
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

719 | P a g e
www.ijacsa.thesai.org

MQTT Broker Congestion Mitigation Using Huffman

Deep Compression

Ammar Nasif, Zulaiha Ali Othman, Nor Samsiah Sani, Yousra Abudaqqa

Department of Centre of Artificial Intelligence Technology-Faculty of Information Science & Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia

Abstract—This study presents an improved MQTT protocol

designed to address broker congestion and connection overflow in

large-scale IoT networks. The proposed method integrates

Huffman Deep Compression (HDC) at the publisher side to

mitigate network traffic and latency. Unlike standard MQTT,

which suffers from broker overload, our approach applies

efficient data compression on resource-constrained sensor devices

prior to publishing. The proposed approach was validated on a

real-world air pollution dataset collected from the Tanjung Malim

monitoring station in Malaysia, using ESP8266-based IoT nodes.

Experimental results demonstrated that broker congestion was

reduced by 84.26% for QoS 0 and 79.6% for QoS 1, significantly

outperforming both standard MQTT and the state-of-the-art

MRT-MQTT (58% and 45%, respectively). The method attained

a high compression ratio of 2.62, which directly led to a dramatic

reduction in power consumption from 2,664,864 to 63,216 mA

(QoS 0) and from 3,155,760 to 49,168 mA (QoS 1). This substantial

saving in current consumption contributes to extended device

lifetime and enhanced energy efficiency. The findings highlight the

potential of this enhanced protocol to support massive IoT

deployments by minimizing network overhead at the broker.

Keywords—Compression; network congestion; connection

overflow; deep learning; IoT; broker congestion; IoT network;

sensor; latency reduction; publishers; broker; MQTT; power

consumption

I. INTRODUCTION

The growing issue of heavy network traffic in IoT networks
is becoming increasingly evident in smart cities, as millions of
IoT devices generate vast amounts of data, making it
challenging to effectively implement smart-city technologies
[1]. Transmitting data from IoT devices to servers can be
challenging due to the constraints of the network infrastructure
[2]. When a large volume of data is sent at the same time, it can
exceed the network’s bandwidth capacity, potentially leading to
congestion and overflow issues [3]. Researchers stated that the
massive data traffic could cause any system to jam, regardless
of that system's infrastructure [4]. While other researchers stated
that in case all the sensors are transmitting data to a central
server at the same time, the server may become overwhelmed
and unable to process all the data, leading to an IoT data traffic
overflow [5]. Furthermore, the number of IoT devices has grown
rapidly in recent years and is projected to exceed 100 billion by
the year 2050 [6], [7]. Protocols play a vital role in handling data
transmission, like MQTT, which has a lightweight structure,
minimal bandwidth usage, and energy-efficient operation [8].
MQTT is particularly beneficial in IoT environments where
devices operate under low-power constraints and unreliable

network conditions. It supports three Quality of Service (QoS)
levels, ensuring reliable message delivery even in high-latency
networks [9]. However, MQTT has several limitations,
including the absence of message queuing, where only the latest
message is retained by the broker. Furthermore, MQTT does not
feature a dedicated section for message properties, which limits
its capacity to include metadata or additional control
information [10]. Moreover, the connection overflow in MQTT
occurs when many clients or IoT nodes attempt to connect to a
single MQTT broker simultaneously [11]. While a key challenge
for MQTT in Mobile Ad Hoc Networks (MANETs) is the end-
to-end communication time, the total time it takes for a packet
to travel from the source to the destination through the broker.
This factor is particularly critical for real-time and multimedia
applications [12]. The flow issue in the MQTT protocol pertains
to difficulties in regulating and managing data transmission
between devices, especially in ensuring a consistent and
dependable message flow. In environments with high data
volumes or fluctuating network conditions, this can result in
congestion, delays, or packet loss [13]. Such challenges can
undermine the protocol’s efficiency and reliability, particularly
in large-scale IoT systems or applications that demand real-time
communication [14]. Despite MQTT's widespread adoption,
effectively preventing broker congestion at its source remains a
challenge. While solutions often focus on broker-side
optimizations or heavyweight compression, this study addresses
a key gap by asking: How can MQTT be enhanced with
lightweight, publisher-side compression to reduce data volume,
mitigate congestion/overflow, and remain suitable for
constrained IoT devices? This study examines the performance
of proposed modifications to the MQTT protocol, which is
considered one of the most efficient protocols for IoT networks.

This study is structured as follows: Section II defines the
research problem of MQTT broker congestion and overflow.
Section III reviews related work and state-of-the-art solutions.
Section IV outlines the research scope, while Section V details
the current solutions, including Huffman Coding and MQTT.
Section VI proposes the novel HDC algorithm and its integration
with MQTT. Section VII describes the experimental setup.
Section VIII presents and analyzes the results against
benchmarks. Section IX summarizes the core contributions of
this work. Section X discusses the implications and insights
derived from the results. Finally, Section XI concludes the study
and outlines directions for future research in Section XII.

II. RESEARCH PROBLEM

This study explores the IoT network problems caused by
massive data transmission, such as network congestion [15] [16]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

720 | P a g e
www.ijacsa.thesai.org

[17] and the connection overflow [18] [19]. While the
transmission of massive data through IoT networks could cause
crucial issues [20] like connection overflow, which arises when
servers are overwhelmed with an excessive number of
connection requests [21] [22] [23] [19] and network congestion
problems [24] [25] [26] especially during data transmission
between publishers and brokers using the MQTT protocol.
These problems raised the need for efficient congestion
management and intelligent algorithms for offloading and
retransmission control [27]. Furthermore, the MQTT protocol
was insufficient because it is not designed for direct device-to-
device transfer or multicasting, offering limited control options
[28].

III. RELATED WORK

Numerous challenges in IoT networks remain unresolved,
one of which is connection overflow or overload—an issue that
arises when servers are overwhelmed by a large number of
simultaneous connection requests [22]. This can severely impact
system performance and reliability [21] [19]. The connection
overflow can arise when a large number of devices try to connect
to the network at the same time, resulting in network congestion
and degraded performance [29]. Many researchers have
proposed solutions, such as a delay-based congestion control
approach for long-delay networks, to ensure efficient data
transmission based on the path capacity [30]. However, to
mitigate connection overflow in other protocols, such as the
CoAP protocol, CoAP can implement rate limiting, congestion
control, and load balancing mechanisms to prevent connection
overload and ensure the stability and performance of the
network [31]. While [32] aimed to enhance the CoAP protocol's
performance by introducing a novel rate-control algorithm to
address congestion more efficiently. Furthermore, [33]
highlighted that certain components of the IoT, particularly
sensor networks and wireless access networks, typically operate
with constrained bandwidth and limited energy resources. And
to address these limitations, they introduced a congestion control
model for IoT based on an improved version of the Random
Early Discard (IRED) algorithm, but the proposed model did not
achieve the expected performance or provide sufficient
throughput under certain conditions. However, [27] noted that
congestion is a prevalent issue in IoT networks. To address this,
they explored two key approaches: optimizing the application or
network layers and leveraging machine learning to offload
traffic. However, [34] introduced a loss-based Congestion
Control Algorithm (CCA) tailored for IoT networks, which
demonstrated superior performance compared to standard
algorithms in terms of throughput and fairness. Despite its
effectiveness, the algorithm may encounter challenges when
dealing with high Round-Trip Time (RTT) conditions. In [24],
the authors noted that the rapid increase in IoT devices can lead
to network congestion, yet current research often overlooks this
critical issue. Their study explored the challenges associated
with congestion in IoT networks, developed a taxonomy to
categorize these issues, and recommended the use of
application-layer algorithms to enhance timeliness and
reliability in data transmission.

However, numerous state-of-the-art solutions have been
proposed, such as an enhanced MQTT-SN, which is proposed
by [35], achieved a minimum latency of 15.5 ms, a peak

message transfer rate of 620 messages per second, and
demonstrated minimal energy consumption. While [36] found
that implementing CoAP-DTLS for secure data transfer in IoT
harms performance compared to using CoAP. Using CoAP-
DTLS resulted in a 9-10% increase in power consumption and a
100% increase in latency. Furthermore, [37] introduced a new
Pub/Sub model as a crucial aspect of the IoT gateway
architecture, which handles data from smart applications before
transmission. The results showed that the smart gateway had
reduced the amount of data sent. while [16] assert that “Game
Theory Congestion Control Framework” (GTCCF) enhances
performance under congestion conditions by achieving overall
average improvements of 30.45% in throughput, 39.77% in end-
to-end delay, 26.37% in energy consumption, 91.37% in the
number of lost packets, and 13.42% in the weighted fairness
index (WFI) compared to the DCCC6 duty cycle-aware
congestion control algorithm for 6LoWPAN networks.
Additionally, the authors stated that the CA-OF objective
function, developed for RPL, significantly enhances network
performance, achieving an overall average improvement of
37.4% in energy utilization, packet loss, throughput, and packet
delivery ratio.

Other researchers utilized Deep learning to address IoT
delay and data transmission latency [38]. Deep learning has been
effectively applied to reduce data traffic in both mobile networks
[39] and Wireless Sensor Networks [40]. Researchers stated that
the pooling technique in deep learning can be applied to reduce
data dimensions and extract relevant features, leading to more
efficient and faster processing in IoT networks [41]. However,
deep learning models can be large and computationally
expensive, leading to latency in IoT devices. Employing model
compression techniques like pruning, quantization, and
knowledge distillation can reduce the model size and make it
more suitable for deployment on resource-constrained IoT
devices [42]. Implementing deep learning models directly on
IoT edge devices enables local data processing, eliminating the
need to transmit all data to a central server [43]. However,
employing deep learning models to forecast future events using
historical data aids in foreseeing potential problems and taking
proactive measures to mitigate the impact of latency-sensitive
[44] [45].

Furthermore, incorporating edge computing and fog
computing concepts into the IoT architecture allows for the
processing of data nearer to the network's edge, which results in
decreased round-trip time to a central server, ultimately leading
to reduced latency [46] [47]. Other researchers [48] introduced
NDS/DQS, a traffic scheduling method integrating deterministic
scheduling (NDS) for time-sensitive flows and queue
scheduling (DQS) for best-effort flows. Experiments validated
its effectiveness, demonstrating improvements in delay, jitter,
execution time, schedulable ratio, and bandwidth utilization.
Other researchers [49] explored ML algorithms in resource-
constrained IoT fog frameworks to identify suitable classifiers
for minimizing latency and energy consumption with ambient
sensors. The Decision Tree model achieved the lowest latency
(54 ms) compared to other classifiers, as execution occurs at the
fog level and is offloaded to the cloud. In [50], the authors
proposed an adaptive control scheme for nonstatistical data
aggregation in IoT gateways, using three estimation formulas to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

721 | P a g e
www.ijacsa.thesai.org

optimize aggregation based on time-varying arrival rates.
Simulations showed that the scheme reduces queue lengths,
absorbs traffic fluctuations, and achieves stable, near-optimal
latency.

Typical IoT applications [50], such as factory automation
and smart grids, require 0.25–10 ms latencies and 3–20 ms,
respectively. A 100-second experiment with an overload state
(30–70 s) showed that queue lengths and latency increased
without control, while the estimation formula achieved a near-
theoretical latency of 8.0 ms. The study also confirmed a
consistent relationship between the optimal aggregation
number and traffic intensity, independent of overhead or
transmission time. To address latency in MQTT, [51] proposed
a Multicast Real-Time MQTT (MRT-MQTT) architecture,
utilizing multicast routing to improve efficiency and timeliness
and reduce network usage. Emulation experiments showed that
MRT-MQTT reduced transmission delay by 29% (QoS=0) and
23% (QoS=1) compared to DM-MQTT, and by 55% and 43%
compared to STD-MQTT, while lowering network usage by
58% and 45%, respectively.

Alternative approaches have been explored, such as
compression techniques. Compression algorithms for IoT data
are generally classified into entropy-based [52], dictionary-
based [53], and sliding window techniques [54]. As noted in
[55], Huffman coding (entropy-based) outperformed LZ77
(sliding window) and LZ78 (dictionary-based) for numeric
time-series IoT data. However, LZ77 and LZ78 may cause data
inflation, especially when compressing small, low-redundancy
files [56], [57]. In [55], researchers evaluated four lossless
compression algorithms—HCA, LZ77, LZ78, and Adaptive
Huffman (AH). Their results indicated that while these methods
are effective for compressing sensor data, they are not feasible
for deployment on IoT nodes due to the limited memory
available on such devices. Several studies have explored data
compression in sensor networks. In [58], the authors proposed
an energy-efficient Huffman-based LEACH protocol for WSNs.
In [59], LZMA achieved the highest compression ratio on
neuromorphic sensor data, while Brotli offered a good balance
of speed and efficiency. In [60], the authors emphasized energy
constraints in WSNs and recommended the adaptive lossless
data compression (ALDC) algorithm for its bitstream reduction
capabilities. The sliding window technique has been proposed
to compress data, which processes fixed-size data segments
within larger streams [61], [62]. Notably, sliding windows [63]
were applied to minimize memory usage, and it has been
adopted for data size reduction and memory optimization in
other studies [64], [65], [66].

While the related work demonstrates significant progress in
congestion control, edge processing, and data compression for
IoT, a critical gap remains in efficiently integrating a
compression scheme that is simultaneously lightweight, pattern-
aware, and broker-offloading. Prior MQTT enhancements like
MRT-MQTT [51] focus on network-layer multicast routing but
do not reduce the fundamental data volume from publishers.
Conversely, generic compression algorithms (e.g., LZ77,
Adaptive Huffman) evaluated for sensor data [55], [56] are
often deemed infeasible for direct deployment on constrained
IoT nodes due to their memory and computational footprint.
Other IoT compression studies [58], [59], [60] operate at the

network or application layer independently of the MQTT
protocol, missing the opportunity for tight, publisher-side
integration that proactively prevents broker overload.

The fundamental novelty of this work is the architectural and
algorithmic co-design of the Huffman Deep Compression (HDC)
scheme specifically for the MQTT publisher role. Unlike static
entropy coders, HDC employs a dynamic sliding window and
pattern-weighting mechanism that adapts to local data trends
with minimal memory—a necessity for devices like the
ESP8266 (160 KB RAM).

Unlike prior compression studies that treat the node and
protocol separately, HDC is embedded directly into the MQTT
publish workflow, ensuring compression occurs at the source
before network transmission, thereby directly targeting the root
cause of broker congestion.

This approach shifts the computational burden of traffic
reduction to the edge in a feasible manner, a distinct architectural
advancement over broker-centric or generic compression
solutions. Therefore, this study does not merely apply
compression to MQTT; it introduces and validates a tightly
coupled, resource-aware compression protocol that
fundamentally rebalances the scalability limitations of the
standard publish-subscribe model.

IV. RESEARCH SCOPE

This study focuses on mitigating MQTT broker congestion
and connection overflow via publisher-side compression. The
scope is defined as follows:

• Focus: Enhancing the MQTT application layer with
lossless compression using the novel Huffman Deep
Compression (HDC) algorithm at the IoT publisher.

• Evaluation: Measuring broker congestion reduction,
network load, transmission time, compression ratio, and
publisher energy consumption.

• Validation: Testing on ESP8266 nodes using real-world
air pollution sensor data, comparing performance to
standard MQTT and MRT-MQTT.

• Exclusions: Security enhancements, non-MQTT
protocols, mobility scenarios, and long-term hardware
tests are out of scope.

This targeted scope enables a clear assessment of HDC's
efficacy in improving MQTT scalability for constrained IoT
networks.

V. THE CURRENT SOLUTIONS

A. The Huffman Coding Algorithm

Huffman coding starts by building a frequency table of
character occurrences. A binary tree is then created, placing
frequent characters closer to the root, giving them shorter codes,
while rare characters are placed deeper, resulting in longer
codes. Each character’s code is generated by traversing the tree:
moving left adds a 0, moving right adds a 1. Fig. 1 illustrates a
simple Huffman coding process.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

722 | P a g e
www.ijacsa.thesai.org

The Huffman coding algorithm compresses data by
assigning prefix codes based on symbol frequencies. However,
because symbol storage and frequency analysis require
significant memory and processing resources, adjustments are
necessary for IoT environments.

B. The MQTT Protocol

MQTT is used for communication in IoT networks, as
illustrated in Fig. 2. The data flow process in MQTT can be
included in the following steps [67]:

• The publisher connects to the MQTT broker, a server.

• The publisher can then publish a message on a specific
topic on the broker.

• The broker sends the message to subscribers who
subscribe to that topic.

• The subscribers can receive the message and take
appropriate action.

Fig. 1. Huffman coding algorithm (HCA) flowchart.

Fig. 2. MQTT publish-subscribe flowchart.

More

symbols?

Read dataset file

Arrange all symbols in ascending order according to their probabilities

(frequencies)

Figure out the probabilities for every symbol in the dataset file

Assign ‘0’ to the left leaf (LL) and ‘1’ to the right leaf (RL) of the

subtree

Update previous subtree to have a root holds the sum of new symbol probability

value (RL) and previous subtree root value (LL)

Merge the next lowest probability symbol with previous Subtree as a right

leaf (RL) and the previous root as a left leaf (LL)

Start

Stop reading

Assign codewords for every symbol by defining transition bits on
the branches leading to it from root of tree to bottom

Start coding by replacing every symbol
in dataset file by its code bits End

Yes No

Arrange all symbols in ascending order according to their probabilities
(frequencies)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

723 | P a g e
www.ijacsa.thesai.org

VI. PROPOSED SOLUTIONS

A. Proposed HDC Algorithm

The Huffman Deep Compression (HDC) algorithm
improves upon traditional Huffman Coding (HCA). HDC uses
patterns instead of symbols and pattern weight rather than
symbol frequencies within sliding windows, significantly
reducing tree complexity and memory usage—ideal for IoT
environments. Each data segment is processed independently
using polling and pruning to extract optimal patterns and

generate efficient Huffman trees. Pattern weights are calculated
based on frequency and size, sorted, and encoded using shorter
codewords for heavier patterns. Trees from each segment are
compared, merged, and optimized using minimum pooling and
pruning, resulting in a shared tree with minimal redundancy.
This approach ensures efficient compression by encoding
common, high-weighted patterns with minimal code length,
while less-weighted patterns receive longer codes. The process
is repeated across all segments until a final, compact tree is
created for encoding, as illustrated in Fig. 3.

Fig. 3. The HDC algorithm flowchart.

The compression ratio (CR) indicates how efficiently the
HDC algorithm minimizes the data size. Eq. (1) shows how to
measure the CR, where 𝑆𝑜𝑟𝑖𝑔 presents the original data size and

𝑆𝑐𝑜𝑚𝑝 presents the compressed data size. A higher CR indicates

better compression efficiency.

𝐶𝑅 =
𝑆𝑜𝑟𝑖𝑔

𝑆𝑐𝑜𝑚𝑝
 (1)

The HDC algorithm has been previously tested and validated
in an earlier published study, demonstrating its effectiveness in

reducing memory usage and data traffic on IoT nodes. In the
current work, the focus shifts to applying the HDC algorithm
within the MQTT protocol to reduce network congestion and
connection overflow cases.

B. Proposed MQTT Improvement Based on the HDC

Compression Algorithm

The proposed HDC algorithm is tailored for MQTT systems,
fits the limited memory of IoT devices, and uses a sliding
window for efficient compression. This significantly lowers the
data sent from the publisher to the broker, as shown in Fig. 4.

Arrange all patterns in ascending order according to their weights (L 2 R)

Merge the lowest two weights patterns into one Subtree establishing a root

holds the sum of their weights

Assign ‘0’ to the left leaf (LL) and ‘1’ to the right leaf (RL) of the subtree

Update previous subtree to have a root holds the sum of new pattern weight value (RL) and
previous subtree root value (LL)

Assign code words for every pattern by defining transition bits on the

branches leading to it from the root of the tree to the bottom

End

Start coding by replacing every pattern in dataset file by the minimum code bits

Figure all possible Patterns in the X slide

Calculate every Pattern weight = size * freq

 X = 1

X<N

Define Shared patterns between all Huffman trees and their code bits

Figure the minimum code bit for all shared patterns and prune others

Start

Read dataset file

Split the dataset file into N slides

More Patterns?

Merge the next lowest weight Pattern with previous Subtree as a right leaf (RL) and the previous
root as a left leaf (LL)

Stop reading X slide

 X++

Yes

Yes No

No

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

724 | P a g e
www.ijacsa.thesai.org

Fig. 4. The proposed MQTT diagram based on the compression approach.

The diagram shows how sensor data moves through an
MQTT-based IoT system using the HDC compression
algorithm. Sensors first collect data like temperature, humidity,
etc. This data is then compressed by the IoT publisher to
minimize memory usage and network congestion before being
sent to the MQTT broker over the registered topics. Shifting
decompression to the broker, which typically has more
resources, the system keeps IoT nodes efficient and reduces both
bandwidth requirements and transmission time, reducing the
overall data flow.

Eq. (2) shows the transmission time reduction (𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛),
which presents the difference between data transmission time
using HDC and without it.

𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛= 𝑇𝑂𝑟𝑖𝑔 − 𝑇𝑐𝑜𝑚𝑝 (2)

The number of messages sent by publishers affects the
network congestion. By shrinking the size of each message, the
HDC algorithm helps lower the overall data load (L) on the
network. Eq. (3) shows how to measure the network load. Where
N is the number of messages sent and S is the message size.

L=N×S (3)

With HDC, the reduced load becomes, as in Eq. (4):

𝐿𝑐𝑜𝑚𝑝= 𝑁 ∗ 𝑆𝑐𝑜𝑚𝑝 (4)

The reduction in network load can be calculated, as in
Eq. (5):

𝐿𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛= 𝐿𝑜𝑟𝑖𝑔 − 𝐿𝑐𝑜𝑚𝑝 = 𝑁 ∗ (𝑆𝑜𝑟𝑖𝑔 − 𝑆𝑐𝑜𝑚𝑝) (5)

Smaller L results in fewer packets on the network, mitigating
congestion and improving the broker’s ability to manage
incoming messages. While the connection overflow occurs on
the broker side when the message queue fills up due to high data
inflow. The HDC algorithm helps by decreasing the data size
(𝑆𝑐𝑜𝑚𝑝) of each message, and reducing the arrival rate (𝑅𝑐𝑜𝑚𝑝)

of data packets. Eq. (6) presents the arrival rate (R), which
depends on the message size (S) and the message rate (M).

R=M×S (6)

With compression, the new arrival rate is presented in
Eq. (7):

𝑅𝑐𝑜𝑚𝑝= 𝑀 ∗ 𝑆𝑐𝑜𝑚𝑝 (7)

The broker can process messages faster by reducing R,
preventing queue overflow. In summary, this experiment
examines how the HDC algorithm can reduce transmission time
under both QoS 0 and QoS 1 conditions, contributing to reduced

Initializing

NOx

C
o
m

p
re

ss
 S

en
so

rs
 D

at
a

to
 c

o
n
n
ec

t
m

o
re

 s
en

so
rs

 a
n
d
 f

it
 i

n
 I

o
T

 M
em

o
ry

Topics Registration

Connect ACK

Connect

Register Topics

Subscribe to a topic/topics

Publish on a topic / topics

Sensors IoT (Publisher) Broker Subscriber

Publish on a topic / topics

Disconnect

Decompress Data

Temperature

Humidity

CO

NO2

NOx

O3

NO

WDr

WSp

CO

NO2

O3

NO

WDr

WSp

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

725 | P a g e
www.ijacsa.thesai.org

network congestion and preventing connection overflow on
brokers.

VII. EXPERIMENT

The primary objective of this experiment is to validate the
hypothesis that applying the HDC compression algorithm at the
IoT publisher node significantly reduces data transmission time,
alleviates broker-side network congestion, and prevents
connection overflow. The end-to-end process is illustrated in
Fig. 5, where Tx and TR denote the transmission start and end
times for a message, and N is the total number of messages.

Fig. 5. The experiment process for data transmission from the publisher to

the broker using an improved MQTT based on the HDC algorithm.

A. Hardware and Software Configuration

To ensure practical relevance, the experiment utilized
resource-constrained hardware representative of typical IoT
edge devices.

• IoT Publisher Node: An ESP8266 (NodeMCU v1.0)
microcontroller was employed. Its specifications are
critical: a single-core 80 MHz Tensilica LX106
processor, 160 KB of user-available RAM, and 4 MB of
flash memory. It was connected via 802.11n Wi-Fi to a
local network.

• MQTT Broker: The Eclipse Mosquitto™ broker (version
2.0.15) was installed on a standard desktop computer
(Intel Core i5, 16 GB RAM, Windows 10) acting as the
central broker within the same local network.

• Subscriber and Measurement Host: A C++ script
utilizing the Paho-MQTT v1.6.1 client library ran on a
separate laptop. This script subscribed to all relevant
topics, logged each message with high-resolution
timestamps, and calculated transmission latency.

• Power Measurement: The current consumption of the
ESP8266 was measured using a UNI-T UT181A
precision digital multimeter with data logging
capabilities, connected in series with the board's 3.3V
power supply.

B. Dataset Characterization and Preparation

The experiment used a real-world, time-series dataset to
simulate a realistic IoT sensor streaming scenario.

• Source: Data was sourced from the Tanjung Malim air
quality monitoring station in Malaysia.

• Content and Structure: The dataset comprises 4,383
complete records. Each record contains synchronous
readings from eight environmental sensors: Temperature
(°C), Nitrogen Oxides (NOx, ppm), Relative Humidity

(%), Nitrogen Dioxide (NO2), Nitric Oxide (NO), Ozone
(O3), Wind Direction (degrees), and Wind Speed (m/s).

C. Experimental Procedure

The experiment was conducted in two comparative phases to
isolate the impact of the proposed HDC enhancement.

Phase 1. Baseline Protocol Performance (MQTT vs. CoAP):
This phase established a performance baseline for standard
protocols under identical data and network conditions.

• Objective: To compare the inherent transmission
efficiency of MQTT and CoAP.

• Scenarios:

o MQTT QoS 0 (at-most-once delivery) vs. CoAP

Non-confirmable (NON) messages.

o MQTT QoS 1 (at-least-once delivery) vs. CoAP

Confirmable (CON) messages.

• Procedure: The ESP8266 was programmed to
sequentially publish each of the 4,383 sensor records. For
MQTT, each sensor type was published to a unique topic
(e.g., sensors/temp). The end-to-end transmission time
(T_Orig) for each message was measured as the
difference between the timestamp immediately before
calling the publish() function on the ESP8266 and the
timestamp when the payload was fully received and
processed by the subscribed client.

Phase 2. Evaluation of HDC-Enhanced MQTT: This phase
measured the improvement achieved by integrating the HDC
compression module into the MQTT publish workflow.

• Objective: To quantify the reduction in transmission
time, network load, and power consumption afforded by
publisher-side compression.

Scenarios:

o Standard MQTT (QoS 0 & QoS 1) without

compression.

o HDC-enhanced MQTT (QoS 0 & QoS 1) with

compression applied before publishing.

Procedure:

o Compression: On the ESP8266, the data for each
sensor record was passed through the HDC
algorithm prior to the MQTT publish call, producing

a compressed payload (S_comp).

Transmission: The compressed payload was

published to the same MQTT topics as in Phase 1.

o Decompression: To maintain standard MQTT
semantics for subscribers, a lightweight
decompression plugin was added to the Mosquitto
broker. This plugin intercepted messages on the
designated topics, decompressed the payload using

HDC to regenerate the original data.

Collect Data &
Compress

IoT Node

Decompress Data on

Broker

Broker Tx TR
1

2

N

.

.

.

.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

726 | P a g e
www.ijacsa.thesai.org

o Measurement: The transmission time with
compression (T_comp) was measured identically to
Phase 1. Additionally, the total current consumption
for the entire transmission cycle (compression,
transmission, and Decompression) was logged by

the multimeter for both compressed and

uncompressed scenarios.

VIII. RESULTS

The experimental results are divided into five sections.

A. The Performance of HDC

Fig. 6 presents the compression ratio results, comparing
HDC to state-of-the-art solutions, showing that HDC achieves
the highest compression ratio (2.62), outperforming BDC (2.47)
[68], Delta+RLE (1.898) [69], Sahu & Panda (0.89) [70], and
LZW+X.509 (0.71) [71], confirming HDC’s superior efficiency.

B. MQTT vs. CoAP

Table I displays the transmission time recorded, measured in
milliseconds, for the Tanjung Malim station sensors' data, for
both scenarios: QoS 0 and QoS 1 in MQTT, and non-
confirmable and confirmable modes in CoAP.

Fig. 6. HDC vs. State-of-the-art research results on compression ratio.

TABLE I. TRANSMISSION TIME (MS) COMPARISON BETWEEN MQTT

AND COAP

Non-

confirmable
QoS 0 Confirmable QoS 1

Sensor CoAP MQTT CoAP MQTT

Temp 284 442.461 374 460.857

NOx 244 227.448 339 335.711

Humidity 247 214.537 350 335.817

NO2 236 216.483 358 333.08

O3 242 217.965 328 331.201

NO 259 218.061 365 332.993

WDr 215 215.521 348 334.654

WSp 244 215 351 330.429

CoAP shows higher transmission times than MQTT, with
the exception of temperature data, where the overhead of TCP
connection establishment in MQTT results in longer delays.

Despite this, MQTT generally demonstrates superior
performance in terms of data transmission efficiency.

C. MQTT with HDC vs. Standard MQTT

Transmitting data from the sensors to the Tanjung Malim
station (broker), where every sensor is considered a publisher.

TABLE II. TRANSMISSION TIME (MS) COMPARISON BETWEEN

STANDARD MQTT AND THE IMPROVED MQTT USING COMPRESSION (HDC)

 QoS 0 QoS 1

Sensor
Time with

compression

Time
without

compression

Time with
compression

Time
without

compression

Temp 43.5602 442.461 77.5269 460.857

NOx 39.878 227.448 72.8804 335.711

Humidity 38.2013 214.537 73.1911 335.817

NO2 39.5145 216.483 71.0191 333.08

O3 40.305 217.965 74.5532 331.201

NO 39.5492 218.061 73.6148 332.993

WDr 27.0295 215.521 56.7491 334.654

WSp 41.7017 215 71.0177 330.429

The experimental results demonstrate that applying
compression significantly improves transmission performance
in both QoS 0 and QoS 1 settings. The impact of HDC
compression on transmission latency is detailed in Table II.
Under QoS 0, compression reduced the total transmission time
from 1967.48 ms to 309.74 ms, achieving a Network Congestion
Reduction (NCR) and Broker Overflow Prevention of 84.26%.
Similarly, in QoS 1, compression lowered the total transmission
time from 2794.74 ms to 570.55 ms, with an NCR and Broker
Overflow Prevention of 79.6%. These findings indicate that the
compression approach effectively minimizes transmission
delays, reduces network congestion, and alleviates broker load
across different QoS levels.

D. Compression Time

Table III presents the recorded times used to calculate the
total data transmission duration from the publisher to the broker,
incorporating both compression at the publisher and
decompression at the broker, under the two transmission
scenarios: QoS 0 and QoS 1.

TABLE III. TIME (MS) FOR DATA TRANSMISSION FROM THE PUBLISHER

TO THE BROKER USING THE HDC ALGORITHM

 Compression

Time

Transmission

Time

Decompression

Time

QoS 0 1458.589 309.7394 63.6218

QoS 1 1458.589 570.5523 63.6218

Data transmission using the HDC algorithm shows different
performance for each QoS level. QoS 0 achieves a total time of
~1831.95 ms, while QoS 1 increases to ~2092.76 ms due to
longer transmission time. Since compression and
decompression times remain unchanged, the additional delay in
QoS 1 is due to its increased reliability mechanism.

1.898

2.47

0.89
0.71

2.62

0

0.5

1

1.5

2

2.5

3

Delta+RLE (12-
bit ADC best

case)

BDC Sahu & Panda,
2024

LZW+X .509 HDC

Co
m

pr
es

sio
n

Ra
tio

Methods

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

727 | P a g e
www.ijacsa.thesai.org

E. Power Consumption

The IoT node draws 26 mA at idle. Compression with HDC
increases consumption to 44 mA (an extra 18 mA), while
decompression requires 40 mA. Transmission consumes 102
mA with QoS 0 and 116 mA with QoS 1. The table below
summarizes these values.

TABLE IV. CURRENT CONSUMPTION FOR EACH PROCESS IN MAMPS

Operation Consumption (mAmps)

Compress (per sliding window) 18

Decompress (per sliding window) 14

QoS 0 Transmission 76

QoS 1 Transmission 90

The table shows current consumption for each operation, as
measured and listed in Table IV. Compression and
decompression require 18 mA and 14 mA per sliding window,
respectively, while data transmission draws 76 mA for QoS 0
and 90 mA for QoS 1 due to extra acknowledgments. Table V
shows how many mAmps in total were needed to transmit data
from the publisher to the broker.

TABLE V. POWER CONSUMPTION (MAMPS) FOR THE DATA

TRANSMISSION FROM THE PUBLISHER TO THE BROKER

 With Compression Without Compression

QoS 0 63216 2664864

QoS 1 49168 3155760

The table indicates that using compression significantly
reduces the total current consumption during data transmission
for both QoS levels. The results demonstrate that compression
not only reduces data volume but also leads to substantial energy
savings, especially beneficial for battery-powered IoT nodes.

IX. CONTRIBUTIONS

This work makes the following distinct contributions to the
field of IoT communication protocols:

• A Novel Protocol Integration Architecture: A new
publisher-side compression framework for MQTT is
proposed and validated, shifting the primary
computational burden of traffic reduction from the
broker to the edge. This architectural shift establishes a
design principle: proactive, source-side data
minimization is a scalable alternative to reactive broker-
side optimizations for congestion control.

• An Algorithm Optimized for Constrained MQTT
Publishers: A resource-aware adaptation of the Huffman
Deep Compression (HDC) algorithm is introduced,
specifically tailored for the MQTT publisher role on
devices with severe memory constraints (e.g., 160 KB
RAM). The key innovations are its dynamic sliding-
window pattern matching and lightweight tree-
generation process, which maintain a high compression
ratio of 2.62 while operating within the limits of IoT edge
hardware.

• Quantified Performance Advancement and New
Congestion Insights: Through empirical validation, this
study demonstrates that the integrated system reduces
broker-side congestion by 84.26% for QoS 0 and 79.6%
for QoS 1, significantly outperforming the state-of-the-
art MRT-MQTT (58% and 45%, respectively). These
results provide new insights into congestion dynamics,
quantitatively proving that reducing per-message
payload size is disproportionately effective in alleviating
queue growth—more so than optimizing broker
processing speed alone.

• Substantial Energy Efficiency Gains and a Reusable
Benchmark: The approach delivers transformative
energy savings, reducing total current consumption from
2,664,864 to 63,216 mA (QoS 0) and from 3,155,760 to
49,168 mA (QoS 1). Furthermore, a complete,
reproducible methodology for evaluating compression-
enhanced MQTT is provided, establishing a new
performance benchmark for the community.

These contributions collectively advance the field by
providing not just a faster protocol, but a new architectural
pattern, an optimized algorithm, fundamental insights into
congestion mechanics, dramatic energy improvements, and a
reproducible benchmark for scalable IoT communication
systems.

X. DISCUSSION

The results validate the HDC-enhanced MQTT protocol.
The core insight is that broker congestion is fundamentally a
data volume issue. Solutions like MRT-MQTT manage traffic
more efficiently at the broker, but our publisher-side
compression prevents the overload at its source. The higher
congestion reduction for QoS 0 (84.26% vs. 79.6% for QoS 1)
confirms this, as the acknowledgment overhead in QoS 1
presents a fixed bottleneck.

The dramatic energy reduction—from millions to tens of
thousands of mA—stems from shorter radio transmission times
for compressed data. This demonstrates a key principle:
optimizing network efficiency in IoT inherently optimizes
energy efficiency, directly extending device lifetime in large-
scale deployments.

Achieving a compression ratio of 2.62 on a device with 160
KB RAM also addresses prior work that deemed such
algorithms infeasible on constrained nodes. This work
establishes a practical design pattern: the Intelligent Publisher,
where edge nodes preprocess data to minimize their network
footprint. This shifts system scalability from being a broker-
centric challenge to a shared responsibility, offering a clear path
for building sustainable, massive IoT networks. The main trade-
off is added compression latency, which the significantly
reduced transmission time offsets for most applications.

XI. CONCLUSION

This study has demonstrated that integrating Huffman Deep
Compression (HDC) at the MQTT publisher is a fundamental
strategy for scalable IoT. The significant performance gains—
84.26% congestion reduction, a 2.62 compression ratio, and
over 97% energy savings—are not merely numerical

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

728 | P a g e
www.ijacsa.thesai.org

improvements, but represent critical advancements for real-
world systems.

The reduction in broker congestion directly translates to
enhanced system reliability and stability; brokers can handle
orders of magnitude more devices without queue overflow,
enabling true massive-scale deployments. The drastic drop in
energy consumption extends device lifetime from months to
years, reducing maintenance costs and enabling deployment in
inaccessible locations. Finally, by minimizing the data load, this
approach reduces bandwidth requirements and operational costs
for large sensor networks.

While validated on environmental data, the proposed
architectural principle, proactive source-side minimization,
provides a generalizable framework for enhancing publish-
subscribe protocols. Future work will test this framework with
diverse data and in dynamic networks. Ultimately, this work
moves beyond optimizing a protocol to providing a practical
blueprint for building sustainable, large-scale IoT infrastructure.
A noted limitation is the focus on numerical time-series data
within a stable local network. Future work will therefore
investigate HDC's performance on diverse data formats, its
integration with security layers like MQTT-S, and its robustness
in dynamic, large-scale network topologies to further generalize
its utility for next-generation IoT ecosystems.

XII. FUTURE WORK

Future research on the Huffman Deep Compression (HDC)
algorithm should focus on enhancing its performance in large-
scale IoT environments. Integrating loss compression
techniques may significantly reduce data size while preserving
essential information, leading to lower transmission latency.
Maximizing throughput and ensuring scalability in high-density
IoT networks, such as smart city infrastructures, is another
critical direction. Furthermore, implementing the enhanced
MQTT protocol within next-generation IoT architectures,
including 6G networks, can unlock new opportunities for ultra-
reliable and low-latency communication. Finally, developing
innovative strategies to reduce network overhead will be vital
for sustaining efficient and reliable data transmission in massive
IoT ecosystems.

ACKNOWLEDGMENT

This work is part of a research project funded by the
FRGS/1/2019/ICT02/UKM/02/7, the Ministry of Higher
Education of Malaysia.

REFERENCES

[1] M. Alipio and M. Bures, “Deep Reinforcement Learning Perspectives on

Improving Reliable Transmissions in IoT Networks: Problem

Formulation, Parameter Choices, Challenges, and Future Directions,”

Internet of Things, vol. 23, no. May, p. 100846, 2023, doi:

10.1016/j.iot.2023.100846.

[2] R. L. Delfanti et al., “EPIIC: A NOVEL ENCODING PLUGGABLE

LOSSLESS DATA COMPRESSION ALGORITHM A,” 2018. doi:

10.1056/nejmoa1407279.

[3] M. Caporuscio, F. Edrisi, M. Hallberg, A. Johannesson, C. Kopf, and D.

Perez-Palacin, Architectural concerns for digital twin of the organization,

vol. 12292 LNCS. 2020. doi: 10.1007/978-3-030-58923-3_18.

[4] A. N. Jaber Al, “Efficient Visualization Framework for Real-Time

Monitoring Network Traffic of High-Speed Networks,” Proc. - 2021

IEEE Int. Conf. Big Data, Big Data 2021, pp. 5839–5842, 2021, doi:

10.1109/BigData52589.2021.9671915.

[5] P. M. E. Ramakrishnan, S. Hari Prasath, L. Harish, and E. KrishnaKumar,

“IoT based Industrial Automation for Various Load using ATmega328p

Microcontroller,” Proc. - 2022 6th Int. Conf. Intell. Comput. Control Syst.

ICICCS 2022, no. Iciccs, pp. 471–475, 2022, doi:

10.1109/ICICCS53718.2022.9788258.

[6] G. G. K. W. M. S. I. R. Karunarathne, K. A. D. T. Kulawansa, and M. F.

M. Firdhous, “Wireless communication technologies in internet of things:

A critical evaluation,” 2018 Int. Conf. Intell. Innov. Comput. Appl.

ICONIC 2018, no. June, 2019, doi: 10.1109/ICONIC.2018.8601226.

[7] A. Almansoori, C. Ncube, and S. A. Salloum, “Internet of Things Impact

on the Future of Cyber Crime in 2050,” Res. Gate, no. May, pp. 643–655,

2021, doi: 10.1007/978-3-030-76346-6_57.

[8] P. Chhikara, R. Tekchandani, N. Kumar, and M. S. Obaidat, “An Efficient

Container Management Scheme for Resource-Constrained Intelligent IoT

Devices,” IEEE Internet Things J., vol. 8, no. 16, pp. 12597–12609, 2021,

doi: 10.1109/JIOT.2020.3037181.

[9] R. Doshi, S. Inamdar, T. Karmarkar, and M. Wakode, “Distributed MQTT

Broker: A Load-Balanced Redis-Based Architecture,” 2024 Int. Conf.

Emerg. Smart Comput. Informatics, ESCI 2024, pp. 1–6, 2024, doi:

10.1109/ESCI59607.2024.10497427.

[10] S. Gruener, H. Koziolek, and J. Ruckert, “Towards Resilient IoT

Messaging: An Experience Report Analyzing MQTT Brokers,” Proc. -

IEEE 18th Int. Conf. Softw. Archit. ICSA 2021, pp. 69–79, 2021, doi:

10.1109/ICSA51549.2021.00015.

[11] C. C. Kao, C. W. Chang, C. P. Cho, and J. Y. Shun, “Deep Learning and

Ensemble Learning for Traffic Load Prediction in Real Network,” 2nd

IEEE Eurasia Conf. IOT, Commun. Eng. 2020, ECICE 2020, pp. 36–39,

2020, doi: 10.1109/ECICE50847.2020.9302005.

[12] A. S. Sadeq, “A QOS APPROACH FOR INTERNET OFTHINGS (IOT

) ENVIRONMENT USING MQTT PROTOCOL,” in 2019 International

Conference on Cybersecurity (ICoCSec), IEEE, 2019, pp. 59–63. doi:

https://doi.org/10.1109/ICoCSec47621.2019.8971097.

[13] S. Lakshminarayana and P. S. Thilagam, “Next-Generation DDoS

Attacks on IoT Deployments: Targeting the Advanced Features of MQTT

v5.0 Protocol,” IEEE Internet Things J., vol. PP, p. 1, 2025, doi:

10.1109/JIOT.2025.3549784.

[14] J. Ahn, J. Y. Park, D. Park, J. Paek, and J. G. Ko, “Convolutional neural

network-based classification system design with compressed wireless

sensor network images,” PLoS One, vol. 13, no. 5, 2018, doi:

10.1371/journal.pone.0196251.

[15] P. Chanak and I. Banerjee, “Congestion Free Routing Mechanism for IoT-

Enabled Wireless Sensor Networks for Smart Healthcare Applications,”

IEEE Trans. Consum. Electron., vol. 66, no. 3, pp. 223–232, 2020, doi:

10.1109/TCE.2020.2987433.

[16] V. K. Jain, A. P. Mazumdar, P. Faruki, and M. C. Govil, “Congestion

control in Internet of Things: Classification, challenges, and future

directions,” Sustain. Comput. Informatics Syst., vol. 35, no. April 2020,

p. 100678, 2022, doi: 10.1016/j.suscom.2022.100678.

[17] L. P. Verma and M. Kumar, “An IoT based Congestion Control

Algorithm,” Internet of Things (Netherlands), vol. 9, p. 100157, 2020,

doi: 10.1016/j.iot.2019.100157.

[18] H. Akram, S. G. Abbas, and G. A. Shah, “Preventing MQTT

Vulnerabilities Using IoT-Enabled Intrusion Detection System,” Sensors

(Switzerland), vol. 22(2), no. january 2022, p. 27, 2022, doi:

https://doi.org/10.3390/s22020567.

[19] U. Pandey and B. K. Chaurasia, “IoT edge based framework for sybil and

buffer overrow detection IoT edge based framework for sybil and buffer

overflow detection,” Res. Sq., no. June 2nd, 2022, pp. 0–16, 2022,

[Online]. Available: https://doi.org/10.21203/rs.3.rs-1693583/v1

[20] R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi,

“An overview of iot sensor data processing, fusion, and analysis

techniques,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–23, 2020, doi:

10.3390/s20216076.

[21] M. S. Harsha, B. M. Bhavani, and K. R. Kundhavai, “Analysis of

vulnerabilities in MQTT security using Shodan API and implementation

of its countermeasures via authentication and ACLs,” 2018 Int. Conf.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

729 | P a g e
www.ijacsa.thesai.org

Adv. Comput. Commun. Informatics, ICACCI 2018, pp. 2244–2250,

2018, doi: 10.1109/ICACCI.2018.8554472.

[22] O. Jukic, R. Filjar, I. Hedi, and E. Cirikovic, “MQTT-like Network

Management Architecture,” 2021 44th Int. Conv. Information, Commun.

Electron. Technol. MIPRO 2021 - Proc., pp. 459–463, 2021, doi:

10.23919/MIPRO52101.2021.9596894.

[23] P. Kortoçi, L. Zheng, C. Joe-Wong, M. Di Francesco, and M. Chiang,

“Fog-based Data Offloading in Urban IoT Scenarios,” Proc. - IEEE

INFOCOM, vol. 2019-April, pp. 784–792, 2019, doi:

10.1109/INFOCOM.2019.8737503.

[24] A. Gerodimos, L. Maglaras, M. A. Ferrag, N. Ayres, and I. Kantzavelou,

“IoT: Communication protocols and security threats,” Internet Things

Cyber-Physical Syst., vol. 3, no. January, pp. 1–13, 2023, doi:

10.1016/j.iotcps.2022.12.003.

[25] H. A. Khalek and L. Mhamdi, “Light-Weight Congestion Control in

Constrained IoT Networks,” Proc. - IEEE Glob. Commun. Conf.

GLOBECOM, pp. 6265–6270, 2022, doi:

10.1109/GLOBECOM48099.2022.10000648.

[26] R. Sukjaimuk, Q. N. Nguyen, and T. Sato, “An Efficient Congestion

Control Model utilizing IoT wireless sensors in Information-Centric

Networks,” 2021 Jt. 6th Int. Conf. Digit. Arts, Media Technol. with 4th

ECTI North. Sect. Conf. Electr. Electron. Comput. Telecommun. Eng.

ECTI DAMT NCON 2021, pp. 210–213, 2021, doi:

10.1109/ECTIDAMTNCON51128.2021.9425753.

[27] A. Maheshwari and R. K. Yadav, “Analysis of congestion control

mechanism for IOT,” Proc. Conflu. 2020 - 10th Int. Conf. Cloud Comput.

Data Sci. Eng., pp. 288–293, 2020, doi:

10.1109/Confluence47617.2020.9058058.

[28] K. Phung, H. Tran, and V. Tran-quang, “Service Platform for Integration

of various M2M / IoT system,” vol. 144, pp. 17–21, 2020.

[29] C. Suwannapong and C. Khunboa, “Congestion control in CoAP observe

group communication,” Sensors (Switzerland), vol. 19, no. 15, pp. 1–14,

2019, doi: 10.3390/s19153433.

[30] L. Verma, I. Verma, and M. Kumar, “An Adaptive Congestion Control

Algorithm,” Model. Meas. Control A, vol. 92, no. 1, pp. 30–36, 2019, doi:

10.18280/mmc_a.920105.

[31] V. K. Jain, A. P. Mazumdar, and M. C. Govil, “Toward Adaptive Range

for Parallel Connections in CoAP,” Arab. J. Sci. Eng., vol. 46, no. 4, pp.

3595–3611, 2021, doi: 10.1007/s13369-020-05215-w.

[32] Y. Cui and D. Lei, “Optimizing Internet of Things-Based Intelligent

Transportation System’s Information Acquisition Using Deep Learning,”

IEEE Access, vol. 11, no. January, pp. 11804–11810, 2023, doi:

10.1109/ACCESS.2023.3242116.

[33] J. Huang et al., “Modeling and analysis on congestion control in the

Internet of Things,” 2014 IEEE Int. Conf. Commun. ICC 2014, pp. 434–

439, 2014, doi: 10.1109/ICC.2014.6883357.

[34] H. H. Hasan and Z. T. Alisa, “Effective IoT Congestion Control

Algorithm,” Futur. Internet, vol. 15, no. 4, 2023, doi:

10.3390/fi15040136.

[35] E. Shahri, P. Pedreiras, and L. Almeida, “Enhancing MQTT with Real-

Time and Reliable Communication Services,” IEEE Int. Conf. Ind.

Informatics, vol. 2021-July, pp. 1–6, 2021, doi:

10.1109/INDIN45523.2021.9557514.

[36] F. Siddiqui, J. Beley, S. Zeadally, and G. Braught, “Secure and

lightweight communication in heterogeneous IoT environments,” Internet

of Things (Netherlands), vol. 14, no. 1, p. 100093, 2021, doi:

10.1016/j.iot.2019.100093.

[37] H. R. A. Ameer and H. M. Hasan, “Enhanced MQTT Protocol by Smart

Gateway,” Iraqi J. Comput. Commun. Control Syst. Eng., vol. 1, no.

October, pp. 53–67, 2020, doi: 10.33103/uot.ijccce.20.1.6.

[38] M. Ateeq, F. Ishmanov, M. K. Afzal, and M. Naeem, “Predicting Delay

in IoT Using Deep Learning: A Multiparametric Approach,” IEEE

Access, vol. 7, pp. 62022–62031, 2019, doi:

10.1109/ACCESS.2019.2915958.

[39] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman

Coding,” in Published as a conference paper at ICLR 2016 DEEP, 2016,

pp. 1–14. doi: abs/1510.00149/1510.00149.

[40] S. Teotia and V. Sharma, “A Review on Deep Learning Models for

Wireless Sensor Networks,” vol. 8, no. 4, pp. 268–273, 2019.

[41] L. Huan, B. Tang, and C. Zhao, “Global Composite Compression of Deep

Neural Network in Wireless Sensor Networks for Edge Intelligent Fault

Diagnosis,” IEEE Sens. J., vol. PP, no. Xx, p. 1, 2023, doi:

10.1109/JSEN.2023.3290153.

[42] X. Xiao, Z. Wang, and S. Rajasekaran, “AutoPrune: Automatic network

pruning by regularizing auxiliary parameters,” Adv. Neural Inf. Process.

Syst., vol. 32, no. NeurIPS, 2019.

[43] S. Jha and D. Tripathy, “Low Latency Consistency based Protocol for Fog

Computing Systems using CoAP with Machine Learning,” 2023 2nd Int.

Conf. Innov. Technol. INOCON 2023, pp. 1–6, 2023, doi:

10.1109/INOCON57975.2023.10101176.

[44] I. Kok and S. Ozdemir, “DeepMDP: A Novel Deep-Learning-Based

Missing Data Prediction Protocol for IoT,” IEEE Internet Things J., vol.

8, no. 1, pp. 232–243, 2021, doi: 10.1109/JIOT.2020.3003922.

[45] Y. Sharma*, V. Tyagi, and P. Datta, “IOT Based Smart Agriculture

Monitoring System,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 9,

pp. 325–328, 2020, doi: 10.35940/ijitee.i7142.079920.

[46] J. Liu, K. Luo, Z. Zhou, and X. Chen, “ERP: Edge resource pooling for

data stream mobile computing,” IEEE Internet Things J., vol. 6, no. 3, pp.

4355–4368, 2019, doi: 10.1109/JIOT.2018.2882588.

[47] I. Kok, B. H. Corak, U. Yavanoglu, and S. Ozdemir, “Deep Learning

based Delay and Bandwidth Efficient Data Transmission in IoT,” Proc. -

2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 2327–2333, 2019, doi:

10.1109/BigData47090.2019.9005680.

[48] Y. Lu et al., “An Intelligent Deterministic Scheduling Method for

Ultralow Latency Communication in Edge Enabled Industrial Internet of

Things,” IEEE Trans. Ind. Informatics, vol. 19, no. 2, pp. 1756–1767,

2023, doi: 10.1109/TII.2022.3186891.

[49] N. K. Suryadevara, “Energy and latency reductions at the fog gateway

using a machine learning classifier,” Sustain. Comput. Informatics Syst.,

vol. 31, no. August 2020, p. 100582, 2021, doi:

10.1016/j.suscom.2021.100582.

[50] H. Yoshino, K. Ota, and T. Hiraguri, “Adaptive Control of Nonstatistical

Sensor Data Aggregation to Minimize Latency in IoT Gateways,” 2019

29th Int. Telecommun. Networks Appl. Conf. ITNAC 2019, pp. 0–5,

2019, doi: 10.1109/ITNAC46935.2019.9077988.

[51] E. Shahri, P. Pedreiras, L. Almeida, and J. Sousa, “Scalable SDN-based

MQTT Real-Time Communications for Edge Networks,” IEEE Int. Conf.

Emerg. Technol. Fact. Autom. ETFA, vol. 2023-Septe, pp. 1–8, 2023, doi:

10.1109/ETFA54631.2023.10275671.

[52] R. A. Venkat and C. Vaidyanathan, “Lossless Video Compression Using

Bayesian Networks and Entropy Coding,” Proc. 2019 IEEE Reg. 10

Symp. TENSYMP 2019, vol. 7, pp. 254–259, 2019, doi:

10.1109/TENSYMP46218.2019.8971209.

[53] S. Kanda, K. Morita, and M. Fuketa, “Practical String Dictionary

Compression Using String Dictionary Encoding,” Proc. - 2017 Int. Conf.

Big Data Innov. Appl. Innov. 2017, vol. 2018-Janua, pp. 1–8, 2018, doi:

10.1109/Innovate-Data.2017.9.

[54] W. Feng, H. Luo, B. Sun, and C. Gui, “Performance analysis of sliding

window network coding for energy efficient in MANETs,” Proc. 2017

IEEE 7th Int. Conf. Electron. Inf. Emerg. Commun. ICEIEC 2017, pp.

219–222, 2017, doi: 10.1109/ICEIEC.2017.8076548.

[55] A. Nasif, Z. A. Othman, and N. S. Sani, “The deep learning solutions on

lossless compression methods for alleviating data load on iot nodes in

smart cities,” Sensors, vol. 21, no. 12, 2021, doi: 10.3390/s21124223.

[56] V. Kulkarni, A. Mahalunkar, B. Garbinato, and J. D. Kelleher,

“Examining the limits of predictability of human mobility,” Entropy, vol.

21, no. 4, Apr. 2019, doi: 10.3390/e21040432.

[57] A. Y. Tuama, M. A. Mohamed, A. Muhammed, and Z. M. Hanapi, “A

new compression algorithm for small data communication in wireless

sensor network,” Int. J. Sens. Networks, vol. 25, no. 3, pp. 163–175, 2017,

doi: 10.1504/IJSNET.2017.087712.

[58] D. Mechta and S. Harous, “HC-LEACH: Huffman Coding-based energy-

efficient LEACH protocol for WSN,” 2020 11th IEEE Annu. Ubiquitous

Comput. Electron. Mob. Commun. Conf. UEMCON 2020, pp. 0932–

0938, 2020, doi: 10.1109/UEMCON51285.2020.9298061.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

730 | P a g e
www.ijacsa.thesai.org

[59] K. Iqbal, N. Khan, and M. G. Martini, “Performance Comparison of

Lossless Compression Strategies for Dynamic Vision Sensor Data,”

ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol.

2020-May, pp. 4427–4431, 2020, doi:

10.1109/ICASSP40776.2020.9053178.

[60] K. L. Ketshabetswe, A. M. Zungeru, B. Mtengi, C. K. Lebekwe, and S.

R. S. Prabaharan, “Data Compression Algorithms for Wireless Sensor

Networks: A Review and Comparison,” IEEE Access, vol. 9, pp. 136872–

136891, 2021, doi: 10.1109/ACCESS.2021.3116311.

[61] S. Kavita and G. Dakshayani, “A Sliding Window Blockchain

Architecture for the Internet of Things,” in 5th IEEE International

Conference on Advances in Science and Technology, ICAST 2022,

Institute of Electrical and Electronics Engineers Inc., 2022, pp. 45–48.

doi: 10.1109/ICAST55766.2022.10039664.

[62] C. Y. Wu, “Improved LZ77 Compression,” Data Compression Conf.

Proc., vol. 2021-March, no. Dcc, p. 377, 2021, doi:

10.1109/DCC50243.2021.00066.

[63] P. J. Zhao, G. B. Hu, and L. W. Wang, “A Sliding Window Data

Compression Method for Spatial-Time DOA Estimation,” Int. J.

Antennas Propag., vol. 2021, 2021, doi: 10.1155/2021/9705617.

[64] A. M. Ghosh and K. Grolinger, “Edge-Cloud Computing for Internet of

Things Data Analytics: Embedding Intelligence in the Edge with Deep

Learning,” IEEE Trans. Ind. Informatics, vol. 17, no. 3, pp. 2191–2200,

2021, doi: 10.1109/TII.2020.3008711.

[65] W. Liu and J. OuYang, “Clustering algorithm for high dimensional data

stream over sliding windows,” Proc. 10th IEEE Int. Conf. Trust. Secur.

Priv. Comput. Commun. Trust. 2011, 8th IEEE Int. Conf. Embed. Softw.

Syst. ICESS 2011, 6th Int. Conf. FCST 2011, pp. 1537–1542, 2011, doi:

10.1109/TrustCom.2011.213.

[66] M. Tareq, E. A. Sundararajan, M. Mohd, and N. S. Sani, “Online

clustering of evolving data streams using a density grid-based method,”

IEEE Access, vol. 8, pp. 166472–166490, 2020, doi:

10.1109/ACCESS.2020.3021684.

[67] D. Borsatti, W. Cerroni, F. Tonini, and C. Raffaelli, “From IoT to cloud:

Applications and performance of the MQTT protocol,” Int. Conf.

Transparent Opt. Networks, vol. 2020-July, pp. 20–23, 2020, doi:

10.1109/ICTON51198.2020.9203167.

[68] S. H. Hwang, K. M. Kim, S. Kim, and J. W. Kwak, “Lossless Data

Compression for Time-Series Sensor Data Based on Dynamic Bit

Packing,” Sensors (Basel)., vol. 23, no. 20, Oct. 2023, doi:

10.3390/s23208575.

[69] A. Hanumanthaiah, A. Gopinath, C. Arun, B. Hariharan, and R. Murugan,

“Comparison of Lossless Data Compression Techniques in Low-Cost

Low-Power (LCLP) IoT Systems,” Proc. 2019 Int. Symp. Embed.

Comput. Syst. Des. ISED 2019, pp. 63–67, 2019, doi:

10.1109/ISED48680.2019.9096229.

[70] M. Sahu and J. Panda, “A Proposed IOT-based Smart Healthcare

Management Framework for Performing Lossless Data Compression

using Concept of Ontology,” J. Sci. Ind. Res. (India)., vol. 83, no. 3, pp.

282–291, Mar. 2024, doi: 10.56042/jsir.v83i3.6153.

[71] S. Karthikeyan and T. Poongodi, “Secured Data Compression and Data

Authentication in Internet of Thing Networks Using LZW Compression

Based X.509 Certification,” in IEEE International Conference on Data

Science and Information System, ICDSIS 2022, Institute of Electrical and

Electronics Engineers Inc., 2022. doi:

10.1109/ICDSIS55133.2022.9915855.

AUTHORS’ PROFILE

AMMAR SAID NASIF earned his bachelor's degree in
Computer Information Systems from Alquds Open

University, Palestine, in 2003, and a Master's degree from
Arab Academy for Banking & Financial Sciences, Jordan, in

2006. Currently pursuing a PhD at UKM University,
Malaysia, his research focuses on IoT networks, particularly

optimizing the MQTT protocol. Ammar is an experienced

Applications Developer proficient in .NET platform, Flutter,
ASP.NET, PHP, and WordPress. He continues to serve as a Lecturer at the

Palestinian Technical University, imparting knowledge across various
computer science disciplines. Ammar's professional journey includes

significant contributions to the industry, specializing in programming controller
systems for applications such as soil irrigation, traffic monitoring, smart grids,

smart homes, and security systems. His expertise extends to providing

diagnostic, programming, and testing services in autom otive workshops.
Passionate about technological innovation, Ammar remains dedicated to

advancing both academic research and practical applications in computer

science.

ZULAIHA ALI OTHMAN received a Ph.D. degree in
computer science from Sheffield Hallam University in 2004.

Since 2003, she has been working on various intelligen t

system projects, especially in developing intelligent art-based
techniques. She is an Associate Professor with the Center for

Artificial Intelligence Technology, University of Applied
Sciences, and Universiti Kebangsaan Malaysia (UKM). Her

comprehensive expertise in framework development, algorithm development,
and applied artificial intelligence (AI) solutions to different fields, such as

network intrusion detection, human talent, poverty, and air and weather
pollution. A number of state, industrial, and foreign ventures have been

undertaken. She has published more than 200 articles in many local and

international journals, including Expert Systems with Applications, Applied
Intelligence, Intelligent Data Analysis, and Applied Soft Computing. She has

also supervised more than 30 Ph.D. students from all over the world. In addition
to progress in academic work, she has contributed her expertise to the

community's progress. (Based on a document published on 20 May 2024).

NOR SAMSIAH SANI received her bachelor's degree in

Information Technology from Universiti Tenaga Nasional

(UNITEN), Malaysia. She then continued her PhD at the
University of Sheffield, United Kingdom, where her thesis

focused on machine learning, deep learning, and evolutionary
algorithms. She holds the position of Senior Lecturer at the

Faculty of Information Science and Technology, Center for
Artificial Intelligence Technology (CAIT), Universiti Kebangsaan Malaysia

(UKM). She has been invited as a speaker for several seminars on Machine

Learning (ML) and Deep Learning (DL). She has also been invited to conduct
short courses on similar subjects. She leads several projects involving

collaboration with Malaysian government sectors and industries at the national
and international levels. Her research interests primarily lie in predictive

analytics, machine learning, deep learning, evolutionary algorithms, data

mining, optimization, and chemo informatics.

YOUSRA ABUDAQQA is a Ph.D. student at the
Universiti Kebangsaan Malaysia (UKM), a research scholar in

the Center for Artificial Intelligence Technology (CAIT),

Faculty of Information Science & Technology.

