(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 17, No. 1, 2026

Evolution of Image Captioning Models: A
Systematic PRISMA Review

Abdelkrim SAOUABE!, Khalid TIZRA2, Doha BANOUI?

Akkodis Research, Paris, France

1

LIDSI Laboratory-Faculty of Sciences-Ain Chock, University Hassan II, Casablanca, Morocco?
2IACS Laboratory-ENSET Mohammedia, University Hassan II, Casablanca, Morocco?

Abstract—This article presents a systematic review of image
captioning approaches conducted according to the PRISMA
methodology, ensuring a rigorous, transparent, and reproducible
analysis of the literature. The study traces the evolution of
image captioning methods, beginning with early machine learn-
ing-based techniques that rely on handcrafted visual features,
object detection, and template-based or statistical language mod-
els. While these approaches established foundational concepts,
they are constrained by limited scalability and semantic ex-
pressiveness. Specific challenges include difficulty in capturing
complex object relationships and inability to generate diverse
descriptions for the same image. Image captioning represents a
key research problem at the intersection of computer vision and
natural language processing, aiming to automatically generate
coherent and semantically accurate textual descriptions of visual
content. Due to its multimodal nature and practical relevance,
it has attracted increasing attention in artificial intelligence
research. The review then examines the transition toward deep
learning—based models, which have become dominant due to their
improved performance. Encoder-decoder architectures are ana-
lyzed, highlighting the use of convolutional neural networks for
visual representation and recurrent neural networks for caption
generation. Attention-based models are discussed for their ability
to focus on salient image regions, followed by reinforcement
learning—based methods that directly optimize evaluation metrics
and semantic-driven architectures that enhance caption relevance.
Finally, recent advances based on Transformer architectures and
large-scale multimodal pretraining are reviewed, along with key
application domains and open challenges for future research in
image captioning.
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I. INTRODUCTION

In recent years, image captioning has attracted substantial
attention at the intersection of computer vision and natural
language processing within the broader field of Artificial
Intelligence (AI) [20]. The objective of image captioning is
to automatically generate linguistically coherent and seman-
tically meaningful textual descriptions that accurately reflect
the visual content of an image. This task requires not only
the recognition of objects and scenes, but also the modeling
of their attributes, relationships, and contextual interactions,
thereby bridging visual perception and natural language un-
derstanding.

Automatic image captioning has demonstrated its practical
relevance across diverse real-world applications [30]. Notable
examples include assistive technologies for visually impaired

individuals, automatic medical reporting in healthcare [15], and
human-machine interaction systems that enable more intuitive
and accessible interfaces.

Given the rapid evolution of image captioning methods, this
article provides a systematic and structured review of the field.
Section II presents the methodological framework adopted
for this survey, based on the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[2], ensuring transparency, reproducibility, and comprehensive
coverage of the relevant literature.

Section III reviews the evolution of image captioning tech-
niques, tracing the transition from early traditional methods
based on handcrafted features and classical machine learn-
ing to modern deep learning approaches. This chapter first
discusses traditional methods, followed by simple deep learn-
ing models relying on encoder—decoder architectures. It then
examines attention-mechanism-based models, reinforcement-
learning-based approaches, and semantic-based architectures.
More recent advances are covered through Transformer-based
architectures and large-scale pre-training-based models, which
have significantly improved caption quality and generalization
performance.

Finally, Section IV provides a critical discussion of the re-
viewed approaches, highlighting current challenges, compara-
tive strengths and limitations, and emerging research directions
for future image captioning systems and Section V provides
conclusion of the study.

II. SYSTEMATIC REVIEW METHOD USING PRISMA

In this study, the methodological framework is based on
the PRISMA model, which is widely recognized for ensuring
rigor and transparency in systematic literature reviews [2]. The
use of PRISMA strengthens the reliability of the analysis by
structuring each stage of the process from the identification of
relevant studies to the final synthesis of results. This framework
ensures the reproducibility of the review and supports an ex-
haustive selection of contributions related to Image Captioning.

The PRISMA process begins with a clear definition of
the review objectives and the formulation of specific research
questions, which guide the entire review procedure. Based
on these elements, a research protocol was developed, de-
tailing the consulted databases, the search strategies used,
and the inclusion and exclusion criteria that determine the
scientific relevance of the retained articles. Search queries were
constructed using keywords and terminological combinations
specific to Image Captioning and executed across several
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specialized academic databases.The search was conducted
across major academic databases including IEEE Xplore, ACM
Digital Library, Springer, ScienceDirect, and arXiv.

The results of these searches were then subjected to a multi-
stage selection process, following the PRISMA flow Fig. 1.
First, titles and abstracts were screened to remove studies that
were clearly irrelevant. Articles deemed potentially relevant
underwent full-text assessment, conducted independently by
at least two reviewers to ensure consistency, quality, and
reliability in the selection process.

After the final selection phase, the included studies under-
went systematic data extraction, covering their methodologies,
proposed approaches, main contributions, employed metrics,
and authors’ conclusions. The extracted information was then
analyzed comparatively to identify recurrent trends, method-
ological limitations, and emerging research directions in the
field.

The criteria applied in the selection process were defined
as follows:

e Inclusion criteria: scientific articles explicitly address-
ing Image Captioning, presenting methodological or
conceptual contributions, describing the adopted ap-
proach, and specifying the evaluation metrics used.

e  Exclusion criteria: non-scientific documents (reports,
non-academic book chapters, etc.), publications writ-
ten in languages other than English or French, dupli-
cate records, and articles not directly related to the
research topic.

The application of the PRISMA model thus ensures a
structured, reliable, and reproducible systematic review, pro-
viding a solid methodological foundation for the state of the
art presented in this study.

III. EVOLUTION OF IMAGE CAPTIONING MODELS

Image captioning can be divided into two major stages.
Prior to 2014, it relied on conventional techniques rooted
in machine learning for retrieval and segmentation. Since
2014, as the complexity of feature extraction from images has
increased, new methods based on deep learning technologies
have emerged as the leading approaches, delivering state-of-
the-art results. Fig. 2 illustrates the progression of automatic
image captioning.

Recent research has focused on image captioning using
deep learning techniques. Initial approaches utilized a Convo-
Iutional Neural Network (CNN) to extract visual representa-
tions, which were then fed into a Recurrent Neural Network
(RNN) for the generation of an output sequence, following
an encoder—decoder model structure. Subsequently, techniques
have been enhanced by incorporating region-based features,
attention mechanisms, reinforcement learning strategies, se-
mantic attributes, and even transformer models integrating
self-attention and pre-training methods such as Generative
Pre-trained Transformer (GPT) designed for both vision and
language tasks.

These endeavors are directed towards discovering the opti-
mal pipeline for establishing meaningful associations between
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visual semantics and textual components, translating visual ele-
ments into words in a sequence while preserving their inherent
significance. Within this chapter, we offer a comprehensive
summary of diverse techniques and approaches employed in
image captioning.

A. Traditional Methods

Before the advent of deep neural networks, image caption-
ing systems relied primarily on traditional approaches combin-
ing manually defined visual descriptors and language models
or text templates. These methods laid the foundations for the
field while illustrating the limitations of manual engineering
[20]. In retrieval-based methods, the idea is to use a database
of annotated images: for a new image, similar images are
searched for in the visual feature space, and then one of their
captions is reused to describe the target image. Visual similar-
ity is evaluated using descriptors such as histograms, keypoint
descriptors, or texture descriptors, which are transformed into
vectors that can be used by classifiers or distance measures
[21]. These methods have the advantage of being simple
and guaranteeing a certain grammatical correctness (since the
captions are human-generated), but they lack flexibility: they
do not generate new sentences, and their quality depends
heavily on the visual similarity between the target image and
those in the database [23].

Another family of methods first identifies objects, at-
tributes, or relationships from images using traditional clas-
sifiers or detectors such as Support Vector Machines (SVM),
Conditional Random Fields (CRF), etc., then fills in prede-
fined linguistic templates to form sentences. For example:
“An <object> is <action> in <scene>.” These templates,
completed with the detected visual entities, produce a textual
description [21]. These systems can generate grammatically
correct sentences with little data, but their expressiveness is
severely limited: descriptions remain stereotypical, lacking in
variety, and ill-suited to complex or original scenarios [23].

To visually encode an image, these methods used classic
computer vision descriptors, such as local descriptors (e.g.,
Scale-Invariant Feature Transform (SIFT), Histogram of Ori-
ented Gradients (HOG)), color histograms, texture descriptors,
or representations based on ‘“bag-of-visual-words” (BoVW)
[26]. These descriptors aimed to capture robust visual informa-
tion that was invariant to scale, orientation, and variations in
brightness, but their descriptive power remained limited in the
face of the semantic and contextual richness of natural images
[24].

Despite their pioneering role, these traditional methods
suffered from several structural weaknesses:

e Rigidity and lack of generality: Retrieval and
template-based methods did not generate new sen-
tences, and templates limited the diversity of expres-
sions [21].

e  Poor semantic understanding: Manual visual descrip-
tors were unable to capture complex relationships
between objects, attributes, and overall context, nor
were they able to model deep linguistic dependencies
[28].
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Fig. 1. Systematic filtering and selection of articles following the PRISMA methodology.
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e Disjointed vision-language pipeline: Vision (feature
extraction) and text generation were separated, with-
out joint learning, which limited adaptability and
visual-linguistic consistency [23].

These observations, drawn from fundamental research on
automatic visual captioning, explain why the community grad-
vally turned to deep learning techniques in early 2014. The
limitations of manual descriptors and rigid models led to the
adoption of learning architectures capable of automatically
acquiring joint visual and linguistic representations [29].

B. Simple Models: Encoder—Decoder-Based Architectures

First and foremost, the so-called encoder—decoder architec-
ture for image captioning combines a vision module (encoder)
and a text generation module (decoder) in an end-to-end man-
ner: the image is first transformed into a vector representation,
which is then used to generate a natural caption, word by word.

e Encoder — typically a CNN pre-trained for image
classification (e.g., on ImageNet). The last classifi-
cation layer is removed to use deep activations as a
visual representation. This representation encodes the
relevant visual features of the image: shapes, textures,
objects, global context.

e Decoder — typically an RNN, often a Long Short-
Term Memory (LSTM) network, which takes the
visual representation from the encoder (possibly trans-
formed) as its initial context, then generates a caption
in sequence: at each time step, the decoder predicts a
word based on the visual context and the history of
previous words.

Multimodal space-based approaches generally rely on an
architecture composed of four fundamental modules: A lin-
guistic encoder, a visual encoder, a multimodal fusion space,
and a linguistic decoder. In this scheme, the visual module
relies on a deep CNN to extract relevant semantic features
from images, while the linguistic encoder derives compact
vector representations for each word and models their temporal
dynamics using recurrent layers. The multimodal space then
aligns the visual and textual features in a common representa-
tion, enabling their effective combination within the generative
process [30]. This functional organization naturally translates
into an encoder—decoder architecture, where the encoder maps
the visual characteristics of an image to an intermediate
representation, similar to the processing of an input sequence
in machine translation. This paradigm explicitly divides the
task into two steps:

e Encoding, responsible for extracting relevant informa-
tion from the input image.

e Decoding, dedicated to generating the linguistic se-
quence from the encoded representations.

Several studies are based on this architecture, including the
model described in study [30], which uses two complementary
neural networks, the first, a CNN, extracts objects from the
image as well as their spatial structure. The second, generally
an LSTM-type recurrent network, uses these visual representa-
tions to generate a coherent, fluent, and grammatically correct
caption.
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Building on this line of research, [6] presents an innovative
method for automatically generating image descriptions using
a Bi-directional Long Short-Term Memory (Bi-LSTM) model
and an optimization method called Novel Moth Flame Opti-
mization (NMFO). The goal of this approach is to address the
challenge of automatically generating captions for images by
combining computer vision and natural language processing
techniques. The Bi-LSTM model is used to generate descrip-
tions by capturing long-term dependencies and leveraging
the context of the image. The NMFO optimization method,
inspired by the behavior of moths attracted to flames in nature,
is applied to fine-tune the model’s parameters and improve
its performance. A logarithmic spiral based on correlation
is used to guide the optimization process. The approach is
evaluated on widely used datasets, including Flickr8k and MS-
COCO, using standard metrics such as Bilingual Evaluation
Understudy (BLEU) and Consensus-based Image Description
Evaluation (CIDEr) to assess the quality of the generated cap-
tions. The model achieves 0.5883 BLEU and 0.8303 CIDEr on
Flickr8k, and 0.7988 BLEU and 0.8341 CIDEr on MS-COCO,
confirming its effectiveness across different benchmarks.

To improve caption diversity and the modeling of long-term
dependencies, [17] proposes a hybrid approach for automatic
image captioning that integrates ResNet-50[31] for visual
feature extraction, LSTM networks for sequential text gen-
eration, and Beam Search decoding to enhance caption diver-
sity. The method addresses fundamental challenges in image
captioning, including rare word handling, creative description
generation, and the modeling of long-term dependencies in
textual sequences. Experimental evaluation on the Flickr8k
dataset demonstrates improved BLEU scores compared to
baseline models, indicating enhanced caption quality. While
the approach shows practical applicability across domains
such as accessibility tools and visual search systems, the
authors acknowledge several limitations, including the absence
of attention mechanisms for fine-grained visual-textual align-
ment and limited generalization beyond the training dataset.
Despite these constraints, the method provides a practical
and computationally efficient solution for image captioning
in controlled environments, demonstrating the effectiveness of
combining established deep learning architectures with search-
based decoding strategies.

In a complementary direction, the study [19] investi-
gates the optimal combination of visual features and word
embeddings for automatic image captioning within an en-
coder—decoder framework. The authors conduct a compre-
hensive empirical analysis evaluating ten CNN architectures
for visual feature extraction paired with two types of word
embeddings for textual generation. Experimental validation is
performed on standard benchmarks including MSCOCO and
Flickr30k, with evaluation conducted using established metrics
such as BLEU, Metric for Evaluation of Translation with
Explicit ORdering (METEOR), Recall-Oriented Understudy
for Gisting Evaluation (ROUGE), and CIDEr to assess caption
accuracy and semantic coherence. The results demonstrate that
caption quality is significantly influenced by the choice and
combination of visual and linguistic components, with certain
architecture—embedding pairs yielding substantially superior
performance. This systematic experimental approach identifies
best practices for integrating visual and textual modalities,
providing practical guidelines for designing more effective
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captioning systems. The work emphasizes the importance of
modular and well calibrated architectural design in achieving
high-quality captions across varied visual contexts, though
computational complexity and data dependency may constrain
generalization to diverse domains.

Low-data regimes are tackled in study [18], which intro-
duces Few-shot Remote Sensing Image Captioning (FRIC), a
framework for generating captions for satellite images with
very few annotations (<1% of the standard dataset). Its main
innovation is an optimized decoding strategy combining multi-
model ensembles, auto-distillation, and parameter sharing.
Annotated samples are divided into subsets to train several
base models, whose predictions are then aggregated to improve
robustness and generalization. FRIC does not rely on external
data or pre-trained models, using pseudo-labels to exploit
unannotated images. Experimental evaluations show that FRIC
significantly outperforms existing methods with only 0.8% of
annotations, and ablation studies confirm the importance of
each component.

C. Attention-Mechanism-Based Architectures

Attention mechanisms have become a cornerstone of mod-
ern image captioning by enabling models to dynamically focus
on relevant visual regions during word generation. Originally
introduced in neural machine translation [44], attention was
successfully adapted to image captioning through models such
as Show, Attend and Tell [45]. In these frameworks, CNN
encode images into spatial visual representations, while recur-
rent decoders generate captions by weighting visual regions
according to their relevance at each time step. This process
improves descriptive precision, semantic coherence, and the
recognition of secondary objects compared to conventional
encoder—decoder models [46].

Subsequent research has proposed more advanced atten-
tion variants, including hierarchical attention [47], semantic
attention [48], and multi-head attention inspired by transformer
architectures [49]. These extensions enhance the modeling
of object relationships, visual attributes, and complex lin-
guistic dependencies. Building upon these foundations, later
approaches introduced adaptive, relational, and context-aware
attention strategies to strengthen visual-linguistic alignment
and capture fine-grained visual details. Collectively, these
developments demonstrate the central role of attention-based
architectures in improving the accuracy, relevance, and inter-
pretability of image captioning systems.

To further exploit visual hierarchies, the study [9] proposes
a method to automatically generate image captions using a
hierarchical attention mechanism and policy gradient opti-
mization. This approach combines an encoder—decoder model
with a hierarchical attention mechanism to capture both the
global and local visual features of the image. Policy gradient
optimization is used to train the model using positive and
negative rewards. The model is trained on the annotated
MSCOCO dataset and evaluated using standard automatic
metrics such as BLEU, METEOR, CIDEr, and ROUGE-L.
Its objective is to enhance the quality and accuracy of the
generated captions by integrating hierarchical attention with
policy gradient optimization. The results show competitive
performance, with 72.611 BLEU-1, 52.769 BLEU-2, 37.802
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BLEU-3, 27.243 BLEU-4, 24.731 METEOR, 88.140 CIDEtr,
and 56.048 ROUGE-L.

Building on advances in convolutional backbones, [22]
evaluates ConvNeXt variants integrated into an LSTM-
based captioning pipeline with visual attention on MSCOCO.
ConvNeXt-Base, trained without teacher-forcing, achieves
BLEU-4 of 34.76, outperforming soft-attention (+43.04%),
hard-attention (+39.04%), Vision Transformer (ViT) (+4.57%),
and Data-efficient Image Transformer (DeiT) (+0.93%), while
improving Top-5 accuracy by +6.68% and reducing loss by
18.72% versus MobileNetV3. The results demonstrate that
ConvNeXt offers an effective balance between performance
and computational efficiency, providing a compelling alter-
native to both traditional CNNs and transformers for image
captioning tasks.

Metaheuristic optimization is explored in study [25],
which introduces an Automated Image Captioning using Spar-
row Search Algorithm with Improved Deep Learning (AIC-
SSAIDL), a framework that integrates MobileNetV2 and
an Attention-Mechanism LSTM (AM-LSTM) with Sparrow
Search Algorithm (SSA) for visual hyperparameter tuning and
Fruit Fly Optimization (FFO) for text generation optimization.
Evaluated on Flickr8k, Flickr30k, and MSCOCO datasets,
the model achieves BLEU-1 of 80.40, BLEU-4 of 38.04,
METEOR of 33.58, and CIDEr of 137.45 on MSCOCO,
outperforming traditional baseline methods. The approach
demonstrates that metaheuristic optimization can enhance cap-
tion quality, though computational complexity and limited
comparison with recent transformer architectures remain noted
limitations.

Within the medical domain, [27] proposes a hybrid
framework combining YOLOv4 for object detection with an
attention-based LSTM model for medical image captioning.
The Flamingo Search Optimization (FSO) algorithm enhances
alignment between detected anatomical structures and gener-
ated descriptions. Evaluated on the PEIR Gross dataset (7,442
annotated images), the model achieves a BLEU score of
81.78%, representing a +4.42% improvement over baseline
methods. While the approach demonstrates enhanced caption
quality and reduced analysis time, the authors acknowledge
limitations including sensitivity to image noise and computa-
tional overhead.

Finally, a culturally specific application is explored in [32],
which addresses automatic captioning of Buddhist Thangka
paintings, a domain with limited annotated data and high visual
complexity. The authors propose a Semantic Concept Prompt
and Multimodal Feature Optimization network (SCAMF-Net),
integrating two key modules: Semantic Concept Prompt (SCP),
which incorporates cultural knowledge through contextual
vectors, and Multimodal Feature Optimization (MFO), which
enhances image—text alignment and filters noisy data. Eval-
uated on a dataset of 3,974 annotated Thangka images and
MSCOCO, the model achieves significant improvements with
BLEU-4 of 63.6% (+8.7%), METEOR of 52.0% (+7.9%), and
CIDEr of 562.4 (+76.6) compared to existing methods. Despite
high computational complexity and reliance on annotated data,
SCAMF-Net represents a substantial advancement in process-
ing culturally significant heritage images, demonstrating the
effectiveness of integrating domain-specific semantic knowl-
edge with multimodal feature optimization for specialized
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captioning tasks.

D. Reinforcement-Learning-Based Architectures

To overcome the limitations of sequence-level training,
reinforcement learning (RL) has been widely explored in
image captioning. In [8], Conditional Generative Adversar-
ial Networks (cGANs) are employed to improve upon pre-
established image captioning models that rely on RL. The
authors show that adversarial training can complement RL-
based optimization by encouraging more realistic and diverse
captions. Another line of work focuses on reward design.
For instance, [10] utilizes a gradient policy methodology
to optimize rewards based on human evaluations, directly
incorporating human preferences into the learning process.
This direction highlights the importance of aligning automatic
metrics with human judgment.

Human attention modeling is further explored in study
[11], which emulates human attention preferences and refines
attention through RL by incorporating linguistic evaluation
rewards. It is worth noting that enhancing random strategies
within a reasonable timeframe can be challenging. Conse-
quently, standard image captioning models typically involve
pretraining with cross-entropy or masked language models,
followed by fine-tuning using RL techniques, with metrics at
the sequence level serving as rewards. The study reports state-
of-the-art performance using the full dataset with distractors,
where the Mirrored Viewpoint-Adapted Matching (M-VAM)
model improves BLEU-4, METEOR, SPICE, and CIDEr, for
example achieving BLEU-4 up to 50.3, METEOR up to 37.0,
SPICE up to 24.4, and CIDEr up to 114.9. On the version
of the dataset without distractors, the model achieves even
stronger results, with CIDEr scores of 117.4 and 119.1 and
BLEU-4 scores of 45.5 and 50.1, alongside SPICE scores
of 30.7 and 31.2. These larger gains highlight that, without
distractor influence, the model can more accurately capture
semantic changes associated with viewpoint variations.

A more explicit use of human feedback is presented in
study [10], which improves image captioning by integrating
offline human evaluations. Generated captions are assessed
through individual and pairwise comparisons on the T2 dataset,
and the collected feedback is used to refine the model via
reinforcement learning. Experiments across multiple datasets
show consistent performance gains, with up to +3.19% in
average evaluation score and +3.4% in ranking metrics, while
higher policy-gradient weighting further improves informative-
ness, correctness, and fluency, demonstrating the effectiveness
of human in the loop optimization.

Interactive and uncertainty-aware RL is explored in study
[33], which proposes a medical image captioning framework
combining uncertainty estimation, keyword prediction, cap-
tion generation, and selective user feedback. Using evidential
learning, the model queries users only for uncertain keywords
and updates itself with weighted feedback. Evaluated on IU-
Xray, PEIR Gross, and MIMIC-CXR, it outperforms strong
baselines, achieving 0.851 mean Average Precision (mAP)
and 0.766 F1 on PEIR, with consistent gains in BLEU,
ROUGE, and METEOR, demonstrating efficient and accurate
uncertainty-guided captioning.
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Beyond captioning alone, [34] introduces a RL-inspired
method using reinforce to fine-tune pretrained computer vi-
sion models with task-specific rewards across object detec-
tion, panoptic segmentation, image colorization, and caption-
ing. The approach involves pretraining via Maximum Likeli-
hood Estimation (MLE) followed by reward-based optimiza-
tion. Evaluated on MSCOCO, Objects365, ImageNet, and
MSCOCO Captions datasets, the method demonstrates signif-
icant improvements: mAP increases from 39.2% to 54.3%,
Panoptic Quality (PQ) from 43.1% to 46.1%, CIDEr from
120.0 to 134.5, and colorfulness from 0.41 to 1.79. The
method enhances performance without altering model archi-
tecture and is applicable across diverse tasks. However, the
authors acknowledge heavy reliance on reward design and high
computational costs. This approach provides a framework for
fine-grained model tuning using human feedback and targeted
optimization strategies.

RL has also been used to align model reasoning with
human expectations. For example, [35] introduces an Inter-
activeLy Rationalizing Vision-LangUage ModEls (ILLUME),
a tuning paradigm for improving alignment between vi-
sion—language model outputs and human reasoning. While pre-
trained language models are effective for image captioning
and visual question-answering (VQA), their outputs often
fail to reflect expected commonsense rationales. ILLUME
incorporates human feedback into the training loop: given an
image—question—answer prompt, the model generates multi-
ple candidate rationales, from which a human critic selects
preferred ones used for fine-tuning. This iterative process
enriches training data and shapes the model’s ability to produce
explanations aligned with human intent. Remarkably, ILLUME
achieves performance comparable to standard supervised fine-
tuning while requiring significantly less annotated data and
minimal human interaction. The framework demonstrates that
integrating human preferences into model training can enhance
interpretability and trustworthiness in multimodal Al systems.

Finally, diversity-focused RL is investigated in [36], which
introduces Unlikely Negative Knowledge Training (UNKT), an
approach for reducing generic descriptions in image captioning
by teaching the model what to avoid alongside what to gener-
ate. The system employs a negative teacher trained to produce
bland captions and a student model that learns to avoid them
through negative knowledge transfer. Evaluated on MSCOCO,
UNKT outperforms traditional methods in both quality metrics
(BLEU, METEOR, CIDEr) and diversity metrics (SelfCIDEr,
Div-n). Ablation studies confirm the importance of each model
component, while human evaluations find UNKT captions
more informative and fluent. Easily integrable into other cap-
tioning architectures, UNKT enhances caption richness and
relevance while reducing redundancy, paving the way for more
expressive systems without requiring additional annotations.

E. Semantic-Based Architectures

Semantic modeling constitutes another important direction
in image captioning. Initial exploration in this direction was
undertaken by study [12], followed by subsequent work such
as [39], which proposed the idea of utilizing a Graph Con-
volutional Network (GCN) to integrate semantic and spatial
relations among objects. The semantic relationship model is
derived by applying a pre-trained classifier to Visual Genome,
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predicting actions or interactions between pairs of objects.
Retrieval-based techniques then generate descriptions for a
provided image by selecting the one that shares the closest
semantic meaning, phrases, or expressions from a database.
As a result, the generated captions tend to exhibit grammatical
accuracy, fluency in expression, and a resemblance to natural
language.

In study [12] the authors present an innovative approach
using a hierarchical parsing model to generate descriptive
captions for images. The approach divides the image into dis-
tinct regions to understand its structure and content, capturing
the relationships between these regions to produce detailed
captions. The process through which the model is trained in-
volves supervised optimization, where sets of images and their
corresponding captions are combined for use. The approach
is evaluated on the MSCOCO dataset using standard metrics
such as BLEU, METEOR, ROUGE-L, CIDEr-D, and SPICE.
Despite strong quantitative results : 95.9 BLEU-1, 90.4 BLEU-
2,81.6 BLEU-3, 71.0 BLEU-4, 38.1 METEOR, 74.1 ROUGE-
L, and 130.2 CIDEr-D, the method faces several limitations.
Its performance depends heavily on accurate object detection,
and the hierarchical structure increases model complexity.
In addition, potential errors in hierarchical analysis and the
difficulty of handling complex scenes may negatively impact
the quality of the generated captions.

To better combine visual and semantic information, [7]
presents an approach that integrates attention networks to
semantically represent the objects in the image and the words
in the caption. This approach combines visual and semantic
features of objects to generate more accurate and meaningful
captions. The proposed model skillfully merges visual and se-
mantic information using a transformer-based attention block.
This fusion enhances visual attention and establishes richer se-
mantic associations during caption generation. The evaluation
is conducted on the MSCOCO dataset, the model obtains 78.6
BLEU-1, 36.0 BLEU-4, 27.6 METEOR, 57.7 ROUGE-L, and
120.98 CIDEr-D, confirming its overall effectiveness.

Human—human interactions are specifically addressed in
study [37], which focuses on learning interactions in images
using weak textual supervision. The proposed approach com-
bines scene graphs (SG), GCNs, transformer decoders, and
cross-attention mechanisms to align semantic and syntactic
structures between images and text. Evaluated on diverse
datasets including UT-Interaction, AVA, NTU RGB+D, imSitu,
and Who’s Waldo using BLEURT and Natural Language
Inference (NLI)-based factuality scores, the CLIP Captioning
with Conceptual Captions plus pseudo Human—Human Interac-
tions (CLIPCap CC+pHHI) model achieves a BLEURT score
of 0.46, outperforming state-of-the-art captioning and action
recognition models. While the method significantly enhances
understanding of human interactions, the authors acknowledge
challenges with data bias and coherence in complex scenarios.
The work represents a promising advancement in modeling
human behavior from images with implications for intelligent
visual analysis systems.

Entity-aware captioning is investigated in study [38], which
proposes a multimodal knowledge graph that explicitly links
visual objects with named entities while capturing their seman-
tic relations, enriched with external sources such as Wikipedia.
This approach tackles the challenge of generating captions that
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identify named entities and specific events requiring knowl-
edge beyond object recognition. Evaluated on two large-scale
news datasets GoodNews (445k images) and NYTimes800k
(763k images), the method significantly outperforms state-
of-the-art baselines, achieving higher scores on BLEU-4 and
CIDEr metrics, with F1 scores for entity recognition sur-
passing all competitors across both datasets. The key finding
demonstrates that integrating multimodal external knowledge
enables captions that are descriptively accurate and semanti-
cally informative about depicted entities and events. This work
advances entity-aware captioning toward human-like reasoning
with practical implications for news media, accessibility, and
intelligent information retrieval applications.

Visual scene graphs are central in study [39], which ad-
dresses image captioning by leveraging such graphs to enhance
descriptive quality. The proposed to TransForm Scene Graphs
into more descriptive Captions (TFSGC) model is built on
a homogeneous transformer architecture with a Mixture of
Experts (MoE) decoder. The method encodes objects, at-
tributes, and relations via Multi-Head Attention Graph Neural
Networks (MHA-GNN), then dynamically selects relevant
experts to generate captions. Evaluated on MSCOCO and Vi-
sual Genome datasets using CIDEr-D, Recall@50, and cross-
entropy loss metrics, TFSGC outperforms existing models by
producing richer and more accurate captions with notable
CIDEr improvements. The approach represents a theoretical
advancement by effectively integrating graph structure into
language generation. However, the authors acknowledge that
performance heavily relies on scene graph and visual feature
quality, with model complexity potentially hindering practical
adoption. TFSGC offers a meaningful contribution to image
captioning while raising challenges for generalization and real-
world implementation.

Unsupervised learning is explored in study [40], which
introduces a framework for unsupervised image captioning
that eliminates the need for paired image—text datasets by
using object relationships as a bridge between images and
text. The method employs relational distant supervision to
align visual content with external textual knowledge. It con-
sists of three modules: relationship learning, relationship-to-
sentence generation to create pseudo caption pairs, and an
image captioning module trained on these pairs. Experiments
on benchmark datasets show that the approach outperforms
existing unsupervised captioning methods, producing more
semantically aligned and context-aware captions.

F. Transformer-Based Architectures

The introduction of the transformer architecture by the
authors of [49] marked a major paradigm shift in sequence
modeling, replacing recurrent structures with fully attention-
based mechanisms capable of capturing long-range depen-
dencies more efficiently. Unlike RNN- or LSTM-based en-
coder—decoder models, transformers rely entirely on multi-
head self-attention to process input sequences in parallel,
significantly improving both computational efficiency and rep-
resentational capacity.

In image captioning, early adaptations of transformers
demonstrated substantial gains by enabling richer interactions
between visual features and linguistic tokens. Works such as
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Meshed-Memory Transformer (MMT) [50] and Object Rela-
tion Transformer (ORT) [51] showed that transformer decoders
can effectively integrate object-level embeddings, spatial rela-
tions, and global contextual information, outperforming tradi-
tional attention models. Transformer-based encoders also allow
images to be represented not only as global CNN features but
as structured sets of patches or regions, facilitating fine-grained
attention and relational reasoning [52].

Following the introduction of the transformer architecture,
numerous researchers have proposed transformer-based models
to further improve image captioning performance. These works
aim to better model long-range dependencies, capture com-
plex visual-semantic relationships, and enhance the alignment
between image regions and generated words. By leveraging
self-attention and cross-attention mechanisms, transformer-
based approaches have demonstrated superior capability in
handling object interactions, contextual reasoning, and global
scene understanding. Among these research efforts, several
representative models have been introduced, each proposing
architectural innovations or learning strategies that contribute
to improved caption accuracy, coherence, and semantic rich-
ness.

The introduction of the reinforced attention model in
[13] marked a significant shift in the landscape of language
generation. Shortly thereafter, the transformer model emerged
as a pivotal building block, leading to further advancements
in Natural Language Processing (NLP), exemplified by inno-
vations like BERT [53] and GPT [54]. Currently, it serves as
the conventional architecture for numerous natural language
understanding tasks. Since the captioning of images can be
considered as a sequence-to-sequence challenge, the trans-
former architecture has also been adapted for this purpose.
One such model is evaluated on the MSCOCO dataset using
standard captioning metrics and achieves 94.4 BLEU-1, 87.8
BLEU-2, 78.2 BLEU-3, 67.4 BLEU-4, 36.8 METEOR, 72.8
ROUGE-L, and 122.6 CIDEr-D, reflecting solid performance
in both accuracy and descriptive quality.

The transformer decoder typically operates through masked
self-attention over the generated words, followed by cross-
attention where linguistic queries attend to visual represen-
tations produced by the encoder, and a final feed-forward
network, ensuring unidirectional caption generation through
causal masking. In image captioning, several works adopt this
decoder with limited architectural modifications, while others
extend it to better integrate visual attributes or directly process
image patches without relying on convolutional networks.
Among these approaches, the ORT exemplifies an effective
adaptation, combining object detection with a transformer-
based framework that incorporates relative geometric rela-
tionships into the attention mechanism [3]. Trained on the
MSCOCO dataset, ORT achieves strong performance across
standard metrics, including 128.3 CIDEr-D, 22.6 SPICE, 80.5
BLEU-1, 38.6 BLEU-4, 28.7 METEOR, and 58.4 ROUGE-L,
demonstrating the capacity of transformer-based architectures
to generate accurate and semantically rich image captions.

To jointly exploit complementary visual representa-
tions, [4] proposes the Dual-Level Collaborative Transformer
(DLCT), an image-captioning model designed to automatically
generate coherent and descriptive captions. The approach ex-
ploits both grid-level and region-level visual features to benefit
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from their complementarity and introduces a Comprehensive
Relation Attention (CRA) mechanism that captures complex
visual and spatial relationships by combining absolute and
relative positional information. The model further distinguishes
itself through a dual form of collaboration between visual
perception and caption generation modules and across the
attention layers within the generator, enabling more accurate
and contextually aligned captioning. The method is evaluated
on the MSCOCO dataset using standard metrics, achieving
133.8 CIDEr, 82.4 BLEU-1, 67.4 BLEU-2, 83.8 BLEU-3, 74.0
BLEU-4, 29.5 METEOR, and 59.1 ROUGE, confirming the
effectiveness of the dual-level collaborative design.

Redundancy in visual inputs is addressed by study [41],
which introduces CropCap, a transformer-based approach with
a Cross-Partition Dependency (CPD) module that refines visual
feature interactions. By reducing visual information redun-
dancy and optimizing dependencies between image regions,
the model captures fine-grained spatial and temporal relation-
ships more effectively. Evaluated on MSCOCO, the approach
achieves BLEU-4 of 41.7 and CIDEr of 138.8, outperform-
ing existing models. The results demonstrate that modeling
cross-partition dependencies significantly improves caption
relevance. CropCap nonetheless represents a theoretical and
practical advance in image captioning, paving the way for more
accurate and less redundant models.

Cross-lingual modeling is further expanded in study [42]
which image captioning approach that generates coherent
multilingual captions from a single image. The Embedded
Heterogeneous Attention Transformer (EHAT) models global
and local image—text correspondences across languages us-
ing heterogeneous attention mechanisms. Evaluated on the
MSCOCO English—Chinese dataset with BLEU, METEOR,
ROUGE, and CIDEr, EHAT outperforms strong monolin-
gual baselines (BLEU-4/CIDEr: 40.1/133.5 in English and
32.9/111.6 in Chinese), demonstrating effective multilingual
caption generation with semantic consistency.

Finally, The role of visual feature encoding is revisited in
[43], which examines how simplified grid-based visual repre-
sentations can improve image captioning compared to com-
plex region-based features from object detectors. The authors
introduce a FEature Interaction Module (FeiM), a transformer-
based model with two innovations: learnable feature queries
that probe global visual grids as local signals, and a feature
interaction module that refines representations through spa-
tial and channel-wise relations before linguistic integration.
Tested on MSCOCO, FeiM achieves state-of-the-art results
with CIDEr of 135.2, outperforming Meshed-Memory Trans-
former (M2 Transformer) by over 4%, alongside high BLEU-4
(40.5), METEOR (29.9), and SPICE (23.7) scores. The study
demonstrates that grid features can rival and surpass region-
based representations when paired with targeted architectural
enhancements, indicating that image captioning systems can
achieve top-tier performance with lighter, more transferable
models, enabling broader and more efficient deployment across
vision—language tasks.

G. Pre-Training-Based Models for Image Captioning

With the rapid progress of deep learning, pre-training
strategies have emerged as a powerful paradigm for image
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captioning, enabling models to leverage large-scale vision-
language data before task-specific fine-tuning. Unlike earlier
approaches trained from scratch on limited caption datasets,
pre-trained models learn general multimodal representations
that can be efficiently adapted to downstream tasks, resulting
in improved generalization and robustness. This paradigm shift
has been largely driven by advances in large language models
and Transformer-based architectures.

Among these, GPT-based models have played a central
role in advancing caption generation. Initially introduced by
Radford in [54], GPT models are autoregressive transformer
decoders pre-trained on massive text corpora to capture rich
syntactic and semantic language patterns. When adapted to
image captioning, GPT-style decoders are typically combined
with visual encoders (e.g., CNNs or ViT), allowing the model
to generate captions conditioned on visual embeddings while
benefiting from strong linguistic priors [5], [55].

Pre-training is often performed using large-scale image-text
pairs through objectives such as masked language modeling,
contrastive learning, or conditional text generation. Repre-
sentative models, including VILBERT [56], UNITER [57],
OSCAR [55], and BLIP [58], demonstrate that jointly pre-
training on multimodal data significantly enhances caption
fluency, semantic alignment, and performance on benchmarks
such as MSCOCO. These approaches effectively bridge the
gap between visual perception and natural language generation,
establishing pre-trained transformer and GPT-based models as
a cornerstone of modern image captioning systems.

A prominent example of vision-language pre-training is
CLIP, introduced in study [5]. Contrastive Language-Image
Pre-training (CLIP) is a dual-encoder model composed of an
image encoder and a text encoder jointly trained to project
images and their corresponding captions into a shared latent
semantic space. This unified representation enables CLIP to
perform effectively across a wide range of computer vision
and multimodal tasks, including image classification and text-
driven image generation or editing. In parallel, other works
adapt GPT, a powerful pre-trained language model that func-
tions as both a decoder and a transformer, widely used in tasks
such as text summarization and neural machine translation due
to its superiority over static word embeddings. Experimental
evaluations show that CLIP achieves strong zero-shot image
classification performance, obtaining 98.4 on Yahoo, 76.2
on ImageNet, and 58.5 on SUN, highlighting its substantial
improvement over previous zero-shot transfer approaches.

Adversarial pre-training ideas are revisited in study [8],
which presents an approach to enhance image caption gen-
eration using Conditional Generative Adversarial Networks
(cGANs). The cGAN model consists of a generator and a
discriminator, enabling the generation of realistic and coherent
captions that align with the visual content of the image. It is
trained iteratively using a loss function that encourages the
generator to produce realistic captions and the discriminator
to correctly distinguish between real and generated captions.
Once trained, the generator is utilized for crafting descriptions
for new images, thereby improving the quality and relevance
of the produced captions. The proposed approach is evaluated
on the MS-COCO dataset using standard automatic evaluation
metrics to measure caption quality. The experimental results
demonstrate strong performance, with scores of 95.6 BLEU-1,
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90.1 BLEU-2, 81.7 BLEU-3, 71.5 BLEU-4, 38.2 METEOR,
74.4 ROUGE-L, and 124.3 CIDEr, indicating the effectiveness
of the model in generating high-quality image captions. The
utilization of cGANs thus enables the generation of more real-
istic and coherent captions, offering a significant enhancement
in image caption generation.

Shifting from static images to procedural reasoning, [14]
proposes a language-first framework for procedure planning
that leverages the reasoning capabilities of pre-trained lan-
guage models over vision-based approaches. Rather than re-
lying on visual latent representations, the method converts
visual observations into textual descriptions and employs
language models to generate intermediate procedural steps
between initial and goal states. This approach exploits the
abstraction and generalization strengths inherent in natural
language processing. Evaluated on two large-scale instructional
video datasets COIN and CrossTask, the framework achieves
a success rate of 98.9%, representing a 19.2% improvement
over existing state-of-the-art methods. The results indicate
that language-based reasoning provides superior coherence
and accuracy in step prediction compared to purely vision-
centric models. While the approach demonstrates significant
potential for structured task execution in Al systems, the
authors acknowledge limitations with long-sequence planning
and domain-specific scenarios, suggesting directions for future
research toward real-time adaptability.

In the clinical domain, [15] proposes an automated ra-
diology report generation system that integrates transformer-
based architectures with contrast-based image enhancement
to address radiologists workload and diagnostic complexity.
The framework adopts an encoder—decoder architecture using
CheXNet for visual feature extraction and BERT for textual
encoding [1], while Multi-Head Attention (MHA) enables ef-
fective fusion of visual and semantic information. Four contrast
enhancement techniques are applied during preprocessing to
reduce noise and improve diagnostic feature recognition in
chest X-ray images. Experimental results show that incor-
porating image enhancement leads to a 15% performance
improvement over baseline models in report generation quality.
These findings demonstrate that combining transformer-based
multimodal modeling with contrast-enhanced preprocessing
improves the relevance and informativeness of generated ra-
diology reports, highlighting its potential to support clinical
decision-making.

Knowledge-enriched pre-training is investigated in [16] to
address the limitation of image captioning models that generate
generic or inaccurate descriptions due to weak integration
of real-world knowledge. The authors propose Knowledge-
guided Replay (K-Replay), a framework that preserves and
refines knowledge embedded in vision—language pre-trained
models while reducing hallucinations and improving caption
fidelity. K-Replay relies on a dual-objective learning strategy,
combining a knowledge prediction task to maintain knowledge
retention and a knowledge distillation constraint to ensure
consistency with original pre-trained representations. To assess
this approach, the authors introduce KnowCap, a benchmark
encompassing multiple knowledge domains, including land-
marks, brands, foods, and movie characters. Experimental
evaluations show significant gains, with a +20.9 CIDEr im-
provement (from 78.7 to 99.6) and a +20.5% increase in
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knowledge recognition accuracy (from 34.0% to 54.5%). These
results demonstrate that K-Replay produces more informative
and faithful captions while effectively preserving pre-trained
knowledge. Overall, this work establishes a scalable paradigm
for knowledge-enhanced image captioning, with strong appli-
cability to domains requiring precise and context-aware visual
descriptions, such as accessibility systems, cultural heritage
analysis, and content-based image retrieval.

Finally, Extending pre-training to structured documents,
[59] addresses the challenge of jointly modeling intertwined
text and visual information in documents, infographics, and
user interfaces, where traditional methods often separate
modalities or rely heavily on OCR. The authors propose
Pix2Struct, a pre-training model that learns to reconstruct
simplified HTML from web screenshots, encoding both textual
and structural layout information. Built on a ViT encoder and
text decoder, the model was trained on 80 million screenshots
from the C4 corpus, producing Base (282M parameters) and
Large (1.3B parameters) versions. The approach enables robust
handling of diverse formats without domain-specific engineer-
ing. Evaluated across nine benchmarks covering illustrations,
Ul, natural images, and documents, Pix2Struct-Large outper-
formed prior visual models on 8 of 9 tasks, achieving new
state-of-the-art results on six tasks including significant gains
in Screen2Words (64.3 to 109.4 CIDEr) and Widget Caption-
ing (127.4 to 136.7 CIDEr). While slightly behind specialized
Optical Character Recognition (OCR) pipelines on some tasks,
it demonstrated strong generalization and independence from
external OCR. This work highlights screenshot parsing as a
scalable pre-training paradigm, advancing flexible models for
accessibility, document processing, and interface analysis.

Despite their strong performance, GPT-based and large-
scale pre-trained captioning models face several critical limita-
tions: 1) Computational cost: training and fine-tuning require
substantial GPU resources; 2) Bias propagation: models may
inherit and amplify biases present in large-scale pre-training
corpora, leading to unfair or stereotypical descriptions; 3) Hal-
lucination risk: models may generate plausible but factually
incorrect descriptions.

IV. DISCUSSION

This study provides a comprehensive and systematic
overview of the evolution of image captioning methods, rang-
ing from early traditional machine learning approaches to
recent deep learning models based on large-scale pre-training
and GPT. By adopting a PRISMA-based systematic review
methodology, this work ensures a structured, transparent, and
reproducible analysis of the literature, thereby offering a
reliable snapshot of the current state of the art.

One of the main contributions of this article lies in its
chronological and conceptual analysis of image captioning
techniques. The review highlights the paradigm shift from
handcrafted feature-based and rule-driven models toward deep
learning architectures, which have demonstrated superior per-
formance in capturing complex visual semantics and gener-
ating fluent natural language descriptions. Encoder—decoder
frameworks established the foundation for this transition, while
attention mechanisms further enhanced model interpretability
and performance by enabling selective focus on salient im-
age regions. Subsequently, reinforcement learning approaches
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addressed metric misalignment issues, and semantic-based
models introduced higher-level reasoning capabilities. More re-
cently, Transformer-based architectures and pre-training strate-
gies have emerged as dominant paradigms, significantly im-
proving generalization and caption quality across diverse
datasets.

Another important contribution of this work is the system-
atic comparison of representative approaches across multiple
dimensions, including architectural categories, core techniques,
evaluation datasets, and performance metrics. The comprehen-
sive summary presented in Table I synthesizes these elements
and provides a unified view of how different methods relate
to one another. This table not only facilitates an objective
comparison of existing approaches but also highlights common
evaluation practices, such as the widespread use of MSCOCO
data base and metrics like BLEU, METEOR, CIDEr, ROUGE,
and SPICE.

Moreover, this review emphasizes the diversity of datasets
and evaluation protocols employed in the literature, revealing
challenges related to fair comparison and reproducibility. The
inclusion of human feedback, semantic reasoning, and mul-
timodal pre-training in recent works suggests a clear trend
toward more human-aligned.

Overall, this article contributes added value by combining a
rigorous systematic review methodology with a structured syn-
thesis of image captioning approaches. It provides researchers
and practitioners with a clear and up-to-date understanding
of methodological trends, strengths, and limitations, while
also identifying promising directions for future research in
multimodal learning and vision-language modeling.

V. CONCLUSION AND PERSPECTIVES

This review synthesized the evolution of image caption-
ing methodologies, from early machine learning approaches
to state-of-the-art deep learning architectures, including en-
coder—decoder models, attention mechanisms, reinforcement
learning strategies, semantic-aware frameworks, Transformer-
based models, and large-scale pre-trained systems. These de-
velopments have led to substantial improvements in caption
accuracy, semantic coherence, and multimodal representation
learning, underscoring the rapid progress of vision—language
models.

Nevertheless, important challenges persist, particularly in
describing complex visual scenes, capturing fine-grained inter-
object relationships, generalizing to domain-specific or out-of-
distribution data, and reducing the high computational cost of
large pre-trained models. These limitations hinder both robust-
ness and practical deployment in constrained environments.

Future research directions emphasize the growing role of
prompt engineering and task-conditioned learning to enhance
visual-linguistic alignment and adaptability with minimal su-
pervision. When combined with vision—language pre-training,
prompt-based approaches show strong potential for improving
zero-shot and few-shot generalization, especially in specialized
domains such as medical imaging, autonomous systems, and
assistive technologies.

Furthermore, the exploration of hybrid multimodal archi-
tectures that integrate attention mechanisms, reasoning capa-
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TABLE I. SUMMARY OF IMAGE CAPTIONING METHODS, DATASETS, AND EVALUATION METRICS

Approaches cited in

[6

1

[17]

[19]

[22]

[9]

[27]

[117 ] [10] | [34] | [12] | [7]

[37]

[3]

[4

1

[41]

[42]

[43]

[16] | [15] | [14]

Categories

Encoder-Decoder

X

X

X

Attention

Reinforcement Learning

Semantic Models

Transformer

Pre-training / GPT

Techniques

CNN

LSTM/BIiLSTM

ResNet

YOLOv4

GCN/GNN

Attention Mech.

Transformer

GAN

Policy Gradient

Human Feedback

Scene Graphs

CLIP

BERT

CheXNet

Knowledge Distillation

Feature Queries

LLM/GPT

Dataset

MS-COCO

Flickr8k

Flickr30k

ImageNet

PEIR Gross

Objects365

COCO Captions

Caption Ratings

UT-Interaction

AVA

NTU RGB+D

Yahoo

SUN

COIN

CrossTask

KnowCap

Chest X-ray

Metrics

BLEU

METEOR

CIDEr

ROUGE

X[ X | X |X

X | X | X | X

X | X | X |X

X | X | X | X

SPICE

X
XX [X]|X|X

X[ X[ X|X|X

XX [X]|X|X

BLEURT

Accuracy

mAP

PQ

Success Rate
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bilities, and external knowledge sources may further advance
the semantic understanding and interpretability of generated
captions. Overall, image captioning is expected to continue
evolving through innovations in multimodal learning, offering
broad scientific, industrial, and societal impact.
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