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Abstract—Real-time recognition of loose fresh produce is a
key requirement for intelligent retail weighing systems, enabling
automated replacement of or assistance to manual PLU-based
item selection. However, the deployment performance of recent
YOLO architectures on embedded edge platforms such as the
NVIDIA Jetson Xavier NX remains insufficiently studied in
practical retail scenarios. This study aims to benchmark recent
YOLO architectures for real-time fresh produce recognition
on embedded edge devices. This work presents an Edge–AI
retail weighing system that recognizes Malaysian fresh produce
using YOLOv9, YOLOv10, and YOLOv11 models on the Jetson
Xavier NX. A domain-specific dataset of 8 450 images across 26
classes was created by merging ImageNet and Roboflow sources
and applying quality filtering and unified preprocessing. Each
model was fine-tuned and optimized with TensorRT at FP16
and INT8 precision. Transfer learning improved accuracy across
all models; YOLOv11-Large achieved the highest mAP@0.5 of
≈ 0.897 but at a reduced frame rate, while the mid-sized
YOLOv10-M delivered an mAP@0.5 of ≈ 0.890 with near-real-
time performance inference. Inference analysis shows that pre-
and post-processing add only a few milliseconds per frame yet
become proportionally significant as inference speeds increase;
YOLOv11’s Non-Maximum Suppression (NMS) head introduces
notable latency relative to YOLOv10’s NMS-free design. Quan-
tized YOLOv10-M and YOLOv10-N sustain ≈ 14–19FPS ,
offering the best balance between accuracy and speed. Qualitative
tests on market footage confirm robust detection, indicating that
these optimized models enable accurate, low-latency produce
identification for intelligent retail weighing.
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ligence (Edge AI); transfer learning; YOLO algorithm; nvidia
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I. INTRODUCTION

In a grocery store, weight-based pricing is a common way
the grocery store charges the customer. Selling the prepack-
aged goods might be a solution to simplify the process by
eliminating the need for in-store weighing at the time of
purchase. Loose produce still plays an important role because
of the flexibility in purchase quantities and the potential
to reduce household food waste [1]. This further highlights
that the weighing scales play a critical role in modern fresh
produce retail environments. However, the traditional weighing
scales required the user to control the PLU(Price Look-Up)
subsystem in the software to retrieve the unit price of the
item. This will require the staff to memorize the codes and
manually control the machine to complete the checkout task.
Consequently, it will cause inefficiency during peak hours.
These challenges indicate that there is a need for a more
intelligent and automated solution by utilizing computer vision
and artificial intelligence [2]. To be practical in retail checkout

environments, such a solution must operate in real time,
without reliance on external connectivity, and with minimal
computational overhead.

Edge AI has recently emerged as a key paradigm for high-
performance inference in real-time systems. Unlike cloud-
based AI inference, edge AI operates locally on the device,
thus eliminating the dependency on continuous internet con-
nectivity and minimizing the latency introduced by network
transmission [3]. In the context of real-time fresh produce
detection, Edge AI plays an important role in maximizing the
user experience because it allows rapid inference speed and
eliminates the latency that causes a laggy experience by the
user [4]. By combining the Edge AI platform with a real-time
object detection algorithm, it is possible to come out with a
robust retail weighing solution.

Among object detection frameworks, the YOLO (You Only
Look Once) object detection model is widely recognized
for real-time applications due to its single-stage architecture,
which performs object localization and classification simul-
taneously, unlike two-stage detectors [5]. YOLO algorithms
have undergone continuous architecture improvements, lead-
ing to a succession of improved versions such as YOLOv1
until YOLOv11. These continuous architecture improvements
impact accuracy, training time, and inference performance [6].
Consequently, YOLO is a suitable candidate for deployment
in intelligent retail scales to detect fresh produce. However,
within this context, there is limited evaluation of the inference
speed and detection accuracy for the different versions of
YOLO algorithms, particularly when optimized using Ten-
sorRT frameworks.

However, when it comes to detecting agricultural produce
in Malaysian grocery-stores, applying transfer learning to a
YOLO model is essential. The pretrained YOLO algorithm is
based on a general dataset such as the COCO dataset. This
means that a domain-specific dataset is necessary to train
a YOLO model that fits the context of agricultural produce
[7]. The well-known general datasets, such as COCO and
ImageNet, offer broad object coverage, but are not focused
on representing agricultural produce found in Malaysian re-
tail markets. Previous research indicates that domain-specific
datasets generally outperform generic ones due to their tailored
relevance and coverage [8]. The data set gap here causes
uncertainty on how effectively YOLO models perform in
recognizing fresh produce with high intra-class variation, such
as differences in size, shape, or color of the same item,
and high inter-class similarity characteristics, such as similar-
looking fruits that general-purpose datasets fail to capture.

When deploying deep learning models on embedded edge
devices such as the NVIDIA Jetson series, achieving real-time
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inference is often constrained by limited computational and
memory resources. To overcome these limitations, TensorRT
provides a hardware-aware optimization framework that re-
structures neural network graphs through layer fusion, kernel
auto-tuning, and precision calibration from FP32 to FP16 or
INT8, significantly improving throughput while maintaining
near-lossless accuracy [9]. By leveraging TensorRT, models
can exploit the full potential of Jetson’s CUDA and Tensor
cores, reducing latency and power consumption—both critical
for real-time retail weighing applications.

Despite these advantages, comparative analyses of
TensorRT-optimized YOLOv9, YOLOv10, and YOLOv11
models for multi-class retail produce detection under edge con-
straints remain scarce. Most existing studies benchmark earlier
YOLO architectures or focus on general object classification
tasks rather than fine-grained produce detection on embedded
platforms. This study addresses this gap by evaluating the
inference speed and detection accuracy of TensorRT-optimized
YOLO models on the Jetson Xavier NX for real-time produce
recognition.

This study addresses these challenges by developing a
prototype smart retail system based on the NVIDIA Jetson
Xavier NX platform and integrating YOLOv11, YOLOv10,
and YOLOv9 models to assess inference speed and detection
accuracy for agricultural produce commonly sold in Malaysia.

This work aims to advance the field of object detec-
tion by presenting a comprehensive evaluation of state-of-
the-art YOLO models—namely YOLOv9, YOLOv10, and
YOLOv11—in the context of real-time fresh-produce recog-
nition for smart retail systems. The study contributes in the
following aspects:

• Identifies architectural design principles for
low-latency edge-based object detection by
analysing the end-to-end inference behaviour of
YOLOv9–YOLOv11 on an embedded GPU platform.

• Quantifies the practical impact of NMS-based versus
NMS-free detection heads in retail inference pipelines,
demonstrating how post-processing overhead increas-
ingly dominates latency in real-time edge deployment.

• Establishes a reproducible benchmarking framework
for evaluating modern YOLO architectures under real-
istic retail constraints, including unified preprocessing,
transfer learning, and TensorRT-based optimization on
the NVIDIA Jetson Xavier NX.

• Derives precision–latency trade-offs across model
scales and quantization modes (FP16 and INT8), pro-
viding deployment-level guidance for selecting suit-
able configurations under strict real-time constraints.

• Delivers a validated reference configuration for intel-
ligent retail weighing systems, achieving near real-
time performance with high detection accuracy, and
demonstrating transferability beyond a single dataset
or deployment scenario.

The remainder of this paper is organized as follows.
Section II surveys related work on edge AI for computer vision
and existing produce-recognition approaches, highlighting the
need for efficient deployment on embedded devices. Section III

details the proposed methodology, including the system archi-
tecture, domain-specific dataset construction, transfer learning
strategies, and TensorRT-based optimisation of YOLO models.
Section IV presents and discusses the experimental results,
analysing detection accuracy, inference speed, precision–recall
characteristics, and the impact of model size and quantisation
across YOLOv9, YOLOv10, and YOLOv11. Finally, Section V
offers the conclusion, summarising key findings, discussing
remaining challenges and limitations, and suggesting directions
for future research.

II. RELATED WORKS

A. Edge AI and Deep Learning-Based Computer Vision

The concept of Edge AI has shifted the paradigm of
artificial intelligence deployment, especially in real-time ap-
plications. The Edge AI approach aims to bring computation
closer to the data source, such as video streams, thereby
eliminating network latency that often occurs in cloud-based
processing [3].

Recent studies have demonstrated the feasibility and effi-
ciency of deploying deep learning models directly on embed-
ded hardware for real-time inference. A real-time myocardial
infarction monitoring system using SSD-Inception V2 and
MobileNet V2 on the NVIDIA Jetson Nano achieved a mean
average precision (mAP) of 76.4 % under low-power operation,
setting a benchmark for energy-efficient edge analytics [10].
The YOLOSR architecture combined a Super-Resolution (SR)
branch with YOLOv8-small, improving detection accuracy
by 10.2 % without added latency (101 ms per frame) on a
Jetson Nano edge platform [11]. Complementary works have
also validated the effectiveness of Edge AI across domains,
including FPGA-based YOLO implementations for Advanced
Driver Assistance Systems (ADAS) and surveillance applica-
tions [12], and real-time apple detection on embedded GPUs
achieving 83.6 % mAP at 30 FPS [13], demonstrating that
optimized architectures and hardware accelerators enable near-
cloud accuracy on compact edge systems.

While Edge AI has been widely applied in healthcare,
surveillance, and autonomous navigation, fewer studies have
addressed its use in retail environments. There is limited
attention to retail applications, particularly in detecting mul-
ticlass grocery fresh produce in Malaysia. Building on prior
successes, this study applies Edge AI for real-time produce
detection integrated with a retail weighing system as a smart
retail solution.

B. Edge AI and Platform-Specific Optimization

Deploying deep learning models on edge devices often
demands hardware-aware optimization to achieve real-time
inference under limited computational and memory resources.
Among the most widely used frameworks, NVIDIA TensorRT
provides significant acceleration by performing layer fusion,
precision calibration (FP32�FP16 or INT8 quantization), and
kernel auto-tuning tailored for GPU-based embedded platforms
such as the Jetson Nano, TX2, and Xavier. These optimizations
restructure neural network graphs and dynamically allocate
tensor memory to reduce latency and improve throughput,
enabling efficient deployment of convolutional neural networks
in time-critical applications.
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Recent studies have demonstrated the tangible benefits
of such optimization pipelines across various domains. For
instance, a TensorRT-optimized driver drowsiness classifica-
tion system—based on MobileNetV1 rather than a detection
architecture—achieved a 79.27% increase in throughput (from
141.78 FPS to 683.92 FPS) on Jetson Nano while maintain-
ing 98.19% accuracy, highlighting TensorRT’s capability to
deliver near-lossless precision under quantized execution for
lightweight classification tasks [14]. However, this exception-
ally high throughput does not represent object detection work-
loads such as YOLO, which involve additional computation for
multi-scale feature heads and non-maximum suppression. Sim-
ilarly, a YOLOv5-based tennis-ball detection model combined
GhostNet, BiFPN, and TensorRT to enhance both detection
accuracy (mAP 94%) and inference efficiency through layer
fusion and memory optimization on RTX hardware [15]. It
is noteworthy, however, that although TensorRT is fundamen-
tally designed to accelerate inference on embedded and edge
AI platforms such as the NVIDIA Jetson series, this study
conducted all experiments on a high-end desktop GPU (RTX
3060) under a Windows environment rather than on an edge
device. Consequently, the reported throughput improvements
primarily validate the computational acceleration of TensorRT
on general-purpose GPUs, but do not assess its performance
or feasibility under the resource and power constraints typical
of real-time edge deployments. This distinction underscores a
limitation in edge-specific validation, which remains essential
for evaluating true on-device efficiency and deployability in
embedded AI contexts.

In the agricultural domain, the PcMNet model integrated
YOLOv8 with partial convolution and TensorRT acceleration,
achieving 92 FPS on Jetson-based edge devices while reducing
FLOPs by 37.8% and parameters by 53.3%, thereby vali-
dating its suitability for real-time fruit detection in orchard
environments [16]. In contrast, the strawberry segmentation
model based on Mask R-CNN [17] focused primarily on
high-precision semantic segmentation under occlusion but was
evaluated on desktop GPUs without edge-oriented deployment.
The peanut leaf disease detection study [18] employed a
classification-based approach using MobileNetV3, Efficient-
Net, and ShuffleNet models optimized via TensorRT for Jetson
devices. Unlike object detection frameworks, this work focused
solely on image-level disease classification without bounding-
box localization.

Collectively, these works underscore the importance of
platform-specific optimization for achieving real-time, power-
efficient inference on edge AI systems. However, the majority
of existing research has primarily focused on model-level
architectural enhancements—such as backbone redesigns, at-
tention modules, or lightweight feature extractors—rather than
conducting comprehensive TensorRT benchmarking across re-
cent YOLO variants. Furthermore, comparative evaluations
of quantized (FP16/INT8) detection pipelines on embedded
NVIDIA platforms remain limited, particularly in domain-
specific applications such as agricultural produce recognition
and smart retail environments, where the trade-off between
detection accuracy and latency is critical. Addressing this gap,
the present study systematically investigates the deployment
performance of TensorRT-optimized YOLOv9, YOLOv10, and
YOLOv11 models on the Jetson Xavier NX, providing an in-
depth analysis of their precision–speed trade-offs and validat-

ing their suitability for real-time edge AI inference.

C. YOLO Evolution and Comparative Performance

Since the introduction of the YOLO algorithm in 2015,
the single-stage detection paradigm has eliminated the com-
putational overhead associated with region proposal pipelines
used in two-stage detectors such as Faster R-CNN. By skip-
ping the region proposal step, YOLO has undergone several
massive improvements over successive iterations. The latest
breakthroughs are represented in YOLOv9, YOLOv10, and
YOLOv11 [6]. The advancements in YOLOv9 introduced
GELAN and PGI, which reduce parameters yet achieve higher
accuracy. In YOLOv10, the traditional Non-Maximum Sup-
pression (NMS) was eliminated and replaced with Consistent
Dual Assignments (CDA), meaning the algorithm no longer
produces multiple overlapping bounding boxes. YOLOv11
introduces further innovation with modules such as C3k2 and
C2PSA, which help detect smaller objects more effectively
[19]. These distinct innovations create an opportunity to ex-
plore their impact in domain-specific scenarios, particularly in
real-world and practical use cases.

There are many studies being done to compare various
versions of YOLO algorithms in agricultural domains. A study
compared YOLOv9–v12 for cattle precision farming [20],
where YOLOv12 achieved the highest mAP of 98.3% but
with slower inference speed of 36.6 FPS, while YOLOv11
maintained nearly the same accuracy at 97.8% but ran faster
at 48 FPS. YOLOv10 also reached 97.1% mAP with 44 FPS,
and YOLOv9 was the weakest with 96.2% mAP and 37
FPS. Another study on banana bunch detection [21] across
YOLOv1–YOLOv12 reported that YOLOv12n achieved 93%
AP50 with a latency of only 5.1 ms, making it well-suited
for mobile deployment, while YOLOv11n also showed com-
petitive efficiency under constrained devices. However, not
all studies concluded that the higher the version, the higher
the mAP values. In multi-class fruit ripeness detection [22] ,
the YOLOv6 outperformed YOLOv7 and SSD by achieving
99.5% mAP together with an inference speed of 85.2 FPS,
showing that earlier versions can still dominate when the
class variation is limited. Weed detection study [23] provided
further evidence of trade-offs: YOLOv9 achieved the highest
mAP@0.5 of 93.5% across multiple species, while YOLOv11
was the fastest with inference time of 13.5 ms, making it more
suitable for real-time robotic field deployment. The anchor-
based YOLOcF derivative [24] , developed on YOLOv5, also
challenged mainstream versions by surpassing YOLOv10n and
YOLOv11n in accuracy, showing up to 0.8–1.3% higher mAP,
and achieving a record inference speed of 323 FPS, although
it remained 1.4% lower than YOLOv9t in overall precision.

Despite many comparative studies being conducted in
agricultural domains, there remains a gap in benchmarking
YOLO algorithms for detecting loose produce commonly sold
in grocery store. In Malaysia, this involves a wide variety of
classes and requires a domain-specific dataset that reflects local
produce characteristics rather than relying on generic datasets
like COCO. This study therefore aims to bridge the gap by
conducting a comparative analysis of YOLOv9, YOLOv10,
and YOLOv11 tailored to Malaysian retail produce, while
also evaluating the accuracy and latency of real-time inference
under edge computing constraints.
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III. METHODOLOGY

A. System Architecture

As shown in Fig. 1, the entire system is implemented based
on a three-tier structure, which consists of the Edge Layer,
Fog Layer, and Cloud Layer. This design follows a 3-tier
architecture, where each layer handles specific responsibilities
to ensure efficiency and real-time performance.

At the Edge Layer, a Raspberry Pi is used to prototype
the regular weighing scale by connecting the HX711 amplifier
board with the load cell. The weight value stream is then
stabilized using an average buffer algorithm to reduce noise
and ensure stable readings. The NVIDIA Jetson Xavier NX
is integrated with a camera, and the YOLO inference source
code is deployed and further customized to integrate with
MQTT messaging capability, enabling the detection results
to be streamed in JSON format. These JSON messages are
published to the MQTT broker.

On the customer side. The Flutter-based kiosk application
subscribes to these MQTT messages and parses the JSON
data. The app uses asynchronous programming to handle con-
currency smoothly when frequent produce or weight changes
occur. Within the kiosk, a local SQLite database is queried
to retrieve the unit price of the detected produce, which is
then mapped against the YOLO result and weight reading
to compute the final total. The recognized produce, weight,
and computed price are displayed on the Android tablet, and
once confirmed by the customer, a QR code is generated for
checkout.

Fig. 1. Three-tier system architecture consisting of Edge, Fog, and Cloud
layers.

At the Fog Layer, the system acts as the bridge between
the edge devices and the cloud. A Python Flask service with

REST API is used to receive both detection results and trans-
action data, providing a simple way to buffer and synchronize
information before pushing it to the central database. To cope
with the dynamic pricing of fresh produce, this layer also
allows administrators to perform CRUD operations such as
updating the produce catalog, adjusting unit prices, or editing
nutritional details. Once the kiosk tablet has internet access,
it automatically syncs its local records with the fog server,
ensuring that both price changes and transaction logs remain
consistent across all connected devices. Fig. 2 illustrates the
overall architecture of the proposed Edge-AI retail weighing
system, including image acquisition, object detection, and
inference execution on the embedded device.

Fig. 2. Prototype setup of the smart retail weighing scale with raspberry Pi,
jetson xavier NX, and flutter-based kiosk.

B. Data Acquisition

Data acquisition forms the cornerstone of this study, as
it prepares the dataset for domain-specific modeling aimed at
detecting commonly sold loose produce in Malaysian retail
environments. This process seeks to overcome the limitations
of non-contextual generic datasets by drawing and filtering rel-
evant data from ImageNet and Roboflow. While the ImageNet
dataset provides extensive image-class coverage, particularly
for classification tasks, its object-detection annotations remain
limited in quantity. Hence, the Roboflow dataset is utilized
to enrich the overall corpus by increasing the number of
annotated samples and enhancing the contextual diversity of
the data. The overall data acquisition process is shown in Fig.
3.

ImageNet is organized according to the WordNet lex-
ical hierarchy, a semantic network in which each synset
(synonym set) represents a distinct concept. Within this
hierarchy, this structure allows direct mapping between
linguistic concepts and their corresponding visual rep-
resentations. In this study, synsets relevant to the tar-
geted 26 agricultural produce classes were retrieved from
the ImageNet21K (Winter 2021 Release) repository by
replacing the synset id in the URL with the pattern
of https://image-net.org/data/winter21 whole/SYNSET ID.tar.
Each class identifier follows the WordNet ID (WNID) conven-
tion (e.g., n07756951 for tomato). In this study, the classname
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is retrieved using Python and the Natural Language Toolkit
(NLTK) interface to WordNet, because WNIDs were program-
matically mapped to their lexical names and definitions as
illustrated in the Listing 1.

All ImageNet annotations, originally in Pascal VOC XML
format, were converted into YOLO-compatible bounding-box
files (cx, cy, w, h) using a Python-based conversion pipeline.
Each conversion was visually inspected through overlay
validation to ensure proper localization accuracy. During
dataset inspection, it was observed that not every retrieved
sample was relevant to the intended classes. Therefore,
a second-stage quality filtering process was introduced
using a ResNet-50 image-classification model pre-trained on
ImageNet. The model operated as a fixed feature extractor,
computing cosine similarity between each image embedding
and a curated exemplar set to assess relevance. Samples
scoring below a similarity threshold of 0.8 were discarded.
As illustrated in Fig. 4, non-relevant ImageNet samples were
identified and removed through a classification-based quality
filtering process to improve dataset relevance for produce
recognition. The resulting refined subset was then saved into
directories named by class to facilitate subsequent merging
with the Roboflow dataset.

Algorithm 1 Conversion of WordNet ID (WNID) to Synset
Information
Require: WNID string (e.g., “n07756951”)
Ensure: Synset name and definition corresponding to the given

WNID
1: Import nltk and wordnet modules
2: Download WordNet corpus if not already available
3: function WNID TO SYNSET(wnid)
4: offset ← integer value of substring of wnid starting from

index 2
5: try: synset← WordNet.synset from pos and offset(‘n’, off-

set)
6: return (synset.name(), synset.definition())
7: except: return (None, “Error”)
8: end function

To collect the relevant object-detection datasets from
Roboflow, produce-specific keywords such as “apple,” “ba-
nana,” and “dragon fruit” were used to perform targeted
searches on the Roboflow Universe platform. The search
results returned a list of publicly available projects, from
which suitable datasets were selected for download. By default,
Roboflow datasets are distributed in pre-split form (train,
validation, and test). For preprocessing, these splits were first
merged into a single dataset to simplify later integration
with ImageNet good, where a new unified split would be
generated after merging. All images were standardized to a
resolution of 640×640. Manual inspection was then performed
to ensure data quality and class consistency. Certain datasets
included condition-based subclasses such as “rotten fruit” or
“healthy fruit,” originally intended to distinguish fruit states.
In this study, such subclasses were consolidated into a single
class only when favorable for the retail detection use case;
otherwise, they were excluded from the final dataset. Roboflow
annotations were verified for conformity to YOLO standards.
It is found that some files containing segmentation polygons or

multiple label regions in which decided to be removed using
Python script.

Fig. 3. Workflow of ImageNet and roboflow data preprocessing and unified
post-processing to generate the final hybrid dataset for YOLO training.

After both streams were independently processed, they
were merged through a unified post-processing pipeline de-
signed to ensure dataset integrity and compatibility. Empty
or mismatched label files were automatically identified and
removed through filename mapping, while remaining im-
age–label pairs were verified for one-to-one correspondence.
Filenames were then standardized via sequential numbering,
and directory hierarchies were normalized for uniform in-
gestion by the YOLO training engine. The resulting hybrid
dataset comprised approximately 6 000 verified image sam-
ples, evenly distributed across 26 agricultural produce classes.
Each sample adhered to a consistent annotation format and
naming convention, enabling reproducible evaluation across
YOLOv9, YOLOv10, and YOLOv11 variants. This corpus
unifies ImageNet’s lexical richness with Roboflow’s contex-
tual realism, forming a balanced, domain-specific dataset for
training and subsequent performance analysis on the NVIDIA
Jetson Xavier NX edge platform.

C. Model Training

The model training phase aimed to fine-tune state-of-the-
art YOLO architectures for accurate and efficient agricul-
tural produce detection under edge-deployment conditions.
Training was carried out using the custom hybrid dataset
(8450 images in 26 classes) described in Section VI. To
ensure both reproducibility and computational efficiency, all
experiments were executed on an NVIDIA RTX 3090 GPU
(24 GB GDDR6X, 3840 CUDA cores) using the PyTorch-
based Ultralytics YOLO framework. Each YOLO variant
(YOLOv9, YOLOv10, YOLOv11) was initialized using pre-
trained weights from the COCO dataset (80 classes). Trans-
fer learning was applied by freezing early backbone layers
during the initial epochs to preserve generic low-level feature

www.ijacsa.thesai.org 786 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

Fig. 4. Non-relevant ImageNet samples identified and removed through
classification-based quality filtering using a ResNet-50 model.

representations while allowing full fine-tuning of detection
heads. The classification head was modified to predict 26 target
classes (nc = 26), replacing COCO’s original output layer.

Optimizer selection was handled automatically by the
YOLO framework, which initially evaluated both AdamW
and SGD but converged on SGD with the parameters above.
Internally, YOLO applied parameter grouping: 167 weights
with no decay, 174 weights with 0.0005 decay, and 173
biases without decay—facilitating efficient convergence. Train-
ing logs confirmed stable loss reduction and consistent mAP
gains across epochs.

D. Model Benchmark

To evaluate model performance, three YOLO vari-
ants—YOLOv9, YOLOv10, and YOLOv11—were selected for
benchmarking. Each variant was tested across three model
sizes (S, M, and L), resulting in a total of nine configurations.
All models were exported using TensorRT to apply precision
quantization and runtime optimization tailored for edge AI
deployment. Although TensorRT supports execution on any
NVIDIA GPU, the optimized engines it generates are device-
specific, as calibration and kernel tuning depend on the under-
lying GPU architecture [25]. Therefore, to ensure consistent
accuracy and latency measurements that accurately reflect real
deployment conditions, both the creation of the TensorRT
engine and the inference benchmarks were performed directly
on the NVIDIA Jetson Xavier NX, which served as the target
edge device in this study. Each model was evaluated using a
standardized input resolution of 640×640 pixels, and accuracy
was quantified through mean Average Precision (mAP) across
26 produce classes. Baseline mAP values were obtained in
FP32 mode (without optimization and quantization), while the
TensorRT-optimized models were re-evaluated to discover the
potential variation in accuracy. Collectively, the mAP, latency,
and FPS metrics were analyzed to highlight the trade-off be-
tween detection accuracy and real-time inference performance
across all evaluated models.

Mean Average Precision (mAP) was computed at an
Intersection-over-Union threshold of 0.5 following the PAS-
CAL VOC standard (mAP@0.5). In addition to this widely

used metric, we also report the COCO-style mAP@[0.5:0.95]
and the F1 score to provide a comprehensive assessment of
detection accuracy. This combination of metrics captures both
localization and classification performance while balancing
interpretability and computational cost. Inference speed was
benchmarked by dividing the total time to process a fixed
set of test images by the number of samples, yielding the
average latency per image (ms/sample), and the reciprocal of
this latency gave the throughput in frames per second (FPS).
Reporting mAP@0.5, mAP@[0.5:0.95], F1 and FPS together
enables a direct analysis of the trade-off between detection
accuracy and real-time performance.

IV. RESULTS AND DISCUSSION

A. Training Result

The hybrid dataset consisting of 8450 annotated images
across 26 agricultural produce classes was divided into train-
ing (70%), validation (20%), and testing (10%) subsets, all
standardized to a resolution of 640 × 640 pixels. Each YOLO
model—v9, v10, and v11—was fine-tuned using transfer
learning from COCO-pretrained weights, ensuring that early
convolutional layers retained generic low-level representations
while the detection head adapted to domain-specific features.

Fig. 5. Correlation matrix of normalized bounding box parameters (x, y,
width, height) illustrating the distribution and relationships among

annotation variables.

The label correlogram in Fig. 5 indicated that most object
centers clustered around the image midpoint, corresponding
to the typical placement of fruits on weighing trays. The
width–height correlation revealed a narrow triangular distri-
bution, suggesting scale uniformity across the dataset.

Training curves in Fig. 8, Fig. 7 and Fig. 6, collectively
indicate that all YOLO variants achieved stable convergence
with steadily decreasing box, classification, and distribution fo-
cal losses across epochs. The training performance comparison
reveals a progressive improvement across YOLO generations.
YOLOv9-C achieved its optimal accuracy at epoch 94 with
a peak mAP@0.5:0.95 of 0.692, while YOLOv10-L required
a longer convergence period, reaching a similar score at
epoch 97 due to its deeper network complexity. In contrast,
YOLOv11-L attained the highest mAP@0.5:0.95 of 0.700
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at epoch 87, indicating faster and more stable optimization.
The reduced validation losses and earlier convergence suggest
that YOLOv11-L effectively balances learning stability and
generalization, outperforming the preceding versions under
identical training conditions.

Fig. 6. YOLOv11 training result.

Fig. 7. YOLOv10 training result.

Fig. 8. YOLOv9 training result.

The confusion matrices of YOLOv9, YOLOv10, and
YOLOv11 shown in Fig. 9, Fig. 10, Fig. 11, exhibit strong
diagonal dominance, indicating generally high per-class clas-
sification accuracy. However, the distribution and magnitude of
non-zero off-diagonal values reveal meaningful distinctions in
class-specific robustness and visual separability. The confusion
matrices reveal that YOLOv9-C produces the highest mis-
classification rate, with evident cross-class confusion among
visually similar fruits such as apple–tomato and guava–rose
apple, indicating weaker feature discrimination. In contrast,
YOLOv10 displays the cleanest diagonal with minimal off-
diagonal noise, reflecting stronger class separability and more
stable optimization. YOLOv11 achieves comparable accuracy
but introduces slight background leakage and minor confusion
in similar-colour categories, suggesting broader generalization
at a small precision cost. Overall, YOLOv10demonstrates
the most balanced and precise classification performance,
while Fig. 12 compares the PR characteristics of YOLOv9,
YOLOv10, and YOLOv11 families across model scales. Fig.
12 compares the PR characteristics of YOLOv9, YOLOv10,

and YOLOv11 families across model scales. All nine mod-
els exhibit strong detection capability, with mAP@0.5 val-
ues exceeding 0.85, reflecting robust precision–recall balance
across the dataset. The smooth blue PR curves indicate stable

Fig. 9. YOLOv11 confusion matrix.

Fig. 10. YOLOv10 confusion matrix.

Fig. 11. YOLOv9 confusion matrix.
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(a) YOLOv9T (b) YOLOv9M (c) YOLOv9C

(d) YOLOv10N (e) YOLOv10M (f) YOLOv10L

(g) YOLOv11N (h) YOLOv11M (i) YOLOv11L

Fig. 12. Precision–Recall (PR) curves for YOLOv9/10/11 models at different scales (Tiny/Nano, Medium, and Compact/Large). Each sub-figure illustrates the
trade-off between precision and recall across all classes, highlighting the relative stability and balance achieved by newer architectures.

confidence calibration, while the gray per-class traces re-
veal clear variation among object categories—showing that
not all classes perform uniformly and at least one class
remains challenging to detect. Among them, YOLOv11 vari-
ants display the most expansive PR envelopes, signifying
superior precision–recall trade-offs and inter-class consistency.
The YOLOv11L attains the highest mAP@0.5 of 0.897,
only slightly above YOLOv11N and YOLOv11M; notably,
YOLOv11 exhibits a consistent mAP increase with model size,
unlike YOLOv9 and YOLOv10, implying that its additional
parameters are effectively utilized for richer feature learning.
Nevertheless, the smaller YOLOv11 models maintain compa-
rable robustness to the larger variant, achieving near-identical
detection quality with substantially lower computational cost.
Overall, all models sustain commendable accuracy above the
0.8 mAP benchmark, with YOLOv11 offering the most bal-
anced and scalable performance for real-time edge deployment.

B. Model Performance

The performance evaluation across 26 distinct produce
classes as show in Table I demonstrated that model size is the
dominant factor influencing both performance magnitude and

consistency. As shown in Fig. 13, the Medium (M) and Large
(L) or Complex (C) configurations consistently achieved the
highest median mean Average Precision (mAP) scores across
all three YOLO versions (v9, v10, v11). These models also
exhibited the tightest interquartile ranges (IQR), indicating
superior robustness and consistency in their detection accuracy
across the diverse set of classes. Conversely, the smallest mod-
els (Tiny (T) for v9 and Nano (N) for v10/v11) demonstrated
significantly lower median mAP and the widest score distri-
butions. This suggests that while all three YOLO architectures
are comparable, the minimal capacity of the smallest models
leads to high performance variance and unreliable results on
this dataset.

A granular analysis of the per-class mAP scores revealed
a substantial degree of performance heterogeneity, ranging
from near-perfect detection to critical failure points. The
models achieved highly acceptable performance, exceeding
0.80 mAP, on visually distinct and easily segmentable classes.
For instance, Garlic registered an average per-class mAP of
0.888, indicating that the model accurately localized and
classified the object in 88.8% of the test cases when averaged
across the nine evaluated configurations. Carrot demonstrated
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TABLE I. PER-CLASS MAP ACROSS 26 CLASSES AND THREE YOLO
FAMILIES (VALUES SHOWN AS S/M/L)

ID Class YOLOv9 (T/M/C) YOLOv10 (N/M/L) YOLOv11 (N/M/L)

C1 apple 0.58/0.58/0.61 0.63/0.63/0.61 0.59/0.65/0.63
C2 banana 0.79/0.80/0.77 0.73/0.79/0.79 0.77/0.78/0.80
C3 broccoli 0.65/0.58/0.59 0.63/0.58/0.59 0.61/0.62/0.62
C4 calamansi 0.72/0.74/0.67 0.57/0.71/0.62 0.64/0.67/0.66
C5 carrot 0.85/0.89/0.90 0.87/0.90/0.90 0.85/0.88/0.90
C6 chili 0.56/0.57/0.55 0.55/0.58/0.59 0.55/0.58/0.58
C7 corn 0.58/0.59/0.60 0.55/0.60/0.59 0.54/0.61/0.62
C8 cucumber 0.70/0.74/0.71 0.68/0.73/0.75 0.66/0.73/0.78
C9 dragon

fruit
0.49/0.49/0.46 0.50/0.48/0.47 0.50/0.49/0.49

C10 durian 0.69/0.75/0.75 0.69/0.73/0.76 0.70/0.74/0.74
C11 garlic 0.87/0.90/0.90 0.88/0.89/0.89 0.88/0.89/0.89
C12 grape 0.32/0.32/0.31 0.27/0.35/0.32 0.30/0.34/0.33
C13 guava 0.65/0.69/0.70 0.68/0.68/0.69 0.69/0.70/0.70
C14 rose

apple
0.50/0.54/0.54 0.52/0.54/0.53 0.52/0.54/0.55

C15 okra 0.58/0.65/0.63 0.59/0.62/0.64 0.59/0.60/0.63
C16 mangosteen 0.49/0.45/0.46 0.47/0.47/0.46 0.48/0.46/0.46
C17 mango 0.69/0.76/0.78 0.71/0.75/0.77 0.73/0.78/0.76
C18 onion 0.66/0.68/0.69 0.67/0.68/0.64 0.70/0.69/0.67
C19 papaya 0.80/0.79/0.80 0.80/0.81/0.81 0.80/0.82/0.83
C20 pineapple 0.73/0.77/0.76 0.74/0.77/0.77 0.73/0.75/0.74
C21 potato 0.80/0.79/0.80 0.79/0.78/0.80 0.80/0.81/0.82
C22 rambutan 0.75/0.84/0.82 0.78/0.85/0.82 0.81/0.79/0.81
C23 snake

fruit
0.73/0.85/0.87 0.82/0.85/0.84 0.79/0.85/0.86

C24 starfruit 0.74/0.81/0.82 0.77/0.80/0.81 0.74/0.80/0.82
C25 tomato 0.77/0.80/0.78 0.78/0.77/0.79 0.74/0.80/0.79
C26 watermelon 0.70/0.72/0.73 0.69/0.73/0.72 0.68/0.74/0.72

similarly strong results, with a per-class mAP ≈ 0.882.
However, this success contrasts sharply with the challenges
posed by other items. The class Grape was identified as a
universal failure point, registering a critically low per-class
mAP ≈ 0.318 across all model configurations. This extreme
outlier—visually represented by the lowest whisker in every
box plot (Fig. 13)—indicates a fundamental difficulty that is
not mitigated by increasing model complexity or upgrading
the YOLO version. Other low-performing classes included
Manggis (per-class mAP ≈ 0.467) and Dragon Fruit (per-
class mAP ≈ 0.486).

Fig. 13. Distribution of Per-Class mAP scores across YOLO models and
sizes. YOLOv9 uses Tiny (T), Medium (M), and Compact (C) labels, while

YOLOv10 and YOLOv11 use Nano (N), Medium (M), and Large (L).

Fig. 14. Total inference time across YOLOv9, YOLOv10, and YOLOv11
models under different precision modes (pt, fp32, fp16, and int8). The

dashed red line indicates the global minimum total inference time. Image
resolution is fixed at 640×640.

C. Inference Speed Analysis

The inference–speed analysis based on the collected
data as shown in Table II reveals that pre–processing and
post–processing contribute little to overall latency: mean
pre-processing times stay between 4.13 and 4.89 ms, while
post-processing ranges from about 2.73 to 11.93ms . Mean
inference times, however, vary by more than an order of
magnitude. On NVIDIA Jetson, the YOLOv10–nano (N)
model converted to TensorRT and quantized to FP16 or INT8
delivers the fastest throughput, completing detection in roughly
14–15ms per image and achieving 18.0–18.9 frames per sec-
ond. By contrast, the unoptimized PyTorch large (L) models
require about 216 ms for inference and thus cannot meet
real-time requirements. TensorRT optimization reduces latency
dramatically; for example, converting the YOLOv10-L model
from PyTorch to TensorRT with FP16 shrinks inference time
from ≈ 216ms to about 49ms, and further to ≈ 28 ms with
INT8 quantization . These results show that model size and
numerical precision are the primary determinants of inference
speed, while the pipeline’s fixed overhead remains minor. As
illustrated in Fig. 14, precision reduction consistently lowers
total inference time across all YOLO generations evaluated,
with INT8 quantization yielding the global minimum latency.

A closer examination of post-processing reveals that
YOLOv11 exhibits consistently higher latency than YOLOv10,
especially in its Nano variants. This behaviour stems from
architectural differences: YOLOv11 employs a traditional De-
tect head that performs Non-Maximum Suppression (NMS) to
filter redundant bounding boxes, whereas YOLOv10 is NMS-
free due to its dual-assignment training strategy that inherently
mitigates duplicate detections. The additional NMS step in
YOLOv11 adds computational overhead during output decod-
ing, explaining why models like YOLOv11-N INT8 spend
nearly three times longer in post-processing compared with the
NMS-free YOLOv10 equivalents. Consequently, YOLOv10
maintains smoother end-to-end latency for real-time agricul-
tural produce detection.

D. Accuracy Analysis

Table III provides a comprehensive comparison of
YOLOv9–YOLOv11 models across Nano, Medium and Large
scales and four precision modes (native, FP32, FP16 and
INT8), summarising precision, recall, F1-score and mAP. The
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TABLE II. INFERENCE SPEED ACROSS CONFIGURATIONS AT INPUT 640× 640. TIMES IN MILLISECONDS (MS). BEST TOTAL LATENCY (LOWER IS
BETTER) AND BEST FPS (HIGHER IS BETTER) ARE BOLDED PER MODEL SIZE

Family Size Precision mean pre mean infer mean post total (mean) median FPS (mean) FPS (median)

YOLOv10
YOLOv10 L native 4.471 216.482 3.011 259.909 207.166 3.847 4.827
YOLOv10 L fp32 4.246 171.214 3.449 213.103 185.447 4.693 5.392
YOLOv10 L fp16 4.361 49.036 3.272 90.932 60.795 10.997 16.449
YOLOv10 L int8 4.227 27.663 3.214 68.423 38.935 14.615 25.684
YOLOv10 M native 4.249 116.936 2.900 154.087 117.947 6.490 8.478
YOLOv10 M fp32 4.293 89.927 3.298 131.295 102.701 7.616 9.737
YOLOv10 M fp16 4.212 31.324 3.268 72.470 42.643 13.799 23.450
YOLOv10 M int8 4.225 21.007 3.172 57.606 32.055 17.359 31.196
YOLOv10 N native 4.300 51.822 2.732 93.256 40.570 10.723 24.649
YOLOv10 N fp32 4.261 17.160 3.143 57.671 27.796 17.340 35.976
YOLOv10 N fp16 4.602 15.416 3.238 53.022 26.348 18.860 37.954
YOLOv10 N int8 4.559 14.304 3.169 55.403 25.351 18.049 39.446
YOLOv11
YOLOv11 L native 4.130 157.032 11.327 195.890 179.216 5.105 5.580
YOLOv11 L fp32 4.351 141.207 11.929 192.783 162.635 5.187 6.149
YOLOv11 L fp16 4.243 40.765 11.230 90.160 58.489 11.091 17.097
YOLOv11 L int8 4.291 26.506 4.817 59.563 38.623 16.789 25.891
YOLOv11 M native 4.268 122.071 11.329 172.209 146.175 5.807 6.841
YOLOv11 M fp32 4.482 112.014 11.565 152.633 130.541 6.552 7.660
YOLOv11 M fp16 4.187 31.702 11.250 70.367 49.260 14.211 20.300
YOLOv11 M int8 4.315 21.196 10.591 60.103 38.678 16.638 25.855
YOLOv11 N native 4.275 34.536 10.460 73.475 46.990 13.610 21.281
YOLOv11 N fp32 4.520 21.147 11.089 60.639 39.233 16.491 25.489
YOLOv11 N fp16 4.832 18.361 11.140 58.401 36.706 17.123 27.243
YOLOv11 N int8 4.890 16.109 11.201 56.130 35.009 17.816 28.564
YOLOv9
YOLOv9 C native 4.239 172.955 11.345 223.763 195.335 4.469 5.119
YOLOv9 C fp32 4.342 144.871 11.806 185.208 166.672 5.399 6.000
YOLOv9 C fp16 4.301 42.021 10.846 80.989 59.686 12.347 16.754
YOLOv9 C int8 4.206 26.214 10.596 64.149 43.787 15.589 22.838
YOLOv9 M native 4.268 159.408 11.193 204.774 156.395 4.883 6.394
YOLOv9 M fp32 4.432 120.861 11.794 161.623 143.076 6.187 6.989
YOLOv9 M fp16 4.209 40.107 10.635 78.265 57.794 12.777 17.303
YOLOv9 M int8 4.209 25.219 9.895 62.674 42.060 15.956 23.776
YOLOv9 T native 4.430 64.900 11.028 109.722 73.024 9.114 13.694
YOLOv9 T fp32 4.213 20.625 11.131 59.235 38.176 16.882 26.194
YOLOv9 T fp16 4.541 18.197 11.579 58.217 36.669 17.177 27.271
YOLOv9 T int8 4.527 18.409 11.071 57.562 36.737 17.372 27.220

accuracy evaluation across the YOLOv9–YOLOv11 families
reveals several notable trends. Among all tested configurations,
the YOLOv11-L model in PyTorch baseline achieves the high-
est performance with mAP@0.5 = 0.896 and an F1 = 0.86,
surpassing YOLOv10 and YOLOv9 counterparts and confirm-
ing YOLOv11’s architectural advantage. Within the YOLOv10
family, the medium (M) variant yields slightly better accuracy
(F1 ≈ 0.848) than both the large (0.845) and nano (0.837)
models, suggesting that accuracy saturates beyond a certain
parameter count and that mid-sized models strike the best
balance between complexity and learning stability. Precision-
mode comparison further indicates that half-precision (FP16)
inference is effectively lossless relative to FP32, with identical
F1 values around 0.842 across all variants. These results
affirm that FP16 maintains numerical fidelity while reducing
memory usage—a desirable property for embedded deploy-
ment. Conversely, INT8 quantisation introduces a moderate but
consistent performance degradation of about 3–4 percentage
points in F1. For example, YOLOv10-L drops from 0.845
(PyTorch) to 0.811 (INT8), and YOLOv10-M declines from

0.848 to 0.806, primarily due to reduced numerical precision
during activation and weight representation.

A deeper inspection of model sensitivity highlights that
smaller models exhibit superior robustness to INT8 quantisa-
tion. The YOLOv10-N variant shows only a 1.8 percentage-
point F1 loss (0.832� 0.814), whereas the large variant loses
more than 3 points. This observation aligns with quantisation
theory: lightweight architectures possess fewer convolutional
layers and a narrower dynamic range of activations, resulting
in lower quantisation error propagation. Larger networks, with
deeper hierarchies and wider feature channels, amplify round-
ing and clipping effects across multiple layers—explaining
their steeper accuracy decline when compressed to 8-bit pre-
cision. Empirically, INT8 impacts recall more strongly than
precision (e.g., YOLOv10-L recall 0.825 � 0.771, precision
0.865� 0.856), indicating that quantised models tend to miss
small or ambiguous detections rather than misclassify them.

Nonetheless, the overall degradation remains modest, and
FP16 retains nearly identical accuracy to FP32 while achieving
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TABLE III. COMPREHENSIVE COMPARISON OF YOLOV9–YOLOV11 UNDER TENSORRT PRECISION MODES (PT, FP32, FP16, INT8)

Family Size Precision Recall Precision F1 mAP@0.5:0.95 mAP@0.5

YOLOv10
YOLOv10 N native 0.813 0.863 0.837 0.668 0.873
YOLOv10 N fp32 0.808 0.859 0.833 0.654 0.865
YOLOv10 N fp16 0.807 0.858 0.832 0.654 0.865
YOLOv10 N int8 0.776 0.855 0.814 0.629 0.843
YOLOv10 M native 0.819 0.879 0.848 0.694 0.890
YOLOv10 M fp32 0.813 0.869 0.840 0.679 0.876
YOLOv10 M fp16 0.812 0.868 0.839 0.679 0.876
YOLOv10 M int8 0.778 0.835 0.806 0.640 0.837
YOLOv10 L native 0.825 0.865 0.845 0.692 0.878
YOLOv10 L fp32 0.815 0.871 0.842 0.678 0.875
YOLOv10 L fp16 0.815 0.870 0.842 0.678 0.875
YOLOv10 L int8 0.771 0.856 0.811 0.653 0.848
YOLOv11
YOLOv11 N native 0.823 0.868 0.845 0.671 0.879
YOLOv11 N fp32 0.804 0.867 0.835 0.651 0.865
YOLOv11 N fp16 0.805 0.868 0.835 0.651 0.865
YOLOv11 N int8 0.786 0.837 0.811 0.617 0.837
YOLOv11 M native 0.840 0.870 0.855 0.696 0.891
YOLOv11 M fp32 0.819 0.868 0.843 0.679 0.882
YOLOv11 M fp16 0.819 0.867 0.843 0.679 0.882
YOLOv11 M int8 0.774 0.870 0.819 0.638 0.843
YOLOv11 L native 0.844 0.877 0.860 0.699 0.896
YOLOv11 L fp32 0.849 0.849 0.849 0.680 0.883
YOLOv11 L fp16 0.849 0.849 0.849 0.680 0.883
YOLOv11 L int8 0.780 0.839 0.809 0.628 0.840
YOLOv9
YOLOv9 T native 0.820 0.858 0.839 0.671 0.879
YOLOv9 T fp32 0.807 0.850 0.828 0.655 0.867
YOLOv9 T fp16 0.808 0.850 0.828 0.655 0.867
YOLOv9 T int8 0.797 0.835 0.815 0.641 0.851
YOLOv9 M native 0.823 0.877 0.849 0.695 0.887
YOLOv9 M fp32 0.825 0.859 0.842 0.680 0.875
YOLOv9 M fp16 0.826 0.858 0.842 0.680 0.875
YOLOv9 M int8 0.768 0.846 0.805 0.631 0.832
YOLOv9 C native 0.831 0.873 0.852 0.692 0.885
YOLOv9 C fp32 0.835 0.853 0.844 0.674 0.872
YOLOv9 C fp16 0.836 0.854 0.845 0.674 0.872
YOLOv9 C int8 0.815 0.807 0.811 0.619 0.836

significantly faster inference. Therefore, for real-time agricul-
tural produce detection on resource-limited hardware, FP16-
based TensorRT models or Nano-INT8 variants offer the
best trade-off, balancing accuracy, efficiency, and deployment
feasibility.

E. Inference Speed and Accuracy Tradeoff

The mAP–latency plot zs shown in Fig. 15 clearly reveals a
Pareto frontier where only a handful of model–precision com-
binations achieve both high accuracy and real-time inference
speeds. At one end of the spectrum, the smallest Nano configu-
rations (e.g., YOLOv10-N FP16/FP32 and YOLOv11-N FP16)
produce mAP@0.5 values around 0.865 while completing the
full pre-processing, inference, and post-processing pipeline in
approximately 53–58 ms. Their INT8 counterparts reduce the
mean inference time by a few milliseconds but at the cost

of a small drop in recall and overall mAP, typically slipping
to ≈ 0.84. These Nano models form the left-most portion of
the Pareto curve and thus represent the optimal choice when
deploying to constrained edge devices that demand sub-60 ms
response times.

Moving up the frontier, the Medium FP16 configuration of
YOLOv11 stands out as a compelling compromise. It boosts
accuracy to ≈ 0.88 mAP@0.5 yet keeps total latency below
about 70 ms, only 15–20 ms slower than the Nano models but
delivering a notable increase in detection fidelity. By contrast,
the Large FP16/FP32 variants of YOLOv10 and YOLOv11
push accuracy marginally higher (to ≈ 0.896 mAP@0.5) but at
the cost of doubling the response time to 90–120 ms, pushing
them off the Pareto frontier and making them impractical
for real-time field use. In summary, the trade-off analysis
underscores that half-precision and medium-sized YOLOv11
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offer the best balance when accuracy is paramount, while
Nano FP16/INT8 models remain the top recommendation for
latency-critical deployments.

Fig. 15. Trade-off between mean inference time and detection accuracy
(mAP@0.5) across YOLOv9–YOLOv11 models. The plot shows each

model’s mean inference time (ms) on the x-axis and its detection accuracy
(mAP@0.5) on the y-axis, with distinct markers for the YOLOv9 (circle),
YOLOv10 (square), and YOLOv11 (triangle) families. The red line traces

the Pareto front of the speed–accuracy trade-off.

F. Qualitative Analysis

To test real-world robustness, the INT8-quantized
YOLOv11-Nano model was deployed on unseen footage
and custom images as shown in Fig. 16 and Fig. 17. We
downloaded market scenes from YouTube and also purchased
several types of produce and recorded them under natural
indoor light. The model ran at real-time speed on the Jetson
Xavier NX and able to detect the item with accurate bounding
boxes and labels. These qualitative observations confirm that
the model generalises well beyond the training dataset and
complements the quantitative results, demonstrating readiness
for deployment in practical retail environments.

Apple Banana Brocolli Brocolli2
Calamansi

Carrot
Chili Chili2 Corn Cucumber

DragonFruit Durian Garlic Grape Guava
Fig. 16. YOLOv11n INT8 qualitative results — Panel (A), samples

1–15.

Rose Apple
LadyFinger

Mangosteen Mango Mango2

Onion
Papaya Pineapple Pineapple2 Potato

Rambutan
Snakefruit

Starfruit Tomato WaterMelon
Fig. 17. YOLOv11n INT8 qualitative results — Panel (B), samples

16–30.

V. CONCLUSION

This study demonstrates that real-time visual recognition
of loose fresh produce can be effectively integrated into
intelligent retail weighing systems to reduce reliance on man-
ual PLU-based item selection. By enabling accurate produce
identification within a single weighing operation, the proposed
Edge-AI approach directly addresses a key bottleneck in retail
checkout workflows, namely slow and error-prone manual
product lookup. To this end, an Edge-AI–based fresh-produce
weighing system was developed and evaluated by integrating
YOLOv9, YOLOv10, and YOLOv11 detectors with transfer
learning on a 26-class Malaysian produce dataset compris-
ing 8,450 annotated images.All models converged smoothly
under identical training regimes; YOLOv11-Large achieved
the highest mAP@0.5:0.95 of 0.699, YOLOv10 exhibited the
strongest per-class discrimination, and YOLOv9 showed more
misclassifications among visually similar produce. Across the
dataset, each model maintained a mean Average Precision
above 0.8, with medium or large configurations providing the
most consistent accuracy. Pre- and post-processing overheads
remain small relative to inference for large models ( 4–12 ms),
but become proportionally significant as models shrink; more-
over, YOLOv11’s reliance on a Non-Maximum Suppression
(NMS) head results in noticeably longer post-processing than
YOLOv10’s NMS-free design. TensorRT optimization with
FP16/INT8 quantization reduced YOLOv10-Large inference
latency from approximately 216 ms to 49 ms (FP16) and 28 ms
(INT8). Among the tested configurations, YOLOv10-Medium
and YOLOv10-Nano offer the best balance between accuracy
and real-time performance, achieving roughly 14–15 ms per
image (≈ 18–19 FPS) while maintaining high precision.

Inference-speed analysis demonstrated that pre- and
post-processing overheads are negligible relative to the ac-
tual network inference time. With TensorRT optimization and
FP16/INT8 quantization, the YOLOv10-Nano configuration
achieved real-time performance at roughly 14–15 ms per image
(≈ 18–19 FPS). The YOLOv10-Large model, once converted
from unoptimized PyTorch to TensorRT, saw its inference
latency shrink from ≈ 216ms to ≈ 49ms with FP16 and
≈ 28ms with INT8. Although YOLOv11 models offered
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slightly higher precision, their reliance on a Non-Maximum
Suppression head introduced additional post-processing delay
compared with the NMS-free dual-assignment strategy of
YOLOv10. These results show that YOLOv10-Medium and
YOLOv10-Nano strike the best balance between detection
accuracy and real-time inference, making them suitable for
deployment on resource-constrained retail scales.

Although this system demonstrates that high-accuracy ob-
ject detection is feasible on embedded GPUs, several chal-
lenges remain.

• Intraclass and interclass similarity: Some classes (e.g.,
grapes, mangosteen, dragon fruit) exhibit low per-class
mAP due to high intra-class variation and inter-class
similarity. Future work should augment the dataset and
explore model-level innovations to improve discrimi-
nation among similar-looking items.

• Species and cultivar detection: The current dataset
treats each fruit or vegetable as a single class and does
not include species- or cultivar-level distinctions (e.g.,
different varieties of oranges). Even if such data were
added, it remains uncertain whether the current YOLO
architectures could fully capture the subtle visual
variations between closely related cultivars. Future
work should therefore combine dataset expansion with
model adaptations or fine-grained classification strate-
gies to assess whether detection at this granularity is
feasible.

• NMS-free architectures: YOLOv11’s NMS-based
post-processing introduces significant latency; inte-
grating next-generation NMS-free models such as
the forthcoming YOLO26—designed as an end-to-
end detector without a non-maximum suppression
step [26]—could further reduce inference time and
simplify deployment.

• Data and modality expansion: Additional future work
includes expanding the dataset to cover occlusions,
mixed produce and seasonal variations, incorporating
multi-modal sensors (weight, depth, spectral) to dis-
tinguish visually similar items, applying model prun-
ing and dynamic quantization, developing incremental
learning for new classes, and evaluating deployment
on alternative edge devices.

Overall, the findings confirm that high-accuracy object
detection on embedded GPUs is not only technically feasible
but also practically deployable in real retail environments.
By combining NMS-free architectures with TensorRT opti-
mization, the proposed system supports low-latency inference
suitable for unattended or semi-automated checkout scenarios,
reducing operator workload and minimizing customer waiting
time. These results provide a concrete pathway toward scal-
able, PLU-independent intelligent weighing systems in modern
retail settings.
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