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Abstract—Supervisory Control and Data Acquisition
(SCADA) systems are central to the efficient operation of
critical infrastructure such as energy, water, and industrial
networks. However, the increased digital integration of SCADA
components, especially through Internet of Things (IoT)
technologies, has simultaneously broadened their exposure to
cyber threats. This project presents a simulated SCADA system
architecture designed to model, monitor, and secure real-time
industrial telemetry using open-source platforms Node-RED
and ThingsBoard. Leveraging real-world data collected from
the Aventa AV-7 wind turbine in Switzerland, the project
implements a multilayered architecture comprising edge, fog,
and cloud layers, equipped with synchronized databases for
integrity comparison and threat forensics. Artificial intelligence
(AI) models are integrated into the system to perform anomaly
detection using supervised, unsupervised, and deep learning
(LSTM) algorithms. Cyberattacks including Distributed Denial
of Service (DDoS), false data injection, and replay attacks are
simulated to evaluate the system’s resilience. This report details
each stage of the project from data preprocessing and system
design to implementation and evaluation culminating in a set
of strategic recommendations for enhancing SCADA security
through Al-driven frameworks.
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I. INTRODUCTION

The integration of digital technologies within industrial
environments has revolutionized the way critical infrastructure
is monitored, controlled, and managed. Supervisory Control
and Data Acquisition (SCADA) systems, which enable remote
monitoring and control of field devices, are fundamental to
sectors such as energy, water treatment, and manufacturing.
Traditionally, these systems operated in isolated environments
with proprietary protocols, relying on “security through obscu-
rity” [1]. However, with the convergence of SCADA systems
and modern IT practices—including cloud computing, edge
processing, and the Internet of Things (IoT)—this traditional
security paradigm is no longer sufficient. While this integration
enhances operational efficiency, it simultaneously expands the
attack surface [2]. Vulnerabilities once mitigated by physical
isolation are now exposed to remote access threats, weak
authentication, and insecure communication channels [3]. Cy-
berattacks on Industrial Control Systems (ICS) have become
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more frequent and impactful, ranging from data breaches to
full system takeovers, highlighting the urgent need for resilient
and intelligent SCADA infrastructures [4].

A. Background and Motivation

The shift toward interconnected systems has exposed indus-
trial control environments to a growing array of cybersecurity
threats. Alsabbagh and Langendorfer [3] highlight that modern
SCADA systems face extensive vulnerabilities due to the
integration of IP-based networking. Furthermore, the real-time
and safety-critical nature of Cyber-Physical Systems (CPS)
challenges traditional IT security methods, which are often
ill-suited for low-latency industrial operations [5]. Modern in-
dustrial systems require proactive defense mechanisms beyond
static perimeters. Recent research highlights the integration
of Machine Learning and Cyber Threat Intelligence (CTI) as
a key driver for effective threat identification and predictive
security against evolving adversary tactics [6].

B. Problem Statement

Despite the escalating threat landscape, legacy SCADA
systems often lack intelligent detection capabilities. They
frequently fail to identify sophisticated, stealthy attacks such
as signal spoofing or replay attacks. The evolving threat land-
scape, characterized by sophisticated ransomware syndicates
and organized cybercrime groups utilizing advanced Tactics,
Techniques, and Procedures (TTPs), further exacerbates these
vulnerabilities [7]. Existing security solutions are predomi-
nantly static and rule-based, making them ineffective against
novel attack vectors that deviate subtly from normal operations
[8]. Recent research advocates for Artificial Intelligence (AI)
and Machine Learning (ML) approaches to address these
limitations. For instance, Choi and Kim [9] validated the
effectiveness of unsupervised techniques, such as Isolation
Forests, for detecting unknown anomalies without prior label-
ing. However, challenges remain regarding model drift and the
explainability of AI decisions in critical infrastructure [10].
Therefore, there is an urgent need for a modular, Al-driven
security framework that can proactively detect anomalies and
validate data integrity in real time.
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C. Research Objectives and Contributions

The core research question of this study is: To what extent
can a multi-layered architecture, combining synchronized dual-
databases and a hybrid Al-driven detection engine, effectively
identify and validate both known faults and sophisticated zero-
day cyberattacks in a real-time SCADA environment?

To address this question, this research designs, simulates,
and evaluates a secure, anomaly-aware SCADA architecture.
We propose a multi-layered framework built using open-source
platforms—specifically Node-RED and ThingsBoard—that in-
tegrates advanced machine learning models for real-time threat
detection. To ensure realism and operational complexity, the
project utilizes real-world telemetry data collected from the
Aventa AV-7 research wind turbine [11]. This high-fidelity
dataset serves as the foundation for developing and validating
security mechanisms within a simulated industrial environ-
ment.

The specific contributions of this study are as follows:

e Dual-Database Architecture: Development of a syn-
chronized edge-fog database system to ensure data
redundancy and enable forensic validation of telemetry
integrity.

e  Hybrid Anomaly Detection: Implementation of a hy-
brid detection engine combining supervised learning
(e.g., Random Forest) and unsupervised learning (e.g.,
Isolation Forest, Autoencoders) to identify both known
faults and zero-day attacks [12].

e  Cyberattack Simulation Testbed: Empirical evaluation
of system resilience against simulated threats, includ-
ing Distributed Denial of Service (DDoS), false data
injection, and replay attacks.

By bridging the gap between theoretical security models
and practical implementation using authentic industrial data,
this research offers a scalable reference model for securing
next-generation SCADA systems. The remainder of this paper
is organized as follows. Section II reviews related work in
SCADA security and Al applications. Section III details the
proposed multi-layered system architecture. Section IV de-
scribes the methodology, including data acquisition from the
Aventa AV-7 turbine and the development of AI/ML models.
Section V outlines the simulated cyberattack scenarios. Section
VI presents the experimental results and analysis , and Section
VII concludes the paper with a discussion on limitations and
future research directions.

II. RELATED WORK

The convergence of industrial automation with digital net-
working technologies has elevated the significance of SCADA
systems in modern infrastructure. Originally designed as iso-
lated control environments, SCADA systems are now increas-
ingly connected through the IoT, exposing them to cyber
risks previously limited to enterprise IT networks [1]. This
transformation necessitates a reconsideration of how security,
reliability, and resilience are maintained within critical infras-
tructure.
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A. SCADA Vulnerabilities and Cybersecurity Challenges

Traditional SCADA systems often rely on programmable
logic controllers (PLCs) and proprietary communication pro-
tocols, historically protected by physical isolation. However,
Alsabbagh and Langendorfer [3] highlighted that such systems
now face extensive vulnerabilities due to weak authentication,
lack of encryption, and poor access control, particularly as they
are integrated with modern IP-based networking. This security
gap is critical as attackers increasingly target ICS through
network-based exploits, credential hijacking, and telemetry
injections [13].

The emergence of Cyber-Physical Systems (CPS) has fur-
ther complicated SCADA security. Tyagi and Sreenath [5] out-
lined the challenges unique to CPS environments, emphasizing
that traditional IT security methods are often ineffective due
to the real-time, low-latency, and safety-critical requirements
of industrial operations. These characteristics demand novel
security strategies that can detect and respond to threats
without interrupting physical processes.

B. Al and Machine Learning in Industrial Anomaly Detection

Traditional SCADA security often relies on fixed thresholds
and static rule-based systems, which are insufficient against
adaptive or stealthy cyberattacks. Modern research increasingly
advocates for Al and machine learning approaches to anomaly
detection [12].

Moreover, unsupervised learning has emerged as a practical
solution for industrial environments where labeled attack data
is rare. Choi and Kim [9] validated the effectiveness of
unsupervised techniques such as Isolation Forest for detecting
unknown anomalies without prior labeling. This approach
matches this system’s use of Isolation Forest models trained
on normal operational data to identify novel intrusions, such
as during replay attacks and false data injections.

However, as this research and other studies acknowledge,
Al-driven models are not without challenges. Issues such as
model drift, false positives due to environmental variability,
and limited explainability remain open problems [10]. Future
research must explore adaptive learning, explainable Al (XAI),
and hybrid detection systems that combine statistical, rule-
based, and machine learning techniques.

C. Observations and Gaps in Current Literature

While existing studies have extensively explored individual
aspects of SCADA security such as anomaly detection, de-
centralized architecture, and Al model deployment, few have
integrated these components into a cohesive, real-time, testbed-
based simulation using real-world telemetry. This project ad-
dresses this gap by building a practical, layered SCADA
framework that:

e  Uses authentic turbine sensor data [11];

e Implements dual-database synchronization for forensic
analysis;

e Integrates supervised and unsupervised Al models;

e  Simulates multiple attack scenarios including DDoS,
false data injection, and access token hijacking;
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e Evaluates both detection accuracy and operational
resilience.

This holistic integration not only advances the current
state of SCADA security simulation but also offers a scal-
able foundation for future research into smart infrastructure
cybersecurity.

III. PROPOSED SYSTEM ARCHITECTURE

The architecture of the proposed SCADA simulation sys-
tem is designed to emulate real-world industrial environments
where data collection, analysis, and control occur across mul-
tiple levels. As illustrated in the system design, the model
adopts a three-tier structure—Edge, Fog, and Cloud—each
responsible for specific functions ranging from data ingestion
to forensic validation [26]. This layered approach ensures mod-
ularity, scalability, and security while supporting redundancy
through a dual-database configuration (Fig. 1).

A. Overview of Multi-Layered Architecture

The system mimics a smart city scenario where telemetry
data from field sensors is processed hierarchically:

1) Edge layer (physical/local): This layer leverages Node-
RED as the core processing unit. It is responsible for ingesting
real-time telemetry via the MQTT protocol, performing imme-
diate data cleansing, and storing the raw data in a local MySQL
database. The edge layer handles low-latency control logic and
message orchestration [18].

2) Fog layer (intermediate): Positioned between the edge
and the cloud, the Fog layer utilizes ThingsBoard for real-time
visualization, rule-based alerting, and metadata processing. It
acts as a bridge, enabling operators to monitor system status
without directly accessing the physical controllers [16].

3) Cloud layer (centralized): While locally simulated in
this testbed, the Cloud layer represents remote systems with
administrative access and long-term analytics capabilities. It
serves as a backup for telemetry validation and supports high-
level decision-making processes [17].

B. Dual-Database Synchronization for Forensic Integrity

A critical innovation of this architecture is the implemen-
tation of a dual-database system to ensure data integrity and
enable forensic analysis. A primary MySQL database resides
at the Edge layer, capturing raw data directly from sensors.
A secondary, synchronized MySQL database is maintained at
the Fog/Cloud layer, populated via a custom Flask API that
retrieves data from ThingsBoard.

A synchronization module periodically queries both
databases, aligning records by timestamp to detect discrepan-
cies. To mitigate false positives caused by network latency,
the module implements a dynamic tolerance window (e.g.,
42 seconds) during timestamp alignment. Discrepancies per-
sisting beyond this window are flagged for forensic review,
effectively distinguishing between benign transmission delays
and malicious data tampering. This mechanism serves as a
real-time validation engine; any mismatch between the Edge
(source) and Fog (visualization) data indicates potential data
tampering, Man-in-the-Middle (MitM) attacks, or transmission
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Fig. 1. Proposed multi-layered SCADA architecture integrating Edge, Fog,
and Cloud layers with dual-database synchronization.

faults [19]. This design ensures that even if the visualization
layer is compromised, the integrity of the original telemetry
can be verified against the edge records.
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TABLE I. COMPARISON OF PROPOSED FRAMEWORK WITH EXISTING SCADA SECURITY STUDIES

Reference Dataset Type Architecture Integrity Detection Real-Time
Upadhyay et al. [1] Simulated IoT/Cloud Single DB Cryptography Yes
Ghosh et al. [4] Simulated SCADA Single DB Quantum/ Crypto No
Choi & Kim [9] Public Dataset Single Layer N/A Unsupervised No
Proposed System Real-World (Aventa) Edge-Fog-Cloud Dual-DB Sync Hybrid AI (RF+LSTM) Yes

C. Tools and Technologies

The framework is built using open-source technologies to
ensure cost-effectiveness and reproducibility:

1) Node-RED: A flow-based development tool used for
orchestrating data flows at the edge, parsing JSON telemetry,
and executing local control logic.

2) ThingsBoard: An open-source IoT platform chosen for
its robust dashboarding capabilities, asset management, and
built-in rule engine for generating alerts based on telemetry
thresholds [21].

3) MOQTT (Message Queuing Telemetry Transport): A
lightweight messaging protocol used for efficient, low-
bandwidth communication between the simulated wind turbine
sensors and the edge gateway.

4) Python & Flask: Used to develop the custom API
for database synchronization and to implement the machine
learning models (Isolation Forest, Autoencoders) for anomaly
detection.

IV. METHODOLOGY AND DATA PROCESSING

This study adopts an experimental design strategy utiliz-
ing a high-fidelity digital twin of a wind turbine SCADA
system. The methodology follows a comprehensive workflow
encompassing data acquisition from the Aventa AV-7 turbine,
a hybrid preprocessing pipeline, and the development of Al-
driven anomaly detection models. Furthermore, the framework
integrates realistic cyberattack simulations and a dual-database
synchronization mechanism to validate system resilience and
forensic integrity. Fig. 2 shows overview of the research
workflows.

A. Dataset Description

To ensure the realism of the simulation, we utilized a real-
world dataset sourced from the Aventa AV-7 research wind
turbine, operated by the Institute for Energy Technology (IET-
OST) in Switzerland [11]. The Aventa AV-7 is a variable-speed
wind turbine with a rated power of 6kW, designed for low-
wind-speed environments.

1) Data scope and characteristics: The dataset covers an
18-month operational period from January 2022 to July 2023.
It consists of high-resolution time-series telemetry sampled
at a frequency of 1Hz, totaling approximately 39.7 million
records. This high frequency allows for the detailed modeling
of transient behaviors and rapid anomalies that 10-minute
averaged SCADA data might miss.

The dataset includes diverse operational conditions, includ-
ing start-up sequences, power generation, idle states due to
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Fig. 2. Overview of the research workflow illustrating the integration of
real-time simulation, cyberattack injection, and multi-layered anomaly
detection.

low wind, and system faults. Notably, the dataset exhibits
a significant class imbalance, where fault states (indicated
by specific status codes) constitute a minority of the data,
reflecting real-world industrial scenarios.

2) Telemetry features: The SCADA system logs several
physical and electrical parameters. The key features selected
for this study include:

a) RotorSpeed (RPM): Rotational speed of the turbine
blades.

b) GeneratorSpeed (RPM): Rotational speed of the
generator shaft.

c) PowerOutput (kW):
(Rated max: 6kW).

Electrical power generated
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Fig. 3. Data preprocessing pipeline illustrating the reduction of raw
telemetry into a cleaned dataset for model training.

d) WindSpeed (m/s): Wind velocity measured at the
nacelle.

e) GeneratorTemperature (°C):
generator windings.

Temperature of the

f) StatusAnlage: Operational status code (e.g., 1=Ac-
tive, 13=Fault), used as the ground truth for supervised label-

ing.

B. Data Preprocessing and Hybrid Cleaning Strategy

Raw SCADA telemetry often contains noise and sensor
artifacts (Fig. 3) . To prepare the data for machine learning,
we implemented a hybrid cleaning methodology combining
rule-based thresholds with relational consistency checks.

e  Physical Thresholds: Values that violate physical lim-
its were removed (e.g., GeneratorTemperature <
—25°C" or PowerQutput > 7.5kW).

e Relational Logic: We validated aerodynamic consis-
tency using the derived correlation:

RotorSpeed ~ 13.02 x WindSpeed D

Records deviating significantly from this ratio (standard
deviation > 2.42) were flagged as operational inconsistencies.

This process reduced the dataset by approximately 10.7%,
removing ~4.2 million erroneous records [23].

This preprocessing phase reduced the dataset by approx-
imately 10.7% (removing 4.2 million erroneous records),
resulting in a high-quality baseline of 35.4 million records
for model training. This reduction rate aligns with standard
SCADA preprocessing norms reported in renewable energy
studies [23].

C. AI/ML Model Development

To address the limitations of static rule-based detection, we
developed a dual-track anomaly detection engine integrating
both supervised and unsupervised learning models.

Vol. 17, No. 1, 2026

1) Supervised learning: Supervised models were trained
to recognize known failure patterns using historical fault data
(labeled ‘StatusAnlage = 13°). Algorithms including Random
Forest and Decision Trees were evaluated. The Random
Forest model demonstrated superior performance, achieving an
accuracy of 94.3% and a recall of 95.7% in classifying known
fault states. Key features driving the classification included
PowerQOutput and GeneratorTemperature [24].

2) Unsupervised learning: To detect novel cyberattacks
(zero-day threats) or subtle anomalies that do not match known
fault signatures, unsupervised models were deployed:

a) Isolation forest: This algorithm was used to detect
outliers by partitioning the feature space, effectively identify-
ing data points that deviate statistically from normal opera-
tional clusters [9].

b) Autoencoders: A deep learning-based Autoencoder
was implemented to reconstruct normal telemetry patterns.
High reconstruction errors served as indicators of anomalies.
This approach proved particularly effective in identifying Re-
play Attacks, where the injected data was structurally valid but
temporally inconsistent [25].

3) Deep Learning Enhancement: Long Short-Term Mem-
ory (LSTM): To address the limitations of traditional ML
models in capturing long-term temporal dependencies, we
implemented a Long Short-Term Memory (LSTM) network.
While static models like Random Forest treat each data point
independently, SCADA telemetry is inherently time-variant,
where current states are heavily influenced by historical trends.
Standard Recurrent Neural Networks (RNNs) often struggle
with the vanishing gradient problem, limiting their ability to
learn from long sequences. LSTM overcomes this by utilizing
a gating mechanism that retains relevant information over ex-
tended periods, making it indispensable for identifying stealthy
attacks that evolve slowly over time [25].

Unlike Random Forest, the LSTM model analyzes se-
quences of data (e.g., 5-second sliding windows) to identify
contextual anomalies. As illustrated in Fig. 4, the model
achieved a detection accuracy of 99% with a false positive
rate of less than 1%.

e Rapid Response: The model successfully detected
anomalies within 5 seconds of injection, fulfilling
the real-time requirements of critical infrastructure
protection.

e  Temporal Sensitivity: It proved highly effective against
sophisticated attacks such as stealthy data injection,
where individual values remain within valid thresholds
but violate historical temporal patterns.

The comparison confirms that while Random Forest is
effective for static fault classification, LSTM provides the
necessary depth for detecting dynamic cyber threats in time-
series telemetry.

V. CYBERATTACK SIMULATIONS AND EXPERIMENTAL
SETUP

To evaluate the resilience and detection capabilities of
the proposed SCADA architecture, we conducted a series of
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TABLE II. SAMPLE SNAPSHOT OF RAW SCADA TELEMETRY DATA (AVENTA AV-7)

Datetime Rotor Gen. Power Wind Gen. Status
(RPM) (RPM) (kW) (m/s) Temp(° C)

2022-01-13 07:07:25 3.90 0.00 0.00 4.00 4.50 13

2022-02-03 12:46:28 1.60 0.00 0.00 2.00 10.70 13

2022-02-24 12:55:34 11.40 0.00 0.00 10.10 16.20 13

2022-03-19 10:19:42 65.30 773.00 6.70 8.80 59.30 10

2023-03-14 09:50:33 65.50 778.00 6.72 9.40 63.50 10

TABLE III. RAW AND CLEANED DATA VOLUME

Stage Description Records Size (GB) Percentage Retained
0 Raw Dataset 39,715,978 3.1 100%
1 Cleaned Dataset 35,470,486 2.7 89.3%
TABLE IV. ANOMALY DETECTION RESULTS e  Network Analysis: Wireshark (v4.0.6) for packet cap-
ture and traffic analysis.
Detection Method  Count  Pct. Notes e  Man-in-the-Middle (MitM): The dsniff suite,
Rule-Based 877  5.0%  Threshold and specifically arpspoof, for ARP cache poisoning.
Checks relational violations
e  Protocol Manipulation: mosquitto_pub client and
Temporal | 19 0.1%  Delays (> 15s), no custom Python scripts using the paho-mgtt library
Irregularities rapid (< 3s) events R
for telemetry injection.
Isolation Forest 880 5.0% Contamination=0.05, ) )
on cleaned data e  Traffic Flooding: hping3 and multithreaded Python
Total (Cleaned) 1776 10.1% Combined across meth- seripts for stress testing.
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Fig. 4. Performance of the LSTM model showing 99% detection accuracy
and rapid response time (5s) during telemetry injection attacks.

controlled cyberattack simulations. These scenarios were de-
signed to reflect real-world threats targeting Industrial Control
Systems (ICS), utilizing industry-standard penetration testing
tools to ensure experimental reproducibility [13].

A. Simulation Environment Configuration

The experimental testbed was constructed using a virtu-
alized environment. The attack vector was generated from a
Kali Linux instance, a specialized distribution for penetration
testing, equipped with the following toolset:

B. Implementation of Threat Scenarios

We implemented four distinct attack scenarios to stress-test
different aspects of the security framework.

1) Distributed Denial of Service (DDoS): The objective
was to overwhelm the MQTT broker and disrupt telemetry
transmission.

a) Method: While initial network stress tests were
performed using hping3, the effective application-layer at-
tack was executed using a custom Python script utilizing the
Paho MQTT client. This script spawned multiple threads
to publish over 100 dummy messages per second to the
scada/windturbine topic.

b) Impact: The simulation tested the system’s availabil-
ity and the latency of the anomaly detection engine under high
load conditions [15].

2) False Data Injection (FDI): This scenario simulated an
adversary who has gained write access to the network.

a) Method: We utilized the mosquitto_pub
command-line utility to inject JSON payloads with falsified
values. For instance, WindSpeed was manipulated to 991.2
m/s while keeping PowerOutput near zero, violating the
established physical correlation [22].

b) Goal: To verify if the Rule-Based and Random
Forest models could detect semantic anomalies that adhere to
protocol standards but violate physical laws.

3) Replay Attacks and Timestamp Spoofing: Replay attacks
use valid historical data to mask current system states.
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a) Method: Valid telemetry packets were captured us-
ing tepdump. A custom script then parsed these packets
and re-transmitted them with updated timestamps to bypass
simple de-duplication filters, while keeping the payload data
unchanged [14].

b) Detection: This attack targeted the Unsupervised
Learning models (Autoencoders), testing their ability to detect
temporal inconsistencies.

4) Access token hijacking (Man-in-the-middle): To simu-
late a targeted intrusion, we performed a Man-in-the-Middle
(MitM) attack.

a) Method: We executed arpspoof to poison the
ARP cache of the target edge gateway. Simultaneously, Wire-
shark was used to sniff the traffic. Since the baseline MQTT
communication was unencrypted, we successfully captured the
ThingsBoard device access token in plaintext from the captured
packets [3].

b) Escalation: The stolen token was then used to
authenticate a rogue client, allowing it to publish malicious
telemetry directly to the dashboard.

VI. RESULTS AND DISCUSSION

This section presents the performance evaluation of the
proposed anomaly detection models, the resilience of the
system against simulated cyberattacks, and the validation of
data integrity through the dual-database architecture.

A. Performance of Anomaly Detection Models

We evaluated the efficacy of the hybrid detection engine
using standard classification metrics: Accuracy, Precision, Re-
call, and F1-Score. Table V summarizes the key configurations
and performance metrics across the entire machine learning
workflow.

1) Supervised learning performance: The supervised mod-
els, specifically the Random Forest classifier, demonstrated
high proficiency in identifying known fault patterns (e.g.,
StatusAnlage = 13). As shown in Table VI, the Random
Forest model achieved an accuracy of 94.3% and a recall of
95.7%, outperforming Decision Trees and Logistic Regression
[24].

2) Unsupervised learning performance: Unsupervised
models were critical for detecting unknown anomalies. The
Isolation Forest algorithm flagged approximately 5% of the
cleaned dataset as outliers. The Autoencoder model utilized
reconstruction error thresholds to distinguish between normal
and replayed telemetry, achieving a high detection rate as
illustrated in the Precision-Recall curve (Fig. 5) [9].

B. System Resilience Against Simulated Attacks

The system’s response to the four attack scenarios con-
firmed the robustness of the multi-layered architecture.

e DDoS Resilience: During the high-frequency packet
flooding (100+ msgs/sec), the Node-RED edge gate-
way experienced a latency increase but successfully
queued legitimate messages. The system stabilized
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Fig. 5. Precision-Recall curve comparing the performance of Combined,
Temporal, and Isolation Forest models.

within seconds after the attack ceased, demonstrating
effective recovery [15].

e  False Data Injection: The hybrid detection engine suc-
cessfully flagged 99% of the injected false telemetry.
While rule-based checks caught gross violations (e.g.,
WindSpeed > 50 m/s), the ML models were necessary
to detect semantically inconsistent injections within
valid ranges.

e  Replay Attack Mitigation: Simple deduplication failed
to catch replay attacks with modified timestamps.
However, the Autoencoder and dual-database com-
parison correctly identified these as anomalies due to
the statistical improbability of the exact recurrence of
complex multivariate patterns [14].

Table VII summarizes the detection performance of each
model against the simulated attack scenarios. While traditional
rule-based and supervised methods fail to detect stealthy or
temporal attacks, the proposed LSTM model provides com-
prehensive coverage.

C. Forensic Validation via Dual-Database Synchronization

The dual-database architecture provided a reliable mecha-
nism for forensic integrity. The synchronization module main-
tained a record match rate of 99.98% under normal conditions.
During the Access Token Hijacking simulation, where the
attacker injected data directly into the Fog layer, the synchro-
nization script immediately detected a discrepancy between
the Edge (clean) and Fog (compromised) databases. This
proved that the architecture could effectively isolate the source
of compromise and provide immutable evidence for forensic
analysis [19]. Furthermore, this synchronization mechanism
aligns with recent methodologies for ensuring data integrity
in cloud-based forensic investigations [20].

D. Comparison with Traditional Methods and Limitations

Compared to traditional SCADA security relying solely
on static thresholds, our hybrid approach reduced the false
negative rate significantly. Rule-based methods flagged only
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TABLE V. SUMMARY OF MACHINE LEARNING WORKFLOW METRICS AND CONFIGURATIONS

Stage Metric 1

Metric 2

Metric 3

Data Preprocessing  Filter Rate: 10%

Feature Ratios Added: 2
Engineering

Train/Validation Train Split: 70 %
Split

States Used: Active
Accuracy: 94.3%

Model Training
Supervised Models

Status Filtered: 13
Key Features: 4

Validation Split: 30%

Test Data Mix: Mixed
Recall: 95.7 %

Data Size Post: 80%
Impact: +5% F1

Method: Chronological

Training Freq: Periodic
F1-Score: 93.6%

Unsupervised Normal Error: < 0.02 Anomaly Error: > 0.14 Detection Rate: 92%

Models

Visualization Threshold: 0.1 Alert Rate: 5/day Integration: Fog Layer

TABLE VI. PERFORMANCE METRICS OF SUPERVISED LEARNING MODELS

Model Accuracy Precision Recall F1-Score
Decision Tree 91.2% 89.5% 90.1% 89.8%
Random Forest 94.3% 91.6% 95.7% 93.6 %
Logistic Regression 88.4% 85.2% 86.8% 86.0%

TABLE VII. DETECTION CAPABILITY MATRIX ACROSS ATTACK SCENARIOS

High
High
High
High

Attack Type Rule-Based Random Forest Isolation Forest LSTM
DDoS (Flooding) Low Low Medium

FDI (Gross) High High High

FDI (Stealthy) Low Low Medium

Replay Attack Fail Fail Medium

Token Hijacking Fail Fail Low

High

Note: ‘High’ indicates detection within 5s with > 90% accuracy. ‘Fail’ indicates no detection.

5% of anomalies, whereas the combined Al-driven approach
identified an additional 5-7% of sophisticated threats.

However, limitations remain. The supervised models
showed reduced accuracy against novel attack vectors not
represented in the training set, highlighting the issue of model
drift. Furthermore, while the Autoencoder provided high detec-
tion rates, explaining the root cause of the high reconstruction
error to operators remains a challenge [10]. Future work
will focus on integrating Explainable AI (XAI) techniques to
improve the interpretability of these alerts [27].

VII. CONCLUSION AND FUTURE WORK

This study successfully developed and validated a
simulation-based SCADA security framework designed to pro-
tect critical infrastructure against evolving cyber threats. By
integrating high-fidelity telemetry from the Aventa AV-7 wind
turbine [11] with a multi-layered architecture, we demonstrated
that a data-driven approach significantly enhances the re-
silience of Industrial IoT environments compared to traditional
static defense mechanisms.

The experimental results confirmed that the proposed dual-

database architecture serves as a robust mechanism for forensic
integrity. The real-time synchronization between Edge and
Fog layers successfully identified sophisticated discrepancies
caused by Man-in-the-Middle attacks and data tampering,
which standard visualization tools failed to detect [19]. Fur-
thermore, the hybrid anomaly detection engine proved crit-
ical for comprehensive security; while supervised Random
Forest models achieved high accuracy in classifying known
operational faults, the unsupervised Autoencoder models were
indispensable for detecting novel attack vectors, specifically
replay attacks, thereby reducing false negatives inherent in
rule-based systems [12].

Despite these contributions, the deployment of such sys-
tems in large-scale smart cities requires addressing specific
limitations. Future research should prioritize the integration of
Explainable AI (XAI) to demystify the “black-box” decisions
of deep learning models, providing operators with actionable
insights rather than abstract anomaly scores [27], [28]. Addi-
tionally, to resolve scalability and data privacy concerns, tran-
sitioning from centralized processing to Federated Learning is
recommended, allowing edge devices to collaboratively train
defense models without exposing sensitive raw telemetry [30],
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[29]. Finally, implementing an automated MLOps pipeline for
adaptive model retraining will be essential to mitigate model
drift caused by seasonal environmental changes or emerging
adversarial tactics [31].

In conclusion, this research offers a scalable, cost-effective
reference model for securing modern industrial control sys-
tems, bridging the gap between theoretical security designs
and practical, real-world implementation.
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