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Abstract—Blood supply chains constitute a critical yet often 

overlooked component of modern public health systems, as they 

coordinate donors, collection centers, hospitals, and patients. One 

of the major operational challenges lies in planning the 

deployment of mobile blood collection units under highly variable 

and uncertain spatio-temporal demand. In this context, this study 

proposes a novel hybrid machine learning framework for 

predicting donor return potential and supporting location and 

time selection decisions for mobile blood drives. The proposed 

approach combines Support Vector Regression (SVR) and Light 

Gradient Boosting Machine (LGBM) through a dynamic, context-

aware weighting function designed to capture both temporal 

regularities and nonlinear spatial heterogeneity in donor behavior. 

The model is evaluated using real-world data collected from a 

blood collection center operating multiple mobile units. 

Experimental results demonstrate that the proposed hybrid 

framework consistently outperforms its individual components, 

achieving R² values of up to 83% for certain locations, together 

with low Mean Absolute Error (MAE) and Mean Squared Error 

(MSE). These results confirm the robustness and stability of the 

proposed approach. Beyond predictive performance, the model is 

intended to be integrated into a decision-support system to help 

managers optimize logistical resources and improve the strategic 

planning of mobile blood collection campaigns. This work 

contributes to the emerging field of data-driven blood supply chain 

optimization by introducing a spatio-temporal, hybrid predictive 

core specifically designed for operational decision support.  
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I. INTRODUCTION 

Nowadays, blood supply chains are a fundamental but 
unobtrusive pillar of modern public health. They play a vital role 
in coordinating and optimizing the management of this 
important function between donors, blood centers, hospitals, and 
patients, who are the final link in the chain. For example, if a 
patient urgently requires a blood transfusion, the speed and 
efficiency of the blood management logistics chain will save his 
or her life and contribute to the safety and protection of human 
life [1]. 

These chains are not limited to collecting or transporting 
blood between collection centers and hospitals but are complex 
and rigorous functions involving upstream planning, disciplined 
execution, and reactivity coupled with real-time coordination 
[2]. The stakes are high because each component must function 
correctly, without fault or delay. The optimization of these 
chains using mathematical models from the world of decision 

analytics or management intelligence is therefore of the utmost 
importance. 

Blood supply chain management can involve managing an 
orchestra in which each entity (donor, center, hospital, patient) 
must fulfill its responsibilities. It's a general order of execution 
that requires a high degree of coordination and is subject to strict 
rules to ensure optimization and flawless decision-making. 

The variability of demand between different hospitals and 
regions is a major challenge. The blood supply is not a linear 
function, where we know exactly what is needed in a given place 
and at a specific time. On the contrary, needs are highly variable 
and can suddenly explode in one region without impacting 
others or in all delivery sites. In this context, it would be 
extremely useful to anticipate collections and needs, especially 
when we're trying to determine collection points precisely and 
avoid shortages. 

Faced with the complexity of blood management, the 
digitization of processes is essential for effective and efficient 
management. At this stage, digital technologies such as big data 
analytics, the Internet of Things, RFID, computer vision and 
predictive technologies [3], [4] can clearly help to offer concrete 
solutions for increasing performance, responsiveness and 
optimization in management. 

With the increasing digitization of the blood supply chain, 
voluminous data is generated at every stage of the chain's 
management process. From the donor's first step, through the 
transport of blood, its storage in collection centers, its 
distribution to hospitals and finally its use by doctors. In this 
context, using business analytics as an approach to analyzing 
trends and making the right decision at the right time is arousing 
growing interest within the scientific and academic community. 

The use of business analytics, with an emphasis on its 
predictive aspect, enables detailed analysis of historical data 
collected in data warehouses, to anticipate future trends in terms 
of demand and need [5], [6]. However, despite the abundance of 
work using predictive analytics in the academic literature, its use 
for managing and optimizing decisions in blood supply chain 
management remains timid. Moreover, there is a lack of work 
on optimizing the location of mobile blood collection units on 
the basis of predictions and forecasts of blood donor 
concentration (Fig. 1). 

Optimizing mobile blood drives is a major challenge for 
decision makers. In particular, when they want to program a 
campaign in a region requiring major mobilization of means and 
resources, but have no idea or indication of possible donors or 
the recidivist of previous donors in the region. By intelligently 
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exploiting previously collected data using sophisticated machine 
learning methods, decision makers can base their decisions on 
reliable performance indicators, offering an all-round vision. 

 
Fig. 1. Blood supply chain with mobile units. 

With this in mind, our research involves collecting data on 
blood donors. These data come from a blood collection center in 
Morocco, with several mobile units. This study is very 
important, especially in the case of Morocco blood supply chain, 
where blood requirements are very high compared with the 
national stock of this material. There is a glaring discrepancy 
between blood collection and needs. Morocco needs more than 
1,000 donations a day to be self-sufficient in labile blood 
products. With this study, we hope to provide a tool for 
organizing mobile blood collection campaigns, so as to 
guarantee an increase in the national stock to meet the needs of 
hospitals in a timely manner. 

The aims of this study are to predict blood donor trends and 
streamline the movement of mobile units. To ensure a reliable 
and robust global prediction, our method attempts to integrate 
two machine learning models frequently used in the blood 
supply chain, SVR and LBGM, via a new function. Decision-
makers will be able to make choices that reduce logistical 
expenditure and unnecessary travel, thanks to the integration of 
this newly-created framework into a dashboard. 

Although numerous studies have investigated donor 
behavior prediction and others have proposed decision-support 
dashboards for blood supply chains, most existing works treat 
these two dimensions separately. Moreover, ensemble and 
hybrid models are often implemented using standard strategies 
such as stacking, boosting, or static weighted averaging. In 
contrast, this work addresses a specific and still underexplored 
problem: the spatio-temporal optimization of mobile blood 
collection unit deployment using a dynamic hybrid predictive 
mechanism. The proposed approach introduces a context-aware 
combination function that dynamically adjusts the contribution 
of SVR and LGBM according to the characteristics of the 
prediction task, rather than relying on a fixed or meta-learned 
ensemble structure. 

We can list the major contributions of our work in the 
following points: 

1) Combined-output: We aim to improve the performance 

of the support vector regression (SVR) model by combining its 

output with that of the light gradient machine (LGBM), two 

algorithms recognized for their effectiveness in supply chain 

analytics. The proposed approach is based on multiple inputs 

and incorporates a new combination function designed to 

enhance prediction accuracy. 

2) Donor return prediction: The central objective is to 

anticipate the likelihood of a donor returning to make a future 

donation. Reliable predictions in this area enable blood 

collection organizations to design personalized loyalty 

strategies and interact more effectively with donors. 

3) Decision-making indicators: Provide managers with 

decision-making indicators for planning the return of mobile 

blood collection units to a specific location based on the results 

generated by the predictive model. 

The rest of the paper is organized as follows: Section II 
presents a review of related works. Section III describes 
methods used and presents the novel predicting function. 
Section IV explains data, results, and discusses the findings. 
Finally, we conclude the paper and propose future research 
directions in Section VI. 

II. LITERATURE REVIEW 

 Predictive analytics has become a fundamental tool for 
prospecting potential donor pools and characterizing the factors 
determining the decision to donate blood or not [7], [8]. This 
study consolidates and critically evaluates original research 
from India, Saudi Arabia, Iran, Italy, Thailand, and East Asia, 
including methodological designs and theoretical predictive 
models of blood donation behavior. It also highlights the 
comparative performance of the models, general shortcomings, 
and limitations. 

The main objectives of blood donation prediction research 
are to understand the prediction of individual donor behavior 
and the prediction of blood supply and demand as a whole [9]. 
Various methods are used, all adapted to the complexity of these 
tasks and presenting different advantages. Relevant work has 
used Bayesian methods, as shown in [10], analyzing donation 
intensity as a function of random individual frailties and 
covariates (demographic, health, and habit). Based on a large 
amount of data concerning 5,937 regular donors in Milan, the 
Bayesian method was used to identify frequent donors and 
predict future donations. To classify individual donors, machine 
learning approaches are common techniques such as K-nearest 
neighbors (KNN), Naive Bayes and decision trees [11]. [12] 
used logistic regression and achieved good results with a 
prediction score of around 69%, processing unbalanced data 
using Synthetic Minority Oversampling Technique (SMOTE).  
[13] use artificial intelligence and machine learning techniques 
to classify and determine the factors influencing organ donation 
based on blood data. Time-Series techniques are well suited for 
forecast at a large scale, especially in use. [14], for example, 
used backpropagation artificial neural networks for monthly 
forecasting and reached MSE ranging between 0.1407 and 
0.4507. similarly, [15], that harnessed an ensemble of models, 
such as XGBoost, LGBM, and CATBoost that combined 
disparate data with up to an R² value of 0.8497. 
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Comparison of these varied methods shows that Bayesian 
models provide useful interpretability and temporal flexibility. 
Complex patterns can be learned well by machine learning 
classifiers, in contrast with the importance of predictors 
emphasized by regression. Time-series techniques, furthermore, 
are well-suited for measuring gross trends. Finally, the ensemble 
models work well, especially for large datasets. This 
methodological diversity highlights the complementarity of 
these instruments, each bringing furtherance to our ability to 
forecast blood donations. 

Several potential predictors of blood donation behavior have 
been identified in previous studies, although level of agreement 
between studies is less consistent. Demographic variables such 
as male sex, younger individuals and higher levels of body 
weight are always found to be associated with higher 
frequencies of donations with some studies suggesting that 
women tend to donate more intensively [16], [17]. Specifically, 
Behavioral history is one of the strongest predictors of future 
engagement, in particular recency of donation and frequency of 
donations, where shorter periods between donations have been 
linked to sustained involvement. Health and lifestyle 
characteristics such as nonsmoking, nondrinking, physical 
activity, and greater hemoglobin levels all predict higher 
donation intensity. However, these are underexplored in 
machine learning studies [18]. Contextual factors, such as 
cultural practices or hospital need, also influence donation 
patterns, with variances stated across regions [12], [15]. 

III. MATERIALS AND METHODS 

Our methodology is based on the global architecture 
presented in Fig. 2, which results in a combined prediction, 𝑦 =
𝑓(𝑦1, 𝑦2), aimed at estimating the probability that a former 
donor will or will not donate blood at a given geographical 
location. This research proposes a strategic decision support 
framework applied to the blood supply chain, integrating the 
training of machine learning algorithms and the optimization 
[27] of their performance using various hyperparameter tuning 
techniques. We have data on blood donors collected during 
mobile campaigns organized in the interior of Morocco. Each 
blood drive center has mobile units that plan campaigns in 
remote areas to collect blood. Through this study, we aim to 
provide decision-makers with indicators based on a new 
combination of machine learning algorithms. The aim is to 
optimize the programming of mobile campaigns and avoid 
ineffective planning that fails to achieve set objectives. 

It is important to emphasize that the proposed hybridization 
strategy does not fall into the category of stacking, boosting, or 
classical ensemble learning. No meta-model is trained, and the 
models are not combined sequentially nor with fixed global 
weights. Instead, a dynamic combination function is introduced, 
allowing the relative influence of SVR and LGBM to vary 
according to the spatio-temporal context of the prediction. This 
design choice aims to better capture the dual nature of the 
problem: temporal regularities and nonlinear spatial 
heterogeneity. 

L et 𝑦𝑙,𝑡 denote the target variable representing the donor 

return intensity at location 𝑙 during time period 𝑡. In this study, 
𝑦𝑙,𝑡 is defined as the number (or normalized rate) of donors who 

return to donate blood at location 𝑙  within a predefined time 
window following a previous campaign. This variable is 
constructed by aggregating historical donation records at the 
spatio-temporal resolution relevant for mobile unit deployment 
planning. The prediction task therefore consists in estimating 
𝑦𝑙,𝑡, the expected donor return potential for a candidate location–

time pair (𝑙, 𝑡). 

 
Fig. 2. Architecture of the proposed framework-based machine learning 

models. 

A. Data Preprocessing 

Indeed, acquisition errors, whether of human or technical 
origin, can alter the quality of the dataset and introduce biases 
when training models. These errors can take the form of 
incomplete information, missing or aberrant values, or even 
parasitic noise generated during data collection. It is therefore 
essential to implement a rigorous data preprocessing strategy to 
transform raw data into reliable, usable data, a prerequisite for 
obtaining high-performance machine learning models [19]. 

In this study, we focus on three key components of 
preprocessing: data cleaning, variable transformation and 
dimensional reduction. These steps aim to make the most of the 
analytical capabilities of the algorithms used, while ensuring the 
quality and consistency of the input data. 

B. Features Selection 

The feature selection principle shown in Fig. 3 represents a 
key method for reducing the dimensionality of a data set. Data 
sets generally contain many redundant and less informative 
variables, which can impact the relevance and performance of 
predictive models [20]. Moreover, it's important to highlight the 
most informative and relevant features for machine learning 
models [21]. 

Firstly, this technique reduces the complexity of the data, 
and therefore the complexity of the model. Small data sets, 
limited to the essentials, enable the model to learn quickly, thus 
reducing processing time and the need for more complex 
computing resources. Secondly, it significantly reduces noise by 
excluding from the study variables that are insignificant or have 
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no real impact on the trend curve. This will contribute 
significantly to improving the quality of the dataset. Finally, 
based on its reduced data, the model will have a better chance of 
performing its trends and predicting phenomena to a degree 
close to reality [22]. 

 
Fig. 3. Features selection steps. 

C. Combined and Trained Model 

Our main objective is to develop a high-performance 
prediction model based on the combination of two machine 
learning algorithms widely proven in the field of predictive 
blood supply chain: SVR and LGBM (Algorithm 1, Table I). 
This hybrid approach aims to capitalize on the complementary 
strengths of these two models: 

TABLE I.  SUMMARY OF VARIABLES AND EXPLANATION 

Variable Explanation 

𝑥 𝑖1 Input value for SVR model 

𝑥 𝑖2 Input value for LGBM model 

𝑦𝑖1  Predicted value for SVR model 

𝑦𝑖2  Predicted value for LGBM model 

𝜎% Percentage of trained data 

1 − 𝜎% Percentage of tested data 

𝑒(𝑦𝑖𝑗 , 𝑦𝑖𝑗 ) Predicted error for model 𝑗 

𝑤𝑗 Weight for model 𝑗 

𝑊 𝑁𝑜𝑟𝑚𝑎𝑙 𝑉𝑒𝑐𝑡𝑜𝑟 𝑡𝑜 𝑡ℎ𝑒  𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛  

𝑓(𝑦1, 𝑦2
) Combined prediction function 

𝜀 Error margin 

𝑏 Intercept of Hyperplane from Origin 

𝐶,𝜁 Hyperparameter 

SVR, recognized for its ability to model non-linear 
relationships with good generalization, and LGBM, appreciated 
for its efficiency, speed of learning and robustness in the face of 
noisy or incomplete data [23], [24]. 

By integrating a series of relevant attributes (inputs) related 
to blood donors and the logistical context, our system merges 
the predictions of the two models through a weighted 
aggregation function, to produce a single final prediction, more 
reliable and robust than those obtained individually. The 
combined prediction aims to improve the accuracy of estimates 
of blood donor behavior, while enhancing decision-making in 
proactive supply chain management. 

Algorithm 1: Combined machine learning prediction 

algorithm 

1: Cleaning: Removal of duplicates, management of missing 

values. 

2: Encoding: Transformation of categorical variables. 

3: Standardization: Scaling of numerical variables. 

4: Feature Selection: Keep only the most relevant variables. 

5: Dataset: we choose 𝝈% train data with 𝟏 − 𝝈% test data. We 

also add the condition that the test and validation data must be the 

most recent. 

6: Model training: each model is trained separately. SVR model 

𝜽(𝒙) = 𝒚𝟏 and LGBM model 𝜽̈(𝒙) = 𝒚𝟐 

7: For i=1 to N 

           8: Predict the probability that a former donor 𝒙 will donate          

               blood in location 𝑳 or not. 

           9: Calculate the prediction error per model between     

               predicted 𝒚𝒊𝟏 ,𝒚𝒊𝟐   values and test values 𝒚̂𝒊𝟏 , 𝒚̂𝒊𝟐  

                   𝒆(𝒚𝒊𝟏 , 𝒚̂𝒊𝟏 ) = |𝒚𝒊𝟏 − 𝒚̂𝒊𝟏 |  𝒂𝒏𝒅  𝒆(𝒚𝒊𝟐 ,𝒚̂𝒊𝟐) = |𝒚𝒊𝟐 −

𝒚̂𝒊𝟐 | 

10: End For 

11: Generate the weight 𝒘𝟏 ,𝒘𝟐  for SVR and LGBM model based 

on their prediction error such as: 

 𝒘𝟏 =  
∑ 𝒆(𝒚𝒋𝟏,𝒚̂𝒋𝟏)𝒏

𝒋=𝟏

∑ 𝒆(𝒚𝒋𝟏,𝒚̂𝒋𝟏)𝒏
𝒋=𝟏 +∑ 𝒆(𝒚𝒋𝟐,𝒚̂𝒋𝟐)𝒏

𝒋=𝟏

             and 

 𝒘𝟐 =
∑ 𝒆(𝒚𝒋𝟐,𝒚̂𝒋𝟐 )𝒏

𝒋=𝟏

∑ 𝒆(𝒚𝒋𝟏,𝒚̂𝒋𝟏)𝒏
𝒋=𝟏

+∑ 𝒆(𝒚𝒋𝟐,𝒚̂𝒋𝟐 )𝒏
𝒋=𝟏

 

12: Calculate combined prediction 𝒇(𝒚𝟏 , 𝒚𝟐) = 𝒘𝟏𝒚𝟏 + 𝒘𝟐 𝒚𝟐 

13: Calculate MSE, MAE, R2 

14: Validate the combined prediction 

15: Generate decision KPI based prediction 

To guarantee the reliability and relevance of our model, we 
used a real dataset comprising approximately 15,000 
observations, each described by 20 initial explanatory variables. 
To simulate a realistic context and preserve temporal 
consistency, we ordered the data chronologically. Thus, the 20% 
most recent observations were reserved for the test and 
validation phases. This approach enables us to assess the model's 
ability to generalize to future data, which is crucial for predictive 
applications, such as blood supply chain management. 

SVR is an extension of the Support Vector Machine (SVM) 
algorithm, specifically adapted to regression tasks. It aims to 
find a function that minimizes the prediction error while 
maintaining a certain tolerance (called margin ε) to the training 
data. In other words, SVR constructs a "tube" around the 
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regression function, in which data points are considered well 
predicted if they remain within this margin [25]. 

The SVR process is based on a series of steps aimed at 
finding a regression function capable of predicting accurately 
while tolerating a certain margin of error. The fundamental idea 
is to penalize predictions only when they deviate beyond a 
predefined margin ε. This makes it possible to model data more 
flexibly and robustly, especially when it is noisy. Input data is 
transformed using a kernel function, which projects the data into 
a higher-dimensional space. This transformation makes it 
possible to use a linear model in this transformed space, even if 
the original data show non-linear relationships. This process is 
essential if SVR is to adapt to complex data structures. 

The model defines a “tolerance tube” around the regression 
function, delimited by the margin ε. Data points that fall within 
this tube are considered sufficiently close to the prediction and 
are therefore not penalized. On the other hand, points outside the 
tube are subject to a penalty proportional to their distance from 
the margin, thus controlling the impact of large errors. 

The core of the process consists in minimizing a loss 
function, which takes two elements into account: 

• On the one hand, the prediction error for points outside 
the margin ε, 

• Secondly, the complexity of the model, measured by the 
width of the tube or the norm of the coefficients in the 
case of a linear kernel. This dual objective guarantees a 
good compromise between predictive performance and 
generalization capability. 

The choice of kernel is a decisive step in the proper 
functioning of the SVR. Depending on the nature of the data, we 
can opt for a linear kernel (for simple relationships), polynomial 
kernel (for more complex relationships), or RBF (Radial Basis 
Function, or Gaussian kernel), which is the most commonly 
used, as it can model a wide variety of non-linear shapes. 

Mathematical model of SVR: 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑤,𝑏) =
1

2
‖𝑤‖2 + 𝐶 ∑(𝑦𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑦𝑖 − (𝑤𝑡𝑥𝑖 + 𝑏) ≤ 𝜁 

(𝑤𝑡𝑥𝑖 + 𝑏) − 𝑦𝑖  ≤ 𝜁 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜁 ≥ 0 

LGBM is an open-source machine learning framework 
based on decision trees. It implements an ensemble technique 
called gradient boosting, which involves combining several 
weak models (typically shallow trees) to form a powerful 
predictive model. 

BOOSTING is an esemplastic technique that consists of 
aggregating classifiers (models) developed sequentially on a 
training sample, with the individual weights corrected as they 
are learned. Classifiers are weighted according to their 
performance (Fig. 4). 

 
Fig. 4.  Diagram of leaf-wise tree expansion. 

D. Model Evaluation 

The search for a model whose empirical error is minimal 
over a given set of observations. However, minimizing this 
empirical error does not guarantee minimizing the model error 
over the entire data space. Indeed, in an overlearning situation, 
the model error will be underestimated [26]. However, it is this 
error - or, in other words, our ability to make predictions about 
things that are not known - that interests us. This chapter shows 
how we can set up an experimental framework that allows us to 
evaluate a model while avoiding the bias of overlearning. With 
this in mind, we will make a distinction between evaluating a 
model, which consists in determining its performance over the 
entire data space, and selecting it, which consists in choosing the 
best model from among several. 

In the case of a regression problem, the number of errors is 
not an appropriate criterion for assessing performance. On the 
one hand, because of numerical inaccuracies, it's tricky to tell 
from a true-value prediction whether it's correct or not. We 
attempt to evaluate our combination of machine learning models 
based on three metrics widely used in the field of artificial 
intelligence: MSE, MAE, R2. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

  

𝑤ℎ𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

IV. RESULTS 

A. Data 

The data used in our study are collected from 4 Moroccan 
blood collection centers with mobile blood collection units. 
Each center schedules its own campaign, with mobile units 
traveling to different areas to offer a service close to blood 
donors. 
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The problem is that the managers at the centers have no 
visibility of the points where former donors are most likely to 
return. The centers have a large amount of data covering the 
period 2019-2024, with almost 15,000 registrations. The data 
used consists of columns on donor ID, donor gender, donor age, 
date and time of each donation, location (x, y) of the mobile unit 
at the time of each donation, frequency of donation, time since 
last donation, whether the donor donated in the last campaign in 
October 2024, total quantity of blood donated. 

Data cleaning was carried out to prepare reliable data for the 
prediction model. Empty data were filled in with 0 and 
incomplete data were completed in consultation with the center 
responsible. In addition, profiling work was carried out, 
especially on the descriptive analytics part, during which 
dashboards and descriptive statistics, using business intelligence 
tools such as Power BI, were delivered to each collection 
center's decision support center, accessible via a web portal (Fig. 
5). 

 

 
Fig. 5. Descriptive analytics of blood donation. 

B. Results 

For the results, we plan to make predictions by zone to 
determine where the mobile blood collection unit will be able to 
move. The analysis will also be carried out by five-day time 
windows. In order not to overload the article with too many 
graphs, we have chosen to visualize four zones, which we 
assume to be representative of the cases a decision-maker would 
wish to analyze. 

We implement our models to compare the combined 
prediction with predictions using SVR and LGBM alone. We're 
using a powerful machine with over 64G RAM, 32 CPUs and 1 
H100 GPU, which has enabled us to cut learning times and 
reduce processing times. 

The results show that our framework for combining machine 
learning models performs better than the models alone. Fig. 6 
shows that for a time window of 5 days for the locality 1 located 
at coordinates (Long., Lat.): (-6.8524783, 33.8548111), the 
combined prediction is highly relevant. With almost a slight 
discrepancy between actual and predicted values. On the other 

hand, the other models are more or less far from the actual 
values. Moreover, Fig. 7 shows that R2 scores very well, with a 
maximum of 83% for locality 1 and for the day of 03/10/2024. 

TABLE II.  FORECASTING PERFORMANCE OF MACHINE LEARNING 

METHODS BY LOCALITY 

Models 
Locality 

1 

Locality 

2 

Locality 

3 

Locality 

4 

Combined Model - 

MAE 
33,36 15,2 17,01 29,12 

Combined Model - 

MSE 
25,12 39,12 14,12 23,26 

Combined Model - R2 81,00% 77,15% 80,45% 69,21% 

SVR - MAE 54,12 43,23 23,3 67,56 

SVR - MSE 78,11 45,43 89,21 88,32 

SVR - R2 55,32% 60,65% 68,43% 34,23% 

LGBM - MAE 44,78 88,98 78,77 90,59 

LGBM - MSE 70,34 91,234 89,221 114,24 

LGBM - R2 65,43% 70,12% 88,19% 93,23% 
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Fig. 6. Comparison of the predictions of the different models for the locality 

1 located at coordinates (Long., Lat.): (-6.8524783, 33.8548111). 

 
Fig. 7. Original data vs. Predicted data and R2 score for the locality 1 

located at coordinates (Long., Lat.): (-6.8524783, 33.8548111). 

We find almost the same result for locality 2 located at 
coordinates (Long., Lat): (-7.9432221, 31.3594816) as for 
locality 1, for a time period from 10/09/2024 to 14/09/2024. Fig. 
8 also shows that the combined prediction best represents reality 
and reflects the actual data. Whereas SVR and LGBM 
performed alone for locality 2 and for the same time period do 
not show relevant results. 

Fig. 9 also shows that a comparison with R2 shows that the 
coefficient displays a maximum percentage of 79% with values 
adjusted between actual data and blood donor prediction data. 

 
Fig. 8. Comparison of the predictions of the different models for the locality 

2 located at coordinates (Long., Lat): (-7.9432221, 31.3594816). 

 
Fig. 9. Original data vs. Predicted data and R2 score for the locality 2 

located at coordinates (Long., Lat.): (-7.9432221, 31.3594816). 

• A more detailed comparison of the data by locality shows 
the effectiveness of combining the two models to 
produce a single prediction. In Table II, we have shown 
each model in relation to the three performance 
evaluation metrics MSE, MAE and R2 for 4 former 
localities where mobile units collected blood, and which 
we selected at random. The results show that the 
combined prediction always achieves significant and 
interesting scores compared with the predictions of the 
models alone. 

• Table III and Fig. 10 also show that on the basis of a 
global prediction without taking blood collection 
locations into account, the combined prediction always 
has the best scores on the three performance evaluation 
metrics MSE, MAE and R2. 

TABLE III.  COMPARISON OF MODEL PERFORMANCE 

Models MAE MSE R2 

Combined Model 33,36 32,22 81,16% 

SVR 73,00 87,12 44,92% 

LGBM 65,43 88,98 67,20% 

 
Fig. 10. Comparison of model performance. 

V. DISCUSSION 

When it comes to deciding on the location with the highest 
blood donor return rate, analytics is the ultimate solution to help 
decision-makers choose the best location for their mobile blood 
collection units. To this end, we have focused on prediction by 
machine learning models widely used in the blood supply chain, 
namely SVR and LGBM. We didn't just apply them as they are, 
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but introduced a new concept of combination between the two 
models through a combined prediction function. 

The strength of combining SVR and LGBM lies in the 
complexity of the resulting prediction. Predicting whether or not 
a former donor can give blood in future mobilizations. In other 
words, time and space. Gradient boosting has an excellent 
reputation in the data scientists' community, as it easily adapts 
to the complexity of inputs and outputs. For its part, SVR is also 
a good machine learning model that adapts to fluctuating data 
and outliers, enabling better results to be achieved when making 
predictions based on the time dimension. 

The results we obtained from this combination, shown above 
in Table III, demonstrate the increasing performance of this 
combination technique on the weight of each model. At this 
stage, managers choosing either the campaign date or the 
campaign location can see performance indicators on whether or 
not a blood donor will return for the new blood drive. This will 
enable them to save resources in terms of personnel and means, 
by targeting only those localities with a higher recidivism rate. 
This predictive module based on the combination of SVR and 
LGBM can be integrated into a portal or management system for 
blood drives, giving them a futuristic dimension. 

Although it is not possible to build a forecasting system for 
blood donor trends that perfectly anticipates changes in blood 
collection behavior, we use the results of the forecasting model 
to help decision-makers make judgments about the feasibility of 
the blood collection campaign. In this study, each forecasting 
model has a reference value. In the combined model fitting 
results, the maximum R2 value reached 81.16% for the whole 
dataset, and a maximum value of 83% for locality 1. In addition, 
the MAE and MSE showed values of 33.36 and 32.22 
respectively, demonstrating a high level of prediction and 
robustness. The model showed a stable and excellent trend for 
this type of data, compared with the SVR and LGBM performed 
at each location. 

VI. CONCLUSION AND RECOMMENDATIONS 

In summary, this study proposes a machine learning–based 
approach to identify locations with the highest blood donor 
return rates. We developed a hybrid prediction framework 
capable of capturing both the temporal and spatial dimensions 
of donor behavior by combining two widely used models in 
blood supply chain analytics: Support Vector Regression (SVR) 
and Light Gradient Boosting Machine (LGBM). This 
hybridization leverages LGBM’s ability to model complex 
nonlinear relationships and SVR’s robustness to data variability 
and outliers. The results obtained, particularly an R² of up to 
83% for certain localities, together with low MAE (33.36) and 
MSE (32.22) values, demonstrate the relevance, robustness, and 
stability of the proposed model. 

By accurately identifying regions with high donor return 
potential, the proposed approach helps decision-makers at blood 
collection centers optimize logistical resources and improve 
campaign planning. When integrated into a decision-support 
portal or management information system, this predictive 
framework can effectively guide strategic choices regarding the 
deployment of mobile blood collection units. Although the 
proposed tool cannot guarantee perfect forecasting accuracy, it 

constitutes a valuable medium- to long-term strategic lever for 
improving blood supply chain management. 

Despite these encouraging results, several limitations should 
be acknowledged. First, the dataset is restricted to a single blood 
collection center in Morocco, which may limit the 
generalizability of the findings to other geographic or 
organizational contexts. Second, the temporal scope of the data 
may not fully capture long-term structural changes in donor 
behavior. Third, the proposed model relies on historical patterns 
and therefore cannot fully anticipate sudden behavioral shifts or 
epidemiological disruptions. Future work will aim to validate 
the approach on multi-center and multi-country datasets, 
integrate real-time and socio-demographic variables, and further 
refine the proposed dynamic weighting mechanism. 
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