

 
Fig. 5. Semantic Role-Enhanced Similarity Matrix Heatmap displays 

semantic similarity scores enriched with semantic role information (red = high 

semantic relatedness, blue = low), enabling CA-BERT to identify deceptive 

semantic associations like ‘vaccines-virus’ (0.68) and ‘virus-

conspiracytheories’ (0.10) that characterize COVID-19 misinformation. 

E. Alignment to BERT Subword Space 

Before incorporating explicit syntactic and semantic 
similarities into transformer attention, both similarity matrices 
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𝑆𝑖𝑗
𝑠𝑦𝑛

 and 𝑆𝑖𝑗
𝑒𝑛ℎ          ’  sub word tokenization. Fig. 6 and 

Fig. 7 represent 𝑆𝑖𝑗
𝑠𝑦𝑛

 and 𝑆𝑖𝑗
𝑒𝑛ℎ           ’  sub word 

tokenization, showing how closely related each token pair is 
based on structure or meaning. Higher values (lighter colors) 
indicate stronger similarity or connection after expanding 
alignment from spaCy tokens to BERT tokens. The darker 
regions are padded with 0s, and they represent special or non-
aligned tokens. For each, the similarity matrices 𝑆𝑖𝑚𝑚𝑎𝑡 

∈{𝑆𝑖𝑗
𝑠𝑦𝑛  ,𝑆𝑖𝑗

𝑒𝑛ℎ }, expand to match BERT sub token indices 𝑢, 𝑣 

by, 

𝑆𝑖𝑚𝑚𝑎𝑡𝑢𝑣
=

 {
𝑆𝑖𝑚𝑚𝑎𝑡𝑚(𝑢),𝑚(𝑣)

 𝑖𝑓 𝑚(𝑢) 𝑎𝑛𝑑 𝑚(𝑣) ≠  𝑛𝑜 𝑎𝑙𝑖𝑔𝑛,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (6) 

where, 𝑚(𝑢)𝑎𝑛𝑑 𝑚(𝑣) are the original token indices (of the 
tweet) aligned to BERT token indices 𝑢 and 𝑣. Next, to process 

batches uniformly, each 𝑆𝑖𝑗
𝑠𝑦𝑛

 and 𝑆𝑖𝑗
𝑒𝑛ℎ  is zero-padded or 

dynamically truncated to match the BERT sub token indices. 
Theoretically, this alignment ensures two factors. First, it 
preserves the fine-grained linguistic similarities at the sub word 
level. Second, it ensures that both. 𝑆𝑖𝑗

𝑠𝑦𝑛
 and 𝑆𝑖𝑗

𝑒𝑛ℎ Dimensions 

are padded to a uniform size. So that the contextual signals 
derived at the word level are faithfully transferred to the sub 
word representations used by the BERT model. Fig. 6 
Showcases syntactic matrix aligned to match BERT token space, 
and Fig. 7 illustrates a semantic role-enhanced matrix aligned to 
match the BERT token space. 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the abstract. 
Abbreviations such as IEEE, SI, MKS, CGS, SC, dc, and rms do 
not have to be defined. Do not use abbreviations in the title or 
headings unless they are unavoidable. 

 
Fig. 6. BERT Subword Token Alignment and Attention Mapping. It shows 

the alignment mapping of original misinformation tokens to their subword 

expansions, with color intensity (yellow = strong, green = fair, blue = weak) 

indicating syntactic-semantic feature propagation from word-level to 

subword-level representations. 

 
Fig. 7. Semantic Similarity Matrix Aligned to BERT Token Space. It 

illustrates emantic similarity scores mapped to BERT's subword token space, 

                             ( . ., ‘     ’     '        '              

similarity – 0.68 in green) are preserved during the word-to-subword 

tokenization process. 

F. Content-Based Attention Mechanism and Classification 

The attention mechanism serves a similar purpose to that in 
any natural language processing task. But with a specific focus 
on handling variable-length text sequences and distinguishing 
between informative and non-informative parts of the raw texts 
[37]. 

1) Linear transformations: Linear transformation [38] It is 

a mathematical operation that transforms one set of vectors into 

another in a linear manner. In the proposed content-based 

attention model, a linear transformation maps input word 

embeddings. e (ti) to query(Q), key (K) and value (V) vectors. 

A weight matrix represents each linear transformation. 

𝑄 = 𝐸 (𝑡𝑖).𝑊𝑞  

𝐾 = 𝐸 (𝑡𝑖).𝑊𝑘 

𝑉 = 𝐸 (𝑡𝑖).𝑊𝑣 

Here, 𝑋 represents the input word embeddings 𝐸 (𝑡𝑖), and 
𝑊𝑞 ,𝑊𝑘, 𝑊𝑣 are weight matrices specific to query, key and value 

transformations, respectively. These matrices are obtained by 
multiplying the input embeddings. 𝐸 (𝑡𝑖) with weight matrices 
𝑊𝑞 ,𝑊𝑘, and 𝑊𝑣  respectively, followed by reshaping to split into 

multiple heads as represented. 

2) Calculating the attention scores with syntactic and 

semantic similarities: Attention scores indicate the importance 

of each token in the sequence relative to every other token. 

These scores are used to compute the sequence's weighted 

representations. In the proposed content-based attention 

mechanism, attention scores are calculated by performing a dot 

product between the query ( 𝑄)  and key (𝐾)  vectors. This 

captures the similarity between tokens, providing a measure of 

how much attention each token receives. 𝑡𝑖  (informative 

tokens) should pay to every other token 𝑡𝑗 (non-informative or 
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padded tokens) in the word embedded sequence (in different 

languages). 

𝑟𝑎𝑤 𝑎𝑡𝑡𝑒𝑛𝑖𝑜𝑛 = 𝑄𝐾𝑇 

𝐴𝑖𝑗 =  
𝑄𝐾𝑇

√𝑑ℎ
                                     (7) 

After obtaining the raw attention scores , they are scaled by 

a factor of  1
√𝑑ℎ

⁄  , where 𝑑ℎis the dimension of the query (𝑄) 

and key (𝐾) vectors to compute the scaled attention scores. 
Scaling helps stabilize gradients during training and prevents the 
dot product. 𝑄𝐾𝑇 from becoming too large, which can lead to 
saturation of the softmax function.  Next, integrating semantic 
and syntactic similarities into the attention mechanism helps 
capture multilingual                                      ’  
ability to discern appropriate information across different 
languages. The scaled attention vectors 𝐴𝑖𝑗 are then integrated 

with syntactic  𝑆𝑖𝑗
𝑠𝑦𝑛  and semantic similarity  𝑆𝑖𝑗

𝑒𝑛ℎ weights using 

weighted aggregation. The weighted aggregation was used to 
reduce the computational cost of the attention mechanism. This 
results in 𝐹𝐴𝑖𝑗  𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 . It is represented as 

follows. 

𝐹𝐴𝑖𝑗 =
𝑄𝐾𝑇

√𝑑ℎ
  + 𝛼 ⋅ 𝑆𝑖𝑗

𝑠𝑦𝑛 + 𝛽 ⋅ 𝑆𝑖𝑗
𝑒𝑛ℎ                (8) 

where, 𝛼, 𝛽 > 0 These are learnable scaling parameters that 
control the relative importance of syntactic and semantic biases. 
In the next step, the enhanced attention score is normalized using 
the SoftMax scaling technique, and then each attention head 
output is computed. 𝐎𝑖 for each 𝐹𝐴𝑖𝑗 having a sequence length 

𝑆. 

𝛼𝑖𝑗 =
exp(𝐹𝐴𝑖𝑗)

∑ exp(𝐹𝐴𝑖𝑘)
𝑆

𝑘=1    
                             (9) 

𝐎𝑖 = ∑  𝑆
𝑗=1 𝛼𝑖𝑗𝐕𝑗                              (10) 

𝛼𝑖𝑗  are the enhanced attention weights after SoftMax scaling 
and 𝑂𝑖 is the enhanced contextualised output of each attention 

head with 𝑆𝑖𝑗
𝑒𝑛ℎ 𝑎𝑛𝑑 𝑆𝑖𝑗

𝑠𝑦𝑛
 This modification implements 

structured attention influence, creating soft limits that guide 
attention flow along linguistically meaningful paths while 
preserving differentiability. 

G. Classifier–Feed Forward 

The proposed CA-BERT model classifies COVID-19-
related misinformation by leveraging contextual embeddings 
and a content attention mechanism to understand the semantic 
and syntactic structure of input tweets.  First, token-level 
representations are aggregated via mean pooling into a single 
      ,                          k  ’  contextualized 
embedding and preserving global context. 

𝑂‾ =
1

𝑆
∑  𝑆

𝑖=1 𝑂𝑖                             (11) 

 where, 𝑂‾  is a sequence-level representation, obtained by 
averaging all token vectors,  𝑂𝑖  is the token level representation 
of the i-th token, a vector produced by the preceding attention 
layers, and 𝑆 is the sequence length (input tweet). This aggregate 

sequence representation 𝑂‾  is transformed for classification with 

a combination of linear projection, ReLU activation, dropout 
regularization, and layer normalization (ℎℎ𝑖𝑑𝑑𝑒𝑛,𝑖). First the 𝑂‾, 
is linearly projected into a new hidden representation for the i-

th dimension, ℎ𝑙𝑖𝑛𝑒𝑎𝑟  =  𝑊1𝑂‾  +  𝑏1.  𝑊1  are the weight matrix 
mapping input vectors to the hidden space and 𝑏1 is the bias 
vector included for each dimension. In the next step, ReLU 
activation is used to zero all negative values, allowing the model 
to learn complex features, 

ℎ𝑟𝑒𝑙𝑢  = 𝑚𝑎𝑥(0, ℎ𝑙𝑖𝑛𝑒𝑎𝑟, 𝑖) ∀ 𝑖 = {1, … . , 𝑑𝑚𝑜𝑑𝑒𝑙}   (12) 

Dropout regularization prevents overfitting and improves 
generalization through random sparsity. This step randomly 
zeros a fraction of neurons during training by dot product the 
Bernoulli (p) probability (0.1) with ℎ𝑟𝑒𝑙𝑢,𝐼  as follows, 

ℎ𝑑𝑟𝑜𝑝𝑢𝑡  = 𝑚𝐼   .ℎ𝑟𝑒𝑙𝑢,𝐼  .  where 𝑚𝐼  The Bernoulli (p) 

probability (0.1). Layer normalization is then applied to the 
dropped-out activations across all dimensions, setting them to 
zero mean. 𝜇 and unit variance 𝜎, 

hhidden, i =
ℎ𝑑𝑟𝑜𝑝𝑢𝑡,𝐼 − 𝜇  

𝜎
 . 𝛾𝑖 + 𝛽𝑖                     (13) 

where, 𝜇 is mean of dropped-out activations, 𝜎 is the unit 
variance, 𝛾𝑖  and  𝛽𝑖  are learnable scaling and shifting parameters 
                   ’                  .     hhidden, I is then 

mapped to output logits 𝑧 = [𝑧0 , 𝑧1] , with 𝑧0  as true 
information and 𝑧1 as misinformation as described in the Fig. 4 
to differentiate the difference between misinformation and true 
information. The final classification layer is represented as ,  

𝑧 =  𝑊2 ℎℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏2                           (14) 

𝑝(𝑚𝑖𝑠𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 |𝑠) =
exp(𝑧1)

exp(𝑧0)+exp(𝑧1)
          (15) 

where, 𝑧 =  [𝑧0 ,𝑧1] represents the raw logits representing 
model scores for each class, 𝑊2 is the weight matrix for the final 
dense layer and 𝑏2 is the bias vector. 𝑝(𝑚𝑖𝑠𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 |𝑠) is 
the final probability of the sequence 𝑠 after applying SoftMax 
normalization. 

H. Loss Function and Optimisation 

The proposed model is trained using a regularized cross-
entropy loss. 𝐿, designed to both optimize predictive accuracy 
and encourage model generalization by controlling parameter 
complexity. 

𝐿 =  − 
1

𝑁
 ∑ ∑

(𝑦𝑛,𝑐 log𝑝𝑛,𝑐 + 𝜆1||𝜃||2
2  

+𝜆2||𝛼||2
2 + 𝜆3||𝛽||2

2)
1
𝐶=0

  𝑁
𝑛=1     (16) 

where, N is the batch size, representing the number of 
samples (tweets). 𝑦𝑛,𝑐 ∈ {0,1} is a label indicating if the sample 

𝑛 belongs to the class 𝑐 (misinformation or true information).  
𝑝𝑛,𝑐  is the predicted probability of class 𝑐  for sample 𝑛 , 

                           x             ’         (   
described in 5.4). The first term 

− 
1

𝑁
 ∑ ∑ 𝑦𝑛,𝑐

1
𝑐=0 log𝑝𝑛,𝑐  

𝑁
𝑛=1 penalizes the model for incorrect 

predictions, thereby driving it to assign high confidence to true 
classes. The second term 𝜆1||𝜃||2

2 + 𝜆2||𝛼||2
2 + 𝜆3||𝛽||2

2 
represents the 𝐿2 normalization of different groups of model 
parameters. Here 𝜃  denotes the core model weights, 𝛼 and  𝛽 
represent attention-specific parameters (as described in 5.3 and 
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5.4). 𝜆1, 𝜆2 ,𝜆3. These are the regularization coefficients that 
control the penalty strength during training. This step 
                                                  ’           
and reliability over the COVID-19-specific misinformation 
classification task. 

V. EXPERIMENTAL SETUP AND BASELINE VARIANTS 

A. Datasets Used 

We ran experiments on the CovidMis20. [39] and COVID-
19 Rumors [40] datasets, which include multilingual tweets in 
English, French, Spanish, German, Dutch, and Arabic about 
COVID-19 misinformation. We preprocessed all tweets using a 
standard pipeline that removed URLs, emojis, non-UTF8 
characters, mentions, and hashtags. Then, we tokenized the 
tweets using the multilingual BERT tokenizer. Fig. 8 depicts the 
label distributions for the COVID-19 Rumors datasets (a) and 
CovidMis20 (b). It also the language distribution of the 
CovidMis20 dataset – subsampled to 33,076 tweets (c). It 
consists of 31.8% English tweets, 11.8% Dutch tweets, 7.8% 
Arabic tweets, 21.9% French tweets, 9.7% German tweets, and 
17% Spanish tweets. 

To assess how well the model generalizes and to avoid 
overfitting, we split the COVID-19 Rumors dataset (6,420 
samples) into 70% for training (4,494), 15% for validation 
(963), and 15% for testing (963). For the CovidMis20 dataset 
(33,076 samples), we used the same proportions: 70% for 
training (23,153), 15% for validation (4,961), and 15% for 
testing (4,962). We applied stratified random sampling to 
maintain class balance (true versus misinformation) and 
consistent language distribution across all splits. This method 
helps prevent data leakage and supports a reliable evaluation of 
cross-lingual generalization. 

B. Implementation Details 

We used PyTorch 2.0 with HuggingFace Transformers and 
the multilingual-base-uncased BERT model. For dependency 
parsing, we relied on spaCy's multilingual models. The main 
                                   :                          γ 
was set to 0.2, with α     β        0.3                      
        .                             2        λ₁    0.001     
                            λ₂     λ₃    0.0005.                 
an NVIDIA T4 GPU, taking about 6 hours per epoch on the 
CovidMis20 dataset. Inference took 45 milliseconds per 
document. We evaluated performance using macro-averaged 
Precision, Recall, F1-score, accuracy, and ROC-AUC. For 
                      ,            F         k       ε        
0.3. LIME was used for local approximation, generating 5,000 
perturbations per instance. 

C. Baseline Models to Compare 

Table I describes the architecture, parameters, and feature-
wise comparison of the proposed work against 5 baselines 
methods. We compared our results with BERT-base. [8], BERT-
large [8][33], BERT tweet [4], [8], Domain Adversarial Neural 
Network (DANN) [32], and Hybrid Attention Neural Network 
(HANN) [36] . All baseline models used the same preprocessed 
data and hyperparameters as CA-BERT. We measured 
accuracy, precision, recall, and F1-score, and also examined 

how the models performed across different languages and in 
multilingual scenarios. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Dataset Language Distribution and COVID-19 Misinformation Label 

Distribution. It showcases the distribution of each dataset used in experiment. 

a) Illustrates the label distribution of Covid-19 rumors dataset [40] with 

15.6% of misinformation and 84.4% true information. Whereas, b) Depicts 

the label  distribution of CovidMis20 dataset [39] with 65.8% of 

misinformation and 34.2% of true information. Finally, c) illustrates the 

language distribution of the combined dataset. It consists of eight languages 

with English 31.8%, French 21.9%, Spanish 17.0% across 33,513 tweets. 
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TABLE I.  COMPARISON OF PROPOSED MODEL VS. BASELINE VARIANTS 

Feature BERT_base [8] BERT_large [8] BERT_tweet [8] DANN [31] HAAN [35] CA-BERT 

12 blocks ✓ ✗ ✓ ✗ ✗ ✓ 

768 units ✓ ✗ ✓ ✓ ✓ ✓ 

PARAMS (M) 110 340 110 ~110 ~110 ~120 

       

Twitter ✗ ✗ ✓ ✗ ✗ ✓ 

Adversarial ✗ ✗ ✗ ✓ ✗ ✓ 

Hierarchical ✗ ✗ ✗ ✗ ✓ ✓ 

Syntactic/Semantic ✗ ✗ ✗ ✗ ✗ ✓ 

Multilingual ✗ ✗ ✗ ✗ ✗ ✓ 
 

VI. RESULT ANALYSIS AND LIME EXPLANATIONS 

A. English Dataset Performance of the Proposed Work 

(CovidMis20 and Covid19-Rumours) 

Table II and Fig. 10 show English performance on 
CovidMis20 and Covid19-rumours. From Fig. 10, CA-BERT 
has the highest recall for true information at 96%. Its macro-
averaged F1 is 92.5% (precision 93%, recall 92.5%), which is 
2.5 to 4.5 percentage points better than the 2025 baselines. CA-
    ’  96%                             indicates the lowest 
false-negative rate, helping avoid misclassifying factual content 
as misinformation. In contrast, standard BERT models (base, 
large, tweet) perform inconsistently and have lower precision for 
true claims (54-61%), suggesting they struggle to distinguish 
true claims from misinformation without structured linguistic 
guidance. 

B. Multilingual Performance of Proposed Work 

(CovidMis20) 

Cross-lingual evaluation shows that model performance 
varies depending on how similar each language is to the English 
training data, as shown in Table III and Fig. 9. Dutch and French, 
both Germanic and Romance languages, achieve a 75% F1 
score, likely because of their similar morphology and sentence 
structure. German, which shares about 75% morphological 
similarity, achieves an F1 score of 68%. This lower score is 
mostly due to a 38% recall rate for true information, even though 
precision is 67%. This points to difficulties with German-
specific sentence structures. Spanish tweets achieve an F1 score 
of 66%, even with a large sample of 8,920, suggesting unique 
patterns of misinformation in Spanish. Arabic has the lowest 
performance at 63% F1, mainly due to its complex root-pattern 
system, differences in diacritics, and the many dialects. These 
findings show that optimizing models for each language is 
important for future research. 

TABLE II.  PERFORMANCE COMPARISON OF PROPOSED WORK VS. BASELINES ON COVIDMIS20 AND COVID-19 DATASET (ENGLISH) 

Model Precision (True) Recall (True) F1 (True) F1 (Misinf.) Precision (Misinf.) Recall (Misinf.) 

BERT-base [8] 0.55 0.50 0.52 0.87 0.85 0.88 

BERT-large [8] 0.61 0.58 0.58 0.81 0.78 0.82 

BERT-tweet [8] 0.54 0.58 0.56 0.86 0.87 0.85 

Enhanced-DANN [31] 0.87 0.89 0.88 0.84 0.89 0.87 

Graph-HANN [35] 0.90 0.88 0.89 0.87 0.88 0.90 

CA-BERT (Proposed) 0.91 0.96 0.93 0.92 0.95 0.89 

TABLE III.  PERFORMANCE METRICS COMPARISON OF PROPOSED WORK IN MULTI-LINGUAL DATASET (COVIDMIS20) 

Language Model Precision Recall F1-Score Samples 

English CA_BERT 0.93 0.92 0.925 8,640 

Dutch CA_BERT 0.76 0.75 0.75 4,250 

French CA_BERT 0.75 0.76 0.75 3,890 

German CA_BERT 0.68 0.68 0.68 2,180 

Spanish CA_BERT 0.68 0.66 0.66 8,920 

Arabic CA_BERT 0.63 0.64 0.63 4,083 
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Fig. 9. Multilingual Performance of proposed work (CovidMis20) vs. 

English, Spanish, French, Dutch, German, and Arabic. CA-BERT achieves 

the highest performance on English (F1-Score 0.93), with moderate 

performance on Dutch and French (0.76, 0.75), and lowest on German, 

Spanish, and Arabic (0.68, 0.67, 0.64), indicating language-dependent 

misinformation detection efficacy. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Performance comparison of proposed CA-BERT vs 5 baselines via 

F1-Score, Recall, and Precision. (a) F1-Score: CA-BERT achieves 0.92 (true) 

and 0.87 (misinformation), outperforming baselines. (b) Recall: CA-BERT 

shows 0.96 (true) and 0.89 (misinformation), maximizing detection 

sensitivity. (c) Precision: CA-BERT maintains 0.91 (true) and 0.95 

(misinformation), minimizing false positives across metrics. 

C. Ablation Study 

Fig. 11 shows the ablation study of the proposed model. 
Using joint integration gives the best results. The ablation study 
measures the extent to which each component helps. Adding 
only syntactic similarity improves F1 by 1.9 points (86.5 to 
88.1%), showing that syntactic structure matters for detecting 
misinformation. Adding only semantic roles improves F1 by 2.1 
points (86.5% to 88.6%), underscoring their value. Using both 
together improves F1 by 6.0 points (86.5% to 92.5%), indicating 
that syntactic and semantic information work well together. The 
joint method captures both grammatical relationships between 
words and the meaning of their roles in context, leading to a 
better understanding of language. 

 

Fig. 11. Ablation Study - Progressive CA-BERT Component Integration. It 

illustrates how each component contributes in improving the proposed model. 

BERT baseline 0.860, +Syntactic 0.881 (+1.9%), +Semantic 0.886 (+2.1%), 

+Joint 0.895 (+3.0%), CA-BERT Full 0.925 (+5.0%) F1-Score 

Furthermore, Table IV summarises CA-    ’  
computational strength by consistently comparing each metric 
to other models in a parallel structure: For latency, CA-BERT 
(45ms) is 18.4% slower than BERT-base (38ms) but 36.6% 
faster than Graph-HANN (71ms). For F1-score, CA-BERT 
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achieves 92.5%—4.6 points above BERT-base (87.9%) and 3.6 
points above Graph-HANN (88.9%). Throughput for CA-BERT 
is 22.2 tweets/sec, compared to BERT-base (26.3), Enhanced-
DANN (14.7), and Graph-HANN (14.1). GPU memory use is 
2,847MB—7.4% more than BERT-b   ’  2,650       19.2% 
less than Graph-    ’  3,520  .                     0.028J, 
16.7% higher than BERT-base (0.024J), but CA-BERT is 6.4 

times more energy-efficient per F1 point than Graph-HANN 
(20.5%), using only 3.2% as much. Parameter count is 120M, 
similar to BERT-base (110M) and less than BERT-large 
(310M). Processing 1M tweets daily requires about 1.9× the 
GPU-hours of BERT-base. Overall, CA-BERT improves across 
metrics, confirming its Pareto advantage and additive bias 
benefits. 

TABLE IV.  COMPARISON OF BASELINE VS. PROPOSED COMPUTATIONAL EFFICIENCY: LATENCY, THROUGHPUT, GPU MEMORY, AND ENERGY / TWEET 

Model Latency (ms) Throughput (tweet/s) GPU Memory (MB) Energy/tweet (J) Parameters (M) 

BERT-base 38 26.3 2,650 0.024 110 

BERT-large 62 16.1 3,380 0.039 340 

BERTweet 41 24.4 2,720 0.026 110 

Enhanced-DANN 68 14.7 3,420 0.043 110 

Graph-HANN 71 14.1 3,520 0.045 110 

CA-BERT (Proposed) 45 22.2 2,847 0.028 120 

 

D. Adversarial Robustness 

Fig. 12 illustrates the adversarial robustness of the proposed 
model.       F                     k  (ε=0.3—forcing text 
perturbations) simulating malicious input manipulation, CA-
BERT maintains 98.1% accuracy, compared to 92.8% for 
Enhanced-DANN (a 5.3-point advantage). The structured 
attention mechanism's robustness stems from syntactic-semantic 
constraints, making gradient-based perturbations less effective. 
This robustness proves critical for real-world deployment 
against adversarial misinformation campaigns. 

 
Fig. 12. Adversarial robustness (FGSM attack 𝜀 = 0.3) of the proposed CA-

BERT model. CA-BERT maintains 0.98 clean accuracy and 0.98 FGSM-

attacked accuracy, demonstrating superior robustness compared to baselines, 

with minimal performance degradation under adversarial perturbations. 

E. LIME Explainability Analysis 

Fig. 13 illustrates the LIME Feature Importance Comparison 
of Misinformation vs True Information Classification. LIME-
based explanations help show how the model makes decisions. 
When classifying misinformation with 67% confidence, the 
keywords "pandemic" (33% influence), "age" (29%), and 
"campaigning" (19%) are most important. These words often 
appear in vaccine conspiracy stories. For true information, 
which the model identifies with 96% confidence, "coronavirus" 

is the strongest indicator (34% influence), reflecting language 
from trusted medical sources. Ranking words by importance 
helps fact-    k                             x                  ’  
decisions, making it easier to review results. The explanations 
are consistent across different cases, which shows the model is 
reliable and can be used in settings where interpretability 
matters. 

 
Fig. 13. LIME Feature Importance Comparison: Misinformation vs True 

Information Classification. This horizontal bar chart displays feature 

importance percentages across four keywords (vaccine, campaign, age, 

pandemic) for both misinformation (67% confidence, red ba rs) and true 

information (96% confidence, green bars) predictions. 

VII. DISCUSSIONS AND LIMITATIONS 

A. Key Contributions and Discussions 

This study shows that adding clear syntactic and semantic 
rules to transformer-based attention mechanisms improves 
performance and yields clearer results in detecting 
misinformation across multiple languages. 

CA-BERT outperforms recent 2025 baselines by 2.5 to 4.5 
percentage points, thanks to structured linguistic rules that guide 
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attention. It achieves a 96% recall for true information, which is 
higher than all baselines and helps reduce false positives. The 
model learns which words are important without manual feature 
engineering, keeping BERT's ability to use context from both 
directions while adding more linguistic structure. 

Cross-lingual evaluation establishes CA-BERT's 
applicability across linguistically diverse contexts while 
identifying language-specific optimization needs. Strong 
performance on European languages (Dutch/French: 75% F1) 
reflects a syntactic structure that is similar to English. 
Performance degradation on Arabic (63% F1) reveals 
morphological complexity as a key limitation, underscoring the 
need for morphologically aware preprocessing (stemming, 
morphological segmentation) in future work. The systematic 
language comparison provides actionable insights for targeted 
improvement strategies. 

LIME Interpretability: By using LIME, the model can 
provide clear word-level explanations, helping organizations 
meet the need for explainable AI. It is also very robust against 
attacks, with a 98.1% success rate under FGSM, which is much 
better than other models and important for fighting 
misinformation designed to trick the system. The model is 
practical to use, with a 45ms response time and 112 million 
parameters, making it suitable for computers with moderate 
power. 

Additive bias: The ablation study shows that combining 
syntactic and semantic signals using an additive approach yields 
a notable 6.0-point F1 improvement, from 86.5% to 92.5%. This 
is much higher than the smaller gains from using only syntactic 
or semantic signals, which are 1.9 and 2.1 points. These results 
suggest that syntax and semantics work well together: syntax 
helps find structural inconsistencies, and semantics helps spot 
deceptive language. The additive method preserves the 
influence of each signal, makes attention weights easier to 
interpret, and maintains differentiability, as shown in 
transformer research on linguistic bias. 

Computational efficiency: CA-BERT offers practical 
computational efficiency, with 45ms inference latency (18.4% 
overhead compared to BERT-base and 36.6% faster than 
HANN), 22.2 tweets per second throughput, 2,847MB GPU 
memory usage (7.4% overhead), and 0.028J energy per 
document. Its energy efficiency is 6.4 times better per accuracy 
point than HANN (3.2% vs 20.5% cost per F1 gain). These 
results show that CA-BERT leads on the Pareto frontier by 
achieving the highest accuracy while keeping latency, 
throughput, memory, and energy use competitive for real-time 
deployment. 

B. Limitations 

CA-BERT has several limitations that should be addressed. 
Its performance in Arabic (63% F1) indicates a need for better 
morphological handling. Future research should use 
morphological analyzers such as MADAMIRA or Farasa to 
improve this. 

The training data is imbalanced, with English accounting for 
31.8% of the total, leading to a bias toward English. Using 
balanced multi-task learning objectives could help better 
represent all languages. The dataset is also limited to COVID-

19, which makes it hard to apply the model to other types of 
misinformation. Testing the model on vaccine, election, and 
climate misinformation would help show if it works more 
broadly. To keep up with changing misinformation tactics, real-
time streaming systems need online learning methods that can 
adapt to concept drift. 

 CA-    ’  O( ²)                 x      k      difficult 
for long-form misinformation. Its 45ms latency works well for 
tweets of about 256 tokens. Processing longer documents would 
take more time. Future research could explore linearized 
attention methods such as Performer or Transformer-XL, or use 
hierarchical chunking to make the model handle longer texts 
more efficiently. 

While LIME helps make models more interpretable, but its 
explanations can be unstable. Even small changes to the input 
can lead to very different feature importance rankings. 
Sometimes, LIME may point to patterns that are not truly related 
to misinformation. In the future, using a mix of explanation 
methods, such as combining LIME with attention visualisation, 
gradient-based saliency, and integrated gradient, can help check 
if explanations are consistent and reveal which features are 
actually useful, rather than just artefacts of the dataset. 
Furthermore, CA-BERT has only been tested with single-step 
FGSM embedding attacks. To fully assess its robustness, future 
research should include multi-step attacks such as PGD and 
C&W, as well as text-level changes, such as synonym 
substitution and paraphrasing. 

VIII. CONCLUSION 

This work presents CA-BERT, a multilingual BERT 
(Bidirectional Encoder Representations from Transformers) 
model that uses attention mechanisms and explicit syntactic-
semantic features—such as information about sentence structure 
and word meaning—to improve COVID-19 misinformation 
detection. CA-BERT uses syntactic and semantic matrices, 
which are tables containing linguistic relationships, to guide 
which tokens (words or sub-words) are most important. Tests 
show that it outperforms recent 2025 models, achieving a 92.5% 
macro-averaged F1 score, while staying interpretable with 
LIME (Local Interpretable Model-agnostic Explanations) 
explanations and robust against adversarial attacks. Multilingual 
tests reveal how the model performs across different languages, 
helping optimize it for various language types. Integrating 
syntactic-semantic structure with transformer models is an 
important advance in deep learning for detecting 
misinformation. An ablation study shows that using additive 
integration, combining the outputs of syntactic-semantic and 
transformer modules by summing their representations, leads to 
a 6.0 percentage-point F1 gain (from 86.5% to 92.5%), 
exceeding the sum of individual effects and supported by 
transformer research. CA-BERT remains practical for 
production, with 45ms latency (18.4% higher than BERT-base) 
and is 6.4 times more energy-efficient per F1 point than HANN. 
Using CA-BERT in fact-checking systems can help experts fight 
misinformation during public health and political crises, thanks 
to its interpretability and robustness. 

Although CA-BERT performs well, it has some important 
limitations. Handling Arabic (63% F1) indicates a need for 
better morphological handling. Since 31.8% of the training data 
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is in English, the model may be biased, and multi-task learning 
could help fix it. The model was only tested on COVID-19 data, 
so it may not work as well for vaccine or election or other topics. 
Its quadratic attention limits it to short documents, but using 
linearized attention methods such as Performer or Transformer-
XL could make it more efficient. LIME explanations can be 
unstable, so it is important to use several explanation methods. 
Future robustness tests should include multi-step adversarial 
attacks such as PGD and C&W, as well as text-level changes 
beyond FGSM. 

Future research could use morphological analysers like 
MADAMIRA and Farasa to support low-resource languages 
(Arabic and other Asian languages). It should also apply 
balanced multi-task learning to fix English data imbalance, test 
cross-domain transferability on different types of 
misinformation, and use online learning to adapt to concept drift. 
Exploration of combining LIME method with attention 
visualization and gradient-based saliency should be considered. 
Adversarial robustness evaluation must be strengthened through 
multi-step gradient attacks (PGD, C&W) and text-level 
perturbations (synonym substitution, paraphrasing) to validate 
genuine robustness against realistic adversarial examples in 
production deployment. Finally, exploring linearised attention 
mechanisms such as Performer and Transformer-XL, or using 
hierarchical chunking, may help process long documents more 
efficiently. 
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