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Abstract—Object detection in buffet-style environments is
highly challenging due to densely stacked tableware, frequent
occlusions, strong illumination reflections, and substantial visual
similarity across categories, all of which undermine the robustness
of existing detectors. To address these issues, this paper proposes
an improved real-time detection transformer–based model with
a lightweight design while significantly enhancing multi-scale
feature representation. First, a re-parameterized stem module
is introduced to strengthen shallow texture extraction with negli-
gible computational overhead. Second, a dynamic multi-kernel
refinement module is developed to enrich directional texture
modeling and cross-scale semantic aggregation. Furthermore, a
heterogeneous-kernel feature pyramid network is constructed by
integrating adaptive multi-scale fusion, multi-kernel fusion nodes,
and a lightweight upsampling strategy to improve cross-level
feature consistency and mitigate aliasing caused by conventional
upsampling. Experimental results on a self-constructed buffet-
scene dataset demonstrate that the proposed method improves
mAP50 and mAP50:95 by 2.6% and 1.9%, respectively, while
reducing parameters and GFLOPs by 42.6% and 42.3%, and
increasing inference speed to 103.1 FPS. On Dota v1.0 and
SkyFusion data sets, the small target detection ability has also
been improved. The substantial reductions in computation and
model size further confirm the effectiveness and practical value
of the proposed approach for complex catering scenarios.

Keywords—RT-DETR; lightweight object detection; multi-scale
feature fusion; attention enhancement; buffet-scene perception

I. INTRODUCTION

Object detection in buffet scenarios is a fundamental com-
ponent of intelligent catering systems, and its results directly
affect key processes such as dish consumption analysis, au-
tomatic replenishment scheduling, and checkout verification.
However, compared with ordinary scenes, buffet environments
are characterized by densely stacked tableware, frequent oc-
clusions caused by serving actions, strong reflections from
metal or ceramic surfaces, and high visual similarity between
categories. These factors make small and overlapping objects
highly prone to missed detections; highlighted regions disrupt
texture consistency, while visually similar categories lead to an
increase in false positives. Therefore, achieving high-precision,
robust, and real-time object detection in complex buffet scenar-
ios remains a major challenge for intelligent catering systems.

In recent years, research on object detection in dense
scenes, small-object detection, and complex illumination con-
ditions has continued to advance [1]. On the one hand, Wang
et al. proposed YOLOv10, which removes non-maximum
suppression and performs holistic end-to-end architectural op-
timization, achieving leading accuracy across different model
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scales on the COCO benchmark [2]. On the other hand, Wang
et al. introduced RODD, a dedicated benchmark for reflected-
object detection, and demonstrated that multiple state-of-the-
art detectors still suffer from noticeable performance degra-
dation under reflective-surface scenarios [3]; meanwhile, a
NeurIPS 2024 study proposed illumination-invariant feature
learning for low-light object detection and reported consistent
gains when integrated into existing detection frameworks, indi-
cating that illumination variation remains a non-trivial bottle-
neck [4]. In addition, two-stage detection frameworks are often
limited by their high inference cost in resource-constrained
deployments; for example, Liu et al. proposed simplification
strategies for on-device inference of two-stage detectors to
reduce computational complexity [5]. Transformer-based de-
tectors, such as DETR [6] and Deformable DETR [7], model
global context via self-attention and thus exhibit stronger
robustness in complex scenes. However, standard DETR still
suffers from slow convergence and unstable matching. Al-
though Zhao et al. proposed RT-DETR, which enables real-
time end-to-end transformer detection through structural sim-
plification [8], subsequent studies have continued to improve
its training strategy and small-object detection capability.
Overall, these advances suggest that, for densely stacked and
heavily occluded catering scenarios, there remains a pressing
need for new detection solutions that strengthen shallow spatial
feature representation and cross-scale feature fusion.

To cope with the above challenges, existing studies have
proposed various improvement strategies from the perspectives
of backbone enhancement, multi-scale fusion design, and
attention mechanism optimization. However, these methods
often focus on a single aspect, such as strengthening con-
volutional representation to improve fine details, enhancing
feature pyramids to boost small-object detection, or intro-
ducing sparse attention to mitigate background interference.
For buffet tableware detection scenarios where density, small-
object scale, strong reflections, and occlusions coexist, a
systematic solution is still lacking. In particular, under the
constraints of lightweight design and real-time inference, how
to enhance spatial detail modeling and cross-scale feature
consistency within a limited computational budget remains a
key bottleneck.

In this work, we propose an improved model based on RT-
DETR as the baseline, specifically tailored for complex buffet
scenarios. The main contributions of this paper are summarized
as follows:

• We propose a lightweight, end-to-end detection frame-
work tailored for complex self-service buffet scenar-
ios, where dense stacking, severe occlusion, specular
reflections, and high inter-class visual similarity com-
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Fig. 1. Network structure of the proposed improved RT-DETR model.

monly coexist. The proposed framework is designed
in a system-oriented manner, jointly optimizing fea-
ture extraction, multi-scale representation, and fusion
efficiency to enable robust real-time detection.

• To enhance fine-grained discrimination and scale-
aware representation under dense stacking and reflec-
tion interference, we design a lightweight backbone
by integrating RepStem [9] with the proposed CDIM
(Cross-Scale Fusion Dynamic Dual-Depth Inception
Module). As a scene-driven enhancement unit, CDIM
combines dynamic dual-path convolution with an
adaptive Inception-style kernel selection mechanism,
strengthening local texture perception and cross-scale
context modeling while maintaining low computa-
tional overhead.

• We further construct HKFPN (Heterogeneous Kernel
Feature Pyramid Network) as a scale-aware pyra-
mid fusion architecture specifically for buffet scenes.
HKFPN introduces heterogeneous large-kernel selec-
tion across pyramid levels and incorporates CMSF
(Cross-stage Multi-Scale Fusion) and SMUB (Shift-
Channel Mixed Upsampling Block) as collaborative
fusion nodes together with an adaptive fusion mech-
anism [10]. This coordinated design mitigates feature
aliasing and detail loss induced by conventional up-
sampling, thereby improving feature consistency and
detection robustness for small, medium, and large
objects in cluttered environments.

The remainder of this paper is organized as follows.
Section II reviews related work on object detection in dense
scenes, small-object detection, and transformer-based detec-
tors. Section III describes the proposed method in detail,
including the overall architecture and key modules. Section IV
presents extensive experimental results and comparisons with
state-of-the-art methods. Finally, Section V discusses the lim-
itations of the proposed approach and outlines directions for
future work, while Section VI concludes the paper.

II. RELATED WORK

A. Object Detection in Dense and Complex Catering Scenar-
ios

In dense near-field environments such as retail shelf recog-
nition, unmanned vending systems, kitchen scene monitor-
ing, and buffet tableware sorting, objects are often closely
arranged, visually similar in shape, and heavily occluded.
Traditional detectors tend to degrade significantly under such
conditions. Goldman et al. constructed the SKU-110K densely
shelf benchmark and demonstrated that mainstream detectors
suffer notable performance degradation under homogeneous
and crowded target distributions [11]. YOLO-based kitchen
perception systems have achieved real-time recognition of
cookware and cooking states, validating the applicability of
lightweight detectors under strong reflections and complex
illumination [12]. In buffet tableware recycling and sorting
applications, RGB-D detection has been employed for table-
ware localization and grasping, providing engineering-oriented
solutions to stacking and occlusion problems [13], [14]. For
ceramic tableware surface defect detection, domain-specific
datasets have been proposed, and YOLOv8-based frameworks
have been developed. However, multi-scale small defects re-
main challenging for detectors, and reflective or patterned
surfaces easily cause false detections or missed detections,
underscoring the need for stronger fine-grained feature rep-
resentation and targeted augmentations [15].

These studies collectively show that complex illumination,
dense arrangement, and strong visual similarity are the primary
challenges in tableware detection tasks, requiring more robust
fine-grained feature modeling and cross-scale information fu-
sion.

B. Improvements on RT-DETR

Research on improving RT-DETR mainly focuses on back-
bone enhancement, multi-scale fusion strengthening, attention
optimization, and supervision strategy design. In terms of
backbone enhancement, some works incorporate more efficient
convolutional structures such as PConv [16] and FasterNet [17]
to improve low-level texture and edge modeling, thereby
enhancing small-object separability in dense scenes.
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TABLE I. COMPARISON OF RELATED STUDIES AND THEIR STRENGTHS AND LIMITATIONS

Line of Work Representative Works Strengths Limitations in Buffet Scenes

Dense benchmark analysis SKU-110K [11] Quantifies degradation in dense, homo-
geneous layouts.

Omits buffet-specific factors like specular highlights,
fine-grained similarity.

Real-time kitchen perception Kitchen YOLO [12] Real-time recognition under complex il-
lumination.

Not optimized for dense stacking and small objects;
prone to confusion under occlusion.

RGB-D sorting and grasping RGB-D pipelines [13], [14] Depth cues improve robustness to occlu-
sion and stacking. Requires extra sensors and is less scalable.

Defect inspection on ceramics Ceramic defect detection [15] Effective for localized surface anomaly
recognition. Different objective from multi-class instance detection.

For multi-scale fusion, structures such as FPN [18],
PANet [19], and BiFPN [20] are widely used to improve
cross-layer feature consistency. Meanwhile, ASFF [21] and
CARAFE [22] enhance small-object representation through
adaptive weighting or content-aware upsampling, effectively
mitigating feature aliasing introduced by conventional upsam-
pling.

Regarding attention mechanism optimization, lightweight
modules such as CBAM [23], Coordinate Attention [24],
and HiLo Attention [25] strengthen spatial feature selection
and global contextual representation, helping maintain stable
feature modeling under complex background interference.

Despite the encouraging progress, existing approaches still
exhibit clear limitations when deployed in buffet-like catering
environments. A comparative analysis of their strengths and
weaknesses is summarized in Table I.

III. METHOD

Building upon the original structure of RT-DETR, this
work introduces a systematic lightweight design and a se-
ries of detection-performance enhancement strategies, result-
ing in an improved model. Without significantly increasing
computational cost, we incorporate lightweight modules to
strengthen multi-scale feature extraction and boost fine-grained
representation capability. In the backbone stage, a lightweight
RepStem module is introduced to reduce redundant parameters
while enhancing shallow feature discrimination. For deep
feature extraction, the proposed CDIM module reinforces
multi-directional texture modeling and cross-scale semantic
interaction. Furthermore, to address the limitations of tradi-
tional feature pyramids, we design a heterogeneous kernel
fusion network, HKFPN, which integrates adaptive multi-scale
fusion and ensures stronger cross-layer feature consistency.
The overall architecture is illustrated in Fig. 1.

A. Lightweight RepStem Backbone

In restaurant scenarios, images often suffer from uneven
illumination, specular reflection, and severe edge blur, which
cause the traditional stem layer in RT-DETR to struggle
in capturing fine-grained details and maintaining a balance
between local and global information. Although the conven-
tional downsampling design is simple and efficient, it provides
insufficient shallow feature extraction during the early stages
and cannot fully support real-time deployment when deeper
layers introduce substantial computational cost. To address
this issue, a lightweight RepStem module is introduced at the
front end of the network to enhance shallow feature repre-
sentation while improving inference efficiency. The structural

differences relative to the traditional stem layer are shown in
Fig. 2.

The core idea of the RepStem design is as follows. During
the training stage, a multi-branch structure is adopted for three
convolutional layers, maintaining a 4× downsampling rate
while dynamically learning multi-branch feature enhancement
and high-efficiency fusion. The process is illustrated in Eq. (1)
and Eq. (2), where the fused shallow features capture richer
edge information and directional detail cues.

Wfused =

n∑
i=1

Wi ∗ Padi (1)

bfused =

n∑
i=1

bi (2)

During inference, the multi-branch parameters are equiva-
lently merged into a single 3× 3 convolution kernel, enabling
improved feature diversity without increasing computational
overhead. This mechanism can be viewed as a “train-time
over-parameterization, inference-time simplification” design,
providing stronger feature modeling during the learning stage
while maintaining lightweight computation during deployment.
The fused convolutional operation is shown in Eq. (3).

y = Conv(x,Wfused) + bfused (3)

Here, Wi denotes the convolution kernel of the i-th branch,
Padi is the corresponding padding matrix used to ensure
unified kernel sizes, and bi is the bias term of the i-th branch.
Wfused and bfused represent the equivalent fused kernel and bias
after branch merging.

Consequently, the RepStem module achieves a 4× down-
sampling ratio by applying two stride-2 convolutions in the first
two layers, while the third convolution operates with stride 1
for feature refinement, as shown in Eq. (4) and Eq. (5):

xstem = f3(f2(f1(x))) (4)

fi(x) = σ(BN(Convi(x))) (5)

where, fi(·) denotes the convolutional mapping of the i-th
layer, σ represents the activation function, and xstem is the final
output of the RepStem module.
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Fig. 2. Comparison between the proposed RepStem module and the original
RT-DETR stem block. The left part illustrates the training- and

inference-stage architectures of RepStem with multi-branch convolutions,
while the right part shows the conventional ConvNorm-based stem
composed of three stacked ConvNorm layers followed by a 3× 3

max-pooling layer that achieves 4× downsampling.

In RepStem, f1(·) and f2(·) are implemented as stride-
2 convolutions for spatial downsampling, whereas f3(·) uses
stride 1 to further refine the representation without changing
the resolution.

B. Dynamic Multi-Kernel Inception Refinement Block

Convolutional neural networks rely on fixed convolution
kernels and static feature extraction mechanisms, which exhibit
inherent limitations in many scenarios, particularly in complex
restaurant environments where strong reflections, structural in-
consistencies, and high inter-class similarity frequently occur.
Traditional convolutions extract features using fixed kernel
sizes and directions, and these receptive fields and weights
remain fixed during inference. Such a static design often
ignores the dynamic variations in image content, making it
difficult for the model to handle multi-scale objects, strong
reflections, occlusions, and fine-grained structures.

To address these challenges, this paper introduces a
lightweight and dynamically adaptive feature refinement mod-
ule, termed CDIM. This module enhances feature representa-
tion while preserving real-time performance and computational
efficiency by adaptively selecting multi-kernel receptive fields
and cross-depth feature fusion., as illustrated in Fig. 3.

At the bottom layer, D3ID designs three parallel depthwise
convolution branches. To enable adaptive selection under dif-
ferent spatial contexts, the module introduces dynamic kernel
weighting, allowing the network to adjust the contribution of
each directional kernel based on the input content. Through
lightweight reparameterization, the module generates dynamic
selection weights for the three branches, and the final dynamic
depthwise convolution is computed as in Eq. (6) and Eq. (7):

α = Softmax (W (AvgPool(x))) ∈ R3 (6)

DIDC(x) = αsDWs(x) + αhDWh(x)

+ αvDWv(x)
(7)
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Fig. 3. CDIM is composed of several dynamic branches: Dynamic
multi-depth convolution D3ID (Dynamic Dual-Depth Inception DWConv),

dynamic mixing unit D3IM (Dynamic Dual-Depth Inception Mixer), CGLU
(Convolutional Gated Linear Unit), and D3IMB (Dynamic Dual-Depth

Inception Mixer Block). Combined with the CSP partition-and-fusion design,
these components are integrated into a unified modular structure.

where, DWs denotes square depthwise convolution, DWh

horizontal strip depthwise convolution, and DWv vertical strip
convolution. The input tensor x ∈ RB×C×H×W represents the
given feature map.

On this basis, D3IM further splits the input along the
channel dimension into multiple groups, extracting features
with dynamic kernels of different receptive field sizes, and
subsequently fusing them through a 1 × 1 convolution. This
design aggregates multi-scale upper–lower semantic cues and
enhances the model’s capacity to jointly encode local and
global information.

D3IM then combines the above dynamic paths with a
residual connection and a CGLU-based gated dual-branch
structure. The first branch employs Mixer to realize dynamic
multi-kernel feature aggregation, while the second branch uses
CGLU to perform lightweight nonlinear modulation and adap-
tive feature recalibration. A learnable LayerScale parameter is
introduced to stabilize the optimization by gradually increasing
the residual scaling during training. Additionally, an optional
DropPath is applied to improve generalization. The fused
output in the inference stage is computed as:

DCMB(x) = x+ γ1DIM(BN(x)) + γ2MLP(

BN(x+ γ1DIM(BN(x))))
(8)

where, γ1 and γ2 are learnable scaling coefficients.

C. High-Efficiency Multi-Scale Adaptive Bidirectional Feature
Pyramid Network

To address the inconsistency of multi-scale feature repre-
sentation caused by densely distributed small objects, rapid
occlusions, and strong reflections in catering scenarios, and
to further enhance cross-scale feature fusion capability while
maintaining lightweight design and real-time performance,
we propose a high-efficiency multi-branch multi-scale feature
pyramid network, termed HKFPN.

The proposed structure is inspired by the overall design
philosophy of the MAFPN module and integrates lightweight
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Fig. 4. Features {P3, P4, P5} extracted from the backbone are first
projected to aligned channel dimensions through pointwise convolutions,

forming the three base features {F1, F2, F3} that serve as the initial nodes
of the HKFPN structure. On top of this, we construct lateral connections and

cross-scale fusion pathways for each level, enabling the network to
simultaneously receive high-level semantic cues and low-level spatial details.

principles to perform comprehensive optimization on multi-
scale feature fusion and upsampling pathways. HKFPN con-
sists of three major components: an adaptive multi-scale fea-
ture fusion module, a multi-kernel aggregation node, and an
efficient upsampling module. Together, these components con-
struct a high-performance, scalable, and jointly global–local
expressive feature fusion architecture.

1) Adaptive multi-scale feature fusion mechanism: HKFPN
achieves bidirectional feature flow across levels P3–P5 through
densely connected top-down and bottom-up pathways. Unlike
traditional FPN and BiFPN, which rely on fixed-weight fusion
for cross-scale aggregation, HKFPN introduces a spatially
adaptive fusion strategy that dynamically evaluates feature
importance across different scales and semantic levels at each
spatial location. Specifically, the fusion weights are predicted
per pixel and normalized across scale branches, enabling
content-aware integration by assigning higher weights to the
most informative scale for a given position. The overall struc-
ture is illustrated in Fig. 4.

Let {Fi}3i=1 denote the aligned multi-scale features to be
fused, where Fi ∈ RB×C×H×W . We first concatenate them
along the channel dimension and apply two 1×1 convolutions
to obtain the unnormalized fusion logits:

S = Conv1×1

(
Conv1×1

(
Concat(F1, F2, F3)

))
,

S ∈ RB×3×H×W .
(9)

A spatially adaptive weighting tensor W ∈ RB×3×H×W is
then obtained by applying Softmax along the scale (branch)
dimension at each spatial location:

Wi(x, y) =
exp(Si(x, y))∑3
j=1 exp(Sj(x, y))

, i ∈ {1, 2, 3}, (10)

which enforces
∑3

i=1 Wi(x, y) = 1 for every (x, y).

The final fused feature map Fout ∈ RB×C×H×W is
computed by a per-location weighted summation:

DWCp×p DWCq×q DWCs×s

BN BN BN

SiLU SiLU SiLU

+

Conv1×1，C*2
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(a)CMSF
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Fig. 5. (a) CMSF adopts parallel convolution branches of different kernel
sizes. This design preserves the model’s representational capability while

reducing computational overhead and mitigating performance degradation in
deep networks. (b) MSFB incorporates a Shift-Channel Mix operator to

effectively rearrange channel information, achieving efficient feature
interaction and cross-scale fusion. (c) MSDK employs multi-branch

depthwise convolutions with different kernel sizes at different stages (e.g.,
{1,3,5}) to enhance scale sensitivity through parallel and depthwise

aggregated feature extraction.

Fout(:, x, y) =

3∑
i=1

Wi(x, y)Fi(:, x, y), (11)

where, Wi(x, y) is a scalar weight shared across channels
(i.e., broadcast along the channel dimension). This fusion
strategy enables the network to dynamically adjust the con-
tributions of different scales at each spatial location, thereby
improving the joint encoding of spatial details and semantic
representations.

2) Multi-scale large-kernel aggregation node: In the fea-
ture refinement stage following cross-scale fusion, we adopt
the CMSF module as the basic aggregation unit.

The CMSF structure integrates the CSP paradigm with
MSFB (Multi-Scale Fusion Block), enabling efficient multi-
scale feature extraction by transmitting partial residual features
and performing depth-wise multi-kernel aggregation. The over-
all structure is illustrated in Fig. 5.

The input features to the CMSF module are first split
into two streams via a 1×1 convolution. One stream directly
preserves the input features to avoid spatial information loss,
while the other passes through a multi-scale MSFB branch to
construct multi-scale receptive fields.

Finally, the two processed branches are concatenated
channel-wise and subsequently fused by another 1×1 convo-
lution.

In the MSFB module, the core operation is the Multi-
Scale Depthwise Kernel Block (MSDK), which consists of
three parallel depthwise convolution branches. At levels P3,
P4, and P5, different kernel-selection strategies are adopted
to adaptively extract multi-scale features. The Shift-Channel
Mix operator is subsequently applied to enhance channel
interaction, improving the integration of local and global
features. The input is first expanded by a 1×1 convolution,
followed by multi-scale depthwise convolutions and a final
1×1 compression layer to restore the channel dimension.
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The MSFB and CMSF core computations can be formu-
lated as:

MSFB(x) = x+ P2

(
SCM(MSDK(P1(x)))

)
(12)

CMSF(x) = Concat(x1, MSFB(x2))
)

(13)

where, P1(·) denotes the 1×1 convolution for channel
expansion, P2(·) is the 1×1 projection convolution, SCM(·)
represents the Shift-Channel Mix operator, [x1, x2] are the two
branches in the CSP structure, and P (·) is the final 1×1 fusion
convolution at the CSP output.

3) SMUB: Lightweight upsampling module-based on chan-
nel shifting: In feature pyramid networks, the upsampling
operation is a key step for establishing cross-level interactions.
However, traditional upsampling methods often suffer from
feature misalignment and semantic discontinuity, and their
computational cost increases significantly when aiming to
preserve high-resolution details. In CMSFB, the SMUB is
constructed by improving upon the EUCB module in EM-
CAD [26] and the ShiftChannelMix operator in BHViT [27],
integrating a channel-shifting mixed strategy to achieve a
unified design that enhances feature representation while
maintaining lightweight computation. Under the constraint of
low computational complexity, SMUB effectively alleviates
the feature inconsistency introduced during upsampling and
improves spatial continuity and semantic coherence in high-
resolution features. The overall structure is illustrated in Fig. 6.

Its computation pipeline is formulated as:

xup = DWConv(Upsample(x)) (14)

xmix = ShiftChannelMix(xup) (15)

xout = Conv1×1(xmix) (16)

The Shift Channel Mix module redistributes information
across channels by cyclically shifting subsets of channels,
allowing different channel groups to perceive information from
different spatial positions. This improves the feature repre-
sentation ability without introducing computational overhead
or learnable parameters. By reordering features via group-
wise channel shifting, the module enhances cross-channel
interaction. Its computation is expressed as:

xmix(c, h, w) = x
(
(c+∆c) mod C, h, w

)
(17)

where, C is the total number of channels and ∆c denotes
the shift step size.

Up 2× 

DWC3×3
BN+SiLU

ShiftChannelMix

Conv1×1

(a)SMUB

Input

(b)ShiftChannelMix

Fig. 6. (a) The upsampling depthwise convolution layer first performs 2×
upsampling on the input feature and applies depthwise convolutions for local

structure refinement, thereby enhancing spatial consistency under enlarged
resolutions. The output is then fed into the Shift Channel Mix module for
further feature enhancement, and subsequently compressed by a pointwise

convolution for efficient channel reduction. (b) The Shift Channel Mix
module divides the input feature into four equal groups along the channel

dimension, followed by cyclic shifts in the positive and negative horizontal
and vertical directions. The shifted features are finally concatenated and
fused to achieve cross-channel information interaction and local feature

refinement.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

To support robust object detection in complex self-service
buffet scenarios, we construct a composite tableware detec-
tion dataset by integrating publicly available data with self-
collected samples into a unified benchmark. The dataset fo-
cuses on four object categories commonly encountered in
buffet environments: cup, hand, plate, and tongs. We collect
samples from complementary sources, including publicly re-
leased open-source datasets [28], [29], [30], [31], [32], publicly
accessible royalty-free images gathered from online resources,
and photographs captured by ourselves in real or near-real
buffet environments. All self-collected images are manually
annotated using LabelImg following the same annotation pro-
tocol as the public datasets and are subsequently incorporated
into the final dataset.

To ensure consistency across heterogeneous sources, a
unified preprocessing pipeline is applied to all data. Label
normalization is performed to resolve naming inconsistencies
and redundant labels across different datasets, such as dish
versus plate and hand versus human hand.

All annotations are mapped to the four unified target
categories, while labels irrelevant to the detection task are
removed. During quality filtering, all images and correspond-
ing annotations are manually inspected and cleaned, and low-
quality samples with severe blur or excessive occlusion are
discarded. Meanwhile, obvious annotation errors are corrected
and invalid annotations are removed, and annotations from
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TABLE II. CATEGORY-WISE DISTRIBUTION OF THE EXPERIMENTAL
DATA SETS

Category Number of Images

Hand 2415

Plate 1968

Cup 1756

Tongs 1570

Total 7709

heterogeneous formats are uniformly converted into the YOLO
format.

The final dataset is split into training, validation, and
testing subsets with a ratio of 7:2:1, while maintaining approx-
imately balanced category distributions across splits. In total,
the dataset contains 7,709 images, including 5,397 training
samples, 1,531 validation samples, and 781 testing samples.
The images span diverse viewpoints, brightness levels, and
stacking complexities, providing a reliable basis for quantita-
tive evaluation, and the category distribution of the constructed
dataset is summarized in Table II.

Due to the wide variation in original image resolutions, all
samples are resized to a fixed resolution of 640× 640 during
training to ensure input consistency and stable optimization
while preserving aspect ratios as much as possible. Standard
data augmentation techniques, including random flipping, color
jittering, and affine transformations, are further applied to
enhance model generalization under complex buffet conditions.

B. Experimental Settings

All experiments are conducted on an Ubuntu 22.04 oper-
ating system. The hardware configuration includes an Intel(R)
Xeon(R) Platinum 8470Q CPU and an NVIDIA GeForce
RTX 5090 GPU with 32 GB memory, and 90 GB system
RAM. Python 3.12 and PyTorch 2.3.0 are used for deep-
learning development, together with CUDA 12.1 as the GPU
acceleration platform.

To ensure consistency of the experimental settings, the
baseline RT-DETR is trained for 72 epochs following the
official training schedule of its original implementation. In con-
trast, our model incorporates additional modules such as multi-
scale feature fusion and adaptive weighting, which increase the
optimization difficulty. Empirically, we observe that a longer
training schedule is required to reach stable convergence.
Therefore, we set the training duration of the proposed model
to 300 epochs to ensure sufficient optimization while avoiding
evident overfitting. During training, no optimization instability
or divergence is observed, and both the training loss and
validation performance exhibit smooth convergence trends. As
shown in Fig. 7, the proposed method demonstrates stable
convergence behavior in terms of mAP50 and mAP50:95. The
batch size is set to 32, and the AdamW optimizer is adopted
with an initial learning rate of 0.0001 and a weight decay of
0.0001.

C. Evaluation Metrics

In this study, we adopt several commonly used evaluation
metrics, including mean Average Precision (mAP), floating-

Fig. 7. Convergence curves of the baseline RT-DETR and the proposed
method on the buffet tableware dataset.

point operations per second (GFLOPs), number of parameters
(Params), and frames per second (FPS). Among them, mAP
serves as the primary indicator to evaluate detection perfor-
mance across all categories and is defined as follows:

mAP =

∑N
n=1 APn

N
(18)

D. Ablation Studies

To comprehensively evaluate the contribution of each pro-
posed module to the overall detection performance, RT-DETR-
r18 is adopted as the baseline model, upon which lightweight
RepStem, the dynamic multi-kernel refinement module CDIM,
and the heterogeneous multi-scale fusion network HKFPN
are incrementally incorporated. All ablation experiments are
conducted under identical training configurations and environ-
mental settings. The results are summarized in Table III, where
“✓” indicates that the corresponding module is enabled.

From the first row of results, it can be observed that replac-
ing the original stem with the lightweight multi-branch feature
extraction module RepStem leads to a notable improvement.
Specifically, mAP50 increases to 54.8%, and mAP50:95 rises
to 42.3%. Meanwhile, the parameter count is slightly reduced
to 19.8M, and the inference speed increases to 87.5 FPS.

Introducing the D3IM module further enhances detection
performance. With D3IM, mAP50 is boosted to 55.1%, and
mAP50:95 reaches 41.9%. At the same time, the parameter
size decreases to 13.1M, while inference speed increases to
96.2 FPS. This demonstrates that the multi-branch dynamic
convolution mechanism of D3IM effectively strengthens the
model’s ability to capture fine-grained spatial cues while
maintaining lightweight characteristics, making it particularly
effective for small objects and complex fine-structure features.

After integrating the high-efficiency multi-scale fusion
network HKFPN, the model achieves its best performance.
mAP50 increases to 56.9%, and mAP50:95 improves to 44.2%.
Meanwhile, the total parameters reduce to 11.6M, and the
inference speed reaches 103.1 FPS, representing over 18% im-
provement compared with the baseline. HKFPN enables more
adequate semantic communication and cross-scale contextual
aggregation through efficient spatial grouping and multi-scale
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fusion strategies while mitigating the semantic misalignment
commonly observed in traditional FPN structures. This results
in a more balanced trade-off between accuracy and efficiency.

Overall, the incremental incorporation of each proposed
module consistently contributes to the performance gains of
the detection model. RepStem primarily enhances shallow
feature extraction, D3IM significantly improves multi-scale
perceptual capability, and HKFPN further strengthens cross-
scale fusion and semantic aggregation, jointly leading to the
best accuracy–efficiency balance.

E. Comparative Experiments

To further validate the effectiveness of the proposed method
in practical detection tasks, we conduct a comprehensive
comparison against various mainstream object detectors under
the same hardware platform and dataset. The experimental
results are summarized in Table IV.

Compared with conventional two-stage and one-stage de-
tectors such as SSD and Faster R-CNN, our model achieves
significantly higher detection accuracy under a lightweight ar-
chitecture. With only 11.6M parameters and 33.8 GFLOPs, the
proposed model attains 56.9% mAP50 and 44.2% mAP50:95.

When compared with lightweight models such as Mo-
bileNet and EfficientDet, our method still demonstrates a
more favorable trade-off between accuracy and efficiency. Mo-
bileNet has only 3.2M parameters and 5.4 GFLOPs, offering
fast inference but insufficient detection precision. EfficientDet-
D0, with 3.7M parameters and 3.9 GFLOPs, slightly improves
efficiency, yet its mAP50 remains at 51.2%, indicating that
the model struggles to simultaneously achieve both lightweight
computation and high accuracy.

Compared with YOLO-series detectors, the proposed
method further exhibits stronger accuracy advantages.
YOLOv5s, YOLOv7-tiny, and YOLOv8s are representative
lightweight detectors, which achieve mAP50 values of 53.1%,
53.4%, and 54.5%, respectively—still lower than the 56.9%
achieved by our model. YOLOv8m improves accuracy to
55.6%, but its parameter size of 25.8M results in a slow
inference speed of only 75.8 FPS, significantly lagging behind
the 103.1 FPS achieved by our method.

It is also noteworthy that although YOLOv9s and
YOLOv10s achieve mAP50 values of 55.8% and 55.1%, re-
spectively, their inference speeds of 85.2 FPS and 74.9 FPS are
not competitive. In contrast, our model maintains the highest
inference speed 103.1 FPS while simultaneously achieving
56.9% mAP50 and 44.2% mAP50:95, demonstrating a superior
balance between accuracy and efficiency.

F. Generalization Experiments

To evaluate the detection performance and cross-dataset
generalization ability of the proposed improved RT-DETR
model on different types of small-object detection benchmarks,
comparative experiments were conducted on the DOTA v1.0
and SkyFusion datasets, and the results are reported in Table V.

On the DOTA v1.0 dataset, compared with the original
RT-DETR, the proposed method achieves improvements of
2.3% and 1.4% in mAP50 and mAP50:95, respectively. On

RT-DETR Ours

Fig. 8. Qualitative comparison between RT-DETR (left) and the proposed
method (right). Green and yellow circles mark two typical regions where the

baseline model fails to detect objects while the proposed method
successfully recognizes them with significantly higher confidence.

the SkyFusion dataset, the improved model also demonstrates
stable performance gains, with mAP50 and mAP50:95 increased
by 0.8% and 0.9%, respectively. Although the absolute im-
provements are relatively modest, the consistent gains across
different imaging conditions and data distributions indicate that
the proposed method exhibits favorable cross-dataset general-
ization capability.

G. Visualization Analysis

To further verify the effectiveness of the proposed method
in complex buffet scenarios, we compare the visual detection
results between the baseline RT-DETR and our improved
model. The qualitative analysis is shown in Fig. 8. RT-DETR
exhibits multiple missed detections in small-object regions and
partially occluded areas. For example, the hand holding a plate
on the left side of the image is completely undetected by the
baseline model, and the hand interacting with the serving tongs
in the central region is only partially recognized, resulting in
the loss of important semantic cues.

In contrast, our improved model successfully detects all of
these targets, demonstrating stronger robustness to occlusion,
illumination variations, and fine-grained cluttered environ-
ments. More importantly, the confidence scores also increase
significantly. These results indicate that the enhanced multi-
scale representation and adaptive fusion mechanisms effec-
tively improve the discriminability of subtle structural details.

V. DISCUSSION

Despite the promising performance achieved by the pro-
posed method, several limitations remain. Performance can still
degrade under extremely dense stacking or severe occlusion,
where overlapping instances cause critical visual cues to be
missing in monocular RGB images. Moreover, although ro-
bustness to reflective surfaces is improved, extremely strong
specular highlights or saturated regions may still obscure
textures and boundaries, and such reflection-induced informa-
tion loss cannot be fully removed by a purely vision-based
approach. In addition, the current evaluation is conducted on
a specific buffet tableware distribution, and generalization to
substantially different catering layouts, novel categories, or
unseen material properties requires further validation. Finally,
while the framework targets real-time deployment, the added
modules inevitably introduce extra computational cost, and
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TABLE III. ABLATION STUDY OF EACH PROPOSED MODULE

RT-DETR RepStem D3IM HKFPN mAP50 mAP50-95 GFLOPs Params(M) FPS
✓ 54.5 41.6 58.6 20.2 86.9
✓ ✓ 54.8 42.3 51.7 19.8 87.5
✓ ✓ ✓ 55.1 41.9 39.6 13.1 96.2
✓ ✓ ✓ ✓ 56.9 44.2 33.8 11.6 103.1

TABLE IV. COMPARISON WITH STATE-OF-THE-ART DETECTORS ON THE
BUFFET TABLEWARE DATASET. ALL FPS RESULTS ARE EVALUATED ON

AN NVIDIA RTX 5090 GPU FOR FAIR COMPARISON

Model mAP50 mAP50-95 GFLOPs Params(M) FPS

SSD 48.3 28.8 24.3 30.6 52.9
Faster R-CNN 50.5 32.5 41.3 105.0 31.9
MobileNetV3 44.6 25.2 5.4 3.2 92.6
EfficientDet 51.2 35.4 3.9 3.7 87.1
YOLOv5s 53.1 37.6 24.0 9.1 119.3
YOLOv7-tiny 53.4 38.1 13.8 6.2 94.8
YOLOv8s 54.5 42.1 28.5 11.1 115.8
YOLOv8m 55.6 43.1 78.7 25.8 75.8
YOLOv9s 55.8 42.3 26.7 7.2 85.2
YOLOv10s 55.1 41.7 21.5 7.2 74.9
Ours 56.9 44.2 33.8 11.6 103.1

TABLE V. GENERALIZATION EXPERIMENTS ON DOTA V1.0 AND
SKYFUSION DATASETS

Dataset Model mAP50 mAP50:95 Params (M)

DOTA v1.0 RT-DETR 54.3 34.9 20.2
Ours 56.6 36.3 11.6

SkyFusion RT-DETR 69.7 38.2 20.2
Ours 70.5 39.1 11.6

ultra-low-power devices may benefit from further compression
or architectural simplification. Future work will investigate
stronger occlusion reasoning, improved robustness under ex-
treme reflections, and enhanced cross-domain generalization
while maintaining real-time efficiency.

VI. CONCLUSION

This paper investigates the challenge of robust object detec-
tion in complex buffet-scene environments, where dense object
stacking, severe occlusion, strong specular reflections, and
fine-grained visual similarity jointly degrade the performance
of existing detectors. To address these issues, an enhanced
RT-DETR-based detection framework is proposed, aiming to
improve fine-grained feature representation and cross-scale ro-
bustness while preserving real-time efficiency. Through the in-
tegration of lightweight structural enhancements and adaptive
multi-scale feature modeling, the proposed method effectively
strengthens discriminative capability under dense and reflective
conditions.

Extensive experiments on a self-service buffet tableware
dataset demonstrate that the proposed approach achieves con-
sistent performance improvements over the baseline RT-DETR
and other representative detectors, particularly in challenging
scenarios with heavy clutter and reflection. Additional cross-
dataset evaluations further verify the generalization ability
of the proposed model on different small-object detection

benchmarks. Overall, this work provides a practical and scal-
able solution for intelligent catering perception, facilitating
accurate and efficient object detection in real-world self-service
restaurant environments.

Future research will focus on incorporating temporal infor-
mation and optimizing deployment on edge devices to further
enhance robustness and real-time performance in more diverse
scenarios.
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