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Abstract—Computer vision-based drowsiness detection faces
significant challenges in low-light conditions, particularly when
using near-infrared (NIR) sensors for driver monitoring systems.
Appropriate image enhancement methods are crucial to im-
prove detection accuracy. This study systematically evaluates five
enhancement methods: Histogram Equalization (HE), Adaptive
Histogram Equalization (AHE), Contrast-Limited Adaptive His-
togram Equalization (CLAHE), Brightness Preserving Dynamic
Histogram Equalization (BPDHE), and Multi-Scale Retinex with
Color Restoration (MSRCR). The evaluation was conducted on
4,272 frames from the University of Liège (ULg) Multimodality
Drowsiness Database (DROZY) using four no-reference metrics:
Natural Image Quality Evaluator (NIQE), Perception-based Im-
age Quality Evaluator (PIQE), Shannon Entropy, and Lightness
Order Error (LOE). Additional validation was performed by
measuring the face detection rate using MediaPipe. The results
show that CLAHE achieves an optimal balance with an NIQE of
4.61 (best natural quality), a detection rate of 97.9%, and an LOE
of 0.058 (superior structural preservation). MSRCR produces
the highest entropy (6.58) but the lowest detection rate (75.6%),
indicating structural distortion in the NIR context. Statistical
validation using the Wilcoxon signed-rank test and the Friedman
test confirmed the significance of the findings (p < 0.05). CLAHE
is recommended for NIR surveillance-based drowsiness detection
systems.

Keywords—Image enhancement; near-infrared; drowsiness de-
tection; histogram equalization; multi-scale retinex; CLAHE; no-
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I. INTRODUCTION

Traffic accidents caused by drowsiness contribute to 20-
30% of global road deaths. Automatic drowsiness detection
systems are a critical component of modern automotive safety.
Computer vision technology offers non-invasive solutions
through analysis of facial expressions and driver behavior
patterns. However, the performance of these systems is highly
dependent on the quality of the input image.

Near-infrared (NIR) sensors are increasingly used for driver
monitoring because they can operate in low-light conditions
[1]. Unlike visible-light RGB cameras, NIR sensors are un-
affected by variations in ambient light and can operate at
night without additional lighting distracting the driver [2]. The
DROZY dataset, a leading benchmark for drowsiness detection
research, uses a Kinect v2 NIR sensor, which represents
realistic low-light surveillance conditions [3].

NIR images have different characteristics than conven-
tional RGB images. The spectral response of NIR is lim-

ited to wavelengths of 700-1000 nm, resulting in essentially
monochrome images with a narrow dynamic range [4]. The
lack of chrominance information eliminates the advantages
of color restoration-based enhancement methods. Furthermore,
NIR sensors are sensitive to thermal noise, especially at low
light intensities [5]. These unique characteristics mean that
enhancement methods designed for natural RGB images may
not be optimal for NIR surveillance scenarios.

Image enhancement is a crucial preprocessing step in the
drowsiness detection pipeline. Lin et al. demonstrated that
an appropriate enhancement algorithm can improve detection
accuracy by up to 5% on a realistic driving dataset [6]. Aprilia
et al. demonstrated that integrating CLAHE with YOLOv5
resulted in a Mean Average Precision of 0.959 for drowsiness
detection [7]. Face detection rate, a necessary condition for
subsequent facial landmark analysis, is significantly affected
by the quality of preprocessing. Methods that fail to preserve
facial geometry hinder the extraction of features such as eye
closure ratio and mouth opening, which are key indicators of
drowsiness [8].

The literature identifies two main categories of en-
hancement methods: histogram-based and Retinex-based.
Histogram-based methods, including HE and its variants
(AHE, CLAHE, BPDHE), modify the pixel intensity distri-
bution to enhance global or local contrast [9]. CLAHE is
particularly popular for its ability to limit noise amplification
through a clip limit parameter [7]. Retinex-based methods,
with MSRCR as a representative example, use a multi-scale
approach to separate the illumination and reflectance compo-
nents in images [10]. MSRCR theoretically excels in natural
image enhancement due to its sophisticated color restoration
component [11].

However, systematic comparisons of these methods specif-
ically for the context of NIR drowsiness detection are limited.
Wang et al. conducted a comprehensive review of enhance-
ment methods but focused on RGB images [9]. Zhan et al.
surveyed modern low-light enhancement techniques, including
deep learning approaches, but did not specifically analyze NIR
surveillance scenarios [12]. Zhang et al. explored NIR-RGB
fusion for denoising but focused on inconsistency handling,
not enhancement comparison [4]. Liu et al. examined the NIR-
VIS domain gap for face recognition, not drowsiness detection
tasks [13].

This gap is significant because practitioners need empirical
guidance to select enhancement methods that fit their deploy-
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ment constraints. Real-time drowsiness systems face a trade-
off between enhancement quality and computational efficiency.
Methods that are too complex are not feasible for embedded
automotive platforms. Furthermore, over-aggressive enhance-
ment can distort facial structure, causing false negatives in the
face detection module [14]. Comprehensive evaluation using
multiple quality metrics and practical validation through detec-
tion rate can provide actionable insights for system designers.

This study fills this gap by systematically evaluating five
enhancement methods on 4,272 NIR frames from the DROZY
dataset. The evaluation focuses on frame-level image quality
assessment to establish empirical foundations for preprocess-
ing method selection, with face detection serving as a practical
bridge between enhancement quality and downstream task re-
quirements. Specific contributions include: 1) a comprehensive
comparison of histogram-based methods (HE, AHE, CLAHE,
BPDHE) versus the Retinex-based method (MSRCR) in the
NIR context, 2) a multi-dimensional evaluation using four
no-reference quality metrics that capture different aspects of
image quality, 3) practical validation using face detection rate
as a proxy for downstream task suitability, and 4) a rigorous
statistical analysis using non-parametric tests to confirm the
significance of the findings.

This paper is organized as follows. Section II reviews the
literature related to enhancement methods, NIR imaging chal-
lenges, and quality assessment metrics. Section III describes
the experimental methodology, including dataset characteris-
tics, implementation details, and statistical analysis procedures.
Section IV presents the quantitative and qualitative evaluation
results. Section V discusses the interpretation of the findings,
practical implications, and limitations. Section VI concludes
with recommendations and future work directions.

II. RELATED WORKS

A. Drowsiness Detection Systems

Computer vision has become the dominant approach for
detecting driver drowsiness. Camera-based systems analyze
physiological facial changes such as eye closure rate, yawn
frequency, and head pose deviation. Cao et al. [15] inte-
grated visual data with polysomnographic signals, achieving
95% accuracy in a sleep-deprived scenario. This multimodal
approach is robust but requires additional sensors. Single-
camera systems are more practical for mass deployment, as
demonstrated by Winarno et al. [8] using EfficientNet-KNN
with Haar Cascade preprocessing on the DROZY dataset.

Preprocessing quality determines the success of down-
stream analysis. Lin et al. demonstrated that an appropriate
enhancement algorithm increased detection accuracy to 95.3%
compared to 90.1% without preprocessing [6]. Face detection
is a necessary condition for landmark extraction. Methods
that fail to preserve facial geometry will hinder the calcu-
lation of Eye Aspect Ratio (EAR) and Mouth Aspect Ratio
(MAR), two key indicators of drowsiness [8]. Aprilia et al.
demonstrated CLAHE integration with YOLOv5 resulting in
a mAP of 0.959, explicitly outperforming the model without
enhancement [7]. Enhancement not only improves visibility; it
preserves structural information for feature extraction.

B. Low-Light Enhancement Methods

Histogram-based methods modify the pixel intensity dis-
tribution. HE applies a global transformation to flatten the
histogram, increasing the overall contrast of the image [9]. The
simplicity of HE makes it popular for real-time applications,
although Wang et al. identified noise amplification as a major
drawback in low-light images. Over-enhancement of bright
regions results in a washed-out appearance, while dark regions
remain underexposed.

AHE overcomes this limitation of HE through local his-
togram equalization. Each pixel is transformed based on the
distribution of its neighborhood. The exposure equalization
approach of AHE produces better detail in dark regions [16].
The computational cost of AHE is higher because it requires
calculating a local histogram for each pixel. Aprilia et al. found
AHE effective for data enrichment in drowsiness detection
datasets [7].

CLAHE introduces a clip limit to limit contrast amplifica-
tion. This parameter prevents the excessive noise amplification
that occurs in standard AHE [17]. Tile size determines the
granularity of local enhancement. Small tiles produce superior
local detail, while large tiles provide a more natural appear-
ance. Wang et al. used CLAHE for nighttime road image
enhancement, increasing visibility by up to 23% [18].

Ibrahim and Kong developed BPDHE for medical imaging
applications which separates images based on mean brightness,
performing independent equalization on sub-images preserves
the original mean brightness, avoiding over-enhancement arti-
facts [19]. This method is less popular than CLAHE, although
it theoretically offers better brightness preservation.

Retinex theory is based on human perception models. Job-
son et al. developed Multi-Scale Retinex with Color Restora-
tion (MSRCR) to separate illumination and reflectance compo-
nents [10]. Multiple Gaussian scales capture detail at various
spatial frequencies. The color restoration function prevents the
graying effect that occurs in basic Retinex [11]. Jobson et al.
standardized MSRCR parameters for automatic enhancement
without manual tuning [11].

MSRCR excels on natural outdoor images. Li et al. applied
MSRCR for underwater image enhancement, addressing color
cast and backscatter issues [20]. Wang et al. used MSRCR on
maize leaves to improve maize leaf disease recognition visu-
alization [21]. Zhang demonstrated that MSRCR is effective
for dim nighttime images, although it requires post-processing
denoising [22].

Known limitations exist. Petro et al. documented halo
artifacts and graying issues in spatially extensive homoge-
neous regions [23]. MSRCR’s gray-world assumptions violate
scenes with single-color dominance. Rahman et al. identi-
fied monochrome images as a pathological case where the
color restoration component is ineffective [24]. Liu et al.
demonstrated that MSRCR can aggravate scattering effects in
turbid water conditions [25]. Computational intensity is also a
concern for real-time systems. Wang et al. noted that multiple
Gaussian filtering operations require significant processing
power [26].
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C. NIR-Specific Challenges

Near-infrared imaging differs fundamentally from visible-
light RGB. Its spectral response is limited to 700–1000 nm,
resulting in essentially monochrome images [4]. The absence
of color information eliminates the benefits of chromatic-
based enhancement methods. NIR sensors also have differ-
ent sensitivity characteristics, responding more strongly to
reflected light from skin tissue than to ambient illumination
[24]. Content inconsistency between NIR and RGB modalities
poses major challenges for fusion approaches [4], as shadows
visible in RGB are often invisible in NIR due to differences
in wavelength penetration. Shadows visible in RGB are often
invisible in NIR due to differences in wavelength penetration.
Direct fusion produces ghosting artifacts.

Yang et al. showed that multiple RGB colors can map to a
single NIR intensity, creating mapping ambiguity for coloriza-
tion tasks [27]. Liu et al. argued that the domain gap is not only
spectral but also distributional [13]. The feature distributions
of NIR and visible light differ significantly, requiring domain
adaptation approaches.

Driver monitoring systems increasingly adopt NIR sensors.
Nowara et al. extracted heart rate signals using NIR imaging
photoplethysmography, demonstrating its feasibility for non-
invasive physiological monitoring [1]. Tu et al. benchmarked
deep learning methods for automotive imaging PPG, validating
NIR narrow-band filters robustness against extreme lighting
variations [2]. Borghi et al. established baselines for driver
verification using depth sensors, tackling in-the-wild cockpit
lighting challenges [28].

DROZY dataset represents realistic NIR surveillance con-
ditions. Massoz et al. documented Kinect v2 sensor char-
acteristics, noting 512×424 resolution at 30 fps [3]. Pre-
annotated 68 facial landmarks provided to bypass face detec-
tion difficulties. Bodaghi et al. compared DROZY with newer
datasets, highlighting DROZY primary limitation as a fixed
low-light environment without diverse in-the-wild conditions
[14]. Ghoddoosian et al. used UTA-RLDD dataset, noting
real-life drowsiness differs significantly from acted drowsiness
[29]. Asdyo et al. found facial landmarks (EAR/MAR) remain
robust across light conditions once face detected, but initial
detection remains a bottleneck [30].

D. Image Quality Assessment

No-reference metrics are essential because pristine ref-
erence images are not available in surveillance contexts.
NIQE measures statistical distance between image features
and natural scene statistics model [31]. Lower NIQE indicates
closer alignment with natural image characteristics. Sabry et
al. validated NIQE for nighttime driving images, showing
correlation with human perceptual quality [32].

PIQE quantifies block-wise distortion based on human
perception models [33]. Lower scores indicate higher percep-
tual quality. Wang et al. established interpretation standard:
PIQE effectively detects artifacts introduced by aggressive en-
hancement algorithms [34]. Saleem et al. demonstrated PIQE
robustness for underwater image evaluation, confirming utility
across diverse domains [35].

Shannon Entropy measures information content or detail
richness in an image [36]. Higher entropy suggests more
visible details, although extremely high values can indicate
excessive noise. Daway et al. explored the trade-offs be-
tween Entropy and Lightness Order Error (LOE), arguing
good enhancement should maximize entropy while minimizing
lightness order reversals [37]. Li et al. established Entropy
as a critical metric for enhanced evaluation in comprehensive
surveys [38].

LOE quantifies preservation of relative brightness order-
ing [39]. Algorithm samples pixel pairs, comparing whether
brightness relationships preserved after enhancement. Lower
LOE indicates better structural preservation. Wang et al. em-
phasized the importance of LOE for ensuring enhancement
does not invert natural lighting structure, critical for object
recognition tasks [38].

E. Gap Analysis

Existing studies compare enhancement methods in RGB
contexts or apply NIR for different tasks. Wang et al. pro-
vided comprehensive categorization of enhancement algo-
rithms, but evaluation focused on visible-light natural images
[9]. Jingchun et al. surveyed modern low-light techniques
including deep learning, but did not specifically analyze NIR
surveillance scenarios [12]. NIR domain received attention for
facial recognition and expression analysis. Liu et al. examined
domain gap for heterogeneous face recognition [13]. Luo et
al. proposed stochastic differential equations for NIR-to-VIS
translation, preserving facial details [40]. Yang et al. explored
colorization challenges using cooperative learning [27].

Different tasks require different quality criteria; recogni-
tion prioritizes feature distinctiveness; drowsiness detection
prioritizes structural preservation for landmark extraction. No
systematic evaluation exists for histogram variants versus
Retinex methods specifically for NIR drowsiness datasets with
comprehensive metrics plus detection validation. This gap is
significant because practitioners need empirical guidance to se-
lect enhancement methods suitable for deployment constraints.
The trade-offs between enhancement quality, computational
efficiency, and downstream task compatibility remain underex-
plored. Our work addresses this gap through focused evaluation
in the NIR business context, providing actionable insights for
automotive safety system designers.

III. METHODS

A. Dataset and Research Methodology Flow

This study used the DROZY (ULg Multimodality Drowsi-
ness Database). The dataset contains videos from 14 subjects
across three recording sessions using Microsoft’s Kinect v2
NIR sensor. The resolution is 512×424 pixels with a frame
rate of 30 fps. Subjects 1 to 8 were recorded at 15 fps for
sessions 2 and 3 due to a recording error in the dark [3].

All videos were sampled every five seconds. This interval
balances dataset size with temporal independence, avoiding
duplicate frames while capturing sufficient variation across
drowsiness states. A total of 4,272 frames were extracted. Each
frame underwent identical preprocessing before enhancement:
no resizing, no filtering, and the original bit depth was main-
tained to preserve sensor characteristics. The NIR nature of
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Fig. 1. Research methodology pipeline.

DROZY makes it suitable for evaluating enhancement methods
in realistic surveillance conditions where visible-light cameras
struggle.

The research methodology flow is visualized in Fig. 1. The
pipeline begins with the DROZY dataset as input, consisting
of NIR video. Frame extraction is performed with 5-second
sampling intervals, resulting in 4,272 independent samples.
Preprocessing includes two different format conversions as
needed. Grayscale conversion is applied to the majority of
enhancement methods (HE, AHE, CLAHE, BPDHE). BGR
conversion is required specifically for MSRCR compatibility
and MediaPipe face detection, as both tools are designed for
multi-channel inputs.

The five enhancement methods are processed in parallel.
HE operates globally without local adaptation. AHE and
CLAHE apply an adaptive approach with different clip limit-
ing. BPDHE separates images based on a brightness preserva-
tion strategy. MSRCR uses multi-scale Retinex decomposition.
Each frame is processed through all five methods, resulting in
five enhanced versions per original frame.

Validation and evaluation follow a dual-branch architecture.
The first branch calculates four no-reference quality metrics:
NIQE for natural quality assessment, PIQE for perceptual
distortion quantification, Shannon Entropy measuring infor-
mation content, and LOE evaluating structural preservation

through lightness ordering. The second branch performs face
detection validation using MediaPipe, recording success rates
and confidence scores. Both branches run independently, but
their outputs are combined for comprehensive analysis.

Statistical analysis uses non-parametric tests. The Fried-
man test compares all methods simultaneously across met-
rics. When global significance is detected, pairwise Wilcoxon
signed-rank tests follow to identify specific differences be-
tween the original and enhanced conditions. The final output
is comparative results, including quantitative metrics, detection
rates, statistical validation, and qualitative visual comparisons.

B. Implementation of Enhancement Method

Five methods were evaluated. Implementations followed
established conventions to ensure reproducibility.

1) Histogram Equalization (HE): HE applies a global
transformation using OpenCV’s equalizeHist function.
The input format is converted to an 8-bit unsigned integer
if necessary. This method redistributes pixel intensities across
the dynamic range without local considerations.

s = T (r) = (L− 1)

∫ r

0

pr(w)dw (1)

where, s is the output intensity, r is the input intensity,
pr(w) is the normalized histogram of the input image, and L
denotes the total number of intensity levels (256).

2) Adaptive Histogram Equalization (AHE): AHE utilizes
scikit-image’s exposure.equalize_adapthist with a
clip limit of 0.01. The transformation of each pixel depends on
the distribution of its local neighborhood, providing spatially
adaptive contrast enhancement.

s(x, y) = Tlocal(r(x, y)) = (L−1)

∫ r(x,y)

0

pR(w | Ω(x, y))dw
(2)

where, s(x, y) and r(x, y) denote the output and input in-
tensities at pixel location (x, y), respectively. The term Ω(x, y)
represents the neighborhood window centered at (x, y), and
pR(w | Ω(x, y)) is the local normalized histogram computed
within this window. The parameter L denotes the total number
of intensity levels, set to 256 for 8-bit grayscale images.

3) Contrast Limited Adaptive Histogram Equalization
(CLAHE): CLAHE is implemented through OpenCV’s
createCLAHE with a clip limit of 2.0 and a tile grid size
of 8×8 as default parameter value from OpenCV’s library.
Clip limiting prevents excessive noise amplification in ho-
mogeneous regions. The 8×8 tile size was chosen based on
the trade-off between spatial resolution and local adaptation.
Smaller tiles work more aggressively, while larger tiles pro-
duce a more natural appearance. The DROZY resolution of
512×424 pixels produces 64×53 tiles in this configuration.

The histogram clipping function is defined as:

hclip(i) = min(hi, clip limit) (3)
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clip limit =
Npixels per tile

Nbins

(
1 +

clip parameter
100

)
(4)

Then, the CLAHE Transformation Function is:

s(x, y) = TCLAHE(r(x, y)) (5)

where the transformation function is derived from the
clipped histogram hclip.

4) Brightness Preserving Dynamic Histogram Equalization
(BPDHE): BPDHE separates images based on their mean
brightness. Equalization is performed independently on sub-
images. Low-intensity pixels receive one transformation, while
high-intensity pixels receive another, preserving the overall
mean luminance, as described by Ibrahim and Kong [19].

5) Multi-Scale Retinex with Color Restoration (MSRCR):
MSRCR uses three Gaussian scales: 15, 80, and 250 pixels.
The parameters follow Jobson’s specifications: gain G =
192.0, offset B = 30.0, alpha α = 125.0, beta β = 46.0
[10], [11]. Each scale captures different spatial frequency
information. Color restoration is applied even though the NIR
is monochrome because we convert grayscale to BGR format
for consistency with the evaluation metrics.

The MSRCR is defined as:

MSRCR(x, y) =
∑
i

wi(log Ii(x, y)−log(F (x, y)∗Gi(x, y)))

(6)

where multiple Gaussian surround functions Gi(x, y) with
different scales σi are used to enhance image details at various
spatial frequencies.

The color restoration function is formulated as:

CR(x, y) = β log(α · I(x, y))− log

(∑
c

Ic(x, y)

)
(7)

The final enhanced output image is obtained by:

Output(x, y) = MSRCR(x, y)× CR(x, y) +B (8)

where, α, β, and B are tuning parameters controlling the
color restoration process and dynamic range adjustment.

Finally, all enhanced images are saved in PNG format to
avoid compression artifacts. Processing occurs on the Kaggle
platform using P100 GPUs, although metric computations are
executed on CPU due to CUDA compatibility constraints with
the PyIQA library. Parameter settings are summarized in Table
I.

C. Quality Metrics Computation

Four no-reference metrics quantify enhancement quality.
Pristine reference images are absent in surveillance contexts,
making NR-IQA essential:

TABLE I. PARAMETER SETTINGS FOR ALL ENHANCEMENT METHODS
FOLLOW CANONICAL VALUES FROM THE LITERATURE

Method Parameter Value Source

HE - Default OpenCV
AHE Clip limit 0.01 scikit-image

CLAHE Clip limit 2.0 OpenCV
Tile Size 8x8 OpenCV

BPDHE Separation point Mean Brightness [19]

MSRCR

Gaussian scales (σ) [15, 80, 250] [10], [11]
Gain (G) 192.0 [10], [11]
Offset (B) 30.0 [10], [11]
Alpha (α) 125.0 [10], [11]
Beta (β) 46.0 [10], [11]

1) Natural Image Quality Evaluator (NIQE): It measures
the statistical distance between image features and natural
scene statistics. The PyIQA library provides an implementa-
tion. Lower scores indicate closer alignment to natural image
characteristics, interpreted as better perceptual quality [31].

2) Perception-based Image Quality Evaluator (PIQE): It
quantifies block-wise distortion based on a human perception
model. Lower scores indicate fewer perceptual artifacts such
as blocking, blur, or noise [33].

3) Shannon entropy: It is calculated from grayscale his-
tograms. For color images, conversion to grayscale precedes
histogram generation using 256 bins.

H = −
∑
i

p(i) log2 p(i) (9)

where, p(i) represents the probability of intensity level i.
Higher entropy indicates richer information content [36].

4) Lightness Order Error (LOE): samples 4,096 random
pixel pairs per image. For each pair, the algorithm checks
whether the relative brightness is preserved after enhancement.
A lower LOE indicates better structural preservation [39].

D. Face Detection Validation

MediaPipe Face Detection serves as a practical validation
tool [41]. Detection success indicates whether the enhanced
image remains suitable for downstream drowsiness analysis
tasks requiring facial landmarks. We chose MediaPipe over
classical methods such as Haar cascades or HOG due to
its superior robustness, single-shot detector architecture, and
widespread adoption. The configuration uses a selection model
of 1 (far range, optimized for surveillance distances) with a
minimum detection confidence of 0.5. The detection rate is
calculated as the percentage of frames where at least one face
is detected.

E. Statistical Analysis

Non-parametric tests analyzed the results because image
quality metrics typically violate the normality assumption.
Following established practice for enhancement comparisons
[42], we applied the Friedman test for overall significance
across all methods, then pairwise Wilcoxon signed-rank tests
when the global null hypothesis was rejected. The significance
level was set at α = 0.05. Effect sizes were quantified using
rank-biserial correlation [43].
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Fig. 2. Radar chart for normalized metrics of comparison methods.

IV. RESULTS

A. Overall Performance

Table II summarizes the descriptive statistics for the six
conditions. CLAHE achieved the lowest NIQE (4.6 ± 0.39),
indicating the best natural quality. AHE followed with 4.76±
0.44. The original images had a NIQE of 5.96 ± 0.59. In
contrast, BPDHE produced the worst NIQE at 5.80 ± 0.68.
HE and MSRCR were in the middle with 5.66 and 4.84,
respectively.

PIQE showed a different pattern. Original had the lowest
score of 47.40±5.53, indicating minimal perceptual distortion
due to the lack of processing. All enhancement methods im-
proved PIQE, meaning they introduced artifacts. HE performed
the worst with 71.41 ± 3.09. BPDHE achieved 68.15 ± 2.16.
MSRCR was 65.69 ± 3.21. AHE and CLAHE were more
moderate, at 53.98± 4.07 and 55.48± 3.87, respectively.

The highest entropy was achieved by MSRCR (6.58±0.20).
CLAHE produced 6.37 ± 0.12. AHE was 6.22 ± 0.11. The
original was only 5.43 ± 0.18. BPDHE was even lower than
the original, at 5.31± 0.16. HE was the lowest at 5.17± 0.13,
indicating a loss of detailed information.

The original LOE was 0.00 due to no transformation.
AHE retained the best structure with an LOE of 0.047 ±
0.007. CLAHE was slightly higher at 0.058 ± 0.005. The
MSRCR reached 0.137±0.008. The BPDHE was highest with
0.179± 0.013, indicating significant structural distortion. The
HE was almost perfect with 0.000± 0.000 because the global
transformation preserved the relative ordering.

As Fig. 2 shows, the radar chart provides a comprehensive
visualization of the trade-offs. CLAHE forms a balanced
area, excelling in NIQE and competitive in other dimensions.
MSRCR dominates entropy but is weak in PIQE. Original is
superior in PIQE but inferior in entropy.

Fig. 3. NIQE distribution boxplot.

Fig. 4. PIQE distribution boxplot.

B. Per-Metric Analysis

1) NIQE distribution: The boxplot in Fig. 3 reveals sub-
stantial variability. CLAHE shows a narrow interquartile range,
indicating consistency across frames. AHE has a slightly wider
spread. Original and BPDHE display numerous outliers toward
high scores (poor quality). MSRCR has a more compact
distribution than Original, although the median is lower.

2) PIQE distribution: Fig. 4 illustrates the impact of en-
hancement on perceptual distortion. Original has the lowest
median and the narrowest spread. Once enhancement is ap-
plied, PIQE jumps. HE shows high consistency but at a poor-
quality level. CLAHE and AHE maintain moderate variability.
BPDHE and MSRCR experience outliers toward very high
scores in some frames.

3) Entropy distribution: MSRCR dominates with a median
of 6.54, as shown in Fig. 5. The range of CLAHE is concen-
trated between 6.30 and 6.44. AHE partially overlaps with
CLAHE but has a lower median. Original, HE, and BPDHE
cluster in the low-entropy region. Some outliers appear in
Original toward the high values, likely frames with high noise
content.

4) LOE distribution: Fig. 6 confirms HE and Original have
near-zero LOE. AHE and CLAHE display low values with
minimal spread. MSRCR experiences a higher but consistent
LOE. BPDHE shows the highest median and the greatest
variability, with some frames reaching LOE above 0.20.

The heatmap in Fig. 7 integrates all metrics. Colors in-
dicate normalized scores, with darker values indicating better
performance. CLAHE achieves the best balance across rows.
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TABLE II. DESCRIPTIVE STATISTICS OF COMPARISON METHOD

Method NIQE PIQE Entropy LOE

AHE 4.76 ± 0.4397 53.98 ± 4.0719 6.22 ± 0.1062 0.047 ± 0.0069
BPDHE 5.80 ± 0.6831 68.15 ± 2.1582 5.31 ± 0.1648 0.179 ± 0.0125
CLAHE 4.60 ± 0.3946 55.48 ± 3.8747 6.37 ± 0.1222 0.058 ± 0.0055
HE 5.66 ± 0.5875 71.41 ± 3.0934 5.17 ± 0.1331 0.000 ± 0.0002
MSRCR 4.84 ± 0.5133 65.69 ± 3.2075 6.57 ± 0.1956 0.137 ± 0.0085
Original 5.96 ± 0.5944 47.40 ± 5.5287 5.43 ± 0.1754 0.000 ± 0.0000

Fig. 5. Entropy distribution boxplot.

Fig. 6. LOE distribution boxplot.

MSRCR excels only in entropy. HE exhibits an inconsistent
pattern, excelling in LOE but failing in other metrics. Original
serves as the baseline with mixed performance.

C. Face Detection Rates

Face detection rates provide practical validation of en-
hancement suitability for drowsiness detection systems, where
successful face localization is prerequisite for landmark-based
feature extraction. Detection success varied dramatically. AHE
achieved the highest rate of 98.1%. CLAHE was very close at
97.9%. Original was not evaluated because it did not undergo
enhancement, but BPDHE achieved 91.8%. MSRCR dropped
to 75.6%. HE experienced catastrophic failure with only 27.8%
detection success.

Fig. 8 illustrates this difference visually. The bar chart
shows a substantial gap between histogram-based adaptive
methods versus the global method (HE) and the Retinex-based
method (MSRCR). The difference of more than 20 percentage
points between CLAHE and MSRCR is practically significant.

Qualitative validation using MediaPipe detection boxes

Fig. 7. Metric heatmap.

Fig. 8. Face detection rate for 5 methods using mediapipe.

confirms the quantitative pattern. Frame 1-1 t0000 illustrates
the success cases in Fig. 9(a-c). AHE (Fig. 9a) detects faces
with high confidence, with accurate localization of facial
landmarks. CLAHE (Fig. 9b) produces similar detections, with
stable bounding boxes. MSRCR (Fig. 9c) is successful despite
the different visual appearances; the MediaPipe algorithm still
recognizes facial structures.

Failure patterns reveal method-specific issues. HE over-
enhancement in frame 14-1 t0340 (Fig. 10a) removes facial
boundaries. The washed-out appearance confuses the detector;
no recognizable structures remain. BPDHE fails even on
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(a) AHE (b) CLAHE (c) MSRCR

Fig. 9. Detection success - frame 1-1 t0000.

(a) HE (b) BPDHE (c) BPDHE

Fig. 10. Detection failures.

(a) MSRCR (b) CLAHE (c) AHE

Fig. 11. Additional failure cases.

relatively bright frames like 1-1 t0000 (Fig. 10b). Brightness
discontinuity between sub-images creates artificial edges, dis-
rupting facial geometry. Frame 14-1 t0340 exacerbates this
problem (Fig. 10c), with brightness separation producing a
patchy appearance.

MSRCR also experienced failures, although the overall
rate was 75.6%. Frame 14-1 t0340 (Fig. 11a) shows subtle
degradation; facial features are visually visible, but structural
distortion is severe enough to trigger detection failure. Oc-
casional CLAHE failures (2.1% of frames) occur in extreme
cases. Frame 14-1 t0340 (Fig. 11b) represents a rare failure;
subject position or motion blur interact with enhancement,
although the method is generally robust. AHE failures (1.9%)
occurred under similar conditions. Frame 14-1 t0340 (Fig.
11c) demonstrates an edge case where adaptive histogram
equalization is inadequate. Detection failures are not random;
they cluster on frames with challenging characteristics such as
extreme head angles or motion artifacts. Methods with lower
failure rates handle edge cases better.

Visual inspection confirms metrics are not misleading.
Detection success correlates with perceptible facial structure
preservation. The low scoring method on LOE (BPDHE 0.179)
indeed distorts geometry visibly. High PIQE scores (HE 71.41)
manifest as blocking artifacts and washed-out regions. Quan-
titative and qualitative findings align.

Fig. 12. Representative visual frame comparison.

Fig. 13. Second frame visual comparison.

For qualitative context, Fig. 12 shows a grid comparison
of a single frame. Original exhibits limited visibility. HE over-
enhances significantly, washing out facial features to the point
of near-detection. AHE improves visibility while preserving
structure. CLAHE produces similar results with slightly re-
duced noise. BPDHE introduces brightness inconsistencies.
MSRCR produces a more natural appearance visually, but
facial boundaries become less distinct. Fig. 13 and 14 present
additional comparison cases, demonstrating the consistency of
patterns across diverse frames.

D. Statistical Significance

The Friedman test rejected the null hypothesis for all four
metrics (p < 0.001), confirming that at least one method differs
significantly. Table III summarizes the results for each metric
with sample sizes, test statistics, and p-values.

Wilcoxon signed-rank tests compared each enhanced
method with the original method. All comparisons yielded
p-values below 0.05, except for HE on LOE, where perfect
preservation yielded a near-zero difference. Effect sizes ranged
from moderate to large. Table IV details the number of pairs,
mean differences, test statistics, p-values, and significance
indicators.
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Fig. 14. Third frame visual comparison.

TABLE III. FRIEDMAN TEST RESULTS

Metric Chi-Square (χ2) p-value Significant

NIQE 16565.8768 < 0.001 Yes
PIQE 20710.6073 < 0.001 Yes
Entropy 21134.4112 < 0.001 Yes
LOE 21207.5235 < 0.001 Yes

TABLE IV. PAIRED WILCOXON TESTS (COMPARISON AGAINST
ORIGINAL)

Metric Method Mean Diff. W-statistic p-value

NIQE

HE -0.3065 1,669,917 < 0.001
AHE -1.2065 0 < 0.001
CLAHE -1.3569 0 < 0.001
BPDHE -0.1624 3,073,535 < 0.001
MSRCR -1.1179 2,504 < 0.001

PIQE

HE 24.0037 0 < 0.001
AHE 6.5779 4,753 < 0.001
CLAHE 8.0745 451 < 0.001
BPDHE 20.747 0 < 0.001
MSRCR 18.2877 0 < 0.001

Entropy

HE -0.2571 0 < 0.001
AHE 0.793 0 < 0.001
CLAHE 0.9391 0 < 0.001
BPDHE -0.1189 0 < 0.001
MSRCR 1.148 0 < 0.001

LOE

HE 0.0002 0 < 0.001
AHE 0.0474 0 < 0.001
CLAHE 0.0579 0 < 0.001
BPDHE 0.1792 0 < 0.001
MSRCR 0.1371 0 < 0.001

CLAHE showed significant improvements for NIQE (mean
difference -1.36, p < 0.001) and entropy (mean difference
+0.94, p < 0.001). Degradation occurred for PIQE (mean
difference +8.07) and LOE (mean difference +0.058), both sta-
tistically significant. These trade-offs are expected because en-
hancement inherently modifies image characteristics. MSRCR
achieved the largest entropy gain (+1.15) but also introduced
substantial LOE (+0.137) and PIQE degradation (+18.29).
Statistical significance does not equate to practical superiority;
interpretation requires application context.

V. DISCUSSION

A. Advantages of Balanced CLAHE

CLAHE achieved an optimal balance across evaluation
dimensions. A NIQE score of 4.61 indicates the best natural
quality, outperforming all other methods, including the original
(5.96). Local adaptation allows enhancement of dark regions
without overprocessing bright areas. The clip limit param-
eter prevents excessive noise amplification, a problem with
standard AHE. A detection rate of 97.9% validates practical
suitability. Only 89 of 4,272 frames failed detection. This is
important because face detection is a prerequisite for landmark
extraction in drowsiness analysis. Methods that distort facial
geometry, no matter how good their metrics, are not applica-
ble to real-world systems. CLAHE preserves structure while
improving visibility.

CLAHE is suitable for moderate lighting conditions. The
Kinect v2 NIR sensor produces limited intensity but not
complete darkness, typical of indoor surveillance conditions
with minimal ambient light. Enhancement needs to improve
local detail without over-amplification. The tile-based approach
processes 8×8 regions independently, providing adaptive gain
according to the local intensity distribution. A clip limit of 2.0
limits the maximum amplification, preventing noise explosion
in near-dark regions. Extremely dark lighting is different.
Aggressive enhancement is needed to reveal nearly invisible
content. Retinex methods are designed for such scenarios,
where the illumination component needs to be drastically
adjusted to separate reflectance.

Multi-scale decomposition assumes large dynamic range
variations. DROZY NIR falls in the middle zone, not ex-
tremely dark but also not well-lit. Aggressive enhancement
is counterproductive here, introducing artifacts as seen in
the MSRCR results. CLAHE lightweight adaptation is more
suitable for moderate low-light surveillance contexts. A LOE
score of 0.058 confirms the preservation of brightness ordering.
While relative intensities are preserved, spatial relationships
remain intact. Eye regions remain darker than the forehead, and
mouth boundaries remain distinct from cheeks. This stability
facilitates reliable calculation of EAR and MAR, two key
drowsiness indicators.

The observed performance gap, CLAHE at 97.9% ver-
sus MSRCR at 75.6% face detection, empirically validates
theoretical concerns regarding MSRCR’s design assumptions.
The color restoration component, foundational to MSRCR
for RGB images [10], [11], operates on spectral diversity
absent in single-band NIR data. This mismatch manifests not
merely as reduced image quality metrics but as tangible impact
on downstream task performance, as evidenced by the 22-
percentage-point detection rate difference. The incompatibility
of MSRCR is not an indication of poor methodology. The
design assumptions do not match the operational conditions of
DROZY. MSRCR is designed for scenarios where illumination
variations are large and require multi-scale decomposition for
normalization. The parameter G = 192 plus three scales
[15, 80, 250] sets an aggressive enhancement suitable for
extremely dim or high dynamic range scenes. Images with se-
vere backlighting or deep shadows benefit from this approach.
Zhang et al. demonstrated its effectiveness for underwater
scenes where scattering creates extreme attenuation gradients
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[23]. Outdoor nighttime scenes with headlight glare are also
suitable [20]. DROZY is in the middle zone. Not extremely
dark, not well-lit. Enhancement requirements are moderate.
CLAHE’s lightweight local adaptation is more appropriate than
MSRCR’s heavy multi-scale processing. The computational
cost also differs significantly. Three Gaussian convolutions per
scale require substantial processing power, while CLAHE’s
tile-based histogram operations are much more efficient. For
real-time automotive systems processing 30 fps streams, ef-
ficiency matters. Here’s a simple analogy. MSRCR is like a
sledgehammer for breaking up large rocks. CLAHE is like a
regular hammer for nails. DROZY NIR requires a hammer,
not a sledgehammer. Excessive power can damage structures
that need to be preserved for face detection.

B. Trade-Off MSRCR

MSRCR achieved the highest entropy (6.58), confirming its
theoretical strength in detail revelation. Jobson et al. designed
a multi-scale approach to capture information across spatial
frequencies [10]. The color restoration component should
preserve saturation while compressing dynamic range [11]. In
theory, MSRCR is superior for natural images. A detection rate
of only 75.6% reveals practical limitations. Over 1,000 frames
failed detection. The inconsistency between high entropy and
low detection rates requires explanation. We argue the problem
is contextual, not methodological.

NIR imaging is essentially monochrome. DROZY uses a
single-channel sensor at 850 nm wavelength [3]. The color
restoration step in MSRCR, designed for RGB channels,
becomes less relevant. Jobson et al. identified monochrome
scenes as a pathological case where assumptions are violated
[24]. The parameter β = 46.0 we used to govern the colour
restoration strength. In grayscale NIR, this component may
introduce artifacts rather than benefits. LOE score 0.137 versus
CLAHE 0.058 indicates structural distortion. MSRCR multi-
scale processing with aggressive parameters can cause bright-
ness ordering reversals. Petro et al. documented halo artifacts
around high-contrast edges [26]. In facial images, halos blur
boundaries between features, confusing detection algorithms.
MediaPipe relies on learned facial structure patterns; distor-
tions degrade recognition.

Liu et al. demonstrated MSRCR aggravates scattering
effects in turbid water [25]. A similar principle applies to
limited spectral range NIR. Zhang noted MSRCR requires
post-processing denoising for dim images, adding computa-
tional overhead [22]. Real-time drowsiness systems process
30 fps streams; extra denoising steps reduce throughput. We
do not claim MSRCR is universally inappropriate. Wang et al.
showed benefits for maize leaf disease recognition [9]. Zhang
demonstrated that MSRCR is effective for dim nighttime im-
ages [22]. Context determines suitability. For NIR surveillance
with structural preservation requirements, simpler methods like
CLAHE offer a better balance.

C. HE and BPDHE Failure

HE experienced catastrophic failure with a detection rate
of 27.8%. Global equalization overstretches the dynamic range
without local considerations. Bright regions become washed
out, and dark regions are excessively amplified. Visual inspec-
tion of Fig. 10 shows that facial features are almost obliterated.

The PIQE score of 71.41 is the highest among all methods.
Block-wise distortion is severe. Noise in the original images is
amplified throughout the intensity range. Wang et al. identified
noise amplification as the primary weakness of HE [9]. In
NIR images with inherent thermal noise, HE exacerbates the
problem.

Interestingly, the LOE is nearly zero (0.000). Global trans-
formation preserves relative ordering perfectly. Every pixel
undergoes an identical mapping function. Brightness rela-
tionships remain unchanged. However, structure preservation
does not translate into detection success. Apparently, absolute
intensity levels matter more than purely relative ordering for
face detection algorithms. HE remains valuable for certain
applications. Its computational simplicity makes it attractive
for resource-constrained environments. Its processing speed is
superior due to single-pass histogram computation. But for
drowsiness detection requiring reliable face localization, HE
is unsuitable.

BPDHE preserves mean brightness, theoretically avoiding
over-enhancement. Detection rate of 91.8% is decent but still
inferior to CLAHE and AHE. The highest LOE was 0.179,
indicating substantial brightness ordering reversals. Separation
in mean brightness creates discontinuity. Upper and lower sub-
images receive different transformations, potentially causing
inconsistent enhancement across facial regions. Ibrahim and
Kong developed BPDHE for medical imaging [19]. Different
context from surveillance. Medical images typically have con-
trolled acquisition conditions; surveillance deals with variable,
uncontrolled environments. Methods designed for one domain
are not necessarily optimal for another.

D. Implications for Drowsiness Detection Systems

Face detection is a critical bottleneck. Landmark extraction
algorithms assume face already localized. Calculation of EAR
requires precise eye corner positions. MAR calculation needs
accurate mouth boundary points. Methods failing detection
render subsequent analysis impossible. Lin et al. demonstrated
preprocessing impact, reporting 5% accuracy gain [6]. Our
findings suggest the impact can be much larger when choosing
between fundamentally different enhancement approaches. The
gap between CLAHE (97.9%) and HE (27.8%) represents a
70-percentage point difference in usable frames.

Real-time systems process continuous video streams. In-
termittent detection failures disrupt temporal analysis. Drowsi-
ness often manifests through gradual changes over time, not
discrete events. Missing frames due to enhancement-induced
detection failures breaks temporal continuity, hampering lon-
gitudinal monitoring. Computational efficiency also matters.
CLAHE operates through local histogram operations, com-
putationally efficient. Wang et al. noted MSRCR multi-scale
processing is more intensive [21]. For embedded automotive
platforms with limited processing power, efficiency consid-
erations are not trivial. CLAHE offers a favorable quality-
efficiency trade-off.

E. Limitations

Several limitations provide context for interpreting results
and identifying future research directions
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Evaluation deliberately focused on the NIR surveillance
context. DROZY represents realistic low-light conditions but
is a single sensor type with a fixed wavelength (850 nm).
Generalizability to visible-light scenarios or different NIR
sensors requires validation. The frame-level analysis approach,
while appropriate for comparative image quality assessment
[42], treats samples as independent; temporal modeling of
drowsiness patterns across video sequences represents com-
plementary future investigation.

MediaPipe served as detection validator. Classical methods
like Haar cascades or HOG detectors might show different
patterns. Deep learning-based face detectors are generally more
robust, but comparison across detector architectures could
reveal method-detector interaction effects.

Parameter settings followed canonical configurations.
CLAHE used clip limit 2.0 and tile size 8×8 based on
OpenCV’s documentation. MSRCR parameters from Jobson
specifications [10], [11]. No optimization performed specif-
ically for DROZY characteristics. Tuning might improve
individual method performance, potentially altering relative
rankings.

Statistical tests assumed independence between frames
sampled every 5 seconds. Temporal autocorrelation may exist
given video source. Stronger independence could be achieved
through longer intervals or sampling from different video
segments, though the trade-off is reduced sample size. The
4,272 frames provided sufficient statistical power for detecting
observed differences, as confirmed by highly significant p-
values (p < 0.001) across all comparisons.

F. Future Directions

Future work should explore adaptive enhancement frame-
works. Parameters can be tuned dynamically based on local im-
age characteristics. Machine learning approaches for parameter
selection might optimize trade-offs automatically. Our findings
suggest CLAHE as a strong starting point; optimization builds
on solid foundation.

Comparison with deep learning-based enhancement meth-
ods (EnlightenGAN, Zero-DCE, RetinexNet) would bench-
mark traditional approaches against modern alternatives,
though computational constraints for real-time automotive de-
ployment remain practical considerations. Extension to end-
to-end drowsiness detection pipelines would validate whether
preprocessing improvements translate proportionally to classi-
fication accuracy gains.

Validation across multiple NIR sensors with different wave-
length ranges (700-1000 nm) would establish generalizability
beyond Kinect v2’s specifications. Investigation of temporal
modeling approaches would complement frame-level quality
assessment with sequence-based drowsiness pattern analysis,
addressing the temporal dynamics noted as a limitation of the
current frame-independent approach.

VI. CONCLUSION

A. Summary of Findings

Five enhancement methods were evaluated on 4,272
DROZY frames. CLAHE was optimal. A NIQE score of

4.61 indicates the best natural quality, and a detection rate of
97.9% demonstrates practical suitability. A low LOE (0.058)
preserves facial structure for landmark extraction. Trade-offs
exist; PIQE increases by 8 points compared to the original, but
improvements in other dimensions justify this cost.

MSRCR achieved the highest entropy (6.58) but the low-
est detection rate (75.6%). The color restoration component,
designed for RGB channels, is less relevant in a monochrome
NIR context. Structural distortion (LOE 0.137) explains detec-
tion failures. For NIR surveillance, theoretical sophistication
does not guarantee practical superiority. Context matters more
than complexity.

HE failed catastrophically with a detection rate of 27.8%.
Global transformation over-enhances without local adaptation.
BPDHE is moderate at 91.8%, but an LOE of 0.179 indicates
brightness ordering problems. AHE performs competitively
(98.1%), but CLAHE’s advantage in NIQE plus comparable
detection makes it preferable for most scenarios.

B. Statistical Validation

Statistics validate the findings. Friedman tests reject the
null hypothesis across all metrics (p < 0.001). Wilcoxon
comparisons confirm significance for pairwise differences.
Effect sizes are moderate to large. This is not an artifact of
sample size; the differences are practically meaningful.

C. Practical Implications

This study focused on NIR drowsiness contexts. A sin-
gle dataset limits generalizability, although DROZY is rep-
resentative for low-light surveillance scenarios. MediaPipe is
appropriate as a validator due to its representation of widely
deployed deep learning methods, but detector choice influences
results. Parameter settings followed canonical configurations
without optimization specifically for DROZY, meaning tuning
could potentially improve individual method performance.

The practical implications are clear. System designers se-
lecting preprocessing for automotive monitoring should prior-
itize CLAHE. The balance between quality metrics, detection
reliability, and computational efficiency makes it suitable for
real-time embedded platforms. AHE is a viable alternative if
a marginally higher detection rate is prioritized.

D. Contributions and Recommendations

The observed balance in CLAHE suggests potential for
adaptive optimization frameworks. Clip limit and tile size can
be tuned dynamically based on image characteristics. The
parameters we use (2.0 and 8×8) work well across diverse
DROZY frames, yet adaptive approaches might achieve even
better trade-offs for specific conditions or subjects.

Beyond drowsiness detection, findings applicable to NIR-
based face analysis broadly. Expression recognition, attention
monitoring, gaze tracking all require reliable face localization
as foundation. Enhancement method choice impacts entire
pipeline performance, not isolated preprocessing steps.

This research provides empirical guidance for practitioners
navigating enhanced method selection in NIR surveillance
contexts. Systematic evaluation with multiple quality metrics

www.ijacsa.thesai.org 856 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

plus practical detection validation offers actionable insights.
CLAHE is recommended as a robust baseline for drowsiness
detection systems operating under low-light conditions.
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REFERENCES

[1] E. M. Nowara, T. K. Marks, H. Mansour, and A. Veeraraghavan, “Near-
Infrared Imaging Photoplethysmography During Driving,” IEEE Trans.
Intell. Transport. Syst., vol. 23, no. 4, pp. 3589–3600, Apr. 2022, doi:
10.1109/TITS.2020.3038317.

[2] Y. Tu, S. Fernando, and M. van Gastel, “Internship Report: Benchmark
of Deep Learning-based Imaging PPG in Automotive Domain,” arXiv
preprint arXiv:2411.00919, Nov. 2024.

[3] Q. Massoz, T. Langohr, C. Francois, and J. G. Verly, “The ULg
multimodality drowsiness database (called DROZY) and examples of
use,” in 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), Lake Placid, NY, USA, 2016, pp. 1–7.

[4] R. Xu, Z. Zhang, R. Wu, and W. Zuo, “NIR-Assisted Image Denoising:
A Selective Fusion Approach and a Real-World Benchmark Dataset,”
IEEE Trans. Multimedia, vol. 27, pp. 2543–2555, 2025.

[5] S. Jee and M. G. Kang, “Sensitivity Improvement of Extremely Low
Light Scenes with RGB-NIR Multispectral Filter Array Sensor,” Sen-
sors, vol. 19, no. 5, p. 1256, Mar. 2019.

[6] N. Lin and Y. Zuo, “Advancing driver fatigue detection in diverse
lighting conditions for assisted driving vehicles with enhanced facial
recognition technologies,” PLoS ONE, vol. 19, no. 7, p. e0304669, Jul.
2024.

[7] S. J. N. Aprilia and D. Fitrianah, “Automatic drowsiness detection
system to reduce road accident risks,” Bulletin of Electrical Engineering
and Informatics, vol. 14, no. 4, pp. 2674–2683, 2025.

[8] S. Winarno, F. Alzami, M. Naufal, H. Al Azies, M. A. Soeleman, and N.
H. A. H. Malim, “EfficientNet-KNN for Real-Time Driver Drowsiness
Detection via Sequential Image Processing,” ISI, vol. 30, no. 7, pp.
1703–1713, Jul. 2025.

[9] W. Wang, X. Wu, X. Yuan, and Z. Gao, “An Experiment-Based Review
of Low-Light Image Enhancement Methods,” IEEE Access, vol. 8, pp.
87884–87917, 2020.

[10] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for
bridging the gap between color images and the human observation of
scenes,” IEEE Trans. on Image Process., vol. 6, no. 7, pp. 965–976,
Jul. 1997.

[11] D. J. Jobson, “Retinex processing for automatic image enhancement,”
J. Electron. Imaging, vol. 13, no. 1, p. 100, Jan. 2004.

[12] Z. Jingchun, G. Eg Su, and M. Shahrizal Sunar, “Low-light image
enhancement: A comprehensive review on methods, datasets and eval-
uation metrics,” Journal of King Saud University - Computer and
Information Sciences, vol. 36, no. 10, p. 102234, Dec. 2024.

[13] M. Tarasiou, J. Deng, and S. Zafeiriou, “Rethinking the Domain Gap
in Near-infrared Face Recognition,” in 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle,
WA, USA, 2024, pp. 940–949.

[14] M. Bodaghi et al., “UL-DD: A Multimodal Drowsiness Dataset Us-
ing Video, Biometric Signals, and Behavioral Data,” arXiv preprint
arXiv:2507.13403, 2025.

[15] S. Cao, P. Feng, W. Kang, Z. Chen, and B. Wang, “Optimized driver
fatigue detection method using multimodal neural networks,” Sci Rep,
vol. 15, no. 1, p. 12240, Apr. 2025.

[16] S. Liu, Q. Lu, and S. Dai, “Adaptive histogram equalization framework
based on new visual prior and optimization model,” Signal Processing:
Image Communication, vol. 132, p. 117246, Mar. 2025.

[17] F. Alzami, S. Winarno, M. Naufal, and H. Al Azies, “Enhancing Driver
Drowsiness Detection through GMM-Optimized CLAHE,” in 2024
International Seminar on Application for Technology of Information and
Communication (iSemantic), Semarang, Indonesia, 2024, pp. 212–217.

[18] Y. Han et al., “Low-Illumination Road Image Enhancement by Fusing
Retinex Theory and Histogram Equalization,” Electronics, vol. 12, no.
4, p. 990, Feb. 2023.

[19] H. Ibrahim and N. Pik Kong, “Brightness Preserving Dynamic His-
togram Equalization for Image Contrast Enhancement,” IEEE Trans.
Consumer Electron., vol. 53, no. 4, pp. 1752–1758, Nov. 2007.

[20] T. Li and T. Zhou, “Multi-scale fusion framework via retinex and
transmittance optimization for underwater image enhancement,” PLoS
ONE, vol. 17, no. 9, p. e0275107, Sep. 2022.

[21] P. Wang, Y. Xiong, and H. Zhang, “Maize leaf disease recognition based
on improved MSRCR and OSCRNet,” Crop Protection, vol. 183, p.
106757, Sep. 2024.

[22] S. Zhang, M. Zhu, and K. Meng, “An Automated Multi-scale Retinex
for Dim Image Enhancement,” in 2022 IEEE 2nd International Con-
ference on Power, Electronics and Computer Applications (ICPECA),
Shenyang, China, 2022, pp. 647–651.

[23] A. B. Petro, C. Sbert, and J.-M. Morel, “Multiscale Retinex,” Image
Processing On Line, vol. 4, pp. 71–88, Apr. 2014.

[24] Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for
color image enhancement,” in Proc. 3rd IEEE Int. Conf. Image Process.,
Lausanne, Switzerland, 1996, pp. 1003–1006.

[25] R. Liu, X. Fan, M. Zhu, M. Hou, and Z. Luo, “Real-World Underwater
Enhancement: Challenges, Benchmarks, and Solutions Under Natural
Light,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 12, pp.
4861–4875, Dec. 2020.

[26] W. Sun, L. Han, B. Guo, W. Jia, and M. Sun, “A fast color image
enhancement algorithm based on Max Intensity Channel,” Journal of
Modern Optics, vol. 61, no. 6, pp. 466–477, Mar. 2014.

[27] X. Yang, J. Chen, and Z. Yang, “Cooperative Colorization: Exploring
Latent Cross-Domain Priors for NIR Image Spectrum Translation,” in
Proc. 31st ACM Int. Conf. Multimedia, Ottawa ON Canada, 2023, pp.
2409–2417.

[28] G. Borghi, S. Pini, R. Vezzani, and R. Cucchiara, “Driver Face Verifi-
cation with Depth Maps,” Sensors, vol. 19, no. 15, p. 3361, Jul. 2019.

[29] R. Ghoddoosian, M. Galib, and V. Athitsos, “A Realistic Dataset and
Baseline Temporal Model for Early Drowsiness Detection,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 178–187.

[30] B. Asdyo, B. Kanigoro, and Rojali, “Drowsy Detection System by
Facial Landmark and Light Gradient Boosting Machine Method,”
Procedia Computer Science, vol. 227, pp. 500–507, 2023.

[31] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘Completely
Blind’ Image Quality Analyzer,” IEEE Signal Process. Lett., vol. 20,
no. 3, pp. 209–212, Mar. 2013.

[32] M. Sabry, G. Schroeder, J. Varughese, and C. Olaverri-Monreal,
“Shadow Erosion and Nighttime Adaptability for Camera-Based Auto-
mated Driving Applications,” arXiv preprint arXiv:2504.08551, 2025.

[33] S. Higashiyama et al., “Usefulness of a No-Reference Metric for
Evaluation of Images in Nuclear Medicine - A Comparative Study with
Visual Assessment,” 2021.

[34] B. Fei et al., “A diffusion model for universal medical image enhance-
ment,” Commun Med, vol. 5, no. 1, p. 294, Jul. 2025.

[35] A. Saleem, S. Paheding, N. Rawashdeh, A. Awad, and N. Kaur, “A
Non-Reference Evaluation of Underwater Image Enhancement Methods
Using a New Underwater Image Dataset,” IEEE Access, vol. 11, pp.
10412–10428, 2023.

[36] Y. Karaca and M. Moonis, “Shannon entropy-based complexity quan-
tification of nonlinear stochastic process,” in Multi-Chaos, Fractal and
Multi-Fractional Artificial Intelligence of Different Complex Systems,
Elsevier, 2022, pp. 231–245.

[37] H. Daway et al., “Colour Image Enhancement by Fuzzy Logic Based
on Sigmoid Membership Function,” IJIES, vol. 13, no. 5, pp. 238–246,
Oct. 2020.

www.ijacsa.thesai.org 857 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 17, No. 1, 2026

[38] C. Li, J. Zhu, L. Bi, W. Zhang, and Y. Liu, “A low-light image
enhancement method with brightness balance and detail preservation,”
PLoS ONE, vol. 17, no. 5, p. e0262478, May 2022.

[39] M. Akai, Y. Ueda, T. Koga, and N. Suetake, “Low-Artifact and Fast
Backlit Image Enhancement Method Based on Suppression of Lightness
Order Error,” IEEE Access, vol. 11, pp. 121231–121245, 2023.

[40] B. Luo et al., “Multi-Energy Guided Image Translation with Stochastic
Differential Equations for Near-Infrared Facial Expression Recogni-

tion,” AAAI, vol. 38, no. 1, pp. 565–573, Mar. 2024.
[41] C. Lugaresi et al., “MediaPipe: A Framework for Building Perception

Pipelines,” arXiv preprint arXiv:1906.08172, 2019.
[42] Y. Sun et al., “Low-Illumination Image Enhancement Algorithm Based

on Improved Multi-Scale Retinex and ABC Algorithm Optimization,”
Front. Bioeng. Biotechnol., vol. 10, p. 865820, Apr. 2022.

[43] E. E. Cureton, “Rank-Biserial Correlation,” Psychometrika, vol. 21, no.
3, pp. 287–290, Sep. 1956.

www.ijacsa.thesai.org 858 | P a g e


