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Abstract—Conventional educational strategies fail to compre-
hend and leverage the diversity of learners’ cognitive strengths
and overlook their innate intelligence, a fundamental driver of
learning. To address this gap, this study proposes a machine
learning (ML) framework to predict students’ overall innate
intelligence scores, independent of subject domain or exam struc-
ture, using the Learning Meta-Learning dataset, which includes
data from 1,021 university students. Seven regression models,
including Decision Tree, Random Forest, Extra Trees, Gradient
Boosting, Extreme Gradient Boosting, LightGBM, and CatBoost,
along with their ensembles have been trained and evaluated.
Explainable Artificial intelligence (XAI) technique SHAP is used
for important feature selection among 54 features and recursive
feature elimination to further enhance model accuracy and
interpretability. In comparison to the conventional method, the
proposed SHAP-based ML approach is lightweight, trained with
selected features, and has shown improvements in accuracy. The
accuracy without XAI on CatBoost is 98.32%, whereas with
XAI on CatBoost it is 98.53% using only 35 features out of 54.
These findings suggest that integrating learners’ cognitive profile
prediction model can aid the design of personalized educational
strategies, moving beyond one-size-fits-all educational strategies.
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learning; innate intelligence prediction; cognitive profiles; student
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I. INTRODUCTION

Academic success is often measured with scores in uniform
exams, which measure subject-specific performance but fail
to capture a learner’s overall intellectual abilities. Although
these scores are extensively being used as a qualifying measure
for academic admissions, employment, and future education
opportunities, they are a limited and impersonal assessment
of talent. Multiple studies argue that standardized exams and
Cumulative Grade Point Average (CGPA) do not adequately
reflect genuine cognitive profiles or learning abilities [1], [2],
[3], [4]. The CGPA is not a reliable indicator of innate intellect
or a reliable predictor of success in life or the workplace.
This is because CGPA and intelligence are two different
notions: while exam scores represent achievement in particular
assessment formats, intelligence is an innate element of hu-
mans and a more precise representative of talents. Traditional
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assessments are designed within fixed frameworks and conse-
quently overlook intellectual diversity and may misrepresent
learners’ true potential [5], [6]. This misalignment highlights
a fundamental flaw in how education systems comprehend and
measure talents.

Intelligence is innate and the fundamental driver of learning
and problem solving. Traditional education systems generally
promote conformance to fixed rules over recognizing and nur-
turing varied intellectual strengths of learners. The belief that
uniform educational strategies, whether in teaching and learn-
ing, curriculum design, or assessments, are sufficient to meet
or assist all students undermines the objective of inclusive and
equitable education. For example, while evaluation methods
may differ between subjects, evaluations within each subject
remain the same for all students. Such approaches focus on
curricular content but fail to acknowledge the varied ways
in which students understand, process, and apply knowledge.
In order to be truly equitable and effective, educational ap-
proaches need to be learner-centered, holistic, and adaptable to
the diverse intelligence scores. Nevertheless, present strategies
continue to be mostly content-focused and disregard learners’
intrinsic potentials [7].

With the advent of Machine Learning (ML) in educational
studies, data-driven decision-making continues to gain pop-
ularity. Many ML models are aimed at predicting academic
success (e.g., CGPA or performance scores) by using parame-
ters like attendance, prior examination results, socioeconomic
background, and geographic location [8], [9], [10], [11], [12].
Although these models provide valuable insights, they continue
to depend on the conventional exam-centric paradigm, inher-
iting its limitations and disregarding deeper cognitive notions
like intrinsic intelligence.

Exam performance is influenced by assessment style
and primarily depends on linguistic and logical intelligence,
whereas individuals possess spatial, bodily-kinesthetic, musi-
cal, interpersonal, and intrapersonal type intelligences as well
[13], [14], [15], [16]. Therefore, exam scores are inadequate
for measuring overall intelligence, and this narrow scope limits
both scientific understanding and educational innovation. It
creates a disparity between how competence is measured and
what intelligence implies, which results in misguided educa-
tional decisions and inadequate learner support [17], [18], [19].
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To bridge this gap, this research aims to predict the overall
innate intelligence, defined as the cumulative Multiple Intelli-
gences (MI) score [14], [20], [21], [22]. Using the Learning
Meta-Learning (LML) dataset, which includes 54 features cap-
turing biological, psychological, behavioral, and metacognitive
data, intelligence is modeled independently of test formats
and study domains [23], [24]. The main contributions are as
follows:

• Training and evaluation of seven regression models,
namely Decision Tree, Random Forest, Extra Trees,
Gradient Boosting, Extreme Gradient Boosting (XG-
Boost), LightGBM, and CatBoost, along with their
ensembles to predict intelligence scores using the 1021
students’ data from the LML dataset.

• Employment of SHAP (Shapley Additive Explana-
tions) to identify and rank the most important features
contributing to the predictions.

• Utilization of SHAP-based Recursive Feature Elim-
ination (RFE) to improve model performance and
interpretability.

• Examination of the contribution of learners’ exter-
nal factors, including age, gender, sleep duration,
chronotype, illusion of competence, and impostor phe-
nomenon, to the prediction of intelligence scores.

• Outlining the prospects and applicability of the pro-
posed methodology, leading to targeted and equitable
educational interventions.

Successful prediction of intelligence scores has the po-
tential to advance personalized education. It allows educa-
tors to tailor teaching-learning techniques, determine learning
outcomes, and create assessment methods that align with
individuals’ intrinsic intelligence, providing a more equitable
alternative to one-size-fits-all approaches. This research sup-
ports the Sustainable Development Goal 4, which advocates
for inclusive and equitable quality education [25]. It can
also advance educational AI and learner-centered heutagogy
by demonstrating that intelligence is both predictable and
actionable, beyond what exam scores alone can do.

II. LITERATURE REVIEW

Conventional exam-based assessments have long domi-
nated academic evaluations, admissions, and recruitment. Al-
though standardized assessments are intended to ensure unifor-
mity across learners, their operational simplicity comes at the
cost of educational depth [1], [2], [3], [4], [17]. They often fail
to reflect true talents, as fixed-format assessment performance
is influenced by various external factors such as access to re-
sources, language barriers, and test-taking strategies [18], [19],
[26], [27]. Hence, more holistic, learner-centered approaches
are needed to promote educational equity and inclusivity [28],
[29]. Fixed-format exams, which primarily measure linguistic
and mathematical abilities only, reinforce a narrow view of
learner intelligence and thus privilege certain learners while
marginalizing others who possess comparable overall cognitive
strengths distributed across different intelligence types [5], [6].

Models such as Spearman’s general intelligence factor (g-
factor) and the Intelligence Quotient (IQ) score have histori-
cally molded the concept of intelligence by proposing a general

cognitive ability that can be measured through standardized
processes. Though these models are frequently employed in
the fields of education and psychology, they are increasingly
being criticized for being reductionist and biased [30], [31].
IQ tests concentrate on linguistic and logical thinking above
creativity, interpersonal abilities, social skills, and practical
reasoning capabilities important for the real world [32], [33],
[34], [35], [36]. Furthermore, these scores show how well
people perform in specific test contexts rather than their overall
ability for learning or knowledge application. In summary,
the target variable of this paper, intrinsic intelligence score,
is a superior, holistic, and actionable measure compared to the
regular intelligence models, such as IQ and the g-factor, which
provide limited and biased perspectives on human potential.

The intelligence score predicted in this study includes
the entire set of MI, embracing the complete spectrum of
human cognitive skills, in contrast to IQ-based models [37].
This MI-based intelligence score has gained popularity among
educators for its potential to provide individualized educational
approaches [38], [39]. However, MI remained underutilized
in educational practices and data-driven applications due to
challenges with operationalizing it as a single, compatible
construct [20]. Therefore, in this study the aggregated measure
that encompasses all types of intelligences have been used,
providing a comprehensive and scalable metric suitable for ML
and educational decisions. Human intelligence types function
interactively rather than in isolation; hence, treating them as
separate and unrelated is both impractical and misleading
[22]. The overall intelligence score provides a unified, quan-
titative representation of an individual’s cognitive potential,
more feasible for modeling and real world application than
focusing only on dominant intelligences [40]. Moreover, many
educational decisions, such as identifying students for enrich-
ment or support, require comprehensive judgments rather than
intelligence-type-specific analysis.

To the best of our knowledge, most ML applications in
education continue to focus on predicting conventional out-
comes, such as grades, test scores, course completion rates, or
dropout risk, based on features like attendance, quiz scores, or
demographic data. While these models can forecast academic
performance, they inherit the limitations of traditional assess-
ments [8], [9], [10], [11], [12], [41]. Additionally, most of the
existing ML models lack transparency. Black-box techniques
make it difficult to understand and rely on the reasoning behind
output generations. Explainable Artificial Intelligence (XAI)
approaches, such as SHAP, provide a solution by dictating
which features are most important for predictions [30].

In summary, this study addresses three gaps in educational
ML research: 1) the persistent over-reliance on traditional
academic outcomes as representations for talents, 2) the
limited integration of learners’ innate intelligence into ML-
based modeling for personalized education, and 3) the lack of
interpretability in ML applications for education.

III. PROPOSED METHODOLOGY

The proposed methodology integrates feature selection
with traditional ML models, significantly enhancing the ac-
curacy and interpretability of learners’ intelligence prediction
models. As shown in Fig. 1, the study is divided into two
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parts to show the difference between the traditional approach
and the proposed approach. The integration of RFE with SHAP
for important feature selection stands out as a unique aspect.
This method iteratively refines the feature set, enabling the
identification of the most informative features, which are then
used to train various ML models for comparative analysis.
70% of the data is utilized for training, with the remaining
30% being used to evaluate model performance. In this study,
SHAP values are computed using CatBoost to generate a
global feature importance ranking, which serves as the basis
for a SHAP-based RFE procedure [42]. From the traditional
approach part, CatBoost is found as the best performer;
therefore, in the proposed approach, CatBoost is used as the
SHAP explainer model for the LML dataset. Through rigorous
cross-validation and hyper-parameter adjustment, this iterative
approach validates the efficacy of the feature selection strategy.

After data cleaning and preprocessing of the dataset, which
included the removal of null, inconsistent, and noisy values,
along with label encoding to handle data types, seven ML
regressors have been employed [43], [44]. Their ensemble
combinations are also examined as well, as they potentially
may integrate the strengths of individual models [45], [46].
Their ensembles, ensemble-2 (combinations of 2 models) are
created by combining the best-performing individual model
with one additional model (e.g., CatBoost + LightGBM), while
ensemble-3 models include the best model along with two
others (e.g., CatBoost + LightGBM + XGBoost). Within the
ensembles, only those that outperformed the best individual
regressor (CatBoost) are retained for further optimization.
Algorithm 1 provides the pseudocode for the workflow of
research methodology. Data analyses are conducted using
Python 3.10.

A. Dataset and Feature Description

The utilized LML dataset consists of 1,021 responses to 54
survey items designed to measure various learner parameters.
The data was acquired using a voluntary and anonymous
online survey conducted at eleven universities in Bangladesh.
Participants met two inclusion criteria: they were currently
enrolled in a Bangladeshi higher education institution and were
at least 18 years old. At the time of the survey design, there
were 4,690,876 students enrolled in both public and private
universities [24]. The survey was structured using a combi-
nation of convenience sampling and simple random sampling
because it was not feasible to perform probability sampling on
this large population due to logistical and resource limitations.
Following the combined sampling structure, universities were
chosen based on their reachability, and classrooms from vari-
ous departments were chosen at random within each university.
In those classrooms, all present students were verbally invited
to participate in the survey anonymously and voluntarily.
Table I summarizes the feature set from the LML dataset,
grouped by domain, data type, and corresponding value ranges.
The dataset includes features from biological, psychological,
and behavioral domains, encompassing both categorical and
discrete data types. The corresponding descriptive statistics of
the sample data are illustrated in Fig. 2. The panel in Fig.
2(a) shows the means and standard deviations (SD) for the
discrete variables: Intelligence Score, Age, and Sleep Duration.
There is a wide range of intelligence scores in the sample, as
observed by the mean and SD values (97.43± 14.35), which

Algorithm 1 ML-based human intelligence prediction using
SHAP-based RFE

1: Load and preprocess data by removing missing, null, and
inconsistent values and by label encoding

2: Initialize base regressors: Decision Tree, Random Forest,
Extra Trees, Gradient Boosting, XGBoost, LightGBM,
CatBoost

3: Split dataset into predictors (X) and target variable (y)
4: Assign predictors to X and target intelligence score to

y
5: Split into training and test sets: X train, X test, y train,

y test
6: for each regressor in base regressors do
7: Train the regressor on X train, y train
8: Predict on X test
9: Compute performance metrics

10: end for
11: Select the best-performing model (BestBaseModel) based

on metrics
12: Create ensemble models by combining BestBaseModel

with one and two other base regressors
13: for each ensemble model do
14: Train on X train, y train
15: Predict on X test
16: Compute performance metrics
17: if ensemble model outperforms BestBaseModel then
18: add it to the optimization list
19: end if
20: end for
21: Select BestModel from BestBaseModel and models in the

optimization list
22: Initialize SHAP explainer using BestModel and X train
23: Compute SHAP values on X train
24: Rank features from least to most important based on mean

absolute SHAP value
25: for each model in the optimization list do
26: Call RunSHAP RFE(model, SHAP ranking, X train,

X test, y train, y test) where:
27: RunSHAP RFE = SHAP-based Recursive Feature

Elimination procedure:
28: Start with all features in SHAP importance order
29: Iteratively remove the least important feature(s)

based on SHAP ranking
30: Retrain the model on the reduced X train
31: Predict on reduced X test
32: Compute performance metrics and record perfor-

mance for each feature subset size
33: Keep track of the subset giving maximum accu-

racy and store it as the optimized model configuration
34: end for
35: Store optimized model, best feature subset, and full per-

formance log
36: Plot Accuracy vs. number of SHAP-ranked features (from

RFE) for each optimized model
37: Plot SHAP summary plot
38: return trained models, performance metrics, and SHAP-

based explanations
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Fig. 1. Workflow of the proposed methodology.

ranges from 1 to 140. Participants’ ages range from 18 to 27
years old, with an average age of 21.72 ± 1.76 years. The
average Sleep Duration, which ranges from 5 to 11 hours,
is 6.29 ± 1.14 hours. Fig. 2(b) panel depicts the distribu-
tions of categorical variables, Gender, Illusion of Competence,
Chronotype, and Imposter Phenomenon, in terms of frequency
and percentage of the total sample (N = 1021). The Gender
distribution shows a higher proportion of male participants
(638, 62.49%) than females (383, 37.51%). Although this
appears skewed, it matches the existing gender disparity in
higher education enrollment in Bangladesh [24].

The majority of students experienced moderate levels of
Illusion of Competence (465 participants, 45.54%), followed
by severe levels (315 participants, 30.85%) and mild levels
(241 participants, 23.60%). The total proportion of moderate
and severe levels exceeds 76%, implying that a large number
of learners misestimate their competency. The Chronotype dis-
tribution is relatively balanced, with 313 participants (30.66%)
identifying as Morningness types, 369 (36.14%) as Interme-
diates, and 339 (33.20%) as Eveningness types. This spread
captures a well-represented diversity in biological rhythms,
or sleep-wake preferences, among the university students.
The majority of students reported that they experienced the
Imposter Phenomenon on a moderate to frequent basis, with
324 participants (31.73%) and 557 participants (54.55%),
respectively. This total percentage of 86.28% highlights how

common impostor syndrome is among students, highlighting
the significant psychological burden often associated with
academic performance and self-perception.

B. ML Models

The Decision Tree regressor predicts continuous values by
recursively partitioning the dataset based on feature conditions
to reduce variance at each node, with final predictions based
on the leaf nodes’ mean values. It effectively models nonlinear
relationships and is often employed in regression tasks.

Random Forest regression improves on this by constructing
an ensemble of Decision Trees, each trained on a random
subset of data and features, and then averaging their outputs
to reduce overfitting, boost stability, and improve robustness
compared to a single tree.

The Extra Trees regressor is similar to Random Forest,
but it adds more randomization by randomly generating split
thresholds instead of optimizing them, which decreases vari-
ance and speeds up training while maintaining competitive
accuracy.

Gradient Boosting is a sequential ensemble method for
creating an additive model by training every new tree to rectify
the residual errors of the combined previous learners and
minimizing a loss function using gradient descent.
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TABLE I. FEATURE SET DESCRIPTION

Feature Group Data Type Feature Name Value Range

Biological Discrete Age 18 – 27 years
Biological Categorical Gender Male, Female
Psychological Categorical Illusion of Competence Mild, Moderate, Severe
Behavioral Discrete Sleep Duration 5 – 11 hours
Biological Categorical Chronotype Morningness, Intermediate, Eveningness
Psychological Categorical Imposter Phenomenon Few, Moderate, Frequent, Often
Psychological Discrete Overall Intelligence Score 0 – 140

(a)

(b)

Fig. 2. Descriptive statistics of the seven learner parameters: (a) Mean and SD of continuous variables; (b) Frequency and percentage of categorical variables.

XGBoost is an effective Gradient Boosting solution that
provides regularization, parallel processing, and out-of-core
computation. It improves performance by using second-order
gradients, efficient tree pruning, and built-in regularization to
reduce overfitting. It also effectively handles missing data and
produces cutting-edge results on large-scale, multidimensional
datasets, making it widely utilized in prediction tasks.

LightGBM is another Gradient Boosting model that uses
a histogram-based method and a leaf-wise tree development

technique to improve training speed while retaining high
precision. It also works well on large data sets and handles
categorical features natively.

CatBoost uses ordered boosting to avoid prediction shift
and efficiently handles categorical features without requiring
extensive preprocessing. It is ideally suited for complicated
regression problems involving heterogeneous data types due
to its fast training, good generalization, and accuracy with
minimal parameter adjustment.
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C. Model Evaluation Metrics

To evaluate the prediction performance of the models, the
following standard metrics are employed: Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Accuracy [47], [48], [49].

The MAE quantifies the average magnitude of the errors
in predictions relative to the actual outcomes. The formula for
MAE is as follows.

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

where, yi denotes the actual value, ŷi the predicted value,
n the number of observations, and i indexes each observation
from 1 to n.

The MSE calculates the average discrepancy between the
actual values and the predictions. The process involves squar-
ing the differences and then calculating the mean. The formula
for MSE is as follows.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

RMSE is the square root of MSE, which represents the
residuals’ SD. It gives an interpretable measure in the same
unit as the target variable. The representation is as follows.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (3)

Accuracy is the percentage of variance explained by the
model. Variance measures how far the actual values deviate
from their mean. The more the model’s predictions lower this
spread (or error), the greater the explained variance, or the
model’s accuracy. A higher accuracy indicates predictions are
very close to the actual values. This metric is calculated using
the following equation.

Accuracy =

(
1−

∑
(yi − ŷi)

2∑
(yi − ȳi)

2

)
× 100 (4)

where, ȳi denotes the mean of actual values.

IV. RESULTS AND DISCUSSION

A. Model Performance

The performance of the regressors in the traditional ap-
proach using the complete set of features is presented in
Table II. CatBoost emerged as the most effective model,
attaining the highest accuracy (98.32%) and the lowest error
rates across all evaluation metrics (MAE: 1.38, RMSE: 1.88),
indicating its strong generalization capability and suitability.
Gradient Boosting and LightGBM achieved accuracy levels
of 94.96% and 94.38%, respectively. In contrast, XGBoost
performed poorly in comparison to other boosting models.

Extra Trees and Random Forest achieved moderate results
indicating their limited predictive performance. The Decision
Tree model achieved the lowest accuracy and the highest error
rates, underscoring its inadequacy.

TABLE II. MODEL PERFORMANCE WITH THE TRADITIONAL
APPROACHES

Model MAE MSE RMSE Accuracy (%)
CatBoost 1.38 3.55 1.88 98.32
Gradient Boosting 2.53 10.63 3.26 94.96
LightGBM 2.68 11.87 3.45 94.38
XGBoost 3.83 23.60 4.86 88.82
Extra Trees 4.39 30.44 5.52 85.58
Random Forest 4.54 32.03 5.66 84.83
Decision Tree 7.18 85.43 9.24 59.52

CatBoost, as an individual model, consistently outper-
formed all ensemble combinations as well, that include
CatBoost combined with Decision Tree, Random Forest,
Extra Trees, Gradient Boosting, XGBoost, and LightGBM
(ensemble-2), and CatBoost combined with any two of the in-
dividual models (ensemble-2). Despite ensemble methods gen-
erally being expected to enhance performance by combining
model strengths, in this case they introduce more weaknesses
by combining model weaknesses [46]. This highlights that
ensembling is not always effective, contrary to the findings
reported in [45].

The accuracy curves of the regressors, presented in Fig. 3,
initially stay flat or slightly rise for most of the models, indicat-
ing that the early-eliminated lower-ranked features have little
contribution to prediction performance. CatBoost consistently
outperforms all other models across nearly the entire range
of feature numbers. The CatBoost curve peaks at 98.53%
accuracy, which is obtained with 35 features. Its accuracy in-
creases from 98.32% as the number of features is progressively
decreased from 54 to 36. But after 35, the accuracy starts to
drop, implying that more feature removal eliminates significant
predictors. Additionally, it implies that features outside of the
top 35 are redundant and have minimal contribution to the
prediction.

Similar trends are observed for Gradient Boosting, Light-
GBM, XGBoost, Extra Trees, and Random Forest. In contrast,
the Decision Tree model consistently exhibits the lowest
overall accuracy. Its curve stays comparatively flat with a few
oscillations.

For better interpretability, the SHAP summary plot is
presented in Fig. 4. The magnitude and direction of the top
features’ contributions to the model’s predictions are clearly
shown in this plot. The feature label ‘MIQ#’ corresponds
to specific MI-related question numbers as sequenced in the
dataset. Each point on the plot represents a single observa-
tion. The horizontal position represents the SHAP value (the
feature’s contribution to the model output), and the colors
represent the actual values of the feature. Red color means
high values, and blue color means low values. The continuous
gradient from blue to red graphically displays the range of
feature values, making it easier to determine whether higher
or lower feature values contribute positively or negatively to
the predictions. For instance, for the most important feature,
MIQ#32, higher feature values (red points) have positive
contributions, as indicated by points located on the right side
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Fig. 3. Accuracy curves for all regression models.

of the axis, whereas lower values (blue points) correspond to
negative contributions on the left side. Similarly, MIQ#5 and
MIQ#9 display comparable trends, where higher feature values
increase the predicted outcome, while lower values lessen it.
MIQ#24 shows a wider distribution of SHAP values across
mid- to high-range feature values (represented by purple to
red points), suggesting that its influence on the prediction may
vary in interaction with other variables. The SHAP values of
features that are listed lower in the plot have a smaller range
and variation, indicating a relatively modest, yet statistically
significant, effect on the models’ predictions.

Table III shows the performance metrics of the regressors
following feature selection with SHAP-based RFE. When
compared to the baseline results in Table II, which utilized
all 54 features, Table III demonstrates consistent performance
gains across all models after feature selection. CatBoost re-
mained the top performer, increasing accuracy from 98.32% to
98.53%. Gradient Boosting’s accuracy increased from 94.96%
to 95.11%. The accuracy of LightGBM also increased from
94.38% to 94.76%. XGBoost, showed a greater improvement.
Its accuracy increased from 88.82% to 90.19. Extra Trees and
Random Forest, achieved improved accuracies from 85.58%
to 88.14% and 84.83% to 87.30%, respectively. Relatively, the
highest improvement is observed in the Decision Tree model.
Its accuracy rose sharply from 59.52% to 60.82. Although it
remains the least accurate among all models.

In summary, feature selection using SHAP-based RFE have
enhanced all regressors’ predictive precision (improvement in
accuracy and reduction in error metrics). Notably, external
learner factors showed no measurable influence on the pre-

TABLE III. MODEL PERFORMANCE ON SELECTED FEATURES

Model MAE MSE RMSE Accuracy (%)
CatBoost 1.25 3.09 1.76 98.53
Gradient Boosting 2.46 10.32 3.21 95.11
LightGBM 2.55 11.06 3.33 94.76
XGBoost 3.63 20.70 4.55 90.19
Extra Trees 3.92 25.03 5.00 88.14
Random Forest 4.13 26.80 5.18 87.30
Decision Tree 7.34 82.68 9.09 60.82

diction of innate intelligence scores within the current ML
framework. These findings reinforce previous research, which
emphasizes the use of SHAP values and RFE for improving
model accuracy, transparency, and interpretability in multi-
domain prediction tasks [45], [46], [49], [50].

B. Future Work and Applicability Scope

The findings of this study offer various potential avenues
for advancement in educational design, learner assistance,
and institutional policy and decision making. As presented in
Fig. 5, based on the proposed intelligence prediction model, the
following future research prospects and application areas are
suggested for further exploration and practical implementation.

1) Data-driven admissions or placement decisions: Innate
intelligence prediction could be used to complement standard
admission criteria, allocate scholarships, or place students
in advanced learning programs. By including a measure of
learning capacity in addition to prior performance or exam
results, this method would allow for more equitable selection.
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Fig. 4. Visualization of the impact of the top 20 features on the CatBoost
model using SHAP.

2) Adaptive institutional practice and policy: The predicted
intelligence score can serve as a good indicator of a learner’s
overall ability to receive, process, and apply newly acquired
knowledge. Institutions could use it to forecast general aca-
demic performance or learning outcomes and group learners
to allocate mentoring or resources accordingly.

3) Personalized teaching strategy design: Intelligence
scores can be used as a basis for personalizing teaching
strategies. In order to achieve equitable results, learners with
higher intelligence scores can be given accelerated modules or
enrichment activities; those with medium intelligence scores
can benefit from regular instruction with occasional support;
and those with lower intelligence scores can be assisted with
structured and practice-based learning strategies.

4) Strategic curriculum planning: At the course or program
level, average intelligence scores across groups of students
could be used to inform syllabus pace and complexity design.
For instance, to better match students’ innate abilities, edu-
cational institutions may design differentiated tracks (basic,
intermediate, and advanced).

5) Intelligent tutoring systems’ personalization: Learners’
intelligence scores could be used by intelligent tutoring system
platforms to adapt the way content is delivered. For example,
the complexity of challenges or tasks, variation in examples,
and the use of simplified instructions according to learners’
ability ranges can be incorporated. This would improve learn-
ing efficiency and synchronize involvement in educational

settings.

6) Learning analytics dashboards for monitoring and plan-
ning: Innate intelligence can be integrated with learning ana-
lytics systems to deliver actionable and anticipatory informa-
tion. Based on students’ intelligence scores, these dashboards
may provide focused intervention plans, specialized support
services, or alternate educational techniques.

Fig. 5. Potential application areas of ML-based human intelligence modeling.

7) Career counseling and learning support services: Coun-
selors can use intelligence scores to help students choose
occupation possibilities that are compatible with their cognitive
strengths. Students with high intelligence scores, for exam-
ple, might do well in multidisciplinary studies, professions
demanding quick decisions, or research-oriented positions re-
quiring critical thinking.

8) Institutional benchmarking and quality assurance: In-
stitutions could analyze the distribution of intelligence scores
among the students to determine whether instruction standards,
resource allocation, or students’ learning outcomes are in line
with learner potential. This can assist with accreditation, policy
adjustments, and educational reform.

9) Holistic and adaptive assessment development: Know-
ing a student’s intrinsic intelligence would allow teachers
to apply assessments other than written tests. For instance,
integrative projects could be used to assess students with
high innate intelligence, while assessments for other students
might use more scaffolding or different formats, like hands-on
activities. While this study predicts intelligence as a composite
indication, subsequent future research will concentrate on
predicting intelligence type-wise scores independently in order
to better aid specialized applications.

10)Role-specific eligibility and talent identification: Over-
all intelligence scores, like CGPA in competitive fields, could
be used as benchmarks for roles requiring cognitive rigor.
For example, programs may set minimum intelligence score
requirements in place of or beside the CGPA. Likewise, just
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as subject-wise grades determine eligibility for certain careers,
intelligence-type specific scores could inform role suitability.
For instance, military or sports training institutes might require
high bodily-kinesthetic and logical-mathematical intelligences.
These intelligence scores could be used as minimum marks or
GPA in specific subjects (e.g., needing a minimum GPA in
Math and Physics) for eligibility.

Along with these application areas and prospects, this re-
search has some limitations that provide more scope for future
work. The LML dataset utilized in this study only includes data
from students in the age group of 18 to 27. Therefore, the
results may not be directly applicable to pedagogical (child-
centered) applications and are most relevant to andragogy and
heutagogy. Future research could include data from a wider
range of age groups, cultural backgrounds, geographic regions,
and educational systems to broaden the generalizability of
the findings. Furthermore, while this study used seven well-
known ML models with SHAP and RFE, these are not the
only potential models and methods. Subsequent investigations
may examine more advanced models and approaches like deep
neural networks, graph-based models, or hybrid frameworks
to explore more about the results and possibly enhance inter-
pretability. A direct comparison with similar approaches within
a shared evaluation framework was not possible to conduct due
to the absence of comparable methods, but can be performed
once such methods become available.

V. CONCLUSION

In conclusion, this study demonstrated the effectiveness
of ML models, enhanced by SHAP-based feature analysis, in
accurately predicting innate human intelligence. The findings
provide interpretable and actionable insights, paving the way
for the development of personalized educational strategies,
advancing educational AI practices, and enabling policy-
relevant interventions aligned with the fourth SDG: Quality
Education. In particular, they highlight that intelligence can
be modeled holistically and reliably without relying on con-
ventional subject-specific assessments or IQ tests. Real-world
educational outcomes can be enhanced by complementing
existing educational practices with the proposed method for
predicting learners’ intelligences. This study has implications
for educators, institutions, policymakers, and future AI-driven
educational systems, and promotes the use of AI-powered,
data-driven, learner-centric techniques to address learner di-
versity and support educational decision making.
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