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Abstract—This study presents an improved MQTT protocol
designed to address broker congestion and connection overflow in
large-scale IoT networks. The proposed method integrates
Huffman Deep Compression (HDC) at the publisher side to
mitigate network traffic and latency. Unlike standard MQTT,
which suffers from broker overload, our approach applies
efficient data compression on resource-constrained sensor devices
prior to publishing. The proposed approach was validated on a
real-world air pollution dataset collected from the Tanjung Malim
monitoring station in Malaysia, using ESP8266-based IoT nodes.
Experimental results demonstrated that broker congestion was
reduced by 84.26% for QoS 0 and 79.6% for QoS 1, significantly
outperforming both standard MQTT and the state-of-the-art
MRT-MQTT (58% and 45%, respectively). The method attained
a high compression ratio of 2.62, which directly led to a dramatic
reduction in power consumption from 2,664,864 to 63,216 mA
(QoS 0)and from3,155,760t0 49,168 mA (QoS 1). This substantial
saving in current consumption contributes to extended device
lifetime and enhanced energy efficiency. The findings highlight the
potential of this enhanced protocol to support massive IoT
deployments by minimizing network overhead at the broker.
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overflow; deep learning; IoT; broker congestion; loT network;
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I INTRODUCTION

The growingissue of heavy network traffic in loT networks
is becoming increasingly evident in smart cities, as millions of
IoT devices generate vast amounts of data, making it
challenging to effectively implement smart-city technologies
[1]. Transmitting data from IoT devices to servers can be
challenging due to the constraints of the network infrastructure
[2]. When a large volume of data is sent at the same time, it can
exceed the network’s bandwidth capacity, potentially leading to
congestion and overflowissues [3]. Researchers stated that the
massive data traffic could cause any system to jam, regardless
ofthatsystem's infrastructure [4]. While other researchers stated
that in case all the sensors are transmitting data to a central
server at the same time, the server may become overwhelmed
and unable to process all the data, leading to an loT data traffic
overflow [5]. Furthermore, the number ofloT devices has grown
rapidly in recent years and is projected to exceed 100 billion by
theyear2050[6],[7]. Protocols playa vital role in handling data
transmission, like MQTT, which has a lightweight structure,
minimal bandwidth usage, and energy-efficient operation [§].
MQTT is particularly beneficial in IoT environments where
devices operate under low-power constraints and unreliable

network conditions. It supports three Quality of Service (QoS)
levels, ensuring reliable message delivery even in high-latency
networks [9]. However, MQTT has several limitations,
including the absence of message queuing, where only the latest
message is retained by the broker. Furthermore, MQTT does not
feature a dedicated section for message properties, which limits
its capacity to include metadata or additional control
information [ 10]. Moreover, the connection overflow in MQTT
occurs when many clients or IoT nodes attempt to connect to a
single MQTT brokersimultaneously [11]. Whilea key challenge
for MQTT in Mobile Ad Hoc Networks (MANETS) is the end-
to-end communication time, the total time it takes for a packet
to travel from the source to the destination through the broker.
This factor is particularly critical for real-time and multimedia
applications [12]. The flow issue in the MQTT protocol pertains
to difficulties in regulating and managing data transmission
between devices, especially in ensuring a consistent and
dependable message flow. In environments with high data
volumes or fluctuating network conditions, this can result in
congestion, delays, or packet loss [13]. Such challenges can
undermine the protocol’s efficiency and reliability, particularly
in large-scale loT systems or applications that demand real-time
communication [14]. Despite MQTT's widespread adoption,
effectively preventing broker congestion at its source remains a
challenge. While solutions often focus on broker-side
optimizations or heavyweight compression, this study addresses
a key gap by asking: How can MQTT be enhanced with
lightweight, publisher-side compression to reduce data volume,
mitigate congestion/overflow, and remain suitable for
constrained loT devices? This study examines the performance
of proposed modifications to the MQTT protocol, which is
considered one of the most efficient protocols for [oT networks.

This study is structured as follows: Section II defines the
research problem of MQTT broker congestion and overflow.
Section III reviews related work and state-of-the-art solutions.
Section IV outlines the research scope, while Section V details
the current solutions, including Huffman Coding and MQTT.
Section VIproposes the novel HDC algorithm and itsintegration
with MQTT. Section VII describes the experimental setup.
Section VIII presents and analyzes the results against
benchmarks. Section IX summarizes the core contributions of
this work. Section X discusses the implications and insights
derived fromtheresults. Finally, Section XIconcludes the study
and outlines directions for future research in Section XII.

II. RESEARCH PROBLEM

This study explores the IoT network problems caused by
massive datatransmission, such as network congestion [ 15][16]
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[17] and the connection overflow [18] [19]. While the
transmission of massive data through loT networks could cause
crucial issues [20] like connection overflow, which arises when
servers are overwhelmed with an excessive number of
connection requests [21][22] [23][19] and network congestion
problems [24] [25] [26] especially during data transmission
between publishers and brokers using the MQTT protocol.
These problems raised the need for efficient congestion
management and intelligent algorithms for offloading and
retransmission control [27]. Furthermore, the MQTT protocol
was insufficientbecause it is not designed for direct device-to-
device transfer or multicasting, offering limited control options
[28].

III. RELATED WORK

Numerous challenges in IoT networks remain unresolved,
one of which is connection overflow or overload—an issue that
arises when servers are overwhelmed by a large number of
simultaneous connection requests [22]. This canseverely impact
system performance and reliability [21] [19]. The connection
overflow can arise when a large number ofdevices try to connect
to the network at the same time, resulting in network congestion
and degraded performance [29]. Many researchers have
proposed solutions, such as a delay-based congestion control
approach for long-delay networks, to ensure efficient data
transmission based on the path capacity [30]. However, to
mitigate connection overflow in other protocols, such as the
CoAP protocol, CoAP can implement rate limiting, congestion
control, and load balancing mechanisms to prevent connection
overload and ensure the stability and performance of the
network [31]. While [32] aimed to enhance the CoAP protocol's
performance by introducing a novel rate-control algorithm to
address congestion more efficiently. Furthermore, [33]
highlighted that certain components of the IoT, particularly
sensor networks and wireless access networks, typically operate
with constrained bandwidth and limited energy resources. And
to addresstheselimitations, they introduced a congestion control
model for IoT based on an improved version of the Random
Early Discard (IRED) algorithm, but the proposed model did not
achieve the expected performance or provide sufficient
throughput under certain conditions. However, [27] noted that
congestion is a prevalent issue in IoT networks. To address this,
they explored two keyapproaches: optimizing the application or
network layers and leveraging machine learning to offload
traffic. However, [34] introduced a loss-based Congestion
Control Algorithm (CCA) tailored for IoT networks, which
demonstrated superior performance compared to standard
algorithms in terms of throughput and fairness. Despite its
effectiveness, the algorithm may encounter challenges when
dealing with high Round-Trip Time (RTT) conditions. In [24],
the authors noted thatthe rapid increase in [oT devices can lead
to network congestion, yet current research often overlooks this
critical issue. Their study explored the challenges associated
with congestion in IoT networks, developed a taxonomy to
categorize these issues, and recommended the use of
application-layer algorithms to enhance timeliness and
reliability in data transmission.

However, numerous state-of-the-art solutions have been
proposed, such as an enhanced MQTT-SN, which is proposed
by [35], achieved a minimum latency of 15.5 ms, a peak
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message transfer rate of 620 messages per second, and
demonstrated minimal energy consumption. While [36] found
that implementing CoAP-DTLS for secure data transfer in [oT
harms performance compared to using CoAP. Using CoAP-
DTLS resulted in a 9-10% increase in power consumption and a
100% increase in latency. Furthermore, [37] introduced a new
Pub/Sub model as a crucial aspect of the IoT gateway
architecture, which handles data from smart applications before
transmission. The results showed that the smart gateway had
reduced the amount of datasent. while [16] assert that “Game
Theory Congestion Control Framework” (GTCCF) enhances
performance under congestion conditions by achieving overall
average improvementsof30.45% in throughput, 39.77% in end-
to-end delay, 26.37% in energy consumption, 91.37% in the
number of lost packets, and 13.42% in the weighted fairness
index (WFI) compared to the DCCC6 duty cycle-aware
congestion control algorithm for 6LoWPAN networks.
Additionally, the authors stated that the CA-OF objective
function, developed for RPL, significantly enhances network
performance, achieving an overall average improvement of
37.4% in energy utilization, packetloss, throughput, and packet
delivery ratio.

Other researchers utilized Deep learning to address loT
delay and datatransmission latency [38]. Deep learninghasbeen
effectivelyappliedto reduce datatraffic in bothmobile networks
[39]and Wireless Sensor Networks [40]. Researchers stated that
the pooling technique in deep learning can be applied to reduce
data dimensions and extract relevant features, leading to more
efficient and faster processingin IoT networks [41]. However,
deep learning models can be large and computationally
expensive, leading to latency in loT devices. Employing model
compression techniques like pruning, quantization, and
knowledge distillation can reduce the model size and make it
more suitable for deployment on resource-constrained loT
devices [42]. Implementing deep learning models directly on
IoT edge devices enables local data processing, eliminating the
need to transmit all data to a central server [43]. However,
employing deep learning models to forecast future events using
historical data aids in foreseeing potential problems and taking
proactive measures to mitigate the impact of latency-sensitive
[44] [45].

Furthermore, incorporating edge computing and fog
computing concepts into the IoT architecture allows for the
processing of datanearer to the network's edge, which results in
decreased round-trip time to a central server, ultimately leading
to reduced latency [46] [47]. Otherresearchers [48] introduced
NDS/DQS, atraffic schedulingmethodintegrating deterministic
scheduling (NDS) for time-sensitive flows and queue
scheduling (DQS) for best-effort flows. Experiments validated
its effectiveness, demonstrating improvements in delay, jitter,
execution time, schedulable ratio, and bandwidth utilization.
Other researchers [49] explored ML algorithms in resource-
constrained [oT fog frameworks to identify suitable classifiers
for minimizing latency and energy consumption with ambient
sensors. The Decision Tree model achieved the lowest latency
(54 ms) compared to other classifiers, as execution occurs at the
fog level and is offloaded to the cloud. In [50], the authors
proposed an adaptive control scheme for nonstatistical data
aggregation in loT gateways, using three estimation formulas to
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optimize aggregation based on time-varying arrival rates.
Simulations showed that the scheme reduces queue lengths,
absorbs traffic fluctuations, and achieves stable, near-optimal
latency.

Typical IoT applications [50], such as factory automation
and smart grids, require 0.25—10 ms latencies and 3—20 ms,
respectively. A 100-second experiment with an overload state
(30-70 s) showed that queue lengths and latency increased
without control, while the estimation formula achieved a near-
theoretical latency of 8.0 ms. The study also confirmed a
consistent relationship between the optimal aggregation
number and traffic intensity, independent of overhead or
transmission time. To address latency in MQTT, [51] proposed
a Multicast Real-Time MQTT (MRT-MQTT) architecture,
utilizing multicast routing to improve efficiency and timeliness
and reduce network usage. Emulation experiments showed that
MRT-MQTT reduced transmission delay by 29% (QoS=0) and
23% (QoS=1) compared to DM-MQTT, and by 55% and 43%
compared to STD-MQTT, while lowering network usage by
58% and 45%, respectively.

Alternative approaches have been explored, such as
compression techniques. Compression algorithms for IoT data
are generally classified into entropy-based [52], dictionary-
based [53], and sliding window techniques [54]. As noted in
[55], Huffman coding (entropy-based) outperformed LZ77
(sliding window) and LZ78 (dictionary-based) for numeric
time-series [oT data. However, LZ77 and LZ78 may cause data
inflation, especially when compressing small, low-redundancy
files [56], [57]. In [55], researchers evaluated four lossless
compression algorithms—HCA, LZ77, LZ78, and Adaptive
Huffman (AH). Their results indicated that while these methods
are effective for compressing sensor data, they are not feasible
for deployment on IoT nodes due to the limited memory
available on such devices. Several studies have explored data
compression in sensor networks. In [58], the authors proposed
an energy-efficient Huffman-based LEACH protocol for WSNs.
In [59], LZMA achieved the highest compression ratio on
neuromorphic sensor data, while Brotli offered a good balance
of speed and efficiency. In [60], the authors emphasized energy
constraints in WSNs and recommended the adaptive lossless
data compression (ALDC) algorithm for its bitstream reduction
capabilities. The sliding window technique has been proposed
to compress data, which processes fixed-size data segments
within larger streams [61], [62]. Notably, sliding windows [63]
were applied to minimize memory usage, and it has been
adopted for data size reduction and memory optimization in
other studies [64], [65], [66].

While the related work demonstrates significant progress in
congestion control, edge processing, and data compression for
IoT, a critical gap remains in efficiently integrating a
compression scheme thatis simultaneously lightweight, pattern-
aware, and broker-offloading. Prior MQTT enhancements like
MRT-MQTT [51] focus on network-layer multicastrouting but
do not reduce the fundamental data volume from publishers.
Conversely, generic compression algorithms (e.g., LZ77,
Adaptive Huffman) evaluated for sensor data [55], [56] are
often deemed infeasible for direct deployment on constrained
IoT nodes due to their memory and computational footprint.
Other IoT compression studies [58], [59], [60] operate at the
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network or application layer independently of the MQTT
protocol, missing the opportunity for tight, publisher-side
integration that proactively prevents broker overload.

The fundamental novelty ofthis work is the architectural and
algorithmic co-design ofthe Huffiman Deep Compression (HDC)
scheme specifically for the MQTT publisherrole. Unlike static
entropy coders, HDC employs a dynamic sliding window and
pattem-weighting mechanism that adapts to local data trends
with minimal memory—a necessity for devices like the
ESP8266 (160 KB RAM).

Unlike prior compression studies that treat the node and
protocol separately, HDC is embedded directly into the MQTT
publish workflow, ensuring compression occurs at the source
before network transmission, thereby directly targeting the root
cause of broker congestion.

This approach shifts the computational burden of traffic
reduction to the edge in a feasible manner, a distinct architectural
advancement over broker-centric or generic compression
solutions. Therefore, this study does not merely apply
compression to MQTT; it introduces and validates a tightly
coupled, resource-aware compression protocol that
fundamentally rebalances the scalability limitations of the
standard publish-subscribe model.

IV. RESEARCH SCOPE

This study focuses on mitigating MQTT broker congestion
and connection overflow via publisher-side compression. The
scope is defined as follows:

e Focus: Enhancing the MQTT application layer with
lossless compression using the novel Huffman Deep
Compression (HDC) algorithm at the [oT publisher.

e Evaluation: Measuring broker congestion reduction,
network load, transmission time, compression ratio, and
publisher energy consumption.

e Validation: Testing on ESP8266 nodes using real-world
air pollution sensor data, comparing performance to
standard MQTT and MRT-MQTT.

e Exclusions: Security enhancements, non-MQTT
protocols, mobility scenarios, and long-term hardware
tests are out of scope.

This targeted scope enables a clear assessment of HDC's
efficacy in improving MQTT scalability for constrained loT
networks.

V.  THE CURRENT SOLUTIONS

A. The Huffman Coding Algorithm

Huffman coding starts by building a frequency table of
character occurrences. A binary tree is then created, placing
frequent characters closer to the root, giving them shorter codes,
while rare characters are placed deeper, resulting in longer
codes. Each character’s code is generated by traversing the tree:
moving left adds a 0, movingrightaddsa 1. Fig. 1 illustratesa
simple Huffman coding process.
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The Huffman coding algorithm compresses data by e The publisher connects to the MQTT broker, a server.
assigning prefix codes based on symbol frequencies. However,

because symbol storage and frequency analysis require * The publishercan then publish a message ona specific

significant memory and processing resources, adjustments are topic on the broker.
necessary for IoT environments. e The broker sends the message to subscribers who
B. The MOTT Protocol subscribe to that topic.

MQTT is used for communication in IoT networks, as e The subscribers can receive the message and take
illustrated in Fig. 2. The data flow process in MQTT can be appropriate action.

included in the following steps [67]:

/ Read dataset file /

Figure out the probabilities for every symbol in the dataset file

v

Arrange all symbols in ascending order according to their probabilities
(frequencics)

A 4
Arrange all symbols in ascending order according to their probabilities
(frequencies)
»
1 Ll
Update previous subtree to have a root holds the sum of new symbol probability A 4
value (RL) and previous subtree root value (LL) Assign ‘0 to the left leaf (LL) and ‘1° to the right leaf (RL) of the

subtree

7y

Merge the next lowest probability symbol with previous Subtree as a right

leaf (RL) and the previous root as a left leaf (LL) S
Stop reading

Start coding by replacing every symbol | [Assign codewords for every symbol by defining transition bits o
< in dataset file by its code bits . the branches leading to it from root of tree to bottom

Fig. 1. Huffman coding algorithm (HCA) flowchart.

Try connect
to the broker

Try connect
to the broker
N
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m
y
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PUBLISHER
SUBSCRIBER
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No Topic
Found
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Add to Topic
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Fig.2. MQTT publish-subscribe flowchart.
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A. Proposed HDC Algorithm

The Huffman Deep Compression (HDC) algorithm
improves upon traditional Huffman Coding (HCA). HDC uses
pattemns instead of symbols and pattern weight rather than
symbol frequencies within sliding windows, significantly
reducing tree complexity and memory usage—ideal for IoT
environments. Each data segment is processed independently
using polling and pruning to extract optimal patterns and

PROPOSED SOLUTIONS

Vol. 17, No. 1, 2026

generate efficient Huffman trees. Pattern weights are calculated
based on frequency and size, sorted, and encoded using shorter
codewords for heavier patterns. Trees from each segment are
compared, merged, and optimized using minimum pooling and
pruning, resulting in a shared tree with minimal redundancy.
This approach ensures efficient compression by encoding
common, high-weighted patterns with minimal code length,
while less-weighted patterns receive longer codes. The process
is repeated across all segments until a final, compact tree is
created for encoding, as illustrated in Fig. 3.

/ Read dataset file /

Split the dataset file into N slides

| Figure all possible Patterns in the X slide |

v

| Calculate every Pattern weight = size * freq |

Arrange all patterns in ascending or*r according to their weights (L 2 R)

v

Merge the lowest two weights patterns into one Subtree establishing a root
holds the sum of their weights

previous subtree root value (LL)

Update previous subtree to have a root holds the sum of new pattern weight value (RL) and

?

Assign ‘0’ to the leftleaf (LL) and ‘1” to the right leaf (RL) of the subtree

root as a left leaf (LL)

Merge the next lowest weight Pattern with previous Subtree as a right leaf (RL) and the previous|

T

More Patterns?

Define Shared patterns between all Huffman trees and their code bits

A 4

Figure the minimum code bit for all shared patterns and prune others

A 4

Start coding by replacing every pattern in dataset file by the minimum code bits

A

/ Stop reading X slide /

Assign code words for every pattern by defining transition bits on the
branches leading to it from the root of the tree to the bottom

No Yes

Fig.3. The HDC algorithm flowchart.

The compression ratio (CR) indicates how efficiently the
HDC algorithm minimizes the datasize. Eq. (1) shows how to
measure the CR, where S, presents the original data size and
Scomp Presents the compressed datasize. A higher CR indicates
better compression efficiency.

CR =2oria. (1)
Scomp

The HDC algorithm hasbeen previouslytested and validated
in an earlier published study, demonstrating its effectiveness in

reducing memory usage and data traffic on loT nodes. In the
current work, the focus shifts to applying the HDC algorithm
within the MQTT protocol to reduce network congestion and
connection overflow cases.

B. Proposed MQOTT Improvement Based on the HDC
Compression Algorithm
The proposed HDCalgorithmis tailored for MQTT systems,
fits the limited memory of IoT devices, and uses a sliding
window for efficient compression. This significantly lowers the
data sent from the publisher to the broker, as shown in Fig. 4.
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Fig. 4. The proposed MQTT diagram based on the compression approach.

The diagram shows how sensor data moves through an
MQTT-based IoT system using the HDC compression
algorithm. Sensors first collect data like temperature, humidity,
etc. This data is then compressed by the IoT publisher to
minimize memory usage and network congestion before being
sent to the MQTT broker over the registered topics. Shifting
decompression to the broker, which typically has more
resources, the systemkeeps loT nodesefficientand reduces both
bandwidth requirements and transmission time, reducing the
overall data flow.

Eq. (2) shows the transmission time reduction (T;¢ gyction )»
which presents the difference between data transmission time
using HDC and without it.

Treduction= TOrig - Tcomp (2)

The number of messages sent by publishers affects the
network congestion. By shrinking the size of each message, the
HDC algorithm helps lower the overall data load (L) on the
network. Eq. (3) shows how to measure the network load. Where
N is the number of messages sent and S is the message size.

L=NxS 3)
With HDC, the reduced load becomes, as in Eq. (4):

Lcomp: N * Scomp (4)

The reduction in network load can be calculated, as in
Eq. (5):

Lreduction= Lorig - Lcomp =N * (Sorig - Scomp) (5)

Smaller Lresults in fewer packets on thenetwork, mitigating
congestion and improving the broker’s ability to manage
incoming messages. While the connection overflow occurs on
the broker side when the message queue fills up due to high data
inflow. The HDC algorithm helps by decreasing the data size
(Scomp) Of each message, and reducing the arrival rate (R ;opp)
of data packets. Eq. (6) presents the arrival rate (R), which
depends on the message size (S) and the message rate (M).

R=MxS (6)

With compression, the new arrival rate is presented in
Eq. (7):

Rcomp: M* Scomp (7)

The broker can process messages faster by reducing R,

preventing queue overflow. In summary, this experiment

examines howthe HDC algorithm can reduce transmission time
underboth QoS 0and QoS 1 conditions, contributing to reduced
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network congestion and preventing connection overflow on
brokers.

VII. EXPERIMENT

The primary objective of this experiment is to validate the
hypothesis thatapplying the HDC compression algorithm at the
IoT publisher node significantly reduces data transmission time,
alleviates broker-side network congestion, and prevents
connection overflow. The end-to-end process is illustrated in
Fig. 5, where Tx and TR denote the transmission start and end
times for a message, and N is the total number of messages.

IoT Node Tx Tr
1
2

L]
SN -

—

Broker

vy

i
Collect Data &
Compress

Decompress Data on
Broker

Fig. 5. The experiment process for data transmission from the publisher to
the broker using an improved MQTT based on the HDC algorithm.

A. Hardware and Software Configuration

To ensure practical relevance, the experiment utilized
resource-constrained hardware representative of typical loT
edge devices.

e IoT Publisher Node: An ESP8266 (NodeMCU v1.0)
microcontroller was employed. Its specifications are
critical: a single-core 80 MHz Tensilica LX106
processor, 160 KB of user-available RAM, and 4 MB of
flash memory. It was connected via 802.11n Wi-Fito a
local network.

e MQTT Broker: The Eclipse Mosquitto™ broker (version
2.0.15) was installed on a standard desktop computer
(Intel Core 15,16 GB RAM, Windows 10) acting as the
central broker within the same local network.

e Subscriber and Measurement Host: A C++ script
utilizing the Paho-MQTT v1.6.1 client library ran on a
separate laptop. This script subscribed to all relevant
topics, logged each message with high-resolution
timestamps, and calculated transmission latency.

e Power Measurement: The current consumption of the
ESP8266 was measured using a UNI-T UTI181A
precision digital multimeter with data logging
capabilities, connected in series with the board's 3.3V
power supply.

B. Dataset Characterization and Preparation

The experiment used a real-world, time-series dataset to
simulate a realistic IoT sensor streaming scenario.

e Source: Data was sourced from the Tanjung Malim air
quality monitoring station in Malaysia.

e Content and Structure: The dataset comprises 4,383
complete records. Each record contains synchronous
readings from eight environmental sensors: Temperature
(°C), Nitrogen Oxides (NOx, ppm), Relative Humidity

Vol. 17, No. 1, 2026

(%), Nitrogen Dioxide (NO2), Nitric Oxide (NO), Ozone
(03), Wind Direction (degrees), and Wind Speed (m/s).

C. Experimental Procedure

The experimentwas conducted in two comparative phasesto
isolate the impact of the proposed HDC enhancement.

Phase 1. Baseline Protocol Performance (MQTT vs. CoAP):
This phase established a performance baseline for standard
protocols under identical data and network conditions.

e Objective: To compare the inherent transmission
efficiency of MQTT and CoAP.

e Scenarios:

o MQTT QoS 0 (at-most-once delivery) vs. CoAP
Non-confirmable (NON) messages.

o MQTT QoS 1 (at-least-once delivery) vs. CoAP
Confirmable (CON) messages.

e Procedure: The ESP8266 was programmed to
sequentially publisheachofthe4,383 sensorrecords. For
MQTT, each sensor type was published to a unique topic
(e.g., sensors/temp). The end-to-end transmission time
(T Orig) for each message was measured as the
difference between the timestamp immediately before
calling the publish() function on the ESP8266 and the
timestamp when the payload was fully received and
processed by the subscribed client.

Phase 2. Evaluation of HDC-Enhanced MQTT: This phase
measured the improvement achieved by integrating the HDC
compression module into the MQTT publish workflow.

e Objective: To quantify the reduction in transmission
time, network load, and power consumption afforded by
publisher-side compression.

Scenarios:
o Standard MQTT (QoS 0 & QoS 1) without
compression.

o HDC-enhanced MQTT (QoS 0 & QoS 1) with
compression applied before publishing.

Procedure:

o Compression: On the ESP8266, the data for each
sensor record was passed through the HDC
algorithmprior to the MQTT publish call, producing
a compressed payload (S_comp).

Transmission: The compressed payload was
published to the same MQTT topics as in Phase 1.

o Decompression: To maintain standard MQTT
semantics for subscribers, a lightweight
decompression plugin was added to the Mosquitto
broker. This plugin intercepted messages on the
designated topics, decompressed the payload using
HDC to regenerate the original data.
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o Measurement: The transmission time with
compression (T _comp) was measured identically to
Phase 1. Additionally, the total current consumption
for the entire transmission cycle (compression,
transmission, and Decompression) was logged by
the multimeter for both compressed and
uncompressed scenarios.

VIIL
The experimental results are divided into five sections.

A. The Performance of HDC

Fig. 6 presents the compression ratio results, comparing
HDC to state-of-the-art solutions, showing that HDC achieves
the highest compression ratio (2.62), outperforming BDC (2.47)
[68], Delta+RLE (1.898) [69], Sahu & Panda (0.89) [70], and
LZW+X.509 (0.71) [71], confirming HDC’ s superior efficiency.

B. MQTT vs. CoAP

Table I displaysthe transmission time recorded, measured in
milliseconds, for the Tanjung Malim station sensors' data, for
both scenarios: QoS 0 and QoS 1 in MQTT, and non-
confirmable and confirmable modes in CoAP.

RESULTS

2.62
2.47

2.5
1.898

15

Compression Ratio

0.71

0.89
- I l
0

Delta+RLE (12- BDC Sahu & Panda, LZW+X.509 HDC
bit ADC best 2024
case)

Methods

Fig. 6. HDC vs. State-of-the-art research results on compression ratio.
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Despite this, MQTT generally demonstrates superior
performance in terms of data transmission efficiency.

C. MQTT with HDC vs. Standard MQTT

Transmitting data from the sensors to the Tanjung Malim
station (broker), where every sensoris considered a publisher.

TABLEII. TRANSMISSION TIME (MS) COMPARISON BETWEEN
STANDARD MQTT AND THE IMPROVED MQTT USING COMPRESSION (HDC)

QoS 0 QoS 1

Somsor [ Timewith | yippouy || Timewith | g

compressmn compresswn
Temp 43.5602 442 461 77.5269 460.857
NOx 39.878 227.448 72.8804 335.711
Humidity 38.2013 214.537 73.1911 335.817
NO2 39.5145 216.483 71.0191 333.08
03 40.305 217.965 74.5532 331.201
NO 39.5492 218.061 73.6148 332.993
WDr 27.0295 215.521 56.7491 334.654
WSp 41.7017 215 71.0177 330.429

The experimental results demonstrate that applying
compression significantly improves transmission performance
in both QoS 0 and QoS 1 settings. The impact of HDC
compression on transmission latency is detailed in Table II.
Under QoS 0, compression reduced the total transmission time
from 1967.48 msto 309.74 ms, achievinga Network Congestion
Reduction (NCR) and Broker Overflow Prevention of 84.26%.
Similarly, in QoS 1, compression lowered the total transmission
time from 2794.74 ms to 570.55 ms, with an NCR and Broker
Overflow Prevention of 79.6%. These findings indicate that the
compression approach effectively minimizes transmission
delays, reduces network congestion, and alleviates broker load
across different QoS levels.

D. Compression Time

Table III presents the recorded times used to calculate the
total data transmission duration from the publisher to the broker,
incorporating both compression at the publisher and
decompression at the broker, under the two transmission
scenarios: QoS 0 and QoS 1.

TABLEIL. TRANSMISSION TIME (MS) COMPARISON BETWEEN MQTT
AND COAP
Non-
confirmable QoS 0 Confirmable QoS 1
Sensor CoAP MQTT CoAP MQTT
Temp 284 442.461 374 460.857
NOx 244 227.448 339 335.711
Humidity | 247 214.537 350 335.817
NO2 236 216.483 358 333.08
03 242 217.965 328 331.201
NO 259 218.061 365 332.993
WDr 215 215521 348 334.654
WSp 244 215 351 330.429

CoAP shows higher transmission times than MQTT, with
the exception of temperature data, where the overhead of TCP
connection establishment in MQTT results in longer delays.

TABLE III. TIME (MS) FOR DATA TRANSMISSION FROM THE PUBLISHER
TO THE BROKER USING THE HDC ALGORITHM
Compression Transmission Decompression
Time Time Time
QoS 0 1458.589 309.7394 63.6218
QoS'1 1458.589 570.5523 63.6218

Data transmission using the HDC algorithm shows different
performance for each QoS level. QoS 0 achieves a total time of
~1831.95 ms, while QoS 1 increasesto ~2092.76 ms due to
longer transmission time. Since compression and
decompression times remain unchanged, the additional delay in
QoS 1 is due to its increased reliability mechanism.
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E. Power Consumption

The IoT node draws 26 mA at idle. Compression with HDC
increases consumption to 44 mA (an extra 18 mA), while
decompression requires 40 mA. Transmission consumes 102
mA with QoS 0 and 116 mA with QoS 1. The table below
summarizes these values.

TABLEIV.  CURRENT CONSUMPTION FOR EACH PROCESS IN MAMPS
Operation Consumption (mAmps)
Compress (per sliding window) 18
Decompress (per sliding window) 14
QoS 0 Transmission 76
QoS 1 Transmission 90

The table shows current consumption for each operation, as
measured and listed in Table IV. Compression and
decompression require 18 mA and 14 mA per sliding window,
respectively, while data transmission draws 76 mA for QoS 0
and 90 mA for QoS 1 due to extra acknowledgments. Table V
shows how many mAmps in total were needed to transmit data
from the publisher to the broker.

TABLE V. POWER CONSUMPTION (MAMPS) FOR THE DATA
TRANSMISSION FROM THE PUBLISHER TO THE BROKER

With Compression Without Compression

QoS 0 63216 2664864

QoS 1 49168 3155760

The table indicates that using compression significantly
reduces the total current consumption during data transmission
for both QoS levels. The results demonstrate that compression
notonly reducesdata volume but also leads to substantial energy
savings, especially beneficial for battery-powered IoT nodes.

IX. CONTRIBUTIONS

This work makes the following distinct contributions to the
field of IoT communication protocols:

e A Novel Protocol Integration Architecture: A new
publisher-side compression framework for MQTT is
proposed and validated, shifting the primary
computational burden of traffic reduction from the
brokerto the edge. This architectural shift establishes a
design principle: proactive, source-side data
minimization is a scalable alternative to reactive broker-
side optimizations for congestion control.

e An Algorithm Optimized for Constrained MQTT
Publishers: A resource-aware adaptation of the Huffiman
Deep Compression (HDC) algorithm is introduced,
specifically tailored for the MQTT publisher role on
devices with severe memory constraints (e.g., 160 KB
RAM). The key innovations are its dynamic sliding-
window pattern matching and lightweight tree-
generation process, which maintain a high compression
ratio of 2.62 while operating withinthe limitsof IoT edge
hardware.

Vol. 17, No. 1, 2026

e Quantified Performance Advancement and New
Congestion Insights: Through empirical validation, this
study demonstrates that the integrated system reduces
broker-side congestion by 84.26% for QoS 0 and 79.6%
for QoS 1, significantly outperforming the state-of-the-
art MRT-MQTT (58% and 45%, respectively). These
results provide new insights into congestion dynamics,
quantitatively proving that reducing per-message
payloadsizeis disproportionately effective in alleviating
queue growth—more so than optimizing broker
processing speed alone.

e Substantial Energy Efficiency Gains and a Reusable
Benchmark: The approach delivers transformative
energy savings, reducing total current consumption from
2,664,864 t0 63,216 mA (QoS 0) and from 3,155,760 to
49,168 mA (QoS 1). Furthermore, a complete,
reproducible methodology for evaluating compression-
enhanced MQTT is provided, establishing a new
performance benchmark for the community.

These contributions collectively advance the field by
providing not just a faster protocol, but a new architectural
pattemn, an optimized algorithm, fundamental insights into
congestion mechanics, dramatic energy improvements, and a
reproducible benchmark for scalable IoT communication
systems.

X.  DISCUSSION

The results validate the HDC-enhanced MQTT protocol.
The core insight is that broker congestion is fundamentally a
data volume issue. Solutions like MRT-MQTT manage traffic
more efficiently at the broker, but our publisher-side
compression prevents the overload at its source. The higher
congestion reduction for QoS 0 (84.26% vs. 79.6% for QoS 1)
confirms this, as the acknowledgment overhead in QoS 1
presents a fixed bottleneck.

The dramatic energy reduction—from millions to tens of
thousands of mA—stems from shorter radio transmission times
for compressed data. This demonstrates a key principle:
optimizing network efficiency in IoT inherently optimizes
energy efficiency, directly extending device lifetime in large-
scale deployments.

Achieving a compression ratio of 2.62 on a device with 160
KB RAM also addresses prior work that deemed such
algorithms infeasible on constrained nodes. This work
establishes a practical design pattern: the Intelligent Publisher,
where edge nodes preprocess data to minimize their network
footprint. This shifts system scalability from being a broker-
centric challenge to a shared responsibility, offering a clear path
for building sustainable, massive [oT networks. The main trade-
off is added compression latency, which the significantly
reduced transmission time offsets for most applications.

XI. CONCLUSION

This study has demonstrated that integrating Huffman Deep
Compression (HDC) at the MQTT publisher is a fundamental
strategy for scalable [oT. The significant performance gains—
84.26% congestion reduction, a 2.62 compression ratio, and
over 97% energy savings—are not merely numerical
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improvements, but represent critical advancements for real-
world systems.

The reduction in broker congestion directly translates to
enhanced system reliability and stability; brokers can handle
orders of magnitude more devices without queue overflow,
enabling true massive-scale deployments. The drastic drop in
energy consumption extends device lifetime from months to
years, reducing maintenance costs and enabling deployment in
inaccessible locations. Finally, by minimizing the data load, this
approach reduces bandwidth requirements and operational costs
for large sensor networks.

While validated on environmental data, the proposed
architectural principle, proactive source-side minimization,
provides a generalizable framework for enhancing publish-
subscribe protocols. Future work will test this framework with
diverse data and in dynamic networks. Ultimately, this work
moves beyond optimizing a protocol to providing a practical
blueprint for building sustainable, large-scale loT infrastructure.
A noted limitation is the focus on numerical time-series data
within a stable local network. Future work will therefore
investigate HDC's performance on diverse data formats, its
integration with security layers like MQTT-S, and its robustness
in dynamic, large-scale network topologies to further generalize
its utility for next-generation IoT ecosystems.

XIL

Future research on the Huffman Deep Compression (HDC)
algorithm should focus on enhancing its performance in large-
scale IoT environments. Integrating loss compression
techniques may significantly reduce data size while preserving
essential information, leading to lower transmission latency.
Maximizing throughput and ensuring scalability in high-density
IoT networks, such as smart city infrastructures, is another
critical direction. Furthermore, implementing the enhanced
MQTT protocol within next-generation IoT architectures,
including 6G networks, can unlock new opportunities for ultra-
reliable and low-latency communication. Finally, developing
innovative strategies to reduce network overhead will be vital
for sustaining efficient and reliable data transmission in massive
IoT ecosystems.
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