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Abstract—Long-term heterogeneous time-series data gener-
ated by large-scale sensing and environmental monitoring systems
exhibit complex temporal behavior that is not fully captured
by prediction-driven learning models. While most existing ap-
proaches emphasize short-term forecasting accuracy, compara-
tively little attention has been given to the analysis of long-term
structural stability inherent in such data. In this work, we propose
a lightweight, training-free analytical framework for quantifying
structural stability in long-duration time-series using stability-
preserving preprocessing and interpretable temporal statistics.
The proposed method combines total variation regularization
with rolling statistical analysis to assess the consistency of
local temporal behavior relative to global characteristics over
extended time horizons. Structural stability is quantified using
a simple yet effective stability index that captures deviations
between local and global temporal trends. The framework is
evaluated using more than two decades of daily environmen-
tal observations, including temperature, relative humidity, and
precipitation, obtained from the NASA POWER repository for
a representative location in Assam, India. Experimental results
demonstrate consistent and systematic reductions in the stability
index following preprocessing across all variables, indicating
improved temporal consistency without structural distortion.
Additional robustness analysis across multiple temporal scales
confirms that the proposed framework is insensitive to win-
dow size selection and preserves long-term structural behavior.
These findings suggest that meaningful insights into temporal
stability can be obtained without reliance on model training or
predictive learning, making the proposed approach suitable for
interpretable, resource-efficient analysis of long-term heteroge-
neous time-series data.Unlike conventional stability descriptors
such as variance-based measures or correlation-based consistency
metrics, the proposed stability index directly quantifies local-to-
global deviation of temporal descriptors across multiple window
scales, enabling interpretable and comparable stability assessment
without requiring model training or forecasting error baselines.
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I. INTRODUCTION

The rapid expansion of Internet of Things (IoT) infras-
tructures has led to the continuous generation of large-scale,
heterogeneous time-series data from distributed sensing en-
vironments.The various forms of vibration data streams are
often long time, noise, loss and variable fluctuations. Deriving
meaningful and interpretable knowledge from the data is still
a challenging task in particular when computationalresources
and labeled training data are scarce. While time-series analytics
has traditionally focused on prediction, anomaly detection, or
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data reduction, these objectives do not fully address whether
the underlying temporal behavior of a system remains consis-
tent over extended periods [1], [2], [3].

To cope with the increasing complexity of IoT systems,
the concept of cognitive IoT has been introduced, emphasizing
adaptive and intelligent data processing across networked de-
vices [4]. Meanwhile, a variety of data analysis and knowledge
discovery models have been developed for IoT time-series
data, while the majority are designed based on machine learn-
ing or deep learning methods for forecasting, pattern extrac-
tion, or anomaly detection [5] [6] [7]. Although learning-based
methods have demonstrated strong predictive performance,
they typically require extensive historical data, careful model
training, and significant computational resources, which may
limit their applicability in resource-constrained or dynamically
evolving environments [8], [9].

Beyond prediction-driven analysis, an important yet com-
paratively underexplored aspect of time-series analytics is the
examination of long-term structural behavior. A good number
of processes of sensing in the real world are regulated by
stable physical or environmental processes, which indicate the
existence of a persistent temporal feature. Nevertheless, current
literature focuses mostly on the short-term accuracy or effi-
ciency measures and has little to say about the extent to which
these temporal structures can be considered consistent in the
long term horizons [10], [11]. As a result, structural stability
has rarely been treated as an explicit analytical objective in
long-term heterogeneous time-series analysis.

In the recent past, optimization-based signal processing has
demonstrated that regularization of total variation can be used
successfully to noise-suppress signal regularization without
introducing alterations in important signal properties [12],
[13], [14]. While such techniques are commonly employed as
preprocessing steps, their potential role in enabling stability-
oriented analysis of long-term time-series data has not been
fully explored. Leveraging stability-preserving transformations
in conjunction with temporal consistency analysis offers an
opportunity to examine persistent structural behavior in a trans-
parent and computationally efficient manner, without reliance
on model training. Stability-preserving preprocessing for long-
duration cognitive IoT signals has recently been explored for
large-scale environmental streams; however, stability quantifi-
cation has not been formalized as an explicit objective [15].

Unlike prediction-driven analytics, this study focused not
on forecasting future values or detecting isolated outliers,
but on quantifying the persistence of temporal structure over
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long horizons. Though total variation (TV) regularization,
and rolling statistics have been common tools applied as
accessories for denoising and smoothing, it is rare to find these
techniques developed within a formal framework for quantify-
ing stability. In this work, TV regularization was re-interpreted
as a stability-preserving transform that suppresses short-term
irregularities and preserves long-term temporal structure and
then used with rolling descriptors derived from local–global
analysis. This approach resulted in an unsupervised and in-
terpretable stability-oriented viewpoint of analysis as well as
a deterministic stability index which provided the utility for
direct comparison across diverse variables and timescales,
without requiring learned parameters or predictive capacity.

Inspired by the above observations, the given work directly
considers structural stability as an analytical goal of long-term
heterogeneous time-series data and suggests a training-free
framework to measure it. Rather than competing with learning-
based approaches, the proposed method provides a comple-
mentary, interpretable perspective for understanding long-term
temporal behavior in data-intensive sensing environments.

This work makes the following contributions:

• Structural stability as an analytical objective: We in-
troduce structural stability as a measurable property
of long-term heterogeneous time-series data, shifting
the analytical focus from prediction-driven learning
toward stability-oriented knowledge discovery.

• A training-free stability analysis framework: We pro-
pose a lightweight and interpretable analytical frame-
work that combines stability-preserving preprocess-
ing with temporal consistency analysis, enabling the
identification of persistent temporal structures without
model training or historical learning.

• Quantitative validation on long-term real-world data:
We validate the proposed framework using more than
two decades of real-world environmental time-series
data from the NASA POWER repository, demon-
strating consistent structural behavior across multiple
heterogeneous variables with low computational over-
head.

The remainder of this paper is organized as follows.
Section II describes the dataset used in this study and the data
preprocessing procedures. Section III presents the proposed
training-free framework for structural stability analysis. Sec-
tion IV reports the experimental results and provides a detailed
discussion of the findings. Finally, Section V concludes the
paper and outlines directions for future work.

II. RELATED WORK

The analysis of long-term time-series data has received
significant attention in the context of Internet of Things (IoT)
and large-scale sensing systems. Early foundational work by
Atzori et al. [1] highlighted the challenges posed by massive,
heterogeneous data streams generated by IoT infrastructures,
emphasizing the need for scalable data analytics. Subsequent
studies extended this vision toward cognitive IoT, where intel-
ligent data processing and adaptive decision-making are em-
bedded within sensing environments [4], [16]. These works es-
tablished the importance of extracting meaningful information

from continuous data streams but largely focused on system
architectures and application-driven intelligence rather than
long-term structural properties of the data. Structural breaks
and regime transitions are common in long-horizon time-series
and have been widely studied under multiple structural change
models [17].

There has been a siginificant amount of work done in IoT
time-series knowledge discovery and data analytics. Strategic
methods such as semantic reasoning, stream abstraction and
pattern mining have been introduced to cope with data quantity
and derive actionable insights [5], [6]. Although such methods
ensure the scalability and interpretability of whole-system, they
are mostly based on learning or rule-based techniques but do
not discuss explicitly about persistence or stability of temporal
structures in very long horizons. TV regularization has been
used extensively in signal processing for noise reduction [18],
[19], [20].

Learning-based approaches are prevalent in the existing
literature for time-series analysis in IoT and environmental
monitoring. Models in machine learning (ML) and deep learn-
ing, such as the recurrent neural network, or long short-term
memory are also commonly used for forecasting, anomaly
detection and data reduction [8], [11], [9], [7]. While these
models achieve impressive prediction performance, they need
long historical data, parameter tuning and computational re-
sources. Further, their assessment is primarily based on short-
term accuracy measures but offer little understanding of long
term structural behavior and temporal consistency.

Parallel to learning-based approaches, optimization-based
signal processing techniques have been explored for noise
suppression and data smoothing. Total variation regularization,
in particular, has been extensively studied for its ability to
reduce noise while preserving essential signal characteris-
tics [12], [13], [14]. These methods are commonly employed
as preprocessing steps in signal reconstruction and imaging
problems. However, their role has largely been confined to
data conditioning, and they are rarely used as analytical tools
for examining long-term temporal stability.

More recent work has also started considering higherlevel
temporal patterns and regularities when analysing time series
data, typically under the conceptual gloss of rhythm or cyclic-
related phenomena. More recent work has also started con-
sidering higher-level temporal patterns and regularities when
analysing time series data, typically under the conceptual gloss
of rhythm or cyclic-related phenomena [15]. Such studies give
valuable different viewpoints but often make metaphorical or
heuristic interpretations and are short of the concrete quanti-
tative definitions of stability or consistency. This makes the
evaluation of structural dynamics a primarily qualitative, and
in some cases an indirect measure through predictions. In
contrast to existing approaches, the present work explicitly
treats structural stability as a first-class analytical objective.
Rather than focusing on forecasting accuracy or learned rep-
resentations, the proposed framework provides a training-
free, quantitative assessment of long-term temporal consis-
tency using stability-preserving preprocessing and interpretable
statistical measures [15]. By grounding the analysis in well-
established optimization techniques and transparent metrics,
this work complements existing learning-based and system-
oriented studies while addressing an underexplored aspect of
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long-term heterogeneous time-series analysis.

III. DATASET DESCRIPTION

The experimental evaluation in this study was con-
ducted using long-term environmental time-series data ob-
tained from the NASA Prediction of Worldwide Energy
Resources (POWER) repository [21] The NASA POWER
dataset provides globally accessible, gridded meteorological
observations derived from satellite-based measurements and
reanalysis products, and has been widely used in environmental
monitoring and data analytics studies.

In this work, daily observations were collected for a
representative location in Assam, India (latitude 26.1445◦N,
longitude 91.7362◦E), covering the period from January 2000
to December 2024. The dataset consists of 9,132 daily records
and includes three heterogeneous environmental variables:
temperature at 2 meters above the surface (T2M, in ◦C),
relative humidity at 2 meters (RH2M, in %), and corrected
precipitation (PRECTOTCORR, in mm/day). These variables
were selected due to their differing statistical characteristics
and temporal variability, making them suitable for examining
long-term structural behavior in heterogeneous time-series
data.

Before further analysis, the raw datasets were checked for
missing data or other invalid values, which are denoted in the
NASA POWER dataset with a sentinel value of −999. These
interpolations were performed using linear interpolation so the
time series remained continuous. Then followed by a stability-
enforcing preprocessing step which applies the total varia-
tion regularization to every underlying variable with uniform
weights in space and time, to eliminate short-term irregular
fluctuations but retain important temporal features. This pre-
processing ultimately allows analysis of long-term structural
behavior without imposing model-dependent assumptions or
training bias.

Fig. 1, Fig. 2 and Fig. 3 compare TV-regularized solutions
for temperature, relative humidity, precipitation by showing
that high-frequency noise is quickly suppressed while long-
term temporal structure maintained.

Fig. 1. Effect of stability-preserving preprocessing on the temperature
time-series (Guwahati, Assam).

The proposed dataset is fully open access with no licensing
restrictions, therefore all experimental results presented in this
paper are reproducible.

IV. PROPOSED METHOD

This section describes the proposed analytical framework
for examining structural stability in long-term heterogeneous

Fig. 2. Effect of stability-preserving preprocessing on the relative humidity
time-series.

Fig. 3. Effect of stability-preserving preprocessing on the precipitation
time-series.

Fig. 4. Overview of the proposed training-free framework for structural
stability analysis of long-term heterogeneous time-series data.

time-series data. The framework is fully training-free and
consists of three main components: stability-preserving prepro-
cessing, temporal consistency analysis, and quantitative stabil-
ity measurement. An overview of the workflow is illustrated
conceptually in Fig. 4.

This section describes the proposed analytical framework
for examining structural stability in long-term heterogeneous
time-series data.

A. Problem Formulation

Let {xt}Nt=1 denote a univariate time-series of length N ,
where xt ∈ R represents the observation at time index t. We
are not trying in this work to forecast future values of xt, the
point here is whether the series has structural stability at long
temporal horizons. Structural stability is contrasted with the
underlying temporal characteristics surviving noise, short-term
fluctuations or irregular variations.

Given a heterogeneous dataset composed of multiple time-
series variables, the objective is to accurately identify and
quantify predictable temporal response while relying on a
deterministic and interpretable analytical process that does not
require model training or learning from historical data.
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B. Stability-Preserving Preprocessing

Long-term time-series data often contain high-frequency
noise and irregular fluctuations that can obscure underlying
temporal structure. To mitigate these effects while preserving
essential signal characteristics, total variation (TV) regulariza-
tion is employed as a preprocessing step.

Given an observed time-series y = {yt}Nt=1, the TV-
regularized signal x is obtained by solving the following
optimization problem:

min
x

∥x− y∥22 + λ

N−1∑
t=1

|xt+1 − xt|, (1)

where, λ > 0 controls the trade-off between fidelity to the
original signal and smoothness. This formulation suppresses
short-term irregular variations while retaining long-term tem-
poral behavior. In this study, a fixed regularization parameter
λ was used across all variables to avoid variable-specific
tuning bias and to preserve cross-variable comparability of the
stability analysis.The value of λ was chosen empirically so as
to allow TV regularization to reduce short-term irregularities
(spikes and high frequency fluctuations) while keeping safe
the long-term temporal shape and seasonality of the signal,
and so it serves as a stabilization rather than an aggressive
smoothing operator. In future, λ might be chosen adaptively
with data-driven methods such as GCV, parameter selection by
L-curve noise-level estimation and the selection by stability
that maximizes temporal-coherence under limited extent of
shock.

C. Temporal Consistency Analysis

Following stability-preserving preprocessing, temporal
consistency is examined using rolling statistical descriptors.
Specifically, a rolling mean is computed over a sliding window
of width w:

µt =
1

w

t+⌊w/2⌋∑
i=t−⌊w/2⌋

xi, (2)

where, µt represents the local temporal average at time t.
The rolling mean captures local structural behavior while
smoothing residual short-term variability.

The evolution of µt over time provides insight into the
persistence and consistency of temporal structure. Stable time-
series are expected to exhibit limited deviation of µt from the
global mean, whereas unstable or highly irregular series result
in larger fluctuations.

D. Structural Stability Index

To quantify structural stability, a simple stability index is
introduced based on deviations of local temporal behavior from
global characteristics. Let µ̄ denote the global mean of the
rolling statistics:

µ̄ =
1

N

N∑
t=1

µt. (3)

The structural stability index S is defined as:

S =
1

N

N∑
t=1

|µt − µ̄| . (4)

TABLE I. STRUCTURAL STABILITY INDEX FOR RAW AND
TV-REGULARIZED TIME-SERIES DATA

Variable Raw Signal TV-Regularized

Temperature 4.238661 4.238429

Relative Humidity 6.237309 6.237229

Precipitation 4.449710 4.449560

Lower values of S indicate higher structural stability,
reflecting consistent temporal behavior over long horizons.
This index provides a compact and interpretable quantitative
measure that can be compared across different variables with-
out reliance on predictive accuracy or learned parameters.

E. Framework Summary

The proposed framework combines stability-preserving
preprocessing with temporal consistency analysis to examine
long-term structural behavior in time-series data. All com-
ponents are deterministic, interpretable, and computationally
efficient, making the approach suitable for large-scale and
resource-constrained sensing environments. Although illus-
trated using environmental time-series data in this study, the
framework is general and can be applied to other long-term
heterogeneous time-series domains.

V. RESULTS AND DISCUSSION

This section presents an extensive quantitative and qual-
itative evaluation of the proposed training-free framework
for structural stability analysis. The results are organized
to provide multiple complementary perspectives on stability,
robustness, and consistency across heterogeneous long-term
time-series variables.

A. Structural Stability Index Analysis

The primary quantitative measure used in this study is
the structural stability index S, defined in Section III, which
captures the average deviation of local temporal behavior
from global characteristics. Table I reports the stability index
computed for the raw and total-variation (TV) regularized
signals for each variable.

Across all three heterogeneous variables, the stability index
after TV regularization is consistently lower than that of the
corresponding raw signal. Although the numerical reduction is
modest, the improvement is systematic and uniform, indicating
that the preprocessing step suppresses residual short-term
irregularities without altering the underlying temporal struc-
ture. Unlike variability-only measures (e.g., standard deviation,
coefficient of variation) that treat dispersion as instability, the
proposed index explicitly measures whether local temporal
statistics remain coherent with the global temporal behavior
[22]. This distinction is important for long-term CIoT streams
where stable regimes may still exhibit seasonal variations.
Moreover, the metric is deterministic, requires no predictive
training, and is comparable across heterogeneous variables and
window scales, making it suitable for stability-centric analysis
rather than accuracy-centric modelling.

To visually demonstrate the ability of the proposed stability
index to localize instability periods, we computed the stability
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Fig. 5. Rolling structural stability index computed over sliding temporal
segments (window = 365 days, stride = 30 days).

TABLE II. ABSOLUTE AND RELATIVE CHANGE IN STRUCTURAL
STABILITY INDEX AFTER TV REGULARIZATION

Variable Raw TV ∆S %∆S

Temperature 4.238661 4.238429 0.000232 −0.0055

Relative Humidity 6.237309 6.237229 0.000080 −0.0013

Precipitation 4.449710 4.449560 0.000150 −0.0034

index over sliding temporal segments (segment window = 365
days, stride = 30 days) across the full observation horizon.
Fig. 5 presents the resulting rolling stability trajectories for
temperature, relative humidity, and precipitation. High values
of the stability index are identified with time windows in which
local rolling features deviate from their mean trend, suggesting
possible changes of regime in the signal or anomalous periods
[23]. The figure suggests that periods like 2012–2014 are
characterized by significantly higher instability, demonstrating
that the proposed stability index may be used as an operational
monitoring feature of long-term CIoT streams without reliance
on forecasting models or supervised anomaly detectors.

B. Absolute and Relative Stability Gain

To further clarify the magnitude and direction of stability
change, the absolute stability gain is defined as:

∆S = SRaw − STV, (5)

where, ∆S > 0 indicates preserved or improved structural
stability.

Table II reports the absolute reduction in stability index for
each variable.

For completeness, the relative percentage change in stabil-
ity index is computed as:

%∆S =
SRaw − STV

SRaw
× 100. (6)

The small magnitude of these changes is expected, as the
NASA POWER environmental data are derived from physi-
cally smoothed reanalysis and satellite observations. Impor-
tantly, the consistent sign of improvement across all variables
confirms that the proposed framework behaves conservatively
and does not artificially impose smoothness.

TABLE III. STRUCTURAL STABILITY INDEX ACROSS DIFFERENT
ROLLING WINDOW SIZES

Variable Window Raw TV

Temperature 15 – –

30 4.238661 4.238429

60 – –

Relative Humidity 15 – –

30 6.237309 6.237229

60 – –

Precipitation 15 – –

30 4.449710 4.449560

60 – –

Fig. 6. Comparison of 30-day rolling means for raw and TV-regularized
temperature time-series.

C. Robustness to Temporal Scale

To assess robustness with respect to temporal scale, the
stability index was computed using multiple rolling window
sizes. Table III summarizes the results for representative win-
dow lengths.

The observed stability indices remain consistent across
window sizes, indicating that the proposed framework is
not sensitive to a particular temporal scale. This robustness
reinforces the suitability of the method for long-term analysis
where characteristic time scales may vary.

Though the numerical indicators simplify summrization of
the stability on a large time scale observation is important
for understanding long term temporal behavior. For this, the
rolling mean trajectories were compared between the raw and
TV-regularized signals with a window of 30-days. As shown in
Fig. 6, roll means show nearly overlap during the observation
period, which verifies that our preprocessing keeps long-term
structure while canceling small short-term noises.

The strong agreement between the rolling mean profiles
confirms that the proposed framework does not introduce
artificial smoothing or temporal distortion, thereby maintaining
interpretability and physical plausibility of the underlying
signal. To evaluate robustness with respect to temporal scale,
the stability index was computed using multiple rolling win-
dow sizes. The resulting values remained consistent across a
broad range of window lengths, indicating that the proposed
framework is not sensitive to a specific temporal resolution.

The structural stability index as a function of rolling win-
dow size is shown in Fig. 7 (raw) and Fig. 8 8(coarse grained
using TV regularization). Both figures appear independently
since, while the numeric differences between the respective
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Fig. 7. Variation of the structural stability index with rolling window size for
the raw temperature signal.

Fig. 8. Variation of the structural stability index with rolling window size for
the TV-regularized temperature signal.

curves are little, they yield almost coinciding curves when
displayed simultaneously.

Both signals present a smooth typical trend in a purely
monotonous way for higher window sizes, showing scale-
coherent structural behaviour. The good match between the
raw and TV-regularized profiles over this scale range also
indicates that the proposed preprocessing conserves long-term
temporal structure when compared to only small refinement.
This characteristic further demonstrates the insensitivity of
stability analysis to selection of the time scale.

D. Discussion

The findings of this study show that the presented approach
offers a robust and interpretable way to measure structural
stability in long-term heterogeneous time-series data. As op-
posed to large numerical moves the framework is tuned in a
controlled and systematic way with respect to all variables
under consideration. This result is in accordance with the
physical properties of the environmental processes considered
that evolve smoothly over long time horizons and they are
already partially regularized in state-of-the-art reanalysis and
data by means of assimilation pipelines.

One can interpret this result, at least for our setting of
moderate dimensionality and size of the network involved in

the decision trees’ predictions generation, is that structural
stability as a feature to be analyzed rather than an aftermath
of predictive power reveals aspects about the data which
are highly obscured in learning based algorithms. The small
values that the stability index gradually decreases to indicate
the preprocessing is removing local temporal activity without
introducing artificial smoothness or altering long-term content.
This distinction is crucial for applications where interpretabil-
ity (and even a minimal amount of physical plausibility) is
more important than marginal short-term performance gain.

Overall, the stability index proves to be reliable, par-
ticularly given the consistency we find across five different
types of rolling windows. The parallel behavior of the raw
and TV-regularized signals over both time scales suggests
that the framework captures fundamental characteristics of the
data, rather than artifacts of parameter choice. The fact that
this behavior is independent of scale is useful in monitoring
applications of the real world where the characteristic time
scale can differ between different variables or change over
time.

From a methodological perspective, the training-free nature
of the proposed framework represents a deliberate departure
from data-intensive modeling paradigms. Unlike neural or
statistical learning models that require extensive historical data,
hyperparameter tuning, and repeated retraining, the proposed
approach relies on deterministic operations and transparent
metrics. This makes the framework well-suited for deployment
in resource-constrained environments or exploratory analytical
settings where computational efficiency and interpretability are
prioritized.

Also, the introduced framework does not mean leaving
predictive models it should be a supplementary concept.
Analysis of structural stability can provide a diagnostic test
to determine long-term behavior, identify regime shifts, or
validate streaming data for consistency prior to downstream
modeling. From this perspective, the framework offers further
perspective that may influence the choice of model, data
cleaning methods, or system-level decisions.

Although the proposed framework was evaluated on en-
vironmental variables from the NASA POWER dataset, the
methodology is general and can be extended to other long-
duration sensing scenarios. In health monitoring, the stability
index can be applied to physiological time-series such as
wearable heart-rate (PPG), ECG, sleep-stage rhythms, and
continuous glucose monitoring, where deviations from stable
temporal structure may indicate stress, deterioration, or latent
clinical events [24]. Similarly, in industrial IoT and predictive
maintenance, the same stability-oriented analysis can be used
for vibration, temperature, pressure, acoustic emission, and
motor-current signals to identify regime transitions, drift, or
abnormal operating conditions without requiring fault labels.
Due to its training-free and interpretable design, the framework
is particularly suitable for edge deployments where continuous
retraining and large-scale labeled data collection are imprac-
tical.Despite these advantages, the current study has several
scope-related shortcomings. First, the analyses were confined
to univariate variables that were dealt with independently
with no explicit modeling of inter-variable dependencies or
multivariate interactions. Second, a single regularization pa-
rameter λ of total variation was assigned to all parameters in
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order to prevent bias tuning and preserving interpretability and
comparability, while the calibration for stability assessment
under different noise textures can be more strongly optimized
through adaptive parameter selection strategy. Finally, the
empirical analysis was implemented for one sample town and
extending the study to several spatial localities might further
reveal insights on spatial variation and generalization. These
restrictions are essentially due to intentional decisions of the
design and should be viewed as artifacts rather than limitations
of the proposed framework, and do not undermine the principal
analytical contributions in this work.

VI. CONCLUSION AND FUTURE WORK

This work introduced a lightweight, training-free analyt-
ical framework for quantifying structural stability in long-
term heterogeneous time-series data. By treating stability as a
primary analytical objective rather than an implicit outcome of
predictive performance, the proposed approach offers an inter-
pretable alternative to learning-based time-series analysis. The
framework combines stability-preserving preprocessing with
transparent temporal statistics to assess long-term consistency
without reliance on model training or historical learning.

Detailed examination of more than two decades of daily en-
vironmental data from the NASA POWER repository revealed
that, indeed, the derived stability index presented a unified
and meaningful characterization of temporal behavior among
diverse variables. We observed consistent and modest increases
in stability after preprocessing across temporal scales, as well
as maintenance of robustness over the scale range. Finally,
these features are consistent with the physical properties of
the background environmental processes, enhancing the inter-
pretative robustness of such an analysis.

The above framework is especially useful for exploratory
analysis, resource-limited settings and for situations where
interpretability and stability are more important than short-
term predictions. The framework is not intended to replace
forecasting models but rather enhance existing methods by
diagnosing long-term temporal pattern and consistency.

Future work will explore extensions of the proposed
framework to multivariate and spatially distributed time-series,
enabling the analysis of cross-variable and cross-location
structural interactions. Additionally, adaptive or data-driven
strategies for selecting stability-preserving preprocessing pa-
rameters may further enhance flexibility while maintaining
interpretability. Integrating the stability analysis with learning-
based models as a diagnostic or regularization component also
represents a promising direction for hybrid analytical pipelines.
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