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Abstract—This study presents an improved MQTT protocol 

designed to address broker congestion and connection overflow in 

large-scale IoT networks. The proposed method integrates 

Huffman Deep Compression (HDC) at the publisher side to 

mitigate network traffic and latency. Unlike standard MQTT, 

which suffers from broker overload, our approach applies 

efficient data compression on resource-constrained sensor devices 

prior to publishing. The proposed approach was validated on a 

real-world air pollution dataset collected from the Tanjung Malim 

monitoring station in Malaysia, using ESP8266-based IoT nodes. 

Experimental results demonstrated that broker congestion was 

reduced by 84.26% for QoS 0 and 79.6% for QoS 1, significantly 

outperforming both standard MQTT and the state-of-the-art 

MRT-MQTT (58% and 45%, respectively). The method attained 

a high compression ratio of 2.62, which directly led to a dramatic 

reduction in power consumption from 2,664,864 to 63,216 mA 

(QoS 0) and from 3,155,760 to 49,168 mA (QoS 1). This substantial 

saving in current consumption contributes to extended device 

lifetime and enhanced energy efficiency. The findings highlight the 

potential of this enhanced protocol to support massive IoT 

deployments by minimizing network overhead at the broker. 
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I. INTRODUCTION 

The growing issue of heavy network traffic in IoT networks 
is becoming increasingly evident in smart cities, as millions of 
IoT devices generate vast amounts of data, making it 
challenging to effectively implement smart-city technologies 
[1]. Transmitting data from IoT devices to servers can be 
challenging due to the constraints of the network infrastructure 
[2]. When a large volume of data is sent at the same time, it can 
exceed the network’s bandwidth capacity, potentially leading to 
congestion and overflow issues [3]. Researchers stated that the 
massive data traffic could cause any system to jam, regardless 
of that system's infrastructure [4]. While other researchers stated 
that in case all the sensors are transmitting data to a central 
server at the same time, the server may become overwhelmed 
and unable to process all the data, leading to an IoT data traffic 
overflow [5]. Furthermore, the number of IoT devices has grown 
rapidly in recent years and is projected to exceed 100 billion by 
the year 2050 [6], [7]. Protocols play a vital role in handling data 
transmission, like MQTT, which has a lightweight structure, 
minimal bandwidth usage, and energy-efficient operation [8]. 
MQTT is particularly beneficial in IoT environments where 
devices operate under low-power constraints and unreliable 

network conditions. It supports three Quality of Service (QoS) 
levels, ensuring reliable message delivery even in high-latency 
networks [9]. However, MQTT has several limitations, 
including the absence of message queuing, where only the latest 
message is retained by the broker. Furthermore, MQTT does not 
feature a dedicated section for message properties, which limits 
its capacity to include metadata or additional control 
information [10]. Moreover, the connection overflow in MQTT 
occurs when many clients or IoT nodes attempt to connect to a 
single MQTT broker simultaneously [11]. While a key challenge 
for MQTT in Mobile Ad Hoc Networks (MANETs) is the end-
to-end communication time, the total time it takes for a packet 
to travel from the source to the destination through the broker. 
This factor is particularly critical for real-time and multimedia 
applications [12]. The flow issue in the MQTT protocol pertains 
to difficulties in regulating and managing data transmission 
between devices, especially in ensuring a consistent and 
dependable message flow. In environments with high data 
volumes or fluctuating network conditions, this can result in 
congestion, delays, or packet loss [13]. Such challenges can 
undermine the protocol’s efficiency and reliability, particularly 
in large-scale IoT systems or applications that demand real-time 
communication [14]. Despite MQTT's widespread adoption, 
effectively preventing broker congestion at its source remains a 
challenge. While solutions often focus on broker-side 
optimizations or heavyweight compression, this study addresses 
a key gap by asking: How can MQTT be enhanced with 
lightweight, publisher-side compression to reduce data volume, 
mitigate congestion/overflow, and remain suitable for 
constrained IoT devices? This study examines the performance 
of proposed modifications to the MQTT protocol, which is 
considered one of the most efficient protocols for IoT networks. 

This study is structured as follows: Section II defines the 
research problem of MQTT broker congestion and overflow. 
Section III reviews related work and state-of-the-art solutions. 
Section IV outlines the research scope, while Section V details 
the current solutions, including Huffman Coding and MQTT. 
Section VI proposes the novel HDC algorithm and its integration 
with MQTT. Section VII describes the experimental setup. 
Section VIII presents and analyzes the results against 
benchmarks. Section IX summarizes the core contributions of 
this work. Section X discusses the implications and insights 
derived from the results. Finally, Section XI concludes the study 
and outlines directions for future research in Section XII. 

II. RESEARCH PROBLEM 

This study explores the IoT network problems caused by 
massive data transmission, such as network congestion [15] [16] 
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[17] and the connection overflow [18] [19]. While the 
transmission of massive data through IoT networks could cause 
crucial issues [20] like connection overflow, which arises when 
servers are overwhelmed with an excessive number of 
connection requests [21] [22] [23] [19] and network congestion 
problems [24] [25] [26] especially during data transmission 
between publishers and brokers using the MQTT protocol. 
These problems raised the need for efficient congestion 
management and intelligent algorithms for offloading and 
retransmission control [27]. Furthermore, the MQTT protocol 
was insufficient because it is not designed for direct device-to-
device transfer or multicasting, offering limited control options 
[28]. 

III. RELATED WORK 

Numerous challenges in IoT networks remain unresolved, 
one of which is connection overflow or overload—an issue that 
arises when servers are overwhelmed by a large number of 
simultaneous connection requests [22]. This can severely impact 
system performance and reliability [21] [19]. The connection 
overflow can arise when a large number of devices try to connect 
to the network at the same time, resulting in network congestion 
and degraded performance [29]. Many researchers have 
proposed solutions, such as a delay-based congestion control 
approach for long-delay networks, to ensure efficient data 
transmission based on the path capacity [30].  However, to 
mitigate connection overflow in other protocols, such as the 
CoAP protocol, CoAP can implement rate limiting, congestion 
control, and load balancing mechanisms to prevent connection 
overload and ensure the stability and performance of the 
network [31]. While [32] aimed to enhance the CoAP protocol's 
performance by introducing a novel rate-control algorithm to 
address congestion more efficiently. Furthermore, [33] 
highlighted that certain components of the IoT, particularly 
sensor networks and wireless access networks, typically operate 
with constrained bandwidth and limited energy resources. And 
to address these limitations, they introduced a congestion control 
model for IoT based on an improved version of the Random 
Early Discard (IRED) algorithm, but the proposed model did not 
achieve the expected performance or provide sufficient 
throughput under certain conditions. However, [27] noted that 
congestion is a prevalent issue in IoT networks. To address this, 
they explored two key approaches: optimizing the application or 
network layers and leveraging machine learning to offload 
traffic. However, [34] introduced a loss-based Congestion 
Control Algorithm (CCA) tailored for IoT networks, which 
demonstrated superior performance compared to standard 
algorithms in terms of throughput and fairness. Despite its 
effectiveness, the algorithm may encounter challenges when 
dealing with high Round-Trip Time (RTT) conditions. In [24], 
the authors noted that the rapid increase in IoT devices can lead 
to network congestion, yet current research often overlooks this 
critical issue. Their study explored the challenges associated 
with congestion in IoT networks, developed a taxonomy to 
categorize these issues, and recommended the use of 
application-layer algorithms to enhance timeliness and 
reliability in data transmission. 

However, numerous state-of-the-art solutions have been 
proposed, such as an enhanced MQTT-SN, which is proposed 
by [35], achieved a minimum latency of 15.5 ms, a peak 

message transfer rate of 620 messages per second, and 
demonstrated minimal energy consumption. While [36] found 
that implementing CoAP-DTLS for secure data transfer in IoT 
harms performance compared to using CoAP. Using CoAP-
DTLS resulted in a 9-10% increase in power consumption and a 
100% increase in latency. Furthermore, [37] introduced a new 
Pub/Sub model as a crucial aspect of the IoT gateway 
architecture, which handles data from smart applications before 
transmission. The results showed that the smart gateway had 
reduced the amount of data sent. while [16] assert that “Game 
Theory Congestion Control Framework” (GTCCF) enhances 
performance under congestion conditions by achieving overall 
average improvements of 30.45% in throughput, 39.77% in end-
to-end delay, 26.37% in energy consumption, 91.37% in the 
number of lost packets, and 13.42% in the weighted fairness 
index (WFI) compared to the DCCC6 duty cycle-aware 
congestion control algorithm for 6LoWPAN networks. 
Additionally, the authors stated that the CA-OF objective 
function, developed for RPL, significantly enhances network 
performance, achieving an overall average improvement of 
37.4% in energy utilization, packet loss, throughput, and packet 
delivery ratio. 

Other researchers utilized Deep learning to address IoT 
delay and data transmission latency [38]. Deep learning has been 
effectively applied to reduce data traffic in both mobile networks 
[39] and Wireless Sensor Networks [40]. Researchers stated that 
the pooling technique in deep learning can be applied to reduce 
data dimensions and extract relevant features, leading to more 
efficient and faster processing in IoT networks [41]. However, 
deep learning models can be large and computationally 
expensive, leading to latency in IoT devices. Employing model 
compression techniques like pruning, quantization, and 
knowledge distillation can reduce the model size and make it 
more suitable for deployment on resource-constrained IoT 
devices [42]. Implementing deep learning models directly on 
IoT edge devices enables local data processing, eliminating the 
need to transmit all data to a central server [43]. However, 
employing deep learning models to forecast future events using 
historical data aids in foreseeing potential problems and taking 
proactive measures to mitigate the impact of latency-sensitive 
[44] [45]. 

Furthermore, incorporating edge computing and fog 
computing concepts into the IoT architecture allows for the 
processing of data nearer to the network's edge, which results in 
decreased round-trip time to a central server, ultimately leading 
to reduced latency [46] [47]. Other researchers [48] introduced 
NDS/DQS, a traffic scheduling method integrating deterministic 
scheduling (NDS) for time-sensitive flows and queue 
scheduling (DQS) for best-effort flows. Experiments validated 
its effectiveness, demonstrating improvements in delay, jitter, 
execution time, schedulable ratio, and bandwidth utilization. 
Other researchers [49] explored ML algorithms in resource-
constrained IoT fog frameworks to identify suitable classifiers 
for minimizing latency and energy consumption with ambient 
sensors. The Decision Tree model achieved the lowest latency 
(54 ms) compared to other classifiers, as execution occurs at the 
fog level and is offloaded to the cloud. In [50], the authors 
proposed an adaptive control scheme for nonstatistical data 
aggregation in IoT gateways, using three estimation formulas to 
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optimize aggregation based on time-varying arrival rates. 
Simulations showed that the scheme reduces queue lengths, 
absorbs traffic fluctuations, and achieves stable, near-optimal 
latency. 

Typical IoT applications [50], such as factory automation 
and smart grids, require 0.25–10 ms latencies and 3–20 ms, 
respectively. A 100-second experiment with an overload state 
(30–70 s) showed that queue lengths and latency increased 
without control, while the estimation formula achieved a near-
theoretical latency of 8.0 ms. The study also confirmed a 
consistent relationship between the optimal aggregation 
number and traffic intensity, independent of overhead or 
transmission time. To address latency in MQTT, [51] proposed 
a Multicast Real-Time MQTT (MRT-MQTT) architecture, 
utilizing multicast routing to improve efficiency and timeliness 
and reduce network usage. Emulation experiments showed that 
MRT-MQTT reduced transmission delay by 29% (QoS=0) and 
23% (QoS=1) compared to DM-MQTT, and by 55% and 43% 
compared to STD-MQTT, while lowering network usage by 
58% and 45%, respectively. 

Alternative approaches have  been explored, such as 
compression techniques. Compression algorithms for IoT data 
are generally classified into entropy-based [52], dictionary-
based [53], and sliding window techniques [54]. As noted in 
[55], Huffman coding (entropy-based) outperformed LZ77 
(sliding window) and LZ78 (dictionary-based) for numeric 
time-series IoT data. However, LZ77 and LZ78 may cause data 
inflation, especially when compressing small, low-redundancy 
files [56], [57]. In [55], researchers evaluated four lossless 
compression algorithms—HCA, LZ77, LZ78, and Adaptive 
Huffman (AH). Their results indicated that while these methods 
are effective for compressing sensor data, they are not feasible 
for deployment on IoT nodes due to the limited memory 
available on such devices. Several studies have explored data 
compression in sensor networks. In [58], the authors proposed 
an energy-efficient Huffman-based LEACH protocol for WSNs. 
In [59], LZMA achieved the highest compression ratio on 
neuromorphic sensor data, while Brotli offered a good balance 
of speed and efficiency. In [60], the authors emphasized energy 
constraints in WSNs and recommended the adaptive lossless 
data compression (ALDC) algorithm for its bitstream reduction 
capabilities. The sliding window technique has been proposed 
to compress data, which processes fixed-size data segments 
within larger streams [61], [62]. Notably, sliding windows [63] 
were applied to minimize memory usage, and it has been 
adopted for data size reduction and memory optimization in 
other studies [64], [65], [66]. 

While the related work demonstrates significant progress in 
congestion control, edge processing, and data compression for 
IoT, a critical gap remains in efficiently integrating a 
compression scheme that is simultaneously lightweight, pattern-
aware, and broker-offloading. Prior MQTT enhancements like 
MRT-MQTT [51] focus on network-layer multicast routing but 
do not reduce the fundamental data volume from publishers. 
Conversely, generic compression algorithms (e.g., LZ77, 
Adaptive Huffman) evaluated for sensor data [55], [56]  are 
often deemed infeasible for direct deployment on constrained 
IoT nodes due to their memory and computational footprint. 
Other IoT compression studies [58], [59], [60] operate at the 

network or application layer independently of the MQTT 
protocol, missing the opportunity for tight, publisher-side 
integration that proactively prevents broker overload. 

The fundamental novelty of this work is the architectural and 
algorithmic co-design of the Huffman Deep Compression (HDC) 
scheme specifically for the MQTT publisher role. Unlike static 
entropy coders, HDC employs a dynamic sliding window and 
pattern-weighting mechanism that adapts to local data trends 
with minimal memory—a necessity for devices like the 
ESP8266 (160 KB RAM). 

Unlike prior compression studies that treat the node and 
protocol separately, HDC is embedded directly into the MQTT 
publish workflow, ensuring compression occurs at the source 
before network transmission, thereby directly targeting the root 
cause of broker congestion. 

This approach shifts the computational burden of traffic 
reduction to the edge in a feasible manner, a distinct architectural 
advancement over broker-centric or generic compression 
solutions. Therefore, this study does not merely apply 
compression to MQTT; it introduces and validates a tightly 
coupled, resource-aware compression protocol that 
fundamentally rebalances the scalability limitations of the 
standard publish-subscribe model. 

IV. RESEARCH SCOPE 

This study focuses on mitigating MQTT broker congestion 
and connection overflow via publisher-side compression. The 
scope is defined as follows: 

• Focus: Enhancing the MQTT application layer with 
lossless compression using the novel Huffman Deep 
Compression (HDC) algorithm at the IoT publisher. 

• Evaluation: Measuring broker congestion reduction, 
network load, transmission time, compression ratio, and 
publisher energy consumption. 

• Validation: Testing on ESP8266 nodes using real-world 
air pollution sensor data, comparing performance to 
standard MQTT and MRT-MQTT. 

• Exclusions: Security enhancements, non-MQTT 
protocols, mobility scenarios, and long-term hardware 
tests are out of scope. 

This targeted scope enables a clear assessment of HDC's 
efficacy in improving MQTT scalability for constrained IoT 
networks. 

V. THE CURRENT SOLUTIONS 

A. The Huffman Coding Algorithm 

Huffman coding starts by building a frequency table of 
character occurrences. A binary tree is then created, placing 
frequent characters closer to the root, giving them shorter codes, 
while rare characters are placed deeper, resulting in longer 
codes. Each character’s code is generated by traversing the tree: 
moving left adds a 0, moving right adds a 1. Fig. 1 illustrates a 
simple Huffman coding process. 
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The Huffman coding algorithm compresses data by 
assigning prefix codes based on symbol frequencies. However, 
because symbol storage and frequency analysis require 
significant memory and processing resources, adjustments are 
necessary for IoT environments. 

B. The MQTT Protocol 

MQTT is used for communication in IoT networks, as 
illustrated in Fig. 2. The data flow process in MQTT can be 
included in the following steps [67]: 

• The publisher connects to the MQTT broker, a server. 

• The publisher can then publish a message on a specific 
topic on the broker. 

• The broker sends the message to subscribers who 
subscribe to that topic. 

• The subscribers can receive the message and take 
appropriate action. 

 
Fig. 1. Huffman coding algorithm (HCA) flowchart. 

 
Fig. 2. MQTT publish-subscribe flowchart. 
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VI. PROPOSED SOLUTIONS 

A. Proposed HDC Algorithm 

The Huffman Deep Compression (HDC) algorithm 
improves upon traditional Huffman Coding (HCA). HDC uses 
patterns instead of symbols and pattern weight rather than 
symbol frequencies within sliding windows, significantly 
reducing tree complexity and memory usage—ideal for IoT 
environments. Each data segment is processed independently 
using polling and pruning to extract optimal patterns and 

generate efficient Huffman trees. Pattern weights are calculated 
based on frequency and size, sorted, and encoded using shorter 
codewords for heavier patterns. Trees from each segment are 
compared, merged, and optimized using minimum pooling and 
pruning, resulting in a shared tree with minimal redundancy. 
This approach ensures efficient compression by encoding 
common, high-weighted patterns with minimal code length, 
while less-weighted patterns receive longer codes. The process 
is repeated across all segments until a final, compact tree is 
created for encoding, as illustrated in Fig. 3. 

 
Fig. 3. The HDC algorithm flowchart. 
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HDC algorithm minimizes the data size. Eq. (1) shows how to 
measure the CR, where 𝑆𝑜𝑟𝑖𝑔 presents the original data size and 

𝑆𝑐𝑜𝑚𝑝 presents the compressed data size. A higher CR indicates 

better compression efficiency. 

𝐶𝑅 =
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𝑆𝑐𝑜𝑚𝑝
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The HDC algorithm has been previously tested and validated 
in an earlier published study, demonstrating its effectiveness in 

reducing memory usage and data traffic on IoT nodes. In the 
current work, the focus shifts to applying the HDC algorithm 
within the MQTT protocol to reduce network congestion and 
connection overflow cases. 

B. Proposed MQTT Improvement Based on the HDC 

Compression Algorithm 

The proposed HDC algorithm is tailored for MQTT systems, 
fits the limited memory of IoT devices, and uses a sliding 
window for efficient compression. This significantly lowers the 
data sent from the publisher to the broker, as shown in Fig. 4. 
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Fig. 4. The proposed MQTT diagram based on the compression approach. 

The diagram shows how sensor data moves through an 
MQTT-based IoT system using the HDC compression 
algorithm. Sensors first collect data like temperature, humidity, 
etc. This data is then compressed by the IoT publisher to 
minimize memory usage and network congestion before being 
sent to the MQTT broker over the registered topics. Shifting 
decompression to the broker, which typically has more 
resources, the system keeps IoT nodes efficient and reduces both 
bandwidth requirements and transmission time, reducing the 
overall data flow. 

Eq. (2) shows the transmission time reduction (𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ), 
which presents the difference between data transmission time 
using HDC and without it. 

𝑇𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛=  𝑇𝑂𝑟𝑖𝑔 − 𝑇𝑐𝑜𝑚𝑝                   (2) 

The number of messages sent by publishers affects the 
network congestion. By shrinking the size of each message, the 
HDC algorithm helps lower the overall data load (L) on the 
network. Eq. (3) shows how to measure the network load. Where 
N is the number of messages sent and S is the message size. 

L=N×S                                    (3) 

With HDC, the reduced load becomes, as in Eq. (4): 

𝐿𝑐𝑜𝑚𝑝=  𝑁 ∗  𝑆𝑐𝑜𝑚𝑝                        (4) 

The reduction in network load can be calculated, as in 
Eq. (5): 

𝐿𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛=  𝐿𝑜𝑟𝑖𝑔 −   𝐿𝑐𝑜𝑚𝑝 = 𝑁 ∗ (𝑆𝑜𝑟𝑖𝑔 − 𝑆𝑐𝑜𝑚𝑝)    (5) 

Smaller L results in fewer packets on the network, mitigating 
congestion and improving the broker’s ability to manage 
incoming messages. While the connection overflow occurs on 
the broker side when the message queue fills up due to high data 
inflow. The HDC algorithm helps by decreasing the data size 
(𝑆𝑐𝑜𝑚𝑝) of each message, and reducing the arrival rate (𝑅𝑐𝑜𝑚𝑝) 

of data packets. Eq. (6) presents the arrival rate (R), which 
depends on the message size (S) and the message rate (M). 

R=M×S                                   (6) 

With compression, the new arrival rate is presented in 
Eq. (7): 

𝑅𝑐𝑜𝑚𝑝=  𝑀 ∗ 𝑆𝑐𝑜𝑚𝑝                         (7) 

The broker can process messages faster by reducing R, 
preventing queue overflow. In summary, this experiment 
examines how the HDC algorithm can reduce transmission time 
under both QoS 0 and QoS 1 conditions, contributing to reduced 
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network congestion and preventing connection overflow on 
brokers. 

VII. EXPERIMENT 

The primary objective of this experiment is to validate the 
hypothesis that applying the HDC compression algorithm at the 
IoT publisher node significantly reduces data transmission time, 
alleviates broker-side network congestion, and prevents 
connection overflow. The end-to-end process is illustrated in 
Fig. 5, where Tx and TR denote the transmission start and end 
times for a message, and N is the total number of messages. 

 
Fig. 5. The experiment process for data transmission from the publisher to 

the broker using an improved MQTT based on the HDC algorithm.  

A. Hardware and Software Configuration 

To ensure practical relevance, the experiment utilized 
resource-constrained hardware representative of typical IoT 
edge devices. 

• IoT Publisher Node: An ESP8266 (NodeMCU v1.0) 
microcontroller was employed. Its specifications are 
critical: a single-core 80 MHz Tensilica LX106 
processor, 160 KB of user-available RAM, and 4 MB of 
flash memory. It was connected via 802.11n Wi-Fi to a 
local network. 

• MQTT Broker: The Eclipse Mosquitto™ broker (version 
2.0.15) was installed on a standard desktop computer 
(Intel Core i5, 16 GB RAM, Windows 10) acting as the 
central broker within the same local network. 

• Subscriber and Measurement Host: A C++ script 
utilizing the Paho-MQTT v1.6.1 client library ran on a 
separate laptop. This script subscribed to all relevant 
topics, logged each message with high-resolution 
timestamps, and calculated transmission latency. 

• Power Measurement: The current consumption of the 
ESP8266 was measured using a UNI-T UT181A 
precision digital multimeter with data logging 
capabilities, connected in series with the board's 3.3V 
power supply. 

B. Dataset Characterization and Preparation 

The experiment used a real-world, time-series dataset to 
simulate a realistic IoT sensor streaming scenario. 

• Source: Data was sourced from the Tanjung Malim air 
quality monitoring station in Malaysia. 

• Content and Structure: The dataset comprises 4,383 
complete records. Each record contains synchronous 
readings from eight environmental sensors: Temperature 
(°C), Nitrogen Oxides (NOx, ppm), Relative Humidity 

(%), Nitrogen Dioxide (NO2), Nitric Oxide (NO), Ozone 
(O3), Wind Direction (degrees), and Wind Speed (m/s). 

C. Experimental Procedure 

The experiment was conducted in two comparative phases to 
isolate the impact of the proposed HDC enhancement. 

Phase 1.  Baseline Protocol Performance (MQTT vs. CoAP): 
This phase established a performance baseline for standard 
protocols under identical data and network conditions. 

• Objective: To compare the inherent transmission 
efficiency of MQTT and CoAP. 

• Scenarios: 

o MQTT QoS 0 (at-most-once delivery) vs. CoAP 

Non-confirmable (NON) messages. 

o MQTT QoS 1 (at-least-once delivery) vs. CoAP 

Confirmable (CON) messages. 

• Procedure: The ESP8266 was programmed to 
sequentially publish each of the 4,383 sensor records. For 
MQTT, each sensor type was published to a unique topic 
(e.g., sensors/temp). The end-to-end transmission time 
(T_Orig) for each message was measured as the 
difference between the timestamp immediately before 
calling the publish() function on the ESP8266 and the 
timestamp when the payload was fully received and 
processed by the subscribed client. 

Phase 2.  Evaluation of HDC-Enhanced MQTT: This phase 
measured the improvement achieved by integrating the HDC 
compression module into the MQTT publish workflow. 

• Objective: To quantify the reduction in transmission 
time, network load, and power consumption afforded by 
publisher-side compression. 

Scenarios: 

o Standard MQTT (QoS 0 & QoS 1) without 

compression. 

o HDC-enhanced MQTT (QoS 0 & QoS 1) with 

compression applied before publishing. 

Procedure: 

o Compression: On the ESP8266, the data for each 
sensor record was passed through the HDC 
algorithm prior to the MQTT publish call, producing 

a compressed payload (S_comp). 

Transmission: The compressed payload was 

published to the same MQTT topics as in Phase 1. 

o Decompression: To maintain standard MQTT 
semantics for subscribers, a lightweight 
decompression plugin was added to the Mosquitto 
broker. This plugin intercepted messages on the 
designated topics, decompressed the payload using 

HDC to regenerate the original data. 
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o Measurement: The transmission time with 
compression (T_comp) was measured identically to 
Phase 1. Additionally, the total current consumption 
for the entire transmission cycle (compression, 
transmission, and Decompression) was logged by 

the multimeter for both compressed and 

uncompressed scenarios. 

VIII. RESULTS 

The experimental results are divided into five sections. 

A. The Performance of HDC 

Fig. 6 presents the compression ratio results, comparing 
HDC to state-of-the-art solutions, showing that HDC achieves 
the highest compression ratio (2.62), outperforming BDC (2.47) 
[68], Delta+RLE (1.898) [69], Sahu & Panda (0.89) [70], and 
LZW+X.509 (0.71) [71], confirming HDC’s superior efficiency. 

B. MQTT vs. CoAP 

Table I displays the transmission time recorded, measured in 
milliseconds, for the Tanjung Malim station sensors' data, for 
both scenarios: QoS 0 and QoS 1 in MQTT, and non-
confirmable and confirmable modes in CoAP. 

 
Fig. 6. HDC vs. State-of-the-art research results on compression ratio. 

TABLE I.  TRANSMISSION TIME (MS) COMPARISON BETWEEN MQTT 

AND COAP 

 
Non-

confirmable 
QoS 0 Confirmable QoS 1 

Sensor CoAP MQTT CoAP MQTT 

Temp 284 442.461 374 460.857 

NOx 244 227.448 339 335.711 

Humidity 247 214.537 350 335.817 

NO2 236 216.483 358 333.08 

O3 242 217.965 328 331.201 

NO 259 218.061 365 332.993 

WDr 215 215.521 348 334.654 

WSp 244 215 351 330.429 

CoAP shows higher transmission times than MQTT, with 
the exception of temperature data, where the overhead of TCP 
connection establishment in MQTT results in longer delays. 

Despite this, MQTT generally demonstrates superior 
performance in terms of data transmission efficiency. 

C. MQTT with HDC vs. Standard MQTT 

Transmitting data from the sensors to the Tanjung Malim 
station (broker), where every sensor is considered a publisher. 

TABLE II.  TRANSMISSION TIME (MS) COMPARISON BETWEEN 

STANDARD MQTT AND THE IMPROVED MQTT USING COMPRESSION (HDC)  

 QoS 0 QoS 1 

Sensor 
Time with 

compression 

Time 
without 

compression 

Time with 
compression 

Time 
without 

compression 

Temp 43.5602 442.461 77.5269 460.857 

NOx 39.878 227.448 72.8804 335.711 

Humidity 38.2013 214.537 73.1911 335.817 

NO2 39.5145 216.483 71.0191 333.08 

O3 40.305 217.965 74.5532 331.201 

NO 39.5492 218.061 73.6148 332.993 

WDr 27.0295 215.521 56.7491 334.654 

WSp 41.7017 215 71.0177 330.429 

The experimental results demonstrate that applying 
compression significantly improves transmission performance 
in both QoS 0 and QoS 1 settings. The impact of HDC 
compression on transmission latency is detailed in Table II. 
Under QoS 0, compression reduced the total transmission time 
from 1967.48 ms to 309.74 ms, achieving a Network Congestion 
Reduction (NCR) and Broker Overflow Prevention of 84.26%. 
Similarly, in QoS 1, compression lowered the total transmission 
time from 2794.74 ms to 570.55 ms, with an NCR and Broker 
Overflow Prevention of 79.6%. These findings indicate that the 
compression approach effectively minimizes transmission 
delays, reduces network congestion, and alleviates broker load 
across different QoS levels. 

D. Compression Time 

Table III presents the recorded times used to calculate the 
total data transmission duration from the publisher to the broker, 
incorporating both compression at the publisher and 
decompression at the broker, under the two transmission 
scenarios: QoS 0 and QoS 1. 

TABLE III.  TIME (MS) FOR DATA TRANSMISSION FROM THE PUBLISHER 

TO THE BROKER USING THE HDC ALGORITHM 

 Compression 

Time 

Transmission 

Time 

Decompression 

Time 

QoS 0 1458.589 309.7394 63.6218 

QoS 1 1458.589 570.5523 63.6218 

Data transmission using the HDC algorithm shows different 
performance for each QoS level. QoS 0 achieves a total time of 
~1831.95 ms, while QoS 1 increases to ~2092.76 ms due to 
longer transmission time. Since compression and 
decompression times remain unchanged, the additional delay in 
QoS 1 is due to its increased reliability mechanism. 
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E. Power Consumption 

The IoT node draws 26 mA at idle. Compression with HDC 
increases consumption to 44 mA (an extra 18 mA), while 
decompression requires 40 mA. Transmission consumes 102 
mA with QoS 0 and 116 mA with QoS 1. The table below 
summarizes these values. 

TABLE IV.  CURRENT CONSUMPTION FOR EACH PROCESS IN MAMPS 

Operation Consumption (mAmps) 

Compress (per sliding window) 18 

Decompress (per sliding window) 14 

QoS 0 Transmission 76 

QoS 1 Transmission 90 

The table shows current consumption for each operation, as 
measured and listed in Table IV. Compression and 
decompression require 18 mA and 14 mA per sliding window, 
respectively, while data transmission draws 76 mA for QoS 0 
and 90 mA for QoS 1 due to extra acknowledgments. Table V 
shows how many mAmps in total were needed to transmit data 
from the publisher to the broker. 

TABLE V.  POWER CONSUMPTION (MAMPS) FOR THE DATA 

TRANSMISSION FROM THE PUBLISHER TO THE BROKER 

 With Compression Without Compression 

QoS 0 63216 2664864 

QoS 1 49168 3155760 

The table indicates that using compression significantly 
reduces the total current consumption during data transmission 
for both QoS levels. The results demonstrate that compression 
not only reduces data volume but also leads to substantial energy 
savings, especially beneficial for battery-powered IoT nodes. 

IX. CONTRIBUTIONS 

This work makes the following distinct contributions to the 
field of IoT communication protocols: 

• A Novel Protocol Integration Architecture: A new 
publisher-side compression framework for MQTT is 
proposed and validated, shifting the primary 
computational burden of traffic reduction from the 
broker to the edge. This architectural shift establishes a 
design principle: proactive, source-side data 
minimization is a scalable alternative to reactive broker-
side optimizations for congestion control. 

• An Algorithm Optimized for Constrained MQTT 
Publishers: A resource-aware adaptation of the Huffman 
Deep Compression (HDC) algorithm is introduced, 
specifically tailored for the MQTT publisher role on 
devices with severe memory constraints (e.g., 160 KB 
RAM). The key innovations are its dynamic sliding-
window pattern matching and lightweight tree-
generation process, which maintain a high compression 
ratio of 2.62 while operating within the limits of IoT edge 
hardware. 

• Quantified Performance Advancement and New 
Congestion Insights: Through empirical validation, this 
study demonstrates that the integrated system reduces 
broker-side congestion by 84.26% for QoS 0 and 79.6% 
for QoS 1, significantly outperforming the state-of-the-
art MRT-MQTT (58% and 45%, respectively). These 
results provide new insights into congestion dynamics, 
quantitatively proving that reducing per-message 
payload size is disproportionately effective in alleviating 
queue growth—more so than optimizing broker 
processing speed alone. 

• Substantial Energy Efficiency Gains and a Reusable 
Benchmark: The approach delivers transformative 
energy savings, reducing total current consumption from 
2,664,864 to 63,216 mA (QoS 0) and from 3,155,760 to 
49,168 mA (QoS 1). Furthermore, a complete, 
reproducible methodology for evaluating compression-
enhanced MQTT is provided, establishing a new 
performance benchmark for the community. 

These contributions collectively advance the field by 
providing not just a faster protocol, but a new architectural 
pattern, an optimized algorithm, fundamental insights into 
congestion mechanics, dramatic energy improvements, and a 
reproducible benchmark for scalable IoT communication 
systems. 

X. DISCUSSION 

The results validate the HDC-enhanced MQTT protocol. 
The core insight is that broker congestion is fundamentally a 
data volume issue. Solutions like MRT-MQTT manage traffic 
more efficiently at the broker, but our publisher-side 
compression prevents the overload at its source. The higher 
congestion reduction for QoS 0 (84.26% vs. 79.6% for QoS 1) 
confirms this, as the acknowledgment overhead in QoS 1 
presents a fixed bottleneck. 

The dramatic energy reduction—from millions to tens of 
thousands of mA—stems from shorter radio transmission times 
for compressed data. This demonstrates a key principle: 
optimizing network efficiency in IoT inherently optimizes 
energy efficiency, directly extending device lifetime in large-
scale deployments. 

Achieving a compression ratio of 2.62 on a device with 160 
KB RAM also addresses prior work that deemed such 
algorithms infeasible on constrained nodes. This work 
establishes a practical design pattern: the Intelligent Publisher, 
where edge nodes preprocess data to minimize their network 
footprint. This shifts system scalability from being a broker-
centric challenge to a shared responsibility, offering a clear path 
for building sustainable, massive IoT networks. The main trade-
off is added compression latency, which the significantly 
reduced transmission time offsets for most applications. 

XI. CONCLUSION 

This study has demonstrated that integrating Huffman Deep 
Compression (HDC) at the MQTT publisher is a fundamental 
strategy for scalable IoT. The significant performance gains—
84.26% congestion reduction, a 2.62 compression ratio, and 
over 97% energy savings—are not merely numerical 
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improvements, but represent critical advancements for real-
world systems. 

The reduction in broker congestion directly translates to 
enhanced system reliability and stability; brokers can handle 
orders of magnitude more devices without queue overflow, 
enabling true massive-scale deployments. The drastic drop in 
energy consumption extends device lifetime from months to 
years, reducing maintenance costs and enabling deployment in 
inaccessible locations. Finally, by minimizing the data load, this 
approach reduces bandwidth requirements and operational costs 
for large sensor networks. 

While validated on environmental data, the proposed 
architectural principle, proactive source-side minimization, 
provides a generalizable framework for enhancing publish-
subscribe protocols. Future work will test this framework with 
diverse data and in dynamic networks. Ultimately, this work 
moves beyond optimizing a protocol to providing a practical 
blueprint for building sustainable, large-scale IoT infrastructure. 
A noted limitation is the focus on numerical time-series data 
within a stable local network. Future work will therefore 
investigate HDC's performance on diverse data formats, its 
integration with security layers like MQTT-S, and its robustness 
in dynamic, large-scale network topologies to further generalize 
its utility for next-generation IoT ecosystems. 

XII. FUTURE WORK 

Future research on the Huffman Deep Compression (HDC) 
algorithm should focus on enhancing its performance in large-
scale IoT environments. Integrating loss compression 
techniques may significantly reduce data size while preserving 
essential information, leading to lower transmission latency. 
Maximizing throughput and ensuring scalability in high-density 
IoT networks, such as smart city infrastructures, is another 
critical direction. Furthermore, implementing the enhanced 
MQTT protocol within next-generation IoT architectures, 
including 6G networks, can unlock new opportunities for ultra-
reliable and low-latency communication. Finally, developing 
innovative strategies to reduce network overhead will be vital 
for sustaining efficient and reliable data transmission in massive 
IoT ecosystems. 
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