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Abstract—While current semantic segmentation models ex-
cel in controlled environments, they often struggle with key
challenges such as dynamic multi-modal data, small target
recognition, and computational efficiency for edge deployment.
Motivated by these limitations, this study explores targeted so-
lutions and presents DAMCSeg (Dynamic Adaptive Multi-modal
Collaborative Semantic Segmentation), an innovative framework
that introduces advancements across feature fusion, training
paradigms, and model efficiency. The core contributions of DAM-
CSeg include: 1) a Dual-Stage Attention Fusion (DSAF) module
that dynamically adjusts multi-branch fusion weights based on
scene complexity; 2) an end-to-end joint training framework for
object detection and semantic segmentation designed to minimize
inter-stage error propagation; and 3) a Lightweight Multi-Modal
Fusion (LMMF) module that efficiently integrates multi-source
data with low computational overhead. To rigorously evaluate the
proposed method’s effectiveness against these specific challenges,
extensive experiments are conducted on mainstream benchmark
datasets. The results demonstrate that DAMCSeg achieves high
accuracy and operational efficiency, effectively addressing critical
issues in dynamic scene adaptation, complex target segmentation,
and edge device deployment. This provides a practical and viable
solution for semantic segmentation in demanding applications
such as autonomous driving and medical image analysis.
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I. INTRODUCTION

As a fundamental pillar of computer vision, semantic
segmentation performs pixel-wise classification of images,
enabling machines to interpret visual scenes with fine-grained
understanding. This technology has become indispensable in
real-world applications including autonomous driving, medical
imaging, and intelligent surveillance systems. While deep
learning—particularly through CNN and Transformer architec-
tures—has dramatically advanced the state of the art, current
segmentation models still encounter several critical limitations.
For instance, the pursuit of high-level semantic representation
often comes at the cost of weakened spatial detail preserva-
tion, which hampers accuracy on small objects and intricate
boundaries. Moreover, conventional multi-branch fusion ap-
proaches frequently rely on fixed weighting schemes, lacking
the flexibility to dynamically adapt to varying scene conditions.
The dependence on single-modal data further restricts robust-
ness under challenging environments like low illumination
or significant occlusion. Additionally, many high-accuracy
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models incur substantial computational costs, hindering their
deployment in real-time or resource-constrained settings.

Current mainstream semantic segmentation models can be
divided into three categories: first, classic CNN-based models
(e.g., DeepLab v3+ [1], PSPNet[2]), which improve context
modeling capabilities through modules such as dilated convo-
Iution and pyramid pooling, but have shortcomings in small
target segmentation and dynamic scene adaptation; second,
Transformer-based models (e.g., SegFormer [3], Mask2Former
[4]), which enhance feature correlation through global attention
mechanisms, but suffer from slow inference speed and high
computational cost; third, lightweight models (e.g., ENet [5],
MobileNet-based [6] segmentation networks), which meet real-
time requirements but have room for improvement in segmen-
tation accuracy and robustness. Although recent multi-modal
semantic segmentation approaches aim to enhance robustness
under sensor degradation, many still assume complete modality
inputs or employ static fusion strategies. For instance, early
methods like FusionNet [7] focus on LiDAR completion rather
than adaptive segmentation, while more recent works such
as MM-Seg [8] and AdaFuse [9] explicitly address missing-
modality scenarios through cross-modal prompting and learn-
able gating, respectively. However, these models operate with
uniform fusion policies across the entire image and do not
leverage cross-task geometric priors (e.g., from object de-
tection) to resolve ambiguities in occluded or small-scale
regions—a critical limitation in autonomous driving scenarios.
This gap motivates our design of a dual-stage, detection-aware
fusion mechanism.

To address the above issues, this paper proposes the
DAMCSeg method. While components like attention-based
fusion, joint training, and multi-modal integration exist in prior
work, our key novelty lies in their synergistic combination and
the specific design choices that enable a fundamental leap in
adaptive capability, rather than mere incremental improvement.
Our core innovations are as follows:

e A Dual-Stage Attention Fusion (DSAF) module is
introduced, which uniquely decouples adaptation into
two complementary levels: global scene-level assess-
ment and local target-level refinement. In contrast
to existing single-stage or scene-only aware fusion
approaches (e.g., CFNet [10])—which impose a uni-
form fusion strategy across the entire image—DSAF
enables simultaneous handling of simple backgrounds
and highly complex, occluded objects within the same
frame. This two-tiered mechanism directly addresses
the challenge of decoupled global-local complexity, a
gap unmet by current frameworks.
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e An end-to-end detection-segmentation joint training
framework is developed, featuring a novel Detection-
Segmentation Alignment Loss. This loss function
explicitly penalizes geometric misalignment between
predicted bounding boxes and segmentation masks,
thereby mitigating error propagation inherent in cas-
caded or loosely coupled systems. The framework
thus establishes a transferable principle for enhancing
cross-task consistency through direct optimization of
spatial alignment.

e A Lightweight Multi-Modal Fusion (LMMF) module
is proposed, capable of fusing RGB with depth or
infrared data while incorporating a modal missing
complementation mechanism. This design ensures ro-
bust inference under partial sensor failure—a critical
requirement for real-world deployment that most exist-
ing multi-modal models overlook due to their reliance
on complete input modalities.

e  Targeted loss functions, including a tiny target-focused
loss and an occluded region-aware loss, are formu-
lated to provide explicit supervisory signals for the
most challenging segmentation scenarios. These losses
significantly enhance model robustness in extreme
conditions involving small-scale or heavily occluded
objects.

Experimental results show that DAMCSeg significantly
outperforms current mainstream semantic segmentation models
on multiple benchmark datasets. Compared with DeepLab
v3+ [1], the average mloU is increased by 7.0% and the
inference speed by 25.7%; compared with SegFormer-B4 [3],
the mloU is increased by 6.6% and the small target mloU
by 14.8%; compared with Mask2Former [4], the inference
speed is increased by 128.9% while the mloU is increased
by 3.4%; in extreme scenarios such as low light, the mloU is
increased by 5%-8% compared with single-modal mainstream
models. This method breaks the balance bottleneck among
accuracy, speed, and robustness of existing mainstream models,
providing a new idea for the practical application of semantic
segmentation technology.

The main contributions of this paper are summarized as
follows:

e Propose a Dynamic Adaptive Multi-Modal Collabo-
rative Semantic Segmentation method (DAMCSeg),
which realizes dynamic optimization of multi-branch
fusion through a dual-stage attention mechanism to
adapt to different scenes and target characteristics;

e  Construct an end-to-end joint training framework for
object detection and semantic segmentation, and de-
sign a cross-task loss function to improve the seg-
mentation accuracy of complex targets and boundary
regions;

e Develop a lightweight multi-modal fusion module,
supporting multi-source data integration and model
compression to achieve coordinated optimization of
high accuracy and real-time performance;

e Conduct extensive experiments on multiple bench-
mark datasets, comparing comprehensively with cur-
rent mainstream semantic segmentation models to
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verify the superiority of the proposed method, and
provide a practical solution for semantic segmentation
in complex and extreme scenarios.

II. RELATED WORK
A. Object Detection

Object detection technology is an important support for
semantic segmentation, and its development has evolved from
traditional handcrafted feature-based methods to deep learning-
based methods. Traditional methods such as the Viola-Jones
detector and HOG + SVM rely on manually designed features
and have limited generalization capabilities. In the deep learn-
ing era, two mainstream paradigms have been formed: two-
stage detectors represented by the R-CNN [11] series, which
achieve high-precision detection through “region proposal +
fine-grained classification”; and single-stage detectors repre-
sented by YOLO [12] and SSD [13], which pursue inference
speed through “end-to-end direct prediction”. In recent years,
DETR [14] has introduced the Transformer architecture to re-
alize set prediction without NMS post-processing, and models
such as Faster R-CNN [15] enhanced with FPN structures have
improved multi-scale detection capabilities.

Some existing mainstream semantic segmentation models
(e.g., Mask2Former [4]) integrate object detection ideas, but
fail to achieve deep collaborative training between detection
and segmentation, resulting in mismatches between localiza-
tion accuracy and semantic segmentation accuracy. Drawing on
the advantages of end-to-end joint training, this paper deeply
integrates object detection and semantic segmentation, realiz-
ing mutual promotion through a shared feature backbone and
cross-task loss function, and providing accurate localization
priors for complex target segmentation.

B. Semantic Segmentation

The field of semantic segmentation has formed diverse
technical routes, and mainstream models can be divided into
three categories:

1) CNN-Based models: The emergence of FCN [16] in
2015 laid the encoder-decoder architecture paradigm for se-
mantic segmentation. Subsequent models such as the DeepLab
[17] series introduced dilated convolution and ASPP modules
to expand the receptive field, PSPNet [2] aggregated global
context information through pyramid pooling, and U-Net [18]
restored spatial details using skip connections. These mod-
els perform stably in moderately complex scenes but have
limitations in small target segmentation and dynamic scene
adaptation.

2) Transformer-Based models: Models such as Swin Trans-
former [19] and SegFormer [3] enhance global context model-
ing capabilities through multi-head self-attention mechanisms,
and Mask2Former [4] improves instance-level segmentation
accuracy using a set prediction approach. These models
achieve high accuracy but have high computational overhead
and slow inference speed, making it difficult to meet real-time
requirements.
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3) Lightweight and multi-modal models: MobileNet-based
[6], ENet [5] segmentation networks, and other lightweight
models achieve real-time inference by simplifying network
structures, but at the cost of significant accuracy loss; multi-
modal models such as MVSS-Net [20] and FusionNet [7]
combine RGB with depth/infrared information to improve
robustness, but suffer from low modal fusion efficiency and
structural redundancy.

Targeting the shortcomings of existing mainstream models,
this paper integrates the advantages of efficient feature ex-
traction by CNNs and attention mechanisms by Transformers
[21], designing a lightweight multi-modal fusion module and
dynamic fusion strategy to achieve coordinated improvement
in accuracy, speed, and robustness.

C. Multi-Branch Fusion and Adaptive Mechanisms

Multi-branch fusion is an effective means to improve the
performance of semantic segmentation models. Fusion strate-
gies adopted by existing mainstream models mainly include
simple average fusion, weighted sum fusion, and attention-
based adaptive fusion. HRNet [22] extracts features in parallel
through multi-scale branches, and OCRNet [23] introduces
context branches to enhance semantic correlation, but both
adopt fixed-weight fusion strategies that cannot adapt to dy-
namic scene changes.

In recent studies, the attention fusion module in CFNet
[10] dynamically adjusts branch weights based on feature
saliency, and the scene-aware fusion strategy in SA-Fusion [24]
optimizes branch selection by evaluating scene complexity,
but only realizes single-level adaptive adjustment. This paper
proposes a dual-stage attention fusion mechanism to achieve
more fine-grained adaptive adjustment from both scene and
target levels, further improving the efficiency of multi-branch
information utilization and solving the problem of insufficient
dynamic adaptation capabilities of mainstream models. Cru-
cially, while prior works have explored elements of adaptivity,
modality fusion, or task collaboration in isolation, they fail to
address the synergistic gap: the lack of a unified framework
that can simultaneously reason about global scene context,
local object intricacies, and cross-task geometric consistency
under resource constraints. This gap leaves existing models
brittle in real-world scenarios where these challenges co-
occur. DAMCSeg is designed explicitly to bridge this gap by
integrating its three core innovations into a single, coherent
system.

In recent studies, the attention fusion module in CFNet [10]
dynamically adjusts branch weights based on feature saliency,
and the scene-aware fusion strategy in SA-Fusion [24] opti-
mizes branch selection by evaluating global scene complexity.
However, both enforce a single-level adaptation policy—either
purely global or purely local—and cannot simultaneously han-
dle simple backgrounds and complex foreground objects within
the same image. More recently, DynamicFuse [25] introduces
spatially varying fusion gates conditioned on local entropy,
yet it does not incorporate geometric guidance from auxiliary
tasks such as object detection. This paper proposes a dual-stage
attention fusion mechanism (DSAF) that achieves fine-grained
adaptive adjustment at both scene and target levels, thereby
improving multi-branch information utilization and addressing
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the limited dynamic adaptation of existing approaches. Cru-
cially, while prior works have explored adaptivity, modality
fusion, or task collaboration in isolation, they fail to address
the synergistic gap: the absence of a unified framework capable
of jointly reasoning about global scene context, local object
geometry, and cross-task consistency under real-world sensor
failures and computational constraints. This limitation renders
current models brittle when these challenges co-occur—as
commonly seen in autonomous driving at night or in heavy
occlusion. DAMCSeg is explicitly designed to bridge this gap
by integrating its three core innovations into a single, efficient,
and robust system.

D. Our DAMCSeg

Compared with current mainstream semantic segmentation
models, DAMCSeg has three core advantages: first, the dual-
stage attention fusion mechanism solves the limitations of
fixed-weight fusion in mainstream models, realizing dynamic
adaptation to scenes and targets; second, the end-to-end joint
training framework improves the coordination between detec-
tion and segmentation, breaking the bottleneck of insufficient
segmentation accuracy for complex targets in mainstream mod-
els; third, the lightweight multi-modal fusion module expands
the model’s application scenarios while reducing computa-
tional overhead, balancing accuracy and real-time performance
that are difficult to reconcile in mainstream models. The
detailed network architecture and implementation scheme will
be introduced in Section III.

III. NETWORK ARCHITECTURE

To verify the effectiveness of the DAMCSeg method, this
paper designs a corresponding network model. The overall
architecture is shown in Fig. 1, which integrates core inno-
vative modules such as dynamic fusion, end-to-end collabo-
rative training, and multi-modal lightweight fusion to achieve
comprehensive optimization of existing mainstream models.

DAMCSeg

2

—

Dynamic Task Coordination

™

| PSR
Dynamic Scene U
Comssment Module

e

End-to End Detection-
Segmentation Collaborative
Backbone

Module
H,_J

Lightweight Multi-Modal
Adaptive Fusion Module

Three-Branch Adaptive
Processing Pathway Dual-Stage
Dynamic Attention Fusion

L

Adaptive Boundary
Optimization Module

Fig. 1. Overall architecture of DAMCSeg. The model includes five core
components: a scene complexity evaluation branch, a Lightweight
Multi-Modal Fusion (LMMF) module, an end-to-end detection-segmentation
shared backbone, a three-branch processing path, a Dual-Stage Attention
Fusion (DSAF) module, and a boundary optimization module.

A. Overall Framework

The overall processing flow of DAMCSeg is as follows:
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1) Multi-modal input: Receive RGB + depth/infrared
multi-modal data, and generate multi-modal feature maps
through the LMMF module.

2) Scene complexity evaluation: Calculate the scene com-
plexity score based on target density, occlusion coefficient, and
edge density to guide the dynamic adjustment of the DSAF
module.

3) End-to-end detection and segmentation: The shared
backbone network outputs detection features and segmentation
features simultaneously; the detection head generates target
bounding boxes, and the three-branch segmentation path per-
forms pixel-level prediction.

4) Multi-branch fusion: Dynamically weight and fuse the
outputs of the three branches through the DSAF module.

5) Boundary optimization: Optimize the fusion result using
a lightweight CRF to generate the final semantic segmentation
map.

B. Lightweight Multi-Modal Fusion (LMMF) Module

The LMMF module is designed to solve the problems
of low fusion efficiency and high computational overhead in
mainstream multi-modal models, and its structure is shown in
Fig. 2.

Lightweight Multimodal Fusion (LMMF)

Feature Data (Lightweight Backbone)

}

Modality Completion &
Enhancement Network /
/

(Lightweight Backbone)

MobileNetV4-Large >

Modality Feature
Extraction Submodule

—>

(Modality Dynamic Weighting)Modality

Modality-Adaptive Attention
Gap Compensation

Submodule(Dual-Stage Dynamic Weighting)

Fig. 2. Structure of the LMMF module. It includes three sub-modules:
modal feature extraction, modal adaptive attention, and modal missing
complementation.

1) Modal feature extraction: For different modal inputs
(RGB, depth, infrared), task-specific lightweight feature ex-
tractors are designed:

a) RGB branch: MobileNetV4-Large [26] is used as
the backbone, replacing traditional convolution with depthwise
separable convolution, reducing the number of parameters by
30% compared with EfficientNet [27].

b) Depth/infrared branch: A lightweight encoder com-
posed of 4 convolution blocks is adopted, enhancing the
extraction of spatial structure information through dilated
convolutions with different rates.

2) Modal adaptive attention: To achieve efficient adaptive
fusion of multi-modal features, a modal adaptive attention
module is designed to calculate the reliability weight of each
modal feature according to the current scene:

wm = (Wi Fo + bn) 1)
M
Ffusion = Z W * Fm (2)
m=1
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where, F,, is the feature map of the m-th modal, W,
and b, are learnable parameters, o is the Sigmoid activation
function, and w,, is the reliability weight of the m-th modal.
For example, in low-light scenes, the weight of the RGB modal
is reduced and the weight of the infrared modal is increased
to improve segmentation performance.

3) Modal missing complementation: To enhance the
model’s robustness when part of the modal data is missing,
a modal missing complementation network is introduced to
predict missing modal features based on existing modal infor-
mation:

an = MON(Fezist) (3)

where, MCN 1is a lightweight Multi-Layer Perceptron
(MLP), which maps the existing modal features F,;s; to the
missing modal feature space Fj;. When a certain modal is
missing, the predicted features are used to replace the original
features for fusion, ensuring the normal operation of the model
and solving the problem of mainstream multi-modal models’
dependence on complete modal data.

C. End-to-End Detection-Segmentation Joint Framework

To solve the problem of insufficient segmentation accuracy
for complex targets caused by the separation of detection
and segmentation in mainstream models, an end-to-end joint
training framework is constructed, as shown in Fig. 3. The
core conceptual contribution of this framework is the estab-
lishment of a direct, differentiable link between the detection
and segmentation tasks via a dedicated alignment objective.
This transforms the relationship from sequential dependency
to mutual constraint, providing a generalizable insight for
multi-task vision systems: explicitly optimizing for cross-task
geometric consistency is more effective than relying on shared
features alone.

End-to-End Detection-Segmentation Joint Framewark

Shared Feature Backbone
(EfficientNet)

End-to-End Frontend

Detection Head

Cross-Task Feature
Correlation Layer(CTCL)

Detection Loss
Ler = ZBCEG/tyre: Yprea)

Alignment Loss

Lahgn = CosSim(F g, Fscg)

Segmentation Loss
Lseg = XT0U(ture: Ypred)

Triple-Stream Segmentation
Head(TS-SH)

Fig. 3. End-to-end detection-segmentation joint framework. It includes a
shared feature backbone, a detection head, a three-branch segmentation
head, and a cross-task loss function.

1) Shared feature backbone: EfficientNetV2 [28] is used as
the shared feature backbone, retaining the compound scaling
strategy of EfficientNet [27] and further improving the effi-
ciency of feature extraction. The first 80% of the backbone
layers are shared by the detection and segmentation tasks, and
the last 20% are designed as task-specific feature adaptation
layers to achieve specialization of feature representation and
avoid insufficient feature sharing in mainstream models.
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2) Detection Head and Segmentation Head:

e Detection head: Based on an improved EfficientDet
[29] detection head, integrating the BiFPN structure
to enhance multi-scale feature fusion, and outputting
target bounding boxes and category probabilities.

e Segmentation head: A three-branch structure is
designed to optimize segmentation performance in
different scenarios:

o Global segmentation path: A lightweight
ASPP module is used to aggregate global
context information, and computational
overhead is reduced through channel pruning
to adapt to the segmentation of large-area
continuous regions.

o Local + fusion path: Taking the bounding
boxes output by the detection head as Regions
of Interest (ROIs), local image patches are
cropped, and MobileNetV4-Large [26] is used
as the segmentation sub-network to achieve
fine-grained segmentation of small targets and
complex boundaries.

o  Post-processing enhancement path: Multi-
modal prior information (e.g., target position
prompts based on depth) is introduced to op-
timize the bounding box matching strategy,
reducing missed detections and improving the
segmentation performance of occluded targets.

3) Cross-task loss function: A Detection-Segmentation
Joint Loss (DSJL) is designed to realize mutual constraint
and promotion between the two tasks, solving the problem of
single and insufficiently targeted loss functions in mainstream
models:

DSJL = Lges + /\1Lseg + )\2Lalz’gn 4)

Where:

e L, Detection loss, including classification loss (Fo-
cal Loss) and bounding box regression loss (GloU
Loss).

e L, Segmentation loss, composed of cross-entropy
loss, boundary-aware loss, Dice loss, tiny target-
focused loss, and occluded region-aware loss.

e  Lgyjign: Detection-segmentation alignment loss, which
calculates the IoU between the detection bounding
box and the segmentation mask. When IoU < 0.7,
additional penalties are imposed to force alignment
between detection and segmentation results.

e )y = 1.0 and Ay = 0.5 are balance coefficients.

D. Dual-Stage Attention Fusion (DSAF) Module

To solve the problem that fixed-weight fusion in main-
stream models cannot adapt to dynamic scenes, a DSAF
module is designed to realize dynamic weight adjustment
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through two levels: “scene complexity evaluation” and “target
characteristic adaptation”, as shown in Fig. 4.

Dual-Stage Attention Fusion (DSAF)

N

(" Scene Complexity Assessment | Target Feature Extraction ) Dynamic Weight Generation
y, /
Scene Depth S - Y(&; = ) 3 e
w is the re-weighting coeflicient;
f;: feature value A9 I

Fig. 4. Structure of the DSAF module. It includes three parts: scene
complexity evaluation, target characteristic extraction, and dynamic weight
generation.

1) Scene complexity evaluation: Three key indicators are
calculated to evaluate scene complexity:

e  Target density D: The ratio of the number of targets
to the image area.

e  Occlusion coefficient O: The ratio of occluded pixels
to the total number of target pixels.

e Edge density E: The ratio of edge pixels detected by
the Canny operator to the image area.

The scene complexity score S is obtained through weighted
summation:

S =0.4D +0.30 + 0.3E 5)

According to the value of S, scenes are divided into three
categories: simple scenes (S < 0.3), moderately complex
scenes (0.3 < S < 0.7), and complex scenes (S > 0.7), and
the initial weights of the three branches are set accordingly.

2) Target characteristic adaptation: For each target region,
two characteristic indicators are extracted:

e  Size coefficient S,: The ratio of the target area to the
image area.

e Semantic ambiguity coefficient A: The variance of
pixel-level classification probabilities in the target
region.

The weight adjustment factor of the local path is calculated
based on the characteristic indicators:

AB=c(a-S,+b-A+c¢) 6)

where, a, b, and c are learnable parameters. For small
targets (S, < 0.01), AS is increased to enhance the con-
tribution of the local path; for targets with high semantic
ambiguity (A > 0.3), AS is increased to strengthen fine-
grained segmentation.
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3) Dynamic weight generation: Combining the initial
weights of scene complexity and the target characteristic
adjustment factor, the final weights of the three branches are
generated:

QA final = init * (1 - A/B) (7)
Bfinal = 5init . (1 + Aﬂ) (8)
VYfinal = Vinit * (1 + 05A6) (9)

where, ®;nit, Binit> and ;¢ are the initial weights based
on scene complexity, and & finat, Bfinal, and Yrina are the
final dynamic weights.

E. Boundary Optimization

1) CRF module: A lightweight CRF module is used to
optimize the boundary of the fusion result. Compared with
complex CRFs in mainstream models, the number of iterations
is reduced from 5 to 3, and the Gaussian kernel size is
adaptively adjusted according to scene complexity, reducing
computational overhead while ensuring boundary smoothness.

2) Branch adaptive selection: A lightweight decision net-
work (2-layer MLP) is designed to determine whether each
branch of the local path (edge branch, context branch, con-
sistency branch) needs to be activated. For simple scenes or
targets with clear edges and complete semantics, redundant
branches are deactivated to further reduce computational over-
head and improve inference speed, solving the problem of fixed
branch structures and redundant computations in mainstream
models.

IV. EXPERIMENTS
A. Implementation Details

1) Datasets and evaluation metrics: The proposed method
is evaluated on five carefully selected benchmark datasets to
comprehensively verify its performance across diverse sce-
narios—urban driving, general object recognition, complex
indoor/outdoor scenes, multi-modal sensing, and low-light
conditions—and to compare fairly with current mainstream
semantic segmentation models:

e  Cityscapes: 5,000 images with a resolution of 2048 x
1024, 19 categories, divided into 2,975 training / 500
validation / 1,525 test sets.

e PASCAL VOC 2012: 10,582 images, 20 categories,
using the standard training/validation set division.

e ADE20K: 22,210 complex scene images, 150 cate-
gories, divided into 20,210 training / 2,000 validation
sets.

e KITTI-360: A multi-modal dataset containing RGB
+ lidar depth information, 1,000 training / 200 test
images, 19 categories.

e  Dark Zurich: A low-light scene dataset, 400 training
/ 200 test images, 19 categories.
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2) Evaluation metrics include:

e  Basic metrics: Mean Intersection over Union (mlIoU),
Boundary F-score, Small target mloU (area < 1024
pixels), Occluded object recall.

e  Efficiency metrics: Inference speed (FPS), Model pa-
rameters (Params), GPU memory usage.

e Robustness metrics: Low-light scene mloU, Foggy
scene mloU, Tiny target recall (area < 100 pixels).

3) Model configuration:

e Backbone network: EfficientNetV2-B3 [28] (shared
backbone), MobileNetV4-Large [26] (local path back-
bone).

e LMMF module: Modal feature extractor channel num-
bers 64 — 128 — 256 — 512, number of modal
adaptive attention heads 8.

e  Detection head: BiFPN feature pyramid, ROI detection
threshold 0.3, NMS IoU threshold 0.5.

e  Segmentation head: The global path ASPP uses 4
dilation rates (1, 6, 12, 18), and the local path ROI
processing size is 128x128.

e  DSAF module: Initial scene complexity weights: sim-
ple scenes (o = 0.6, § = 0.2, v = 0.1), moderately
complex scenes (« = 0.5, 5 = 0.3, v = 0.2), complex
scenes (o = 0.4, 8 =0.4, v =0.3).

e  Boundary optimization: Lightweight CRF, 3 iterations,
adaptive Gaussian kernel.

4) Training strategy:

e Training stages:

o  Warm-up stage (1-5 epochs): Freeze the
shared backbone, only train the detection head
and segmentation head, learning rate 3 x 1075,

o Joint training stage (640 epochs): Unfreeze
the shared backbone, enable DSJL loss,
adaptive learning rates (detection head
5x 1075, segmentation head 1 x 10—%, shared
backbone 3 x 107?).

o  Fine-tuning stage (4145 epochs): Reduce the
learning rate to 1 x 107°, and strengthen the
training of fusion modules.

e  Optimizer: AdamW, weight decay 1 x 10~%, batch size
16 (Cityscapes) / 32 (other datasets).

e  [Learning rate strategy: Cosine annealing with 5 epochs
of warm-up.

e Data augmentation: Random horizontal flip, scal-
ing (0.5-2.0), color jitter, random occlusion, super-
resolution enhancement (for tiny targets).

All experiments are conducted in a 4xNVIDIA A100 GPU
environment, implemented based on PyTorch 2.0 to ensure
fairness in comparison with mainstream models.
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TABLE I. COMPARISON RESULTS WITH CURRENT MAINSTREAM MODELS ON THE CITYSCAPES TEST SET

Method mloU(%) Small Obj mIoU(%) Boundary F-score(%) FPS Params(M) GPU Memory(GB)
DeepLabV3+ (Mainstream CNN-based) 79.7 62.3 73.5 284 68.3 8.2
SegFormer-B4 (Mainstream Transformer-based) 80.1 63.5 74.8 325 45.2 6.7
PSPNet (Mainstream CNN-based) 81.2 65.8 75.1 24.6 76.5 9.1
OCRNet (Mainstream CNN-based) 82.3 68.1 77.2 22.8 89.7 10.5
Mask2Former (Mainstream Transformer-based) 83.3 70.5 79.8 15.6 1124 12.8
SegNeXt (Mainstream Hybrid) 82.6 71.2 80.3 27.8 52.8 73
ENet (Mainstream Lightweight) 68.5 51.7 69.2 423 3.8 4.5
DAMCSeg (Ours) 86.7 78.3 86.2 35.7 423 5.8

TABLE II. COMPARISON RESULTS WITH CURRENT MAINSTREAM MODELS ON PASCAL VOC 2012 AND ADE20K DATASETS

Dataset Method mloU(%) Small Obj mloU(%) Boundary F-score(%) Occluded Recall(%) FPS
SegFormer-B4 80.1 63.5 74.8 73.6 325
Mask2Former 81.7 70.2 78.5 78.3 14.9
PASCAL VOC 2012 Test Set
SegNeXt 82.4 71.5 79.6 80.8 26.7
DAMCSeg(Ours) 85.9 80.2 84.5 85.7 38.6
SegFormer-B4 50.3 37.2 52.6 41.8 25.8
Mask2Former 54.5 42.8 56.9 47.5 12.3
ADE20K Validation Set
SegNeXt 54.7 43.1 57.2 48.2 20.5
DAMCSeg(Ours) 57.6 51.2 62.2 54.3 28.9

B. Quantitative Results

1) Comprehensive comparison with current mainstream
models: Table I shows the comparison results of DAMCSeg
with current mainstream semantic segmentation models on
the Cityscapes test set. It can be seen that DAMCSeg sig-
nificantly outperforms other models in all metrics: in terms
of accuracy, the mloU reaches 86.7%, which is 7.0% higher
than DeepLab v3+ [1], 6.6% higher than SegFormer-B4 [3],
3.4% higher than Mask2Former [4], and 4.1% higher than
SegNeXt [30]; in small target segmentation, the small target
mloU reaches 78.3%, which is 7.1% higher than SegNeXt [30]
(the current best performer); in boundary quality, the Boundary
F-score reaches 86.2%, leading all mainstream models by
3.3%—12.7%; in efficiency, the inference speed reaches 35.7
FPS, which is 128.9% higher than Mask2Former [4] and 25.7%
higher than DeepLab v3+ [1], while the number of parameters
is only 42.3M, much lower than Mask2Former [4] (112.4M)
and OCRNet [23] (89.7M).

Table II shows the comparison results on the PASCAL
VOC 2012 and ADE20K datasets. It can be seen that DAMC-
Seg still maintains a leading advantage: on the PASCAL VOC
2012 test set, the mloU reaches 85.9%, which is 5.8% higher
than SegFormer-B4 [3] and 4.2% higher than Mask2Former
[4], and the occluded object recall reaches 85.7%, leading
mainstream models by 4.9%-12.1%; on the more complex
ADE20K validation set, the mIoU reaches 57.6%, which is
3.1% higher than Mask2Former [4] (the current best per-
former) and 2.9% higher than SegNeXt [30], and the small
target mloU reaches 51.2%, which is 8.4%-13.5% higher
than mainstream models, fully demonstrating its superiority
in complex scenes.

2) Performance comparison in multi-modal and extreme
scenes: Table III shows the performance comparison of DAM-

CSeg with mainstream single-modal and multi-modal models
on multi-modal and extreme scene datasets. On the KITTI-360
multi-modal dataset, the mIloU of DAMCSeg (RGB + depth)
reaches 85.6%, which is 4.8% higher than the mainstream
multi-modal model FusionNet [7] and 4.1% higher than the
single-modal mainstream model SegNeXt [30], and the tiny
target recall reaches 75.8%, leading all compared models by
6.6%—18.5%; on the Dark Zurich low-light dataset, the mloU
of DAMCSeg (RGB + infrared) reaches 78.3%, which is 8.5%
higher than the single-modal mainstream model DeepLab v3+
[1], 7.9% higher than SegFormer-B4 [3], and 3.7% higher
than the existing multi-modal model MVSS-Net [20], fully
verifying the advantages of the LMMF module in extreme
scenes.

3) Ablation experiments: To verify the contribution of each
innovative module, five ablation models are designed, and
the results are shown in Table IV. It can be seen that each
innovative module makes a significant positive contribution to
model performance:

e The DSAF module contributes the most significantly
to mloU (+1.5%) and small target mloU (+2.6%),
verifying the superiority of dynamic weight fusion
over mainstream fixed fusion strategies.

e End-to-end joint training improves the coordina-
tion between detection and segmentation, contributing
+1.2% to mloU and +1.4% to Boundary F-score.

e The LMMF module significantly reduces the number
of model parameters (from 98.6M to 45.2M) while
ensuring accuracy, and improves inference speed (+8.2
FPS), solving the problem that mainstream models are
difficult to balance accuracy and speed.

e  The targeted loss function enhances the model’s ability
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TABLE III. PERFORMANCE COMPARISON WITH CURRENT MAINSTREAM MODELS ON MULTI-MODAL AND EXTREME SCENE DATASETS

Dataset Modality Method mloU(%) Tiny Target Recall(%) FPS
RGB SegNeXt(Mainstream Single-modal) 81.5 67.2 26.9
RGB Mask2Former(Mainstream Single-modal) 82.3 68.5 14.3
KITTI-360 Test Set . . .
RGB + Depth FusionNet(Mainstream Multi-modal) 80.8 69.2 22.6
RGB + Depth DAMCSeg(Ours) 85.6 75.8 32.4
RGB DeepLab v3+(Mainstream Single-modal) 69.8 57.3 27.1
RGB SegFormer-B4(Mainstream Single-modal) 70.4 58.1 31.2
Dark Zurich Test Set X i
RGB + Infrared MVSS-Net(Mainstream Multi-modal) 74.6 62.3 24.8
RGB + Infrared | DAMCSeg(Ours) 78.3 68.5 30.2

TABLE IV. ABLATION EXPERIMENT RESULTS ON THE CITYSCAPES VALIDATION SET

Model Configuration Cityscapes mloU(%) Small Obj mIoU(%) Boundary F-score mloU(%) Occluded Recall(%) FPS Params(M)
Baseline Model (No Innovative Modules) 83.9 73.6 82.9 76.8 253 98.6
+ DSAF Module 85.4(+1.5) 76.2(+2.6) 84.7(+1.8) 78.5(+1.7) 28.6(+3.3) 99.8
+ End-to-End Joint Training 85.1(+1.2) 75.8(+2.2) 84.3(+1.4) 79.1(+2.3) 29.1(+3.8) 97.5
+ LMMF Module (Lightweight) 84.8(+0.9) 74.9(+1.3) 83.8(+0.9) 77.5(+0.7) 33.5(+8.2) 452
+ Targeted Loss Functions 84.6(+0.7) 75.3(+1.7) 83.6(+0.7) 78.2(+1.4) 25.1(-0.2) 98.6
DAMCSeg (Complete) 86.7(+2.8) 78.3(+4.7) 86.2(+3.3) 81.2(+4.4) 35.7(+10.4) 42.3

A

(a) Input image (b) Deeplab v3+ (c) SegFormer-B4 (d) Mask2Former (e) DAMCSeg

Fig. 5. Qualitative comparison of segmentation results. (a) Input image; (b) DeepLab v3+ (Mainstream CNN-based); (c¢) SegFormer-B4 (Mainstream
Transformer-based); (d) Mask2Former (Mainstream Transformer-based); (e) DAMCSeg (Ours).
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to segment tiny targets and occluded objects, con-
tributing +1.7% to small target mIoU and +2.3% to
occluded recall.

e The complete model (DAMCSeg) achieves the best
comprehensive performance, with all metrics signifi-
cantly outperforming models with only partial mod-
ules, indicating the synergistic effect of each module.

C. Qualitative Results

Fig. 5 shows the qualitative comparison results of DAM-
CSeg with current mainstream semantic segmentation models
(DeepLab v3+ [1], SegFormer-B4 [3], Mask2Former [4]) on
different types of targets.

It can be observed from the figure:

1) Boundary segmentation (first row): DeepLab v3+ [1]
has obvious jagged edges on slender objects; SegFormer-B4
[3] and Mask2Former[4] are improved but still have local
breaks; DAMCSeg achieves the clearest and most coherent
boundaries, benefiting from the boundary optimization of the
DSAF module and lightweight CRF, which is significantly
better than the boundary processing effect of mainstream
models.

2) Tiny target segmentation (second row): DeepLab v3+
[1] misses tiny pedestrians; SegFormer-B4 [3] can recognize
but has incomplete boundaries; Mask2Former [4] can segment
but lacks details; DAMCSeg completely segments tiny pedes-
trians with clear boundaries, benefiting from the tiny target-
focused loss and local path enhancement, and its performance
is far superior to mainstream models.

3) Occluded object segmentation (third row): DeepLab
v3+ [1] misclassifies occluded bicycles; SegFormer-B4 [3] and
Mask2Former [4] partially complement the occluded parts but
have artifacts; DAMCSeg accurately recognizes the occluded
parts and naturally connects with the visible parts, thanks to the
occluded region-aware loss and multi-modal prior information,
solving the problem of poor occluded segmentation effect in
mainstream models.

4) Low-light scenes (fourth row): Mainstream models have
blurred segmentation results and category confusion under
low-light conditions; DAMCSeg maintains high-precision seg-
mentation through RGB + infrared multi-modal fusion, and its
robustness is significantly better than single-modal mainstream
models.

V. CONCLUSION

This paper proposes a Dynamic Adaptive Multi-Modal
Collaborative Semantic Segmentation method (DAMCSeg) to
address the shortcomings of current mainstream semantic
segmentation models in dynamic scene adaptation, complex
target segmentation, and accuracy-speed balance. The method
innovatively designs a dual-stage attention fusion module to
realize dynamic weight adjustment based on scene complexity
and target characteristics; constructs an end-to-end joint train-
ing framework to reduce error propagation between detection
and segmentation stages; integrates a lightweight multi-modal
fusion module to balance accuracy and efficiency; and designs
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targeted loss functions to enhance the segmentation ability of
tiny targets and occluded objects.

Extensive experimental results on multiple benchmark
datasets show that DAMCSeg comprehensively outperforms
current mainstream semantic segmentation models: compared
with the mainstream CNN-based model DeepLab v3+, the
average mloU is increased by 7.0% and the inference speed
by 25.7%; compared with the mainstream Transformer-based
model Mask2Former, the mlIoU is increased by 3.4% and the
inference speed by 128.9%; compared with the mainstream
hybrid model SegNeXt, the mloU is increased by 4.1% and
the small target mIoU by 7.1%; in complex scenarios such as
low light, the performance advantage is more significant.

This method breaks the technical bottlenecks of existing
mainstream models and realizes a coordinated optimization of
segmentation accuracy, inference speed, and robustness, pro-
viding a more practical and deployable solution for semantic
segmentation in safety-critical and resource-constrained appli-
cations like autonomous driving and medical image analysis.

Looking forward, DAMCSeg establishes a foundational
blueprint for the next generation of adaptive segmentation
systems. Its core philosophy—that a model should dynamically
reconfigure its internal processing based on both global scene
context and local object characteristics—offers a powerful
alternative to static, one-size-fits-all architectures. This paves
the way for future models that can intelligently allocate com-
putational budget on edge devices, activating complex sub-
networks only when and where needed, thus achieving un-
precedented efficiency without sacrificing performance. While
our work demonstrates significant progress, challenges remain
in scaling this adaptive paradigm to video sequences for
temporal consistency and in developing even more efficient
mechanisms for modality selection under severe bandwidth
constraints. We believe DAMCSeg serves as a crucial stepping
stone toward truly intelligent, efficient, and robust perception
systems.
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