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Abstract—Brain stroke occurs when the brain’s blood supply
is disrupted, leading to oxygen deprivation and rapid neuronal
death. Ischemic stroke, the focus of this study, accounts for
most cases and is strongly influenced by collateral circulation,
a network of alternative vessels that stabilize perfusion when a
primary artery is obstructed. Collateral status determines the
extent of salvageable tissue and is typically graded manually
using modalities such as magnetic resonance angiography (MRA),
computed tomography (CT), and cone-beam computed tomogra-
phy (CBCT), a process prone to subjectivity and inter-observer
variability. This study proposes a ResNet-18-based deep learning
framework for automated three-class classification of collateral
circulation (Good, Moderate, Poor) from intra-procedural CBCT
scans. A curated dataset of 45 patient cases (22,861 DICOM
slices), annotated by an expert neuroradiologist, was preprocessed
with patient-wise partitioning, normalization, and augmentation.
The model achieved a validation accuracy of 88.8%, a micro-
averaged precision-recall score of 0.947, and a macro-averaged
ROC AUC of 0.958. Calibration analysis confirmed well-aligned
probability estimates, while most misclassifications occurred in
the Moderate class, reflecting inherent clinical ambiguity. Com-
pared with prior CBCT studies using shallower architectures, the
proposed framework demonstrates substantially higher accuracy,
improved calibration, and enhanced robustness. These findings
highlight the feasibility of ResNet-18 applied to CBCT imaging
as a reliable and efficient tool to support neuroradiologists in
collateral grading during hyperacute stroke management

Keywords—Collateral circulation; brain stroke; ischemic stroke;
deep learning; ResNet-18

I. INTRODUCTION

Ischemic stroke occurs when a cerebral blood vessel be-
comes obstructed, typically by a thrombus, thereby interrupting
the supply of oxygen and nutrients. Without prompt interven-
tion, this blockage can cause irreversible neuronal damage
within minutes, leading to severe neurological deficits [1],
[2]. Globally, Ischemic stroke is a major public health chal-
lenge, accounting for over 80% of stroke cases worldwide
and affecting more than 12 million people annually [3][4][5].
It remains a leading cause of death, long-term disability,
and healthcare burden. These realities underscore the urgent
need for improved methods of early diagnosis, prognosis, and
treatment to mitigate long-term disability and improve patient
outcomes.

*Corresponding author.

Collateral circulation serves as the brain’s primary compen-
satory mechanism during arterial occlusion. Networks such as
the Circle of Willis and leptomeningeal anastomoses sustain
perfusion and preserve the penumbra during arterial occlu-
sion [6], [7], [8]. In addition to arterial routes, venous and
lymphatic systems are increasingly recognized as contributors
to intracranial homeostasis under ischemic stress [9]. Patients
with robust collaterals typically demonstrate slower infarct
progression and extended therapeutic windows for both in-
travenous thrombolysis and mechanical thrombectomy [10],
[11], [12]. Consequently, collateral status has emerged as a
critical prognostic marker and a key determinant in acute stroke
treatment decisions.

Neuroimaging plays a central role in collateral evaluation.
Conventional methods rely on computed tomography angiog-
raphy (CTA) and magnetic resonance angiography (MRA),
with cone-beam computed tomography (CBCT) emerging as a
promising intra-procedural alternative. However, manual col-
lateral grading is time-consuming, subjective, and limited by
inter-observer variability. To overcome these challenges, deep
learning offers the potential for automated, consistent, and
scalable assessment. Convolutional neural networks (CNNs),
including architectures such as ResNet-18, have demonstrated
strong performance in diverse medical imaging tasks ranging
from pneumonia detection [13] to retinal-based kidney disease
screening [14]. More recently, CNN-based approaches have
been applied to collateral circulation grading in CTA, MRA,
and CBCT, laying the groundwork for robust, clinically in-
tegrated decision-support systems. Building on this founda-
tion, this study investigates ResNet-18 for automated tri-class
classification of collateral circulation (Good, Moderate, Poor)
in ischemic stroke patients using intra-procedural CBCT. The
following sections provide the clinical background, describe
the methodological design, and evaluate the performance of
the proposed framework in comparison with existing ap-
proaches. This study addresses the challenge of subjective and
time-consuming collateral grading by proposing an automated
CBCT-based deep learning approach for three-class collateral
classification. The main difficulty lies in CBCT intensity vari-
ations and the visual overlap between Moderate and adjacent
grades, which can reduce precision.

The remainder of this study is organized as follows: Sec-
tion II reviews stroke and collateral background and imaging
modalities; Section III summarizes related work; Section IV nd
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Section V describes the methodology and dataset; Section VI
presents experimental results; Section VII discusses findings
and limitations; and Section VIII concludes the study.

II. BRAIN STROKE

Stroke occurs when the blood supply to a part of the brain
is disrupted, leading to oxygen deprivation and rapid death
of brain cells [15]. The brain is essential for coordinating
movements, preserving memories, generating thoughts and
emotions, and enabling speech and language functions [16].
It also regulates critical bodily processes such as breathing
and digestion. To perform these functions effectively, the brain
depends on a continuous flow of oxygen-rich blood delivered
through its intricate arterial system. When this flow is blocked
or reduced, brain tissue rapidly sustains damage [17]. Without
timely restoration of blood supply, affected regions may suffer
permanent injury or death, resulting in lasting disability or
fatality. Strokes are broadly classified into two major types
based on their underlying mechanisms: hemorrhagic stroke and
ischemic stroke. Fig. 1 illustrates the fundamental differences
between these two types.

Ischemic stroke

Fig. 1. Comparison between ischemic stroke (arterial blockage) and
hemorrhagic stroke (vessel rupture) [18].

A. Hemorrhagic Stroke

Hemorrhagic stroke occurs when a weakened blood vessel
ruptures, causing bleeding into the brain tissue [19]. The ac-
cumulation of blood elevates intracranial pressure, compresses
brain structures, and diminishes downstream blood flow. Al-
though hemorrhagic strokes are less common than ischemic
strokes, they are associated with higher early mortality rates.
Management of hemorrhagic stroke focuses on controlling
bleeding, alleviating intracranial pressure, and preventing com-
plications such as rebleeding and hydrocephalus. Since hemor-
rhagic stroke arises from vessel rupture rather than occlusion,
collateral circulation does not play a central role in its clinical
management [20]. Accordingly, research into collateral blood
flow restoration is less applicable to hemorrhagic stroke. For
this reason, the present work primarily emphasizes ischemic
stroke, where collateral circulation is critically important for
sustaining tissue survival and improving recovery outcomes.
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B. Ischemic Stroke

Ischemic stroke, accounting for approximately 85% of all
stroke cases, results from obstruction of a cerebral artery,
most commonly due to thrombosis or embolism [21]. The
sudden interruption of blood flow initiates a cascade of
cellular injury and metabolic dysfunction, ultimately leading
to infarction if untreated. Collateral circulation, the network
of auxiliary vessels capable of supplying blood to ischemic
brain regions, emerges as a crucial determinant of stroke
severity and recovery potential [22]. Well-developed collateral
networks can sustain perfusion to the ischemic penumbra,
delay infarct progression, and extend the therapeutic window
for interventions. Consequently, evaluation and optimization of
collateral pathways have become central themes in ischemic
stroke research. In this context, the present study focuses on
ischemic stroke, aiming to advance automated methods for
collateral circulation assessment and improve decision-making
in hyperacute stroke management.

C. Collateral Circulation in Ischemic Stroke

Collateral circulation refers to a network of alternative
blood vessels that can provide compensatory blood flow when
a primary cerebral artery is obstructed. This auxiliary pathway
helps stabilize cerebral perfusion and can determine the extent
of salvageable tissue, or the ischemic penumbra, during a
stroke [6], [23]. Fig. 2 illustrates how collateral vessels bypass
a thrombus obstructing a major artery, thereby sustaining blood
supply to downstream regions.

Collateral blood vessels

,.-".
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Fig. 2. Schematic showing collateral blood vessels bypassing a thrombus
obstructing a primary cerebral artery [24].

The adequacy of collateral circulation varies considerably
between individuals and is influenced by vascular anatomy,
age, and comorbidities. Patients with good collateral status
often demonstrate smaller infarct cores and better clinical
outcomes, while poor collaterals are linked to rapid infarct
progression and worse prognosis [8], [25]. Fig. 4 and Fig. 3
shows that Good collaterals allow sufficient blood rerouting
to preserve tissue, whereas poor collaterals fail to maintain
adequate perfusion, leading to irreversible injury.

Currently, collateral grading is performed manually by
radiologists who visually interpret magnetic resonance angiog-
raphy (MRA), computed tomography (CT), cone-beam com-
puted tomography (CBCT), or digital subtraction angiography
(DSA) scans. However, this process is inherently subjective,
time-consuming, and prone to inter-observer variability. Given
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Fig. 3. Multiphase assessment of collateral circulation: Good (top),
intermediate (middle), and poor (bottom), with corresponding color-coded
visualization [26].
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Fig. 4. Classification of collateral circulation: a) Normal circulation, b)
Stroke with poor collaterals, c¢) Stroke with good collaterals [27]. (Image
adapted under a CC BY 4.0 license).

the prognostic importance of collateral status, there is a clear
need for automated and reliable classification methods. To
address this gap, the present study introduces a ResNet-18 deep
learning framework designed to classify collateral circulation
into Good, Moderate, or Poor, thereby reducing variability and
supporting clinicians in urgent decision-making.

D. Imaging Modalities for Collateral Assessment

Several imaging modalities are currently used to evaluate
collateral circulation, including computed tomography angiog-
raphy (CTA), magnetic resonance angiography (MRA), cone-
beam computed tomography (CBCT), and digital subtraction
angiography (DSA). CTA is fast and widely available, with
multiphase protocols capable of capturing delayed collateral
filling [28]. MRA provides radiation-free vascular imaging
but is slower and less practical in acute settings [29]. DSA
remains the invasive reference standard for visualizing cerebral
vasculature. CBCT has recently emerged as a promising intra-
procedural tool, offering high-resolution three-dimensional vi-
sualization directly in the angiography suite and the potential to
complement standard CT and MRI during endovascular work-
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flows [30], [31].This comparison highlights CBCT’s suitability
for intra-procedural stroke workflows, where rapid acquisition
and integration with endovascular treatment are critical, unlike
CT and MRI which are typically pre-procedural.

Table I provides a general comparison of CBCT, CT, and
MRI. Although most reported advantages of CBCT, such as
lower radiation exposure, shorter scan time, and reduced cost,
have been derived from dental and general radiology literature,
these features suggest potential benefits for neurointerventional
use as well. However, stroke- and neurointervention-specific
head-to-head studies remain limited, and thus these character-
istics should be interpreted cautiously when extrapolated to
acute cerebrovascular workflows.

Recent CBCT-based studies have applied deep learning
models for collateral classification. For example, Ali et al. [38]
employed a ResNet-18 architecture and reported moderate
performance, while a subsequent study using VGG11 [39] also
achieved only modest accuracy. These results highlight both
the feasibility of CBCT for automated collateral grading and
the clear need for methodological improvements. In this study,
we aim to enhance classification performance by leveraging a
deeper residual network (ResNet-18), incorporating a larger
dataset, and applying advanced augmentation techniques to
improve generalization.

The next section reviews prior research on collateral circu-
lation classification across different modalities to contextualize
the present work.

III. RELATED WORK

Most existing studies on collateral circulation assessment
in ischemic stroke have focused on deep learning applied to
computed tomography (CT) and magnetic resonance imag-
ing (MRI). These modalities are widely used due to their
high-quality depiction of brain structures and vascular net-
works [34], [37]. More recently, cone-beam computed tomog-
raphy (CBCT) has been explored, but the reported results
remain modest compared to CTA and MRI.

For example, Ali et al. [39] applied VGG11 to CBCT
images of ischemic stroke patients, using a dataset of 4,368
slices (80% training, 20% testing) for binary classification of
good versus poor collaterals. The model achieved only 58.3%
accuracy, with sensitivity of 75.5%, specificity of 44.1%, and
Fl-score of 62.1%. Similarly, Ali et al. [38] employed a
pre-trained ResNet-18 on 30 patients (4,368 CBCT slices),
reporting 65.9% accuracy, with sensitivity of 0.776, specificity
of 0.526, and F1-score of 0.698. Both studies demonstrated
feasibility, but were hindered by small datasets, minimal aug-
mentation, and overfitting, which limited generalizability.

Other researchers have explored multimodal and advanced
architectures. Tetteh et al. [43] used MR perfusion images
from 183 patients, applying reinforcement learning for ROI
detection and CNN/ML classifiers, achieving 72% accuracy,
but facing challenges of class imbalance and ROI precision.
Raj et al. [41] proposed a multimodal CTA-based frame-
work combining ResNet-50 with AutoML, reaching 94.12%
accuracy but relying on single-center data. Tan et al. [42]
developed a feature-fusion attention network for multiphase
CTA, achieving 90.43% accuracy. While these approaches
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TABLE I. COMPARISON OF CBCT, CT, AND MRI CHARACTERISTICS IS MAINLY BASED ON DENTAL AND GENERAL RADIOLOGY REPORTS. SINCE
STROKE-SPECIFIC EVIDENCE IS LIMITED, THESE VALUES SHOULD BE INTERPRETED CAUTIOUSLY FOR ACUTE CEREBROVASCULAR WORKFLOWS.

Criteria

CBCT

CcT

MRI

Working Principle

Resolution
Scanning Time
Cost

X-ray Beam Coverage

Display Mode

Uses X-ray computed tomography with
divergent beam and 360° rotation [32]

High spatial resolution [32]
Lower scanning time [35]

Lower cost [36]

Beam can be collimated to the area of

interest [37]

High anatomical precision and diagnostic

function [37]

Uses multiple X-rays from different
angles [33]

Better contrast resolution [32]
Moderate scanning time [35]
Moderate cost [36]

Full area scan [37]

Lower anatomical detail [37]

Uses magnetic fields and RF pulses [34]

Good contrast resolution [34]
Longest scanning time [35]
Highest cost [36]

Full area scan [36]

High-quality images for soft tissue and
ligaments [34]

TABLE II. SUMMARY OF COLLATERAL CIRCULATION CLASSIFICATION STUDIES USING Al TECHNIQUES

Study Modality Purpose Method Key Result

[40] 4D-CTA Classification ResNet34 (single vs. multi-image) AUC 0.85-0.89
[41] CTA Classification Multimodal DL + AutoML Acc 91.2-94.1%
[42] CTA (multiphase) Classification Fusion attention (CCA4CTA) Acc 90.4%

[43] MRI Classification CNN + ML (RF, SVM, k-NN) Acc 72% (CNN)
[44] CTA Classification CNN-SVM, ResNet, ViTs Acc 62-77%
[39] CBCT Classification VGGI11 Acc 58.3%

[38] CBCT Classification ResNet18 Acc 65.9%

demonstrate the potential of advanced architectures, they are
primarily based on CTA/MRA datasets rather than CBCT.

Table II summarizes representative approaches, imaging
modalities, and reported outcomes. Collectively, these studies
show that while CTA and MRI dominate current research,
CBCT is emerging as a clinically advantageous modality due
to its real-time intra-procedural capability, reduced radiation,
lower cost, and availability in the angiography suite. However,
CBCT-based deep learning models remain underexplored and
have so far achieved only moderate accuracy.

To address this gap, the present study leverages CBCT
imaging combined with a residual architecture, ResNet-18. By
using a larger dataset, applying systematic data augmentation,
and moving beyond binary classification to a clinically relevant
three-class grading (Good, Moderate, Poor), this work aims
to significantly improve accuracy, calibration, and generaliz-
ability. The following section details the methodology of the
proposed framework.

IV. METHODS

The overall methodology of the proposed study is summa-
rized in Fig. 5. The pipeline begins with dataset collection from
Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia
(UPM), followed by preprocessing steps such as bone re-
moval, normalization, and noise reduction. Data augmentation
was then applied to increase variability, and the dataset was
partitioned into training and validation subsets. The ResNet-
18 model, initialized with ImageNet weights, was trained and
fine-tuned for three-class collateral classification. A patient-
wise split ensured that slices from the same patient did not
appear in both training and validation sets, preventing data
leakage. The implementation was carried out in Python with

TensorFlow/Keras on an RTX 3090 GPU. The study followed
a supervised learning design with neuroradiologist-annotated
labels, patient-wise partitioning to prevent leakage, and a two-
phase fine-tuning strategy to balance generalization and class
separability.
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Rotation & Flipping
DATASET Normalization & Standardization Scaling &
P
COLLECTON HPUPM ropping
Extract blood vessels using U-Net or et .
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B
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-2 Models
X)) Trainig &
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Fig. 5. Overall methodology for CBCT-based collateral circulation
classification using ResNet-18.

Experiments were conducted using Python 3.10 with Ten-
sorFlow 2.12/Keras, NumPy 1.26, and scikit-learn 1.4 on
an RTX 3090 (24 GB) with CUDA 11.8/cuDNN 8.9. Model
performance was assessed using accuracy, precision, recall
(sensitivity), specificity, Fl-score, PR-AUC, ROC-AUC, and
calibration analysis.

V. DATASET

For this study, the dataset was obtained from Hospital
Sultan Abdul Aziz Shah, Universiti Putra Malaysia (UPM).
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It consists of cone-beam computed tomography (CBCT) scans
acquired from patients diagnosed with ischemic stroke. A total
of 45 cases were included, each containing a full volumetric
series of axial slices. Each patient was assigned a unique
identifier and accession number, and all metadata were se-
curely documented to maintain proper traceability. Annotation
of the dataset was carried out by an experienced neuroradiol-
ogist (Dr. Ahmad Sobri Muda), who categorized each patient
into one of three clinically meaningful grades of collateral
circulation: Good, Moderate, and Poor. The final distribution
comprised 13 patients in the Good category, 13 in the Moderate
category, and 19 in the Poor category.

The demographic composition of the cohort is summarized
in Table III. Overall, the dataset included 18 females and 27
males, with gender distribution remaining relatively balanced
across the three collateral circulation groups. In total, the
dataset comprised 22,861 DICOM slices, with each patient
contributing approximately 350-400 slices. This volume is
consistent with the coverage typically required in neurovascu-
lar CBCT examinations. For model development, the dataset
was partitioned on a patient-wise basis into 70% for training
and 30% for testing, ensuring that slices from the same subject
did not appear in both sets. The dataset used in this study
is available from the corresponding author upon reasonable
request.

TABLE III. PATIENT DISTRIBUTION BY COLLATERAL CLASS AND

GENDER
Class Female Male Total
Good 5 8 13
Moderate 6 7 13
Poor 7 12 19
Total 18 27 45

Although the macro-averaged precision was 0.8634, this
value should be interpreted in the context of clinical ambiguity,
particularly within the Moderate collateral class. Precision
was reduced primarily due to overlap between Moderate and
adjacent classes, a challenge also reported in neuroradiologist-
based grading. Several design choices were introduced to
improve precision: patient-wise data partitioning eliminated
slice-level leakage, class weighting mitigated imbalance, label
smoothing reduced over-confident predictions, and realistic
data augmentation improved generalization. These strategies
enhanced precision while maintaining balanced recall and
well-calibrated probabilities.

A. Preprocessing

The preprocessing stage aimed to prepare raw cone-beam
computed tomography (CBCT) data for deep learning analysis.
First, all volumes in DICOM format were checked to remove
incomplete or corrupted slices [45]. The remaining valid scans
were annotated by a neuroradiologist into three categories:
Good, Moderate, and Poor collateral status.

To enable compatibility with deep learning frameworks,
DICOM files were converted into lossless . png format using a
custom Python script. This conversion preserved grayscale vas-
cular details and allowed faster I/O operations. The converted
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images were stored in class-specific directories for traceability
during training and evaluation.

Each slice was resized to 224 x 224 pixels and normalized
to the [0, 1] range using min—-max scaling:

I(xa y) - Imin

Imux - Imin

Inorm(xv y) =

)

where, I(z,y) denotes the pixel intensity and Iy, Imax are
dataset-level minimum and maximum values.

A patient-wise split strategy was applied so that slices
from the same subject appeared in only one subset (training,
validation, or testing), preventing data leakage and ensuring
reliable model evaluation. Additional transformations for data
augmentation were later applied to increase dataset variability
and improve model generalization, as described in the next
subsection.

B. Data Augmentation

To increase dataset diversity and mitigate overfitting,
stochastic augmentation functions were applied to the CBCT
slices during training. These transformations were formulated
to introduce controlled variability in spatial and photometric
domains while preserving the vascular structures essential for
clinical interpretation.

Let I(z,y) denote the original image intensity at spatial
coordinates (z,y). A horizontal reflection was applied with
probability p = 0.5, expressed as:

I’(m,y)ZI(W—x,y), z € [0,W], y €0, H],

where, W and H represent the image width and height, re-
spectively. This transformation enforces invariance to left-right
orientation without altering anatomical fidelity.

Photometric perturbations were introduced through random
brightness and contrast adjustments. Brightness variation was
modeled as an additive shift:

I/(l‘,y) = I(x,y) + Aby

with A, ~ U(—B,8), B = 0.10 representing a 10%
dynamic range adjustment. Contrast scaling was applied mul-
tiplicatively:

I/(.I,y) = Q~I(I,y),

where, o ~ U(0.9,1.1) governs the rescaling of intensity
distributions. Combined, these yield the affine photometric
transformation:

I/(.’E,y) = OZI(.’E,y) +Abv

which models scanner-dependent variations in illumination
and detector sensitivity.
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A geometric zoom operation was further incorporated by
random cropping followed by resizing to the original reso-
lution. For a scaling factor z ~ U(0.9,1.0), the effective
mapping can be written as:

Iy =1(12],[2]),

where, coordinates outside the valid domain are handled
through zero-padding. This introduces local spatial distortions
equivalent to minor variations in field of view or patient
positioning during acquisition.

Collectively, these augmentations form a nonlinear trans-
formation set 7 = {Thip, Toright: Zcontrast> Tzoom }» Where each
image [ is stochastically mapped to an augmented sample
I' =T(I) with T ~ U(T). By enforcing the model to learn
under this expanded input distribution, the convolutional net-
work is guided to extract invariant vascular patterns rather than
memorizing subject-specific intensity or positional artifacts,
thereby strengthening generalization.

C. Classification Model: ResNet-18

ResNet-18 was employed as the backbone network to
classify collateral circulation from CBCT images into three
categories: Good, Moderate, and Poor. Compared with deeper
variants such as ResNet-50, ResNet-18 is shallower with 18
layers but preserves the residual learning mechanism that
addresses vanishing gradients and supports stable training.
Its balance of computational efficiency and representational
power makes it well suited for datasets of moderate size. The
overall workflow is shown in Fig. 6. ResNet-18 was selected
to match the study’s data regime: with 45 patient cases,
it provides an effective balance of computational efficiency
and discriminative power. The residual design supports stable
optimization, and the shallower depth reduces overfitting risk
relative to deeper backbones.
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Fig. 6. ResNet-18 framework for CBCT-based collateral circulation
classification, consisting of convolutional layers, residual blocks, pooling
operations, and a softmax classifier.

1) Model architecture: The model processes preprocessed
and augmented CBCT slices, each resized to 224 x 224
pixels with three channels. The initial stem of the network
applies a 7 x 7 convolution with stride 2, followed by batch
normalization, ReLU activation, and 3 x 3 max-pooling. For
an input X € R224X224X3 " the first feature representation is
computed as Eq. (1):

Vol. 17, No. 1, 2026

FO = g(BNW® x X + 1)), 1)

where, * denotes convolution, W) and () are the kernel
and bias of the first layer, BN(-) represents batch normaliza-
tion, and o (%) = max(0, z) is the ReLU activation.

The core of ResNet-18 is built from basic residual blocks,
each consisting of two 3 x 3 convolutional layers with batch
normalization and ReLU, plus an identity shortcut. A residual
block computes [see Eq. (2)]:

H(z) = a(BN(W2 « o(BN(W) % 1)) + m) 2)

where, W7 and W5 are convolution kernels of size 3 x 3.
If the input and output dimensions differ, a 1 X 1 convolution
is applied on the shortcut path. These residual connections
enforce stable gradient propagation and allow the block to
approximate H(z) ~ F(x) + .

Spatial dimensionality reduction is performed by max
pooling [see Eq. (3)]:

FPOOl _ F( )7 3
! (eder )

where, R is the pooling window region. This preserves
dominant activations while reducing computational complex-
ity.

After the residual stages, global average pooling (GAP)
compresses each feature map into a scalar [see Eq. (4)]:

1 H W
ORI

where, F( )k is the activation at spatial location (Z,7) in

channel k. The resulting feature vector g € R? is passed to a
fully connected layer and a softmax classifier [see Eq. (5)]:

exp(wCTg + be)
Z§:1 exp(ijg +b;) ’
¢ € {Good, Moderate, Poor}. (5)

Ply = clX) =

The predicted collateral grade is assigned as Eq. (6):

Y are ce{Good, II{/II(%)érale, Poor} <y Cl ) ©

2) Training strategy: Training followed a two-phase pro-
tocol. In Phase 1, the ResNet-18 backbone (pretrained on
ImageNet) was frozen, and only the final dense layers
were optimized. This stabilized initial learning of domain-
specific features while preserving the pretrained representa-
tions. In Phase 2, the final two residual stages (convi4_x
and conv5_x, corresponding to the last ~6—8 convolutional
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layers) were unfrozen for fine-tuning at a reduced learning rate
(n=1079).

The categorical cross-entropy loss with label smoothing
(¢ = 0.05) was minimized [see Eq. (7)]:

L=—

C

[(A=e)ye+ 5| log Ply=cX), @
1

3

where, y. is the one-hot encoded ground truth. Optimiza-
tion used Adam with decoupled weight decay regularization,
and class weights were applied as Eq. (8):

N

GRS ®

We

where, N, is the number of samples in class ¢, ensuring
balanced learning despite dataset imbalance.

3) Algorithmic logic: Algorithm 1 summarizes the work-
flow: preprocessing — augmentation — dataset partitioning
— ResNet-18 training (frozen + fine-tuning) — evaluation.
Each epoch samples up to K,,,x = 12 slices per patient,
preventing overrepresentation of long CBCT scans. Training
and validation sets were processed using t £.data pipelines
with batch prefetching for GPU efficiency.

Algorithm 1 Patient-Wise Two-Phase ResNet-18 Training for

CBCT Collateral Grading

Data: CBCT slices D = {(x;, y;, pid;)}; classes C = {Good, Moderate, Poor}

ﬂgsluﬁ: ?ést model M™* + metrics (accuracy, F1, sensitivity, specificity). Begin:

1. Build manifest {filepath, label, patient ID}; split patients (80/20).

2. Apply preprocessing — normalization — augmentation (flip, brightness, contrast,
zoom).

. Construct train/val datasets with < 12 slices/patient/epoch.

. Phase 1: freeze backbone, train head with Adam (n = 2 X 10_4), E = 15.
. Phase 2: unfreeze final two residual stages (conv4_x, conv5_x), fine-tune with
Adam (n = 107%), E = 10.
7. Evaluate on val set; compute confusion matrix, ROC/PR curves, and classification
report.
8. Save best-performing weights M*.
End.

3
4. Initialize ResNet-18 (ImageNet pretrained, no top).
5
6

4) Training and optimization: The ResNet-18 model was
optimized using the Adam optimizer, initialized with a learning
rate of 1 x 1072 and a batch size of 32. Training was conducted
over 30 epochs under a patient-wise data partitioning strategy,
where 70% of subjects were allocated for training and 30% for
validation. This ensured that slices from the same patient were
never shared across subsets, thereby preventing data leakage.

The learning objective was the categorical cross-entropy
loss, defined as Eq. (9):

3
L==Y ylog Py = c|X), ©)

c=1

where, y. denotes the one-hot encoded ground truth label
for class ¢ and P(y = c¢|X) is the predicted posterior
probability for input X.
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The incorporation of residual connections within ResNet-
18, combined with careful normalization and the augmentation
strategies described earlier, stabilized optimization and im-
proved generalization. Despite having fewer layers than deeper
variants such as ResNet-50, the 18-layer architecture provided
a favorable trade-off between complexity and efficiency, con-
firming its suitability as a lightweight yet robust framework
for automated collateral grading in ischemic stroke.

D. Evaluation Metrics

To rigorously assess the classification performance, a set
of standard evaluation metrics was derived from the confusion
matrix entries: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Each metric captures
a complementary aspect of the model’s behavior.

Accuracy: [Eq. (10)] quantifies the proportion of correctly
classified cases across all predictions.

TP+ TN
A - 10
Uy = TP Y TN+ FP+ FN (10)

Recall (Sensitivity): [Eq. (11)] measures the ability of the
model to correctly identify positive samples.

TP

Recall (Sensitivity) = —————
ecall (Sensitivity) TP+ FN

an

Specificity: [Eq. (12)] reflects the effectiveness of the
model in correctly rejecting negative samples.

TN

Precision: [Eq. (13)] evaluates the reliability of positive
predictions by measuring the proportion of true positives
among all predicted positives.

Procisi TP 03
recision = —————
BN = TP Fp

Finally, the FI-score [Eq. (14)] harmonizes precision and
recall into a single measure, which is particularly informative
under class imbalance.

2 x Precision x Recall
F1- = 14
score Precision + Recall 14

For multi-class evaluation, overall performance can also
be aggregated. Macro-averaging computes the simple mean of
per-class metrics, treating each class equally. Micro-averaging
instead pools contributions from all classes before computing
the metric, emphasizing the influence of larger classes. The
micro-averaged accuracy is defined in Eq. (15) as:

Y, TP

Micro-Accuracy = —
»>i1(TP;+ FP;+ FN; + TN;)

s)
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Here, counts of T'P;, F'P;, F'N;, and T'N; are summed
across all classes before computing accuracy. This means
that every sample contributes equally to the final score, and
Micro-Accuracy effectively reflects dataset-level performance
while giving more weight to majority classes.

VI. RESULTS

The proposed ResNet-18 framework was systematically
evaluated on the curated CBCT dataset for the tri-class prob-
lem of collateral circulation grading (Good, Moderate, and
Poor). The evaluation highlights training dynamics, confusion
matrix analysis, calibration reliability, and discriminative per-
formance using precision-recall and ROC curves. Together,
these perspectives provide a comprehensive understanding of
the model’s stability, predictive reliability, and classification
power.

A. Training and Validation Dynamics

Fig. 7 illustrates the evolution of training and validation
accuracy over 20 epochs. The model began with modest per-
formance, but accuracy improved consistently as the residual
layers were optimized. The majority of performance gains
occurred within the first 10 epochs, after which the curves
continued to rise more gradually. By the final epoch, training
accuracy reached approximately 95% while validation accu-
racy stabilized near 89%. The relatively narrow gap between
the two curves indicates effective generalization without signs
of severe overfitting. This stability is attributed to the use of
batch normalization, residual connections, and data augmen-
tation, which collectively mitigated noise sensitivity and class
imbalance effects.

The corresponding loss curves in Fig. 8 support these find-
ings. Both training and validation losses decreased monotoni-
cally, from initial values above 1.2 to approximately 0.20 and
0.35, respectively. The rapid decline in the early epochs reflects
efficient convergence of the optimizer, while the smoother
downward trend during later epochs highlights the fine-tuning
of network parameters. Importantly, the persistent but small
gap between training and validation loss suggests that the
model was able to learn discriminative features without over-
fitting, even with the relatively shallow 18-layer architecture.

Overall, the accuracy and loss dynamics demonstrate that
the ResNet-18 architecture effectively learned discriminative
representations from intra-procedural CBCT scans while main-
taining stable generalization performance. Despite being shal-
lower than ResNet-50, the residual design allowed the network
to converge efficiently and achieve robust validation accuracy,
supporting its suitability as a lightweight yet reliable frame-
work for automated collateral grading in ischemic stroke.

B. Confusion Matrix and Class-Wise Metrics

The validation confusion matrix (Fig. 9) provides detailed
insight into the classification behavior of the proposed ResNet-
18 model. Out of the validation set, the network correctly
identified 3500 cases as Good, 1400 as Moderate, and 944 as
Poor. Misclassifications were more frequent in the intermediate
category: 237 Good cases were mislabeled as Moderate and
127 as Poor, while 107 Moderate cases were predicted as
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Fig. 7. Training and validation accuracy across 20 epochs for ResNet-18.
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Fig. 8. Training and validation loss across 20 epochs for ResNet-18.

Good and 57 as Poor. For the Poor class, 136 instances were
predicted as Good and 74 as Moderate.

As shown in Fig. 9, the highest overlap occurred within the
Moderate category, reflecting its clinically ambiguous nature
and morphological similarity to both Good and Poor grades.
This observation is consistent with prior clinical studies, where
neuroradiologists also reported lower agreement in intermedi-
ate collateral grading. By contrast, the Good and Poor cate-
gories exhibited more distinct imaging patterns, resulting in
higher recognition accuracy and fewer cross-class confusions.

From the confusion matrix, class-wise performance metrics
were computed and are summarized in Table IV. The Good
class achieved the strongest balance across precision (93.5%),
recall (90.6%), and Fl-score (92.0%), highlighting its distinct
imaging features. The Moderate class maintained a high recall
of 89.5% but showed reduced precision (81.8%), reflecting
its tendency to be confused with both extremes. The Poor
class achieved relatively balanced precision (83.7%) and re-
call (81.8%), with strong specificity (96.6%) underscoring its
separability from the Good group.
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Validation Confusion Matrix
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Fig. 9. Validation confusion matrix for three-class collateral classification
using ResNet-18.

Overall, the framework achieved a validation accuracy
of 88.79%, with macro-averaged F1-score of 0.8675. These
results confirm the robustness of ResNet-18 in capturing
clinically meaningful collateral circulation patterns while also
emphasizing the inherent challenge of accurately distinguish-
ing intermediate cases.

TABLE IV. CLASS-WISE AND OVERALL EVALUATION METRICS
FOR THREE-CLASS COLLATERAL CLASSIFICATION ON THE
VALIDATION SET

Class Accuracy  Precision  Recall  Specificity = F1-Score
Good 0.9078 0.9351 0.9058 0.9106 0.9202
Moderate 0.9278 0.8182 0.8951 0.9380 0.8550
Poor 0.9401 0.8369 0.8180 0.9661 0.8273
Overall 0.8879 0.8634 0.8730 0.9382 0.8675

Note: Overall accuracy is micro-averaged, while precision, recall, specificity,
and Fl-score are macro-averaged.

C. Calibration Reliability

The calibration curves in Fig. 10 assess the reliability of
probability estimates generated by the ResNet-18 model. A
perfectly calibrated model would follow the diagonal reference
line, where predicted confidence values correspond directly to
true outcome frequencies. In this study, the Good class tracked
the diagonal closely across most probability bins, reflecting
well-calibrated confidence estimates. The Moderate and Poor
classes showed mild underconfidence in the mid-probability
range (0.4-0.7), where the model’s predicted likelihoods un-
derestimated the true observed frequencies. This behavior
is clinically advantageous compared to overconfidence, as
it reduces the risk of misclassifying ambiguous cases with
unwarranted certainty.

Overall, the calibration analysis confirms that the proposed
ResNet-18 framework not only achieved competitive classi-
fication accuracy but also generated probability outputs that
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Fig. 10. Calibration curves showing the reliability of predicted probabilities
for each class using ResNet-18.

align closely with observed outcomes. The well-calibrated
predictions strengthen the clinical applicability of the model,
ensuring that decision-support systems based on its outputs
provide both accuracy and reliability in hyperacute stroke
assessment.

D. Precision—Recall and ROC Analysis

Fig. 11 illustrates the precision—recall (PR) curves for one-
vs-rest classification using ResNet-18. The model achieved
average precision (AP) scores of 0.975 for Good, 0.923 for
Moderate, and 0.886 for Poor, with a micro-averaged score of
0.947. These results indicate that the network maintained high
precision even as recall increased, demonstrating effective con-
trol of false positives across varying thresholds. The highest AP
value for the Good class reflects the clearer vascular signatures
of well-developed collaterals, which the model distinguished
with high confidence. By contrast, the lower AP for the Poor
class highlights the known challenge of differentiating weak
collateral filling patterns, which often overlap visually with
intermediate grades.

Precision-Recall Curves (One-vs-Rest, Val)

0.8 4

0.6

Precision

0.4

—— Good (AP=0.975)
Moderate (AP=0.923)

— Poor (AP=0.886)

—=- Micro (AP=0.947)

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 11. Precision—recall curves for one-vs-rest classification across the three
collateral classes using ResNet-18.

Fig. 12 shows the receiver operating characteristic (ROC)
curves, which evaluate the trade-off between sensitivity and
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TABLE V. COMPARISON OF COLLATERAL CIRCULATION CLASSIFICATION STUDIES USING Al TECHNIQUES

Study Modality Purpose Method Key Result
[40] 4D-CTA Classification ResNet34 (single vs. multi-image) AUC 0.85-0.89
[41] CTA Classification Multimodal DL + AutoML Acc 91.2-94.1%
[42] CTA (multiphase) Classification Fusion attention (CCA4CTA) Acc 90.4%
[43] MRI Classification CNN + ML (RF, SVM, k-NN) Acc 72% (CNN)
[44] CTA Classification CNN-SVM, ResNet, ViTs Acc 62-77%
[39] CBCT Classification VGGI1 Acc 58.3%
[38] CBCT Classification ResNet18 Acc 65.9%
This Study CBCT Classification ResNet-18 Acc =~ 88.8%
ROC Curves (One-vs-Rest, Val) This study demonstrates that a slice-level ResNet-18
] trained on intra-procedural CBCT can reliably classify col-
lateral circulation into three clinically meaningful categories
1 with high discrimination and well-calibrated probabilities. The
2 novelty of this study. dOf.BS not lie in .claiming CBCT .superiority
v over CT or MRI in image quality, but rather in demon-
: o strating that CBCT despite lower soft-tissue contrast—can
£ achieve clinically competitive performance when paired with
ol — seedimiceases an optimized c.leep.learning framewotk. Unlike. CT and MRI,
ooy (AUC—0.945) CBCT is acquired intra-procedurally in the angiography suite,
ol T enabling rapid decision support during endovascular treatment.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 12. ROC curves for one-vs-rest classification across the three collateral
classes using ResNet-18, including micro- and macro-averaged performance.

specificity. The areas under the curve (AUC) were 0.965 for
Good, 0.964 for Moderate, and 0.945 for Poor, with micro- and
macro-averaged AUC values of 0.964 and 0.958, respectively.
These consistently high values demonstrate that the model
was highly effective in distinguishing among the three classes
with minimal false positive rates. The Good and Moderate
classes showed the highest separability, while the Poor class,
although slightly lower, still achieved clinically meaningful
discrimination.

Together, the PR and ROC analysis provide complementary
perspectives on model performance. The PR curves highlight
the precision—recall trade-off in an imbalanced clinical dataset,
while the ROC curves confirm the model’s strong sensitivity
and specificity across thresholds. The consistently high AP
and AUC values reinforce the robustness of the ResNet-18
framework and support its potential as a decision-support tool
for neuroradiologists in hyperacute stroke collateral grading.

VII. DISCUSSION

This visualization supports the quantitative findings dis-
cussed earlier, confirming that the deep learning framework
not only achieves high classification accuracy but also effec-
tively localizes key vascular territories associated with each
clinical grade. By mapping vascular intensity patterns onto
interpretable color-coded overlays, the model provides trans-
parent evidence of its decision process—enhancing clinical
interpretability and trust for automated collateral assessment.

By substantially outperforming prior CBCT-based Al studies
and approaching the performance of CTA-based systems, this
work establishes CBCT as a practical modality for automated
collateral assessment.

The learning curves (Fig. 7 and Fig. 8) showed steady
improvement in both training and validation accuracy with
a monotonic decline in loss, indicating stable optimization
and limited overfitting. The confusion matrix (Fig. 9) revealed
that most misclassifications occurred in the Moderate class,
reflecting its inherent overlap with Good and Poor collateral
patterns. Calibration and PR/ROC analysis (Fig. 10 to Fig. 12)
confirmed reliable probability estimates and strong separabil-
ity, with macro-AUC of approximately 0.958 and micro-AP of
0.947. These findings support the clinical potential of CBCT-
based Al for rapid, intra-procedural collateral grading.

When benchmarked against CTA-based systems, the CBCT
approach is competitive. Wang et al. [40] reported AUCs of
0.85-0.89 on 4D-CTA with ResNet34, Tan et al. [42] achieved
90.4% accuracy using a multiphase attention model, and Raj et
al. [41] reached 91.2-94.1% accuracy via multimodal fusion.
Although CTA benefits from higher contrast-to-noise ratios
and larger curated datasets, the CBCT model attained 88.8%
validation accuracy and a macro-averaged ROC AUC of 0.958,
indicating that despite CBCT’s lower soft-tissue contrast and
higher scatter, it can provide comparable diagnostic utility.
Table V summarizes representative studies across modalities;
notably, the last row shows this study ResNet-18 on CBCT
markedly outperforming prior CBCT efforts (Ali 2023: 65.9%;
Ali 2024: 58.3%), while approaching the performance reported
for strong CTA baselines. While deeper residual or hybrid
CNN-Transformer models may capture richer vascular fea-
tures, the findings establish that ResNet-18 provides a strong
and clinically meaningful baseline without heavy computa-
tional demands.
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The improvement over prior CBCT studies is striking. Ali
et al. [39] achieved only 58.3% accuracy with VGGI11, while
Ali et al. [38] reported 65.9% accuracy with ResNet-18 on a
binary task. In contrast, the present study achieved nearly 89%
accuracy on a more challenging three-class problem, advancing
both the task complexity and the absolute performance margin.
These improvements stem from patient-wise data partitioning
(eliminating slice leakage), rigorous preprocessing with realis-
tic augmentation (reducing bias and variance), and a two-phase
fine-tuning strategy with label smoothing and class weighting
(stabilizing training and improving calibration). Even though
ResNet-18 is shallower than ResNet-50, its residual design
effectively captured subtle vascular features when paired with
optimized training strategies. Nonetheless, certain limitations
remain. The dataset was limited to a single center, and val-
idation was internal, raising questions about generalizability
across institutions, scanners, and protocols. Slice-level labels
served as proxies for patient-level grading, which may not
fully reflect global collateral status. Future work should explore
multi-center external validation, patient-level modeling with
attention-based frameworks, and the integration of 2.5D/3D
encoders or CNN-Transformer hybrids. Physics-informed pre-
processing, such as scatter correction and denoising, may also
further improve CBCT performance.

Overall, the results highlight a clear research gap addressed
by this study: most prior CBCT efforts used shallow models
and binary tasks, resulting in modest accuracy and limited
clinical value. By combining CBCT with a residual architec-
ture (ResNet-18), expanding to three-class grading, and apply-
ing systematic data augmentation, this study demonstrates a
substantial step forward in accuracy, calibration, and clinical
relevance. This design choice leverages both CBCT’s intra-
procedural accessibility and ResNet-18’s efficiency, underscor-
ing the potential of CBCT-based deep learning as a dependable
tool for collateral assessment in hyperacute stroke workflows.

VIII. CONCLUSION

This study introduced a ResNet-18 based deep learning
framework for automated tri-class classification of collateral
circulation (Good, Moderate, Poor) in ischemic stroke patients
using intra-procedural CBCT imaging. By employing patient-
wise data partitioning, rigorous preprocessing, and systematic
augmentation, the model achieved robust performance with
a validation accuracy of approximately 88.8%, micro-AP of
0.947, and macro-AUC of 0.958. The framework demonstrated
consistent convergence, balanced class-wise metrics, and well-
calibrated probability estimates suitable for threshold-based
clinical decision support.

Compared to prior CBCT studies that employed shallower
architectures such as VGG11 and earlier ResNet-18 implemen-
tations, the proposed model substantially improved discrimina-
tive power and calibration reliability. Misclassifications were
concentrated in the Moderate class, reflecting inherent clinical
ambiguity and highlighting the need for targeted strategies to
enhance intermediate grading.

The study is limited by its single-center dataset and slice-
level labeling, which may restrict generalizability. Future work
should therefore focus on external multi-center validation,
volumetric or hybrid CNN-Transformer architectures, and
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uncertainty-aware decision models.In addition, future studies
may explore patient-level aggregation (case-level prediction
rather than slice-level), 2.5D/3D encoders to incorporate vol-
umetric context, and uncertainty-aware calibration strategies
to support safer clinical deployment in borderline Moderate
cases. Overall, the findings confirm the feasibility of ResNet-
18—driven CBCT analysis as a reliable, efficient tool to support
neuroradiologists in collateral grading during hyperacute stroke
care.
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